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ABSTRACT

Certain properties of multi-input, multi-output dynamic systems

which are of interest in automatic control are investigated. It is

shown that such systems can be viewed as a mapping whose domain is

the set of possible input functions and whose range is either the

set of responses or a set of equivalence classes. By selecting

the norms for the input and output spaces in various ways it is

possible to interpret many of the familiar properties of a system

in terms of these mapp gs and new means of system characterization

are suggested as well. It is shown that the study of these mappings

leads naturally to the study of an inverse equation. Conditions

under which the inverse equation exists are derived for some linear

and nonlinear systems and explicit representations for the inverse

equation are given for certain classes of linear systems.

The effect of feedback is analyzed in terms of its influence

on the character of these mappings and certain limitations on feed-

back as a device for altering a given system are noted. It is also

shown that the inverse equation can be used to help define the

optimum input for a certain type of time-optimal problems where the

objective is stated in terms of the outputs rather than the state.

Examples are given which show that the time-optimal forcing function

cannot always be generated by an ideal relay.
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CHAPTER I

INTRODUCT ION

1.1 The General Problem

A basic property of those systems which are of interest to auto-

matic control engineers is that their outputs can be altered to meet

changing requirements by means of input manipulation. It is also

true, however, that for most systems there are definite limitations

on the types of responses that can be obtained. For example, it is

usually impossible to make a physical variable change its value in-

stantaneously. In 7eneral, the types of responses that can be ob-

tained from a system depend on the class of possible inputs, the

present state of the system, and the nature of the equations govern-

ing the system. The purpose of this research is to study the nature

of these dependencies, to characterize certain classes of systems

which have the property of being able to generate all responses in a

given set, and to indicate certain applications of these ideas.

The systems wbich we will consider are all special cases of

those which can be described by a pair of equations of the form

Z(t) = F(Z(t),X(t)) (l.la)

Y(t) = G(Z(t),X(t)) (l.lb)

The symbol X(t) denotes the value of the input at time t and Y(t)

denotes the corresponding value of the output. The vector Z(t),

which is usually called the state, is not assumed to bear any partic-

ular relationship to the input or output variables. It should be

thought of as being introduced only to enable the first order
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representation of the differential equation. The inputs and out-

puts are permitted to be vector valued and initially are not assumed

to be of the same dimension although this will be by far the most

important case for our work.

If we are interested in the behavior of the system (1.1) overJ

a specific interval of time, say [o,c], then it is not the value of

the variable X(t) at any one time which determines the response but

rather it is the behavior of X(t) over the entire i? ,erval. To

avoid confusion it is imparative to distinguish between a function,

that is, a complete description of how the variable varies with

time, and the value of a function at some particular time t. As is

common in mathemailcal literature we will use symbols such as X, Y9

and Z without arguments to denote functions and use X(t), Y(t), and

Z(t) to denote the value of a function at time t.

In terms of this notation the problem under consideration can

be given a more precise statement. Let Sx denote a set of functions

defined on the interval roo]A Assume that for each XCS the

equation (l.la) has a unique solution passing through a given in-

itial point Z(O) and assume that this solution is defined over the

entire interval [o,(j. This fact may be expressed by saying that

the system (1.1) associates a unique Y with each X in Sx or by say-

ing that (1.1) defines a (single valued) mapping whose domain is Sx

The problem we are studying, that is, the problem of determining the

types of responses the system is capable of, is identical to that of

The symbol & should be read 1belonging to".
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determining the range of this mapping.

From an abstract point of view our approach will be to introduce

norms in the inuut and output spaces and then to discuss the con-

ditions under which certain transformations are continuous and

invertible. The conditions under which a transformation has a con-

tinuous inverse will be particularly important since this corres-

ponds to the case where a more or less arbitrary output can be

realized.

Because our approach and methods are somewhat different from

those currently in vogue in control systems theory an effort has

been made to relate the properties under consideration to the more

familiar concepts of stability, minimum phasity, controllability,

singularity of transfer matrices, etc. The remainder of this

chapter is devoted to a somewhat informal explanation of the

approach to be taken. It includes a brief account of our results

as well as some of the results of other workers who have made

similar investigations or have otherwise contributed to this study.

Although this thesis represents an engineering study it has

been necessary to use some mathematical terminology in order to

make the intuitive ideas precise. This is particularly true in

Chapter II where the objective is to develop the essential points

in such a way as to make them acceptable and understandable to both

control engineers and applied mathematicians.

1.2 Systems as Transformations

As indicated above, once Z(O) is fixed the system (1.1) can

be viewed as a transformation whose domain is a set of functions S
x
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For many purposes it is most natural to regard the range of such a

transformation as being the set of response functions, i.e., the

set S consisting of all the functions Y which can be generated byY

an X in S x If this point of view is adopted then one way of de-

termining hat types of responses are possible is to construct a

representation of the inverse mapping. For example, if X and Y are

related by a system of the form

Z(t) = AZ(t) + BX(t) (l.2a)

Y(t) - CZ(t) + DX(t) (l.2b)

and if D is nonsingular, then it is possible to U'solve" (1.2) for

X(t) in terms of Y(t) and Z(t). That is, we can eliminate X(t) from

the differential equation by expressing it in terms of Y(t) and Z(t).

For the system (1.2) the inverse system is given by

i(t) = (A-BD- 9 Z(t) + BD- Y(t) (l.3a)

X(t) = D-1y(t) - D-1 CZ(t) (l.3b)

Both (1.2) and (1.3) provide complete descriptions of the re-

lationship between X and Y. The important difference is that the

representation (1.2) places in evidence the differential equation

relating Z to X whereas (1.3) places in evidence the differential

equation relating Z to Y. Since X is the independent variable the

representation afforded by (1.2) is more natural in most cases and

hence we will take it to be the definitive relationship and will

regard (1.3) as the inverse transformation.

The importance of the inverse system is twofold. First, the I
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very fact that it is possible to derive such a relationship implies

that for any Y such that (1.3) has a unique solution there exists

an X which generated it and in addition (1.3) gives a means for com-

puting it. Second, the representation (1.3) allows one to study

how X varies as a function of Y. This is particularly important

in cases where the systems of equations cannot be solved and

qualitative methods must be used.

In view of the large amount of work which has been done on

Liapunov stability it is natural to ask how instability manifests

itself if one adopts the proposed point of view. In particular,

what is the significance of an unstable inverse equation?

In order to answer these questions satisfactorily it is

necessary to examine the concept of continuity as it applies to

mappings between function spaces.

1.3 Continuity

Loosely speaking what we have in mind is this. If the eigen-

values of A have negative real parts, and if X is a particular

function which maps into Y, then any X' which is "close" to X maps

into a function Y' which is "close" to Y. This is true even if we

are interested in the behavior of Y(t) over the entire interval

$ o9oo] 0 It is not necessarily true, however, that any Y' which is

"close" to Y can be generated by an X1 which is "close" to the X

which generated Y. This is true only if the eigenvalues of the

matrix (A-BD' 1 C) appearing in the inverse equation have negative

real parts.
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At this point these statements lack precision because it has

not been specified what is meant by "close". For the scalars x(t)

and y(t), the absolute value of the . difference, Ix(t)-y(t)I, is a

measure of closeness. For vectors a suitable definition is the

maximum over all i of Ixi(t)-yi(t)I where xi(t) and yi(t) are the
th

1- components of X(t) and Y(t) respectively. This will be

written as IX(t)-Y(t)I. For vector valued functions defined over

Co ] a measure of proximity may be defined as the maximum over

all te[o,a] of [X(t)-Y(t)I. This is denoted by IIX-YI1 or simply

by 1X-YI1 if the interval of interest is 1o,0]. A function such

as this which satisfies certain technical requirements is known as

a norm. This is by no means the only pcssible way of defining a

norm and although this particular norm will always be used for the

input space S it will be necessary to consider other types of normsx

for the output set in order to accurately characterize the trans-

formations under consideration.

Return now to the system (1.2). Let S e C, the class of con-x

tinuous functions defined on [oo] , and suppose the above defini-

tion of norm is used. Then, as will be shown in Chapter II, if the

eigenvalues of A have negative real parts then the system (1.2) de-

fines a continuous mapping of C into C. That is to say, if the

eigenvalues of A have negative real parts then for any given 6 > 0

there exists a 6 > 0 such that if IX-X, II < 6 then I IY-Y, I I < E.

Here again Y is the image of X and Y' is the image of X'. The con-

dition that the eigenvalues of A have negative real parts is

necessary and sufficient for the asymptotic stability of the I
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differential equation (l.2a) and thus for this particular trans-

formation asymptotic stability implies continuity. It is important

and useful to loaow that the total stability thed'rem 1 9 implies that

this is also true for a wide class of time-invariant nonlinear

systems, provided that Z(O) is sufficiently close to the critical

point and that the inputs are sufficiently small.

The inverse equation (1.3) defines a continuous mapping of iC

into C if the eigenvalues of (A-BD-IC) have negative real parts.

If, on the other hand, there exist eigenvalues of (A-BD ;C) with

positive real parts then there may be output functions which are

finite but which require an infinite in-ut to produce them. In

terms of the approach taken here such a system would be described

as one which does not have a continuous inverse.

Another reason that the inverse may fail to be continuous in

terms of the characterization of the response space given above is

that the inverse system may involve derivatives of Yo 'Consider the

scalar equation

y(t) + by(t) = x(t) (1.4)

If b is positive then when viewed as a mapping of S into Sx y

(1.4) is continuous provided both S and S are taken to be 1C.x y

Difficulties arise, however, when considering the inverse mapping.

The fact is that by making Ily-yI1 small one cannot insure that

*Superscripts refer to the references found immediately following
Chapter V.
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the inverse images of y and y' will be close. Thus (1.4) does not

have a continuous inverse if S = C.y

The problem in this case is that the value of x(t) depends on

y(t) as well as y(t) whereas a restriction in the value ofI jy-y' I

gives no control over the value of Hly-yrtH. The solution to this

problem is to define a norm which gives control over oth y-y,

and lY- If. it should be clear that in more general situations

control over higher derivatives may be required as well. Let

Ck be the set of functions defined on [o,o] which have k con-

tinuous derivatives. Define 11xfl k , the Ck norm, as maximum over

all i from zero to k of' IX(i) 'I where X(i) is the Ith derivative

of X with respect to time. In terms of this notation equatuon

(1.4) defines continuous transformation of 1C into C1 and as such,

it has a continuous inverse. The ideas which we have sketched

here will be presented in a more orderly fashion in Chapter II.

1.4 Asymptotic Controllability

As pointed out in the previous section, mappings defined by

equations such as

(t) + y(t) = x(t) - x(t) (1.5)

do not have continuous inverses because their inverse equation is

unstable. Yet, such systems can be controlled to a large extent.

For example, one can find a bounded input x such that y(t) is

identical to some desired function over some finite interval [o, oj.

One may also find x(t) such that y(t) takes on a given value at a



-9-

given time or, one may find a bounded x(t) such that y(t) approaches

any desired value asymptotically. Systems having this last pro-

perty are especially important in process control. Thus the fact

that a s!ytm does not have a continuous inverse does not imply that

the system cannot be controlled at all but rather, it merely implies

that perfect control is not possible over the entire interval [oc3

Although we will not attempt to define exactly what the capabi-

lities and limitations of a system with an unstable inverse equation

are, we will study the conditions under which steady-state control

is possible. If a system can be controlled in the steady-state we

will call it asymptotically controllable. A precise definition

will be given in (2.5). In what follows here, we will try to give

the physical motivation for that definition.

Since any reasonable defiittiohof asymptotic controllability re-

quires that the limit as t approaches infinity of Y(t) should

exist, it is clear that asymptotic stability of the differential

equations is a prerequisite. It is, however, not sufficient to

insure that it will be possible to find an X such that X(t) tends

toward a preassigned constant, An obvious example is the one-

input, two-output system

Sr(t) + y1 (t) = x(t) (l.6a)

S2 (t) + 2y2 (t) = x(t)

Although these equations are asymptotically stable, it is not

possible to find x such that yI(t) -> a and Y2(t) -- > b as

t -> oo except in the special case where 2a - b.
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At the same time, it should not be assumed that there are no

one-input,two-output systems which ard capable of meeting these

requirements. Consider the nonlinear system

Sl(t) (x(t)), (1.7a)

• (t) X(t) (1.7b)

A little experimenting with this systemiconvinces one that by

manipulating the single innut x(t) it is possible to make the out-

puts assume any two preassigned steady-state values. This behavior

is very interesting and seems to be present in most systems which

incorporate some means for self-identification or adaption. How-

ever, because of its complexity, it will not be discussed here.

From a more formal point of view the problem of determining

the conditions under which it is possible to force the outputs to a

preassigned steady-state value may be put into our general frame-

work as follows. First observe that 'e are only interested in the

limit of Y(t) as t -> co so that any two responses such that

lim (Y(t) - Y'(t)) = 0 are equivalent. In fact, this is an
t -> co 7
equivalence relation in the precise sense and as such it partitions

the subset of C for which lim Y(t) exists into equivalence
t -> 00

classes. A suitable norm for this set of equivalence classes is

Ilim Y(t)j -- I iYi where Y represents the equivalence class con-
t -> 00

taining Y(t). It follows that the conditions under which it is

possible to achieve steady-state control are the same as those

which guarantee that the system maps C onto this set of equivalence

classes.

I-



In this section, and those preceding it, we have attempted to

provide motivation for the material to be presented in Chapter II.

The purpose has been to engender a point of view which may be

summarized as follows- Once the initial state is fixed a system can

be viewed as a mapping from a function space S onto a second set S

By properly selecting the norms for these s-aces it is possible to

-elateranyof the important problems in control theory to the study

of these mappings.

1.5 Background

The problem of determining the limitations which the equations

of motion impose on the control of a physical process has been studied

from many points of view, usually with the term controllable being

applied to systems which have some desired property. Thus the works

4912 23 3
of Smith , Eckman Kalman , and Antrosiewicz to name a few,

all contain different definitions of controllability.

In Jlis study of multivariable systems, Mesarovic
3 8,40 ,41

studied and quantified the concept of interaction and our general

approach to the problem of determining the conditions under which

a multivariable system can produce a desired output has been very

much influenced by his work in this area. The work of Kavanaug 8 29,
AmaraI, and Freeman14,1 5 should also be mentioned as being in the

same spirit as this investigation.

Although we have used a vector differential equation in re-

presenting the equations of the system we have also consistently

placed in evidence a second equation relating the output to the
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states. This is often not done. In fact, one of the effects of

the recent trend toward modeling systems by first order vector

differential equations has been to focus attention on the state,

often to the extent of leaving the outputs undefined. This is

evident, for example, in the recent work of Kalman, Ho, and

Narandra 27 , Gilbert 8 , Marcus and Lee5 , and Antrosiewicz , where

controllability is defined in terms of the state rather than the

outputs.

To emphasize the difference between the point of view taken by

this last group of authors and the approach taken here, consider the

following definition from reference 27: 'A system is controllable

if any initial state can be transferred to any desired state in a

finite length of time by some control action." It has been shown

that a necessary and sufficient condition for the equation (l.2a) to

be controllable is that the matrix (BAB, ... AP-B)* be of rank p

where p is the dimension of Z(t). According to such a definition the

system defined by (1.6) is controllable. This clearly points out

that controllability does not imply that one can select the inputs

so as to obtain an arbitrary response. What it does insure is that

one can select the innuts so as to obtain an arbitrary value of the

state (or output) at some one point in time.

For those cases in which the system equations are of the form

of (1.2) and D is zero Kalman 2 6 has shown that the concept of ob-

servability has certain applications. Without attempting a detailed

*See section 2.1 for an explanation of this notation.



explanation, the condition under which a system of the form (1.2)

with D = 0 is observable is that (C T  ,A C ...ATp -lCT) be of rank p

where again p is the dimension of Z(t). Since the system (1.6) can

be represented as a controllable and observable system it is clear

that it is possible to have systems which are both controllable and

observable in the sense of Kalman but which do not correspond to

systems which would, for example, make suitable servomechanisms.

Similar comments apply to most of the other definitions of con-

trollability which have been proposed in connection with optimal

control problems. The terms 'accessibility" and "reachable" which

appear in the papers of Hermann32 and Roxin32 also fall into this

class.

The various properties of the solutions of differential equa-

tions which are used in Chapter II may be found in any of the

standard texts 0 .33 42 Particular facts which will be required

include the usual existence and uniqueness theorems and the fact

that if the right hand side has continuous partial derivatives with

respect to the state vector then the solutions are continuous

functions of the initial state. We also use the fact that the

solution of the linear, time-invariant differential equation

Z(t) = AZ(t) + BX(t) (1.8)

can be written as

Z(t) = eAtZ(O) + eAtfote-ABX(s)ds (1.9)
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The idea of looking at a nonhomogeneous differential equation

as defining a mapping between function spaces is not discussed in

the above references. It has been used by Massera and Schaffer 7,

for example, in their study of stability, however, not with'the same

norms or with the same objective. The work in section 2.4 depends

strongly on lemma 2 which is closely related to certain results on

total stability1 9 ' 3 6  Our proof of this lemma is based on

33
Lefschetz's proof of Dychman's theorem

1.6 Summary of Results

In Chapter II the conditions under which a linear time-invariant

system such as (1.2) has an inverse is derived. Explicit formulas

are given for the inverses in a number of special cases, including

the most general single-input, single-output system. One general

result concerning n-input, n-output systems of the form of (1.2) is

given by theorem 3 which asserts that if (DCB,CAB,...0Ap -I ) is of

rank n then it will be possible to solve (1.2) for X in terms of Y

and its derivatives. It should be noted that only in the case

where n = 1 is this condition implied by the controllability and

observability conditions cited previously.

If the properties derived for linear systems are to be useful

it is important to show that small nonlinearities do not disturb

them. Some results in this direction are contained in section 2.4

where it is shown that in the neighborhood of zero conclusions about

systems of the form



Z(t) = AZ(t) + BX(t) + BQ(X(t),Z(t)) (l.lOa)

Y(t) = CZ(t) (1.1Ob)

can be derived from an examination of the linear part provided

Q(X(t),Z(t)) satisfies certain smoothness requirements and contains

no linear terms.

Insofar as steady-state control is concerned our principle re-

sult is that if CA 1B + D singular then the system (1.2) is not

asymptotically controllable. The final section of Chapter II in-

terprets the previous results in terms of transfer matrices.

In 'Chapter III the effects of feedback are analyzed. It is

shown that if a system is linear then under mild restrictions

linear derivative feedback does not affect irreducibility, non-

singularity, or asymptotic controllability. It is also shown that

nonlinear feedback of a certain type does not affect the stability

of the inverse equation. The problem of absolute stability is

examined and it is shown that stability of the inverse equation is

a requirement for absolute stability.

An additional use for the inverse equation is developed in

Chapter IV where some nonstandard time-optimal control problems

are discussed and solved. It is shown how the structure of the

time-optimal input depends on the inverse equation and how the in-

verse equation can be used to obtain a parametric representation for

the optimum input.



CHAFTER II

TRANSFORMATIONS DEFINED BY DIFFERENTIAL EQUATIONS

2.1 Introduction

Our objective is to study a class of transformations defined

by nonhomogeneous differential equations. The basic idea is the

following. Assume we are given a first order vector differential

equation Z(t) = F(X(t),Z(t)) 
(2.1a)

and a function Y(t) defined in terms of Z(t) and X(t)

Y(t) = G(X(t),Z(t)) (2.1b)

If for a given value of Z(O), the differential equation has a

unique solution for all functions in a given class S then thex

system (2.1) maps this class of functions into a second set S y. By

introducing norms in these function spaces it is possible to study

the continuity and invertibility of these mappings in a systematic

way. It may be observed that ordinary point-transformations of the

type Y(t) = G(X(t)) can be thought of as being a special case and

are perhaps the simplest examples of the type of transformations we

are considering. The motivation for this study can be found in

later chapters where applications to various problems in automatic

control are discussed.

Lower case letters refer to scalars, upper case to vectors and

matrices. If A is an arbitrary vector or matrix then A is its

transpose, if A is square and nonsingular A -1 denotes its inverse.

-16-
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tho h

-The element of a vector X will be written as xi, the th

element of a matrix A will be written as a. °. Occasionally A will

be written as (a ij). If AI,A 2...A n are a set of matrices or

vectors all having the same number of rows then (A1 ,A 2 P...An) de-

notes the matrix consisting of all the columns of AA 2,...An .

Thus, if the A i are p by p matrices then the matrix (A1,A2,...An)

is p by np. For scalars lal denotes the absolute values, for

vectors and matrices JAI denotes the sum of the absolute values of

the elements of A. The determinant of A will be written as det A.

2.2 Function Spaces

Let E denote Euclidean n-space and let a and I denote then

intervals [o,c and Loooj respectively. The set of all bounded

continuous functions with domain a and range E will be denoted by~n

Cn(o). The set of bounded functions with domain I and range E n

which are continuous on every finite interval contained in I will

be denoted by Cn. For the function space Cn(a) we use the norm

l xIr = sup !X(t)l (2.2)
teg

In the sequel we shall always assume that a is finite and nonzero

without specifying it each time. For C the norm is defined in then

same way and written as

1ixII = sup lx(t)i (2.3)

t&I

Let Ck() denote the subset of C (a) consisting of thosenL-t
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functions which have at least k continuous derivatives on C and let

k k kC be the corresponding subset of C n If XsC_(Z) or Ck we denote

th(k
its k- - derivative by X k). For our purposes it is indispensable

to have norms for the spaces Ck(a) and Ck which reflect the magni-
n

tude X and its first k derivatives. With this in mind we define

the Ck(a) norm as

I xrk - sup [Ix(i) t 11'a (2.4)

The norm for Ck is written as 1lx ik and is given by (2.4) with a
n

replaced by I.

To see that (2.4) actually defines a norm notice that i)

i jX[ k is nonnegative and vanishes if and only if X(t) 0 on a,

ii) laXIk = a • tjXlk, and iii) lx(i)(t)-Y(i)(t)l < Ix(i)(t)l +

Y(i ) (t)[ for all i and t and hence it follows that the triangle

inequality is satisfied. It is manifest that these spaces are

linear so that (2.4) makes k(0 ) a normed linear space. When we

speak of the continuity of a mapping between two such spaces it is

always continuity with respect to the norm topology which we have

in mind.

2.3 Linear Time-Invariant Systems

Let X(t) and Y(t) be n-vectors, let Z(t) be a p-vector, and

suppose Z(t) = AZ(t) + BX(t) (2.5a)

Y(t) = CZ(t) (2.5b)

[
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where A, B, and C are constant. It is well known that if XEn (0)
n

then for a given value of Z(0) there exists a unique Z&.C satisfy-
p

ing (2.5a) and that Z(t) is given by

Z(t) = eAt Z(O) +fteA(t-S)BX(s)ds (2.6)

0

Therefore, if Z and Z' are the images of X and X1 respectively

then IIZ-ZW I I X-X' I aleAtBIIo Using this and (2.5a) it

follows that 11Z- P ((: + III). e tBI + IBI) 11X-XI[

Since e is bounded on any finite interval this shows that for

finite a (2.5a) defines a continuous mapping of C n() into C (a).

A sufficient condition for (2.5a) to define a continuous

mapping of C into C is that the eigenvalues of A have negativen p

real parts. This is easily established from the fact that if the

eigenvalues of A have negative real parts then there exists a and

X > 0 such that I[eAtBr[ <- ae-Xt  This together with (2.6) gives

IlZ-zII I II-x 1!.[1 0-X(t-s)dsl (2.7)

< 1Ix-x,'aA

From this and (2.5a) the continuity of the mapping of C into C1
n p

is easily established.

If no additional restrictions are imposed it is possible that

for some values of Z(O) (2.5a) may define a continuous mapping of

C into CI even though A has eigenvalues with zero or positive real
n p
parts. To eliminate this pathological behavior and to prevent

similar difficulties from arising when discussing the relationship
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between X and Y we now assume: i) That of the np columns in the

matrix (B,AB,...AP-2B) there are p linearly independent ones, and

ii) That of the np columns in the matrix (CT ATCT,...ATP-ICT) there

are p linearly independent ones.

Systems having this property will be called irreducible. The

role of these assumptions has been studied by Gilbert
1 8 and Kalman 24

and it has been shown that any linear time-invariant system has an

irreducible representation. If (2.5b) is replaced by Y(t) = CZ(t) +

DX(t) then we will say that the system is irreducible if the corres-

ponding system obtained by setting D = 0 is irreducible. For our

purpose the importance of irreducibility stems from the following

lemma which asserts that if the system is irreducible then

asymptotic stability and continuity are equivalent.

Lemma 1: Assume that the system (2.5) is irreducible. Then"

i) The differential equation (2.5a) defines a continuous mapping

of the input function space C into the state function space C ifn p

and only if the eigenvalues of A have negative real parts. ii) The

system (2.5) defines a continuous mapping of the input function

space C into the output function space Z if and only if then n

eigenvalues of A have negative real parts.

Proof: i) The sufficiency of the condition on the eigenvalues

has been shown above. To show necessity consider first the mapping

of Cn into C p From equation (2.6) it follows that the mapping

will not be continuous unless [eA[tB tends to zero with increasing

time. Now suppose A has an eigenvalue with a nonnegative real part.

This implies that teAt! does not approach zero as t->o . More- I
!-
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over, since (BAB,°..APB) is of rank p the assumption that A has

an eigenvalue with a nonnegative real part implies that e At(BABp

.. ,AP-1h)! does not approach zero as t->oo. But since A and e At

commute this implies that f(eAtB AeAtB, .. AP- leAtB) does not
approach zero and hence that le AtBI does not approach zero. ii) Now

consider the mapping of X into Y. The sufficiency follows from the

fact that Y depends continuously on Z, To prove the necessity

notice that since Y(t) is given by

Y(t) = Ce AtZ(O) + ce A(t-S)BX(s)ds (2-8)

it follows that the mapping will not be continuous unless CeAtB

approaches zero as t->o. It remains to prove that this cannot

happen if A has a nonnegative eigenvalue. To show that CeAt does

not approach zero if A has a nonnegative eigenvalue we use the fact

that eAt does not approach zero and the fact that (cT ATcT,...

ATp--C T ) is of rank po Together these imply that (C TA TC T.

Tp=lTALAt
A eTpIcT)TeAB does not vanish. Using the fact that A and e

commute it follows that Ce At(BAB,..,AP-) does not approach zero.

Now suppose CeAtB->O then because CeAtB is a sum of exponential

terms it follows that if ceAte>0 then d/dtCeAtB - CA&-A -- -0.

Continuing in this way it is seen that the assumption that

CeAtB >O leads to a contradiction of the statement that

e Ae t,(BAB9o° AP-'B)[ does not approach zero. Q.E.D.

It is also true that irreducibility implies that no linear

combination of the z.(t) vanishes for all possible choices of X(t).

To prove this assume the contrary, i.e., assume there exists a
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constant, nonzero p-vector F such that FT Z(t) Lf 0. From (2.5a) it

follows by successive differentiation that FT BFT AB,...FTAP-lB all

vanish. This, however, contradicts the assumption that the matrix

(BABo.AP-'B) contains p linearly independent columns.

In general the mappings discussed in lemma 1 will be continuous

with respect to stronger topologies as well. To see this consider

the following equations which follow from (2.5) by successive

differentiations (assuming momentarily that n
n

CZ(t) = Y(t)

IGAZ(t) = y(1) (t)-CBX(t)

CA2z(t) = Y(2)(t)-GAx(t)- x(l)(t) (2.9)

.. . .. . . .. .. . •. .. .* . o . . |I

CAp - I Z (t) = Y(P-1)(t) -GAP ]E(t) -CAP-Bx( ) (t).o.CBX( p - 2 ) (t)

If CA = 0 for i = 0, 1, 0. k-2 then it follows that y(k)(t)

depends continuously on Z(t) and X(t) and that Y(i)(t) depends

continuously on Z(t) for 0 < i < k. It follows that if the above

condition on CAB is satisfied then there exists c such that for

finite a irY-Y,[rk < c[[X-Xil. If the eigenvalues of A have

negative real parts then this condition on CA1B implies that there

exists a c such that HjY-Yqjrk< cIIX-Xfl[.

Equation (2.9) also asserts that if CAB = 0 for i = 0, I.

k-2 then it will be possible to solve for X(t) in terms of y(k)(t)

and Z(t) if and only if 'An-B is nonsingular. The if part is

obvious and the only if follows by noting that if CA k-1B is

singular then any solution for X(t) will necessarily involve higher
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derivatives of Y(t). The following theorem subsumes most of the

informal statements on continuity given thus far and gives necessary

and sufficient conditions for the existence of one type of an inverse

mapping both on a finite interval and in the infinite case.

Theorem 1: Consider the system (2.5) where A, B, and C are

constant and X(t), Y(t), and Z(t) are n, n, and p-vectors respec-

tively. Assume that the system is irreducible. Then for an

arbitrary, fixed, initial value Z(O) it follows that:

i) Equation (2.5) defines a continuous mapping of Cn(a) into

Ck(a) if and only if CA B 0 for i = 0, , . k* 2
k

ii) If (2.5) maps C_(a) into Cn (a) then it has a continuous
n ~ n

inverse which maps Cnk(a) into C_(a) if and only if CA k-lB is non-

singular.

iii) Equation (2.5) defines a continuous mapping of C inton

Ck if and only if the eigenvalues of A have negative real parts and
n

CAiB - 0 for i = 0, 1, .. k-2o

iv) If (2.5) maps C into Ck then it has a continuous inverseiv I (.) ap n  n

which maps Ck into C if and only if CA klB is nonsingular and
n n

A-B(CAk-B)-lCAk has p-nk eigenvalues with negative real parts.

Proof- i) From (2.9) it follows that (2.5) maps Cn () into

Ck(a) if and only if CAB = 0 for i = O91, ... k-2. To see that

this mapping is continuous let X(t), Y(t)p and Z(t) be one solution

of (2.5) and let X9(t), YI(t), and ZI(t) be a second solution such

that Z(O) = ZU(O), Then as shown above ljz-z Ij < cfIX-Xtij a for

some c. From (2,9) it follows that 11Y ) (i)l : cillZ-Zlll
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for i = 0, 1, ... k-1 and that rcy(k) y,(k)[[11 Ck+ZZH -

c'l lix-Xl I. The result now follows from the definition of the
Ck
C (a) norm.

ii) If (2.5) maps Cn(a) into Ck(Z) then from i) it follows

that CAB = 0 for i = 0, 1, ... k-2.Therefore CAk-lBX(t) = y(k)(t)-

GAkz(t). If T -1 
= CAk-1B is nonsingular then (2.5) yields

Z(t) = (A-BTCAk)Z(t) + BTY(k)(t) (2.10a)
X(t) = TY(k)(t) - TCAkz(t) (2.l0b)

From i) it follows that the mapping of C_ (a-) into Cn (a) defined by

these equations is continuous. However, if T- 1 is singular then,

as noted above, it will be impossible to solve for X(t) in terms of

Y(k)(t) and Z(t) without introducing higher derivatives of Y(t) and

hence the inverse will not be defined for some elements of C (a-).

iii) The necessity of the condition on CA'B follows exactly as

in i). The necessity of the condition on the eigenvalues follows

from the assumed irreducibility and lemma 1. The sufficiency

follows as in i) making use of (2.7).

iv) If (2.5) maps C(Z) into rCk(Z) then from iii) it follows

that CAB = 0 for i = 0, 1, ... k-2. The necessity of T
-1

Ak-lB being nonsingular follows as in ii). Assuming this we first

establish that the nk rows of the matrices C,CA,...CA k- are all

linearly independent. This will be done by showing that no non-

trivial linear combination of these rows vanish. Let M. be
a

arbitrary n x ni matrices. From our previous remarks it f'ollows

i
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that (MlC+ M2 Co. MCAkl)B =4 XCAk-oB Since the right hand side

of this equation vanishes if and only if k does it follbws that

no linear combinations of rows involving CA k -  vanishes. Repeating

this argument on the equation (MC+M(CA .kCAk-2)AB N k Ak'
2 9.. k-l Mk-1

we obtain the same conclusion about CAk- 2 etc.

Let P be any nonsinglar p x p matrix whose first n rows are

the rows of C, whose 2nd n rows are the rows of CA.oo and whose k-

k-ln rows are the rows of CA . Define W(t) as PZ(t) and note that

from (2.9) it follows that the first n components of W are the n

components of Ythe second n are the n components of y(1)ooo and

the k h n components are the components of Y(k-)° With this

change of variables the system (2.10) becomes

W(t) - P(C-BTCAk)p-2W(t) + PBTy (k)(t) (2.11a)- Ty (k)

X (t) =-TCA k -IW (t) + TY()(t) (2.11b)

It is convenient to partition the differential equations

(Z.lla) into two parts as follows. Let W,(t) denote the first nk

components of W(t) and W 2 (t) the remaining p-nko Let G denote the

first nk rows of PBT and let G 2 denote the remaining p-nk.

Partition P(A-BTCAk)pfl into F 1 V F1 2 ' F 21 and F 22 so that (2.11a)

be comes

W (t) F. W (t) + F12W (t) + G Y ()(21a(t)  F FW (t) + F w(t + G y(k)(t) (2.12b)
2() (222ta;

Since GI equals the first nk rows of PB(fAk-1B)_1 it follows

from the definition of P and the nature of CAB that the f ir st
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n(k-l) rows of G vanish and the remaining n form &N W*N identity

matrix I n From the known relationship between W and W it followsn

that F12 = 0 and F11 has the form

0 1 0 ... O-
n

0 0 ... 0
n

F 1 = ..... .. (2.13)
0 0 0 ... I n

0 0 0 ... 0

Because F1 2 is zero the set of eigenvalues of P(A-BTCAk)P-l is the

union of the sets of eigenvalues of F and F 22 Since X = 0 is

an eigenvalue of FI1 of multiplicity nk it follows that the only

nonzero eigenvalues of P(A-BTCA k)P - are the nonzero eigenvalues of

F 2 2 .

If Il ?yk is finite then it follows that W is finite as well.

From this and (2.12b) it follows that (2.11) defines a continuous

mapping of C k into C provided that all the eigenvalues of F have
n n 22

negative real parts. Since the eigenvalues of matrix are un-

affected by a similarity transform it follows that all the eigen-

values of F22 have negative real parts if and only if A-BTCAk has

p-nk eigenvalues with negative real parts. This shows the

sufficiency of the condition on F22o

As a first step in proving the necessity of this condition

on the eigenvalues of A-.BTCAk we will show that (2.10) is irreduc-

ible. To do this it suffices to show that the ranks of

(BT, (A-BTcAk)BT, o. (A-BTCAk) P BT) and (Q.,(A-BTCAk)TQo.o
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(A-BTCA k)Tp k.) are both p where Q = (TcA k) T . Consider the first

of these, If this matrix is not of rank n then there exists a non-

zero p-vector F such that F T (BT, (A-BT cAk)BT,... (A-BTCAk) P"!BT) = 0.

But this implies that FTBT 0 and hence that F TB = 0. Also for

such an FF T(A-BTCA k)BT - 0 and therefore F TAB = 0. (Continuing in

,this way we see that FT(B.ABoo.APB) 0 0 which contradicts the

assumptions that the original system was irreducible.

To show that the second of these matrices is of rank p we

show that for no nonzero p-vector F is F T(Q,(A-BTCAk ) TQ...

(A-BTCA k)Tp'lQ) ' 00 Suppose it is. Then TCAkF = 0 and con-

sequently cAkF - 0o Since FTcAk(A-BTCAk)F = 0 it follows that

TCAk(A-BTCAk)F TCAAF - 0 and in general that CA1AF - 0. But

if this were the case then AkF would be a nonzero vector such that

(AkF)T(cT ATCT ... ATp-lC) 0 0 which contradicts the assumption that

the system (2.5) was irreducible.

It is easily verified that if (2.10) is irreducible then

(2o11) is as well. It remains only to show that this irreducibility

implies that for some choice of Y. regardless of how small I 1Yk

is required to be, Z(t) -> co , If F22 has any eigenvalues with

positive real parts, then it follows that le F22t > ae t for some

a and X > Oo 'Consequently9 regardless of how small F 21 Wi(t) +

G2 Y(k)(t) is required to be, Y(t) can be chosen so that W2 (t) grows

without bound. This leaves the only case where F22 has zero eigen-

values. Suppose F2 2 has a zero eigenvalueo Then there exists a

(p-nk)-vector Q such that QF22 "' 0 and hence QW2 (t) = F1 2WL(t) +
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QG2Y(k)(t) = QoY(t) + QIjY(l) (t)... + Qky(k)(t). If Q is nonzero

then clearly QW2 (t) grows without bound if Y(t) is chosen such that

QoY(t) > 0. If Q is zero then it follows that QW2 can be ex-

pressed in terms of Wl(t) simply by integrating the equation

QW2(t) = QF1 2Wl(t) + QG2Y(k)(t). But this contradicts the proven

fact that the inverse system is irreducible and completes the proof.

This theorem can be generalized in various ways. One such

generalization concerns the system

Z(t) = AZ(t) + BX(t) (2.14a)

Y(t) = CZ(t) +-DX(t) (2.14b)

which is of interest in certain optimal control problems. If D

is zero then this is just the system discussed in theorem 1. If

D is nonzero the following theorem applies.

Theorem 2: Consider the system (2.14) where A, B, C, and D

are constant, D is nonzero, and X(t), Y(t), and Z(t) are n, n, and

p-vectors resoectively. Assume that the system is irreducible.

Then for an arbitrary, fixed, initial value Z(O) it follows that

i) Equation (2.14) defines a continuous mapping of Cn

into 'C (a).

ii) The system (2.14) has a continuous inverse which maps

(n(a) into n (Z) if and only if D is nonsingular.

iii) The system (2.14) maps Cn into C if and only if the eigen-n n

values of A have negative real parts.

iv) If (2.14 maps C into C then it has a continuous inverse
n n-

which maps C into C if and only if all the eigenvalues of A-CD'1B
n n
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have negative real parts.

Proof. The proof of i) follows from the equation Y(t)

CeAtZ(O) +J tceA(t'S)BX(s)ds + DX(t). If D is nonsingular then

the inverse of (2.14) is

Z(t) = (A-BD-1C)Z(t) + BD-1Y(t) (2.15a)

X(t) = -D-1CZ(t) + D1 Y(t) (2.1sb)

so that if D is nonsingular the inverse exists and from i) it is

continuous. If D is singular it follows from the assumption of

irreducibility that it is impossible to express X(t) in terms of

Z(t) and Y(t) without introducing higher derivatives of Y(t). The

proof of iii) and iv) proceed in the same way as the corresponding

parts of Theorem 1 provided (2.10) is replaced by (2.15). Q.E.D.

Theorems 1 and 2 give necessary and sufficient conditions for

the existence of a certain type of inverse, that is, either one
kk

which maps Ck(7) into 'n(o) or else one which maps Ck into C . An n

more general problem is that of determining the circumstances under

which it is possible to solve for X(t) in terms of Y(t) and any

combination of its derivatives. That is, we seek conditions under

which (2.5) implies a system of the form

Z(t) = A*Z(t) + BoY(t) + (1)(t).,B Y(k)(t) (2.16a)

+ DY(t) D1 Y(l) . D Y(k)(t) (2.16b)X(t) = *Z(t) Do +t (t) .. k

Although we will not obtain a representation for the inverse

equations in the general case, the basic question of existence is
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answered by the following theorem.

Theorem 3: Consider the system (2.14) where A, B, C, and D

are constant (D may be zero) and assume X(t), Y(t), and Z(t) are

n, n, and p-vectors respectively. Then a necessary and sufficient

condition that it be possible to solve this system for X(t) in terms

of Z(t), Y(t), Y(l)(t).,. is that (DCB,AB,...CAP1B) be of rank

n.

Proof: The sufficiency follows immediately from the following

equations which are a consequence of (2.14).

Y(t) = CZ(t) + DX(t)

Y(l)(t) = CAZ(t) + CBX(t) + DX(l)(t)
........... ................. ........... .. (2.17)'

Y(P) (t) :cAPz(t)+ cAP-IBx(t) + cA(P(2)BX(l)(t)...DX(P)(t)

This set is exhaustive in that any relationship between X(t), Z(t)

and Y(t) and its derivatives which is implied by (2.14) can be

derived from (2.17) without using (2.14). If (D, BCAB,. .. AP- 1 B)

is of rank n then (2.17) provides n equations relating X(t) and Z(t)

and Y(t) and its derivatives, If it is not of rank n then clearly

it is impossible to solve for X(t) from (2.17) and hence (2.14).

Q.E.D.

This proof also shows that if (DnB CAB,...cAP'B) is of rank

n then any p-times differentiable output Y defined on a finite in-

terval can be produced by a bounded continuous X, Thus the re-

lationship between X and Y defined by such a system is linear and

one to one.



Notice that it vas not necessary to assume that the system was

irreducible. If (DCBCABo..CAPOB) is of rank n we will say that

the system is nonsingular. As will be discussed in section (2.6)

this terminology is in harmony with the usual definition of non-

singularity as applied to transfer matrices.

2.4 Nonlinear Transformations

We now examine the question of how the previous results are

affected by the presence of a nonlinear term. Our objective is

to show that if inputs are sufficiently small and if the initial

state is sufficiently close to the equilibrium point then under

some circumstances one can determine the properties of the non-

linear system by an examination of the linear terms.

Let N(a) denote the set of elements of Cn(I) whose norms are

less than a, let M4(b) denote the point set [Z(t)IIZ(t)t < b}

and let M(a,b) denote the point set [X(t) J X(t)1 < al >< M(b).

Consider the system

Z(t) = AZ(t) + BX(t) + Q(X(t),Z(t)) (2.18a)

Y(t) = CZ(t) (2.18b)

where Q and its partial derivatives with respect to the components

of X(t) and Z(t) are continuous in M(ab) and vanish at X(t) = 0,

Z(t) = 0. It follows from the classical existence and uniqueness

10
theorems that for any given XsN(a) and any given Z(O)eN(b) there

exists a unique solution of (2.15a) defined on an interval a and

that a may be chosen so small that Z(t)&M(b) for all tea. By
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restricting Z(0) still further, say to M(b/2)0 it is possible to

find a interval a' such that any XeN(a) gives rise to a Z which

is defined on a' having the property that Z(t)&M(b) for tc.

Let a denote an interval having the properties of a' above.

Then (2.18a) defines a mapping of N(a) >< M(b/2) into C 1(). That

this mapping is continuous in Z(0) for fixed X has long been known.

To see that it is continuous in X for fixed Z(O) let Z and ZI be

the images of X and X' respectively and suppose that Z(O) - Zv(O).

It follows from (2.18a) that

Z(t)-Z,(t) -

(2.19)
eAtJote-As(BX(s)-BX'(s) + Q(X(s),Z(s))-Q(X'(s),Z1(s))ds

From the assumptions on the continuity of the partial derivatives

of Q(X(t),Z(t)) and the fact that the matrix expotential is bounded

on any finite interval it follows that for tea and some k and k'

Iz(t)-Z'(t)_ kttZ(s)-Z(s)1ds + k, IX-Xjj (2.20)

Now let v(t) ,ft Z(s)-Z7(s)1ds so that (2.20) becomes

4(t)-kv(t) _< k' IX-X If. By treating this inequality in the

standard way (Bellman6 page 35) it is easy to show that

I'z(t)-Z'(t)t < k"IX-xII for some k" and hence to establish the

continuity.

A second preliminary result which is more subtle concerns the

conditions under which (2.18a) defines a continuous mapping of

N(a') >< M(b9) into Cl. The result which we establish here is
p



-33-

similar to Hahn's statement of the total stability theorem 19 , how-

ever, our method of proof is quite different.

Lemma 2: If the eigenvalues of A have negative real parts

then there exists a' and bl, both positive, such that (2.18a) de-

fines a mapping of N(a') >< M(b') into Cl which is continuous in X
p

for fixed Z(O).

Proof: First we show that there exist6 a' and b' such that

(2.18a) maps N(a') >< M(b') into C. Let X be a positive number

p

such that -2X is greater than the real part of any of the eigen-

values of A. Select a such that le < ae "a t for all t. Note

that since the partial derivatives of Q(X(t),Z(t)) with respect to

X(t) and Z(t) are continuous and vanish at X(t) = 0, Z(t) = 0

there exists c and c' such that in M(c,c').

Q(X(t),Z(t)) f< (x(t)I + IZ(t)I)X/a (2.21)

Using this and the above bound on eA t it follows from (2.18a)

that for some k and all tea

rZ(t)r < ae-2Xttz(o)I + Xe-2tfte2XSIZ(s)fds + kt!XII (2.22)

provided XeN(c) and IZ(t)r < cl for tec. Let v(t) = (te2 SIZ(s)Ids.

2Xt '0
Multiply (2.22) by e to get

r(t)--v(t) < [Z(O)Va + kIXIIe+ t (2.23)

Now multiply this equation by e and integrate by parts to get

v(t)e k t <.tjz(o)raA + krIlxleixt/xe (2.24)
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This and (2.23) can be seen to imply

IZ(t)! _< 2rz(o)rae + [+ Xjjak (2.25)

Again, this equation is valid for all te_ provided IZ(t)[ < c' for

t a. But (2.25) implies that if [txIt and IZ(O)[ are taken to be

sufficiently small then Z(t) can be made less than cl for all t

and hence there does in fact exist a' and b' such that (2.18a) Maps

N(a') >< M(b) into Cp"

To show continuity choose c and c9 such that for any X and X1

belonging to N(c) and any Z(t) and Z'(t) belonging to M(c) we

have

Q(X(t)1Z(t))-Q(X1(t)Z1(t)) < (1X(t)-X'(t)j + jZ(t)-z(t)j)X/q

(2.26)

Use this in (2.19) to show that for XsN(c) and some k

IZ(t)-Z (t)I < Xe-2 tfte2Kt[Z(s)[ds + kt!X-X'r[ (2.27)

provided IZ(t)f < c'o By treating this in the same way as (2.20)

was treated one can show that

[[z-z11 :E <. XJ -I[ °2k (2.28)

provided 1I Xl and JZ(o)[ are sufficiently small. Q.E.D.

In general the inverse of the system(2.1 will not have a

unique solution for a given Y. For this reason we now restrict

ourselves to systems of the form
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Z(t) = AZ(t) + BX(t) + BQ(X(t),Z(t)) (2.29a)

Y(t) = CZ(t) (2.29b)

where Q(X(t),Z(t)) satisfies the same conditions as before in

M(a,b). By differentiating (2.29b) in the same way as we did

(2.5b) previously one obtains

CZ(t) = Y(t)

CAZ(t) = Y(l)(t) - CB(X(t) + (2.30)

CAP- 1 Z(t) ooo 1 )(t)' - CA*eB(X(t) e + Q... B(X(t)+*Q)P

From this it can be seen that if it is possible to solve

these equations for y(i) in terms of X and Z the solutions will not

involve derivatives of X. In general this is not true for the

system (2.18) and this is our reason for restricting our attention

to the system (2.29).

The following theorem gives one set of conditions which are

sufficient to insure that (2.29) defines a continuous, invert-

ible mapping. It should be observed that since we are interested

only in sufficient conditions no assuptions,:6n 'irrediacibilit-y C'....

need be made.

Theorem 4: Consider the system (2.29) with the given assump-

tions on Q(X(t),Z(t)) valid in M(ab).. Assume further that CAB -

0 for i =0, 1, ... k-2 then:

i) There exists an interval a such that for fixed Z(0)eM(b/2)

this system defines a continuous mapping of N(a) into 1.0 k If
in
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k-1'B is nonsingular then there exists c' > 0 such that for any

given YVC (a) with < c' there is a unique XsN(a) satisfying

the system.

ii) If all the eigenvalues of A have negative real parts then

there exists a' and b', both positive, such that this system de-

fines a mapping of N(a') >< M(b) into Ck which is continuous in
n

X for fixed Z(O). If in addition CAk-B is nonsingular and if

A-B(CA k-B)-CAk has p-nk eigenvalues with negative real parts then

there exists cl and d, both positive, such that if 1 y1rk < c,

and Z(0)&M(d') then corresponding to Y and Z(O) there is a unique

X&N(a) which satisfies the system.

Proof: i) Since (2.29a) is a special case of (2.18a) it

follows that the remarks about existence and uniqueness apply.

Equation (2.30) shows that if CAB = 0 for i = O 1, ... k-2 then

y(i)(t) depends continuously on Z(t) for i < k-. and that Y(k)(t)

is a continuous function of Z(t) and X(t). From this and the de-

finition of the Ck (c) norm it follows that (2.21) defines a con-

tinuous mapping of Cn(a) into Ck(a) under the given assumptions.

Let T-1 = CAk-B. If T-1 is nonsingular then it follows from

(2.30) and the assumptions on CAB that

TCAkZ(t) = TY(k)(t) - x(t) - Q(X(t),Z(t)) (2.31)

Applying the implicit function theorem 17 to this equation gives

X(t) = -TCAkZ(t) + TY (k)(t) + v'(Z(t),y(k)(t)) (2.32)

I-



where Q'(Z(t),Y(k) (t)) enjoys the same properties as Q(X(t),Z(t))

in some set M(a' b'). Using this and (2.29) it is seen that the

inverse for (2.29) is

Z(t) = (A-BTcA k)z(t) + BT CAky(k)(t) + BQI(Y(k)(t),Z(t))

(2.33a)

X(t) = -TCAkZ(t) + TY(k)(t) + QI(Z(t),Y(K)(t) (2.33b)

From the remarks made about (2.l8a) it follows that (2.33a)

defines a continuous mapping for small X, Z(O), and a and hence

the mapping of C (a) into C (a) defined by 2.33 is continuous.

ii) In view of lemma 2 it remains only to show that there

exists c9 and d' having the desired properties. Consider (2.3aa).

Define P from (2.30) exactly as P was defined in the proof of

Theorem 1 , part iv. Let W(t) = PZ'(t). Partitioning W as in that

proof we see that Wl(t) is small if IlYlik is and that W2(t) satis-

fies the equation

W2 (t) = F 22 W2 (t) 4 F 21W1 (t) + G2Q'(NW(t),Y(k)(t)) (2.34)

If A-B(Ak-l)-CAk has p-onk eigenvalues with negative real parts

then because F12 =' 0 all the eigenvalues of F22 have negative real

parts. The desired result now follows from lemma 2, Q.E.D.

2.5 Asymptotic Controllability

Adequate control is often possible even if a system fails to

have a continuous inverse. The reason being that for many processes

the exact form of the response is unimportant as long as the proper
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steady-state value is eventually achieved. For this reason the

problem of determining the circuristances under which steady-state

control is possible is of interest. We begin by showing how this

problem can be stated in terms of a mapping.

In order to state this problem in terms of a mapping it is

necessary to use the notion of an equivalence class. Let C

denote the subset of C for which lim Y(t) exists. The norm forn t->co
C is taken to be the usual C norm. Partition C into equivalence--n n --n

classes according to the relationship Y-X if lim [Y(t)-x(t)l - 0
t->O

and let underlined capitals such as Y and X denote particular

equivalence classes. The set of all equivalence classes will be

denoted by R and the norm for R is defined as f[L[I = lim
n nt-0

IY(t)I. We will say that a system is asymptotically controllable

if it defines a continuous mapping of G onto R . From a practical--n n

point of view this says that if a system is asymptotically controll-

able then its outputs may be made to approach any desired steady-

state value by using an input which tends toward a constant.

Moreover, it implies that small changes in the input result in small

changes in the asymptotic value of the output. The conditions under

which the system (2.14) is asymptotically controllable are given by

the following theorem.

Theorem 5: Consider the system (2.14) with A, B, C. and D

constant. Let X(t) and Y(t) be n-vectors and assume the system

is irreducible. Then these equations define an asymptotically

controllable system if and only if the eigenvalues of A have negative

t
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real parts and rA- B+D is nonsingular.

Proof: The necessity of the condition on the eigenvalues of

A follows from lemma 1 and the fact that the mapping is required

to be continuous. Assuming that the eigenvalues of A have negative

real parts it follows that if XeC then
n

0 = AZ + BX (2.35a)

Y = CZ + DX (2.35b)

As explained above, the underlines indicate asymptotic values.

Since A has no zero eigenvalues it is nonsingular and hence Y =

(CAB + D)X. Therefore, the nonsingularity of the matrix

CA 1B + D is necessary and sufficient. Q.E.D.

It is of some interest to note that the nonsingularity of

(CA_B + D) implies that the matrix (D,CB,CAB....CAP-B) appearing

in theorem 3 is of rank n but that this implication may not be

reversed. The problem of establishing the conditions under which

(2.18) is asymptotically controllable in a neighborhood of the

origin immediately suggests itself. In view of lemma 2 such a

result would seem reasonable, however, a necessary step is to show

that under suitable restrictions of Z(O) and rJXH (2.18) maps

C into 'C That is, one must show that (t) -> 0. If additional

restrictions are placed on X, e.g., if it is required that

J'o ji(t) dt be small, then this can be shown, but no proof in-

dicating that Y(t) -.O for all XeC has been found.
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2.6 Transfer Matrix Representation

In view of the large body of control systems theory which is

based on the use of transfer functions and transfer matrices it

is appropriate to interpret our results on linear systems in these

terms. Let Y(s) and Y(s) denote the Laplace transforms of X(t) and

Y(t) respectively. Then if X(t) and Y(t) are related by (2.14) we

have

Y(s) = (C(Is-A)-B + D) Y(s) + C(Is-A)-IZ(O) (2.36)

The n x n matrix C(Is-A)-'B + D is usually called the transfer

matrix. It is an important property of the system and many of our

results which relate to linear systems can be interpreted in terms

of it.

Let P(s) = C(Is-A)-B + D. Our objective is to discuss the

various assumptions which have been made about A, B, C, and D in

terms of P(s). First notice that for all values of s such that

(Is-A) is nonsingular (Is-A)-i is bounded and thus the poles of

P(s) occur where det(Is-A) - 0. Since the values of s which satisfy

this equation are just the eigenvalues of A it follows that if A

has eigenvalues with negative real parts then the poles of P(s) lie

in the left half-plane. Notice that detA = 0 then P(s) has a pole

at the origin.

The number of times that an output is differentiable, i.e. the

largest number k such that YsCk for all X1 $ ; can also be easily
n n

related to P(s). Suppose X(t) is such that X(o) - i() = J / 0.
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Then by applying the initial value theorem it follows that

Y(O+ ) -Y(O) = lim P(s)J. Therefore if P(o) = 0 then the

mapping is into C In general the mapping will be into C if
n n

and only if

lim s iP(s) = 0 for i = 0, 1, ... k-1 (2.37)
S ->CD

Since det P(s) is a rational function it either vanishes

identically or else is nonzero at all but a finite number of

points in the s-plane. In the later case it is possible to solve

the equation Y(s) = P(s)X(s) for 7(s) and P(s) is said to be non-

singular. The condition that (DGBGABo..CAP-1B) be of rank n

implies that P(s) is nonsingular and therefore justifies our termin-

ology.

If the system is nonsingular then X(s) = P-1(s)Y(s). Since

P-1 (s) contains poles where det P(s) vanishes it follows that 1(s)

will contain right half-plane poles if det P(s) contains right

half-plane zeros, Moreover, the zeros of det P(s) coincide with

the eigenvalues of the inverse equation. Much of the utility

of the inverse equation stems from this fact. Systems for which

det P(s) has no right half-plane zeros are sometimes called

minimum phase systems, Thus if the inverse equation is stable the

system is minimum phase.

The final value theorem states that if P(s) has no poles in

the right half-plane or on the jco-axis then Y = P(O)X, but P(O)

is simply CA1 B + D so that the condition for asymptotic con=
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trollability can be expressed in terms of P(s) by saying P(O)

should be nonsingular.

A detailed explanation of the implications of irreducibility

18 24
has been given by Gilbert and Kalman . Roughly speaking

irreducibility implies that there are no redundant variables in

the state vector. If X and Y are scalars then irreducibility

insures that the numerator and denominator of P(s) contain no

common factors and that the degree of the denominator is the same

as the dimension of Z. Also in the scalar case it may be shown that

the degree of the numerator of P(s) is p-l-k where p is the dimension

of Z and k is the least nonnegative integer i for which CAB is

nonzero. By applying the results of theorem 1 we see that if the

degree of the denominator of the transfer function exceeds that of

the numerator by k and if the denominator contains left half-plane

k
zeros only then the system maps C1 into C1 . The condition for

asymptotic controllability is that the numerator polynomial should

not have a zero at the origin,

2.7 Conclusions

Our objective has been to develop a means for characterizing

nonhomogeneous differential equations which places in evidence

certain properties which are important in automatic control

applications. It has been shown that the systems inder consideration

can be viewed as a mapping whose domain is a set of functions Sx

and whose range can be either a set of functions or a set of

equivalence classes. Moreover, it is possible to introduce norms
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for the input and output spaces in such a way as to make it possible

to express many of the standard problems in control in terms of the

continuity and invertability of these mappings. The idea of com-

puting an inverse equation is introduced and the role of this

equation in determining the character of the mapping was discussed.

These ideas have been applied to linear, time-invariant systems

and to a certain class of nonlinear systems. The principle results

are the following-

1) If the system is linear, time-invariant, and irreducible,

then continuity and asymptotic stability are equivalent.

2) If the system is described by (2.5) and CAB = 0 for

i = 0, 1, ... k-2 with CA k- being of full rank then explicit for-

ilfas can be given for the inverse equation and Theorem 1 provides

a complete description of the mapping, The most general single-

input single-output system is of this type,

3) The mapping defined by (2.14) has an inverse if and only

if the matrix (DCBCAB,o..CAP 1 B) is of rank n. The ten, non-

singular was used to describe such systems.

4) If certain continuity requirements are satisfied the effect

of a nonlinear term of the form BQ(X(t),Z(t)) can be ignored if

one is only interested in local behavior,

5) The concept of asymptotic controllability was introduced

and it was shown that the system (2.14) is asymptotically con-

trollable if and only if the system is asymptotically stable

and CAB + D is of full rank.
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Important problems which remain include that of obtaining

a representation of the inverse equation which would apply to the

general case and proving that the conditions for asymptotic con-

trollability are not affected by a nonlinear term of the form dis-

cussed in theorem 4.



CHAPTER III

THE EFFECT OF FEEDBACK

3.1 Types of Feedback

If the relationships between a systems inputs and outputs are

unsatisfactory one often seeks to improve them by the use of feed-

back. For example, if the system equations are

Z(t) = F(Z(t),X(t)) (3.1a)

Y(t) = G(Z(t),X(t)) (3.1b)

and if the relationship between X and Y that these equations impose

is unsuitable then it may be possible to remedy the situation by

forcing X(t) to depend on Y. Ordinarily this has the effect of re-

placing X(t) in (3.1a) by X(t) + X'(t) where X'(t) is dependent on

Y. Much of the work in automatic control theory is concerned with

the evaluation of the effects of such substitution.

This chapter is concerned with the question of how feedback

affects the properties which were discussed in the previous chapter

and is also concerned with its effect on stability. The objective

is to define some of its possibilities and limitations. The

question of how certain types of feedback affect the properties of

irreducibility, stability, and stability of the inverse equation

will be examined. Our principle results relate to linear, time-

invariant systems with linear and nonlinear feedback.

The dependence of X9(t) on Y can take many forms, If XI(t)

is a function of Y(t) only, ice. X?(t) = G(Y(t)) then one speaks

of gain feedback, A more general case is where XI(t) =

-45=
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G(Y(t),Y(l)(t),...Y(k)(t)). This is usually called derivative

feedback and includes gain feedback as a special case. A third

possibility is that the relationship between X'(t) and Y is itself

a dynamic one being defined by a system of the form

Z'(t) = F'(Z'(t),Y(t)) (3.2a)

X'(t) = G'(Z'(t),Y(t)) (3.2b)

This is a generalization of what is usually called integral feed-

back.

Notice that derivative feedback does not change the number of

initial conditions needed to describe the motion; that is, it does

not change the dimension of the differential equation of the system.

This is not true for integral feedback, however, as can be seen by

eliminating X'(t) from (3.1) and (3.2). If this is done the re-

sulting system is

Z(t) = F(Z(t),X(t) + G'(Z'(t),G(Z(t),X(t))) (3.3a)

Z'(t) = F1(Z'(t),G(Z(t),X(t))) (3.3b)

Y(t) = G(Z(t),X(t)) (3.3c)

The system (3.3) clearly has a higher dimensional state vector than

the original system. The equations (3.3a) and (3.3b) which deter-

mine the stability of the closed loop system constitute what

Lefschetz terms 'differential equations on product spaces". It

is interesting to note the immediate application which the theory

of such equations has in automatic control.
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In studying the effects and limitations of feedback as a device

for altering a given system we seek to identify those properties of

the system which are not affected by a class of feedbacks. In

general stability is not such a property for it is easy to give

examples of both unstable systems which can be stabilized by feed-

back and stable systems which have been unstabilized by feedback.

Other properties such as invertibility, irreducibilit and stability

of the inverse equations do, however, remain unchanged by the

addition of wide class of feedbacks. Under some circumstances even

stability remains unaffected by the addition of feedback as the

recent work on the absolute stability problem shows.

The main results given here relate to linear systems having

linear and nonlinear derivative feedback. The corresponding pro-

blems involving integral feedback seem to be more difficult and are

not treated here. It is important to note that in our definition of

feedback we have not allowed the feedback to be a function of the

entire state vector Z, but instead it is assumed that the feedback

relates to the actual output of the system Y. This assumption seems

to be the natural one from a physical standpoint although other

authors have taken a different point of view.

j 3.2 Feedback Invariants

As mentioned above the results to be discussed relate to linear,

time-invariant systems with linear and nonlinear feedback. Consider

the system

Z(t) = AZ(t) + BX(t) (3.4a)



-48-

Y(t) = CZ(t) (3.4b)

to which will be added either linear feedback of the type

XI(t) = GoY(t) + G1Y(!)(t) + ... GkY(k)(t) (3.s)

or else nonlinear feedback of the type

X'(t) = G(Y(t),Y(1)(t), ... Y(k)(t)) (3.6)

In either case we will say that the feedback is of order k if the

k-h derivative of Y(t) is the highest one appearing in the ex-

pression for X'(t).

In view of the role played by irreducibility in the previous

chapter the following theorem showing that linear derivative feed-

back does not affect the irreducibility is of interest.

Theorem 6: Assume that the system (3.4) is irreducible and

maps C into C k . Then if linear derivative feedback of order k-l
n n

or less is applied the resulting system is still irreducible.

Proof: Since the original system is assumed to map C into Gk
n n

it follows from theorem 1 that CAB is zero for i = 0, 1 ... k-2,

and hence that Y(i)(t) = cAiZ(t) for the same values of i. The

differential equations after feedback can be expressed in terms of

Y as

Z(t) = AZ(t) + BX(t) + B(GoY(t) + G1Y(I)(t) + o.o Gk1 Y(k-l)(t))

(3.7)

Expressing Y(i) in terms of Z(t) enables one to write the equations

of the feedback system as

I
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Z(t) -FZ(t) + BX(t) (3.8a)

where

F =A + BGC + BG ICA + .o. BG k - CAk - l (3.9)

In showing the irreducibility of (3.8) we will use the fact

that 1GFi = CAi for i = 0, 1, ... k-l This follows immediately

from the form of F and the fact that CAB = 0 for i = 0, 1,

k-2. To show that (3.8) is irreducible it is necessary and

sufficient to show that (B,FB,oo.FP=) and (CT,F TCT, ... FTplCT)

are both of rank p where p is the dimension of Z(t)o Suppose

(BFBoooFP-'B) is not of rank p. Then there exists a nonzero,

p-dimensional, row-vector H such that H(B,FB,...FP-'B) = 0. This

implies HF = 0 for i = 0, 1, - p=l. Using the fact that HB = 0

it follows that HAB = HFB and hence vanishes. Reasoning inductively,

it follows that if HFB = 0 for i = 0, 1, ... j-l, then HAJB =

HFJB, What this shows is that if H(BFB,.oFP 1 B) vanishes then

H(BAB,.o.ApB) vanishes. This last statement establishes a con-

tradiction because H was assumed to be nonzero and the assumed

irreducibility of (3.4) implies that (B,AB,...AP-'B) is of rank p.

To show that (CTT FTCTooFTPlB) is of rank p again assume the

contrary and let H be a nonzero p-dimensional row-vector such that

H H(CT,F T CT ° F T p ) = 0. As noted above CFi = CA' for i = O, I...

k-l so the assumption of H implies that H(CT ATCT ,.oATk-B) = 0

But from the form of F it follows that if CAk-HT . 0 then FHT =
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and hence CF kHT = CAklFHT .CAHT. Therefore the vanishing ofkcTA CT .. TC T )

CFkHT implies H(C , o ATk 0. This argument can now be

repeated p-l-k times to show that H(CT,ATCT ,...ATp-CT) = 0. The

last statement contradicts the assumption that (3.4) was irreducible

and completes the proof.

The assumption on the order of the feedback was used in an

essential way and it is possible to construct examples which show

that theorem 6 is not true if the derivative feedback is allowed to

be of order k. A second result relating to this type of feedback

is the following theorem which shows that with the above assumptions

feedback cannot make a nonsingular system singular.

Theorem 7: Assume that the system (3.4) is irreducible and

nonsingular and that it maps Cn into Cn Then if linear derivative

feedback of order k-1 or less is applied the resulting system is also

nonsingular and, if the eigenvalues of F have negative real parts

k
then it defines a continuous mapping of C into Ckn n °

Proof: To show that the nonsingularity of (3.4) implies the

nonsingularity of (3.8) it is necessary to show that if (GBCAB,...

CAP©1B) if the rank n then so is (CB,CFB,o..FP-B). Assume that

the matrix (CB,CFB,oo.CFP-') is not of rank n. Then there exists

a nonzero n-vector H such that H(CB,tFB,..XFPlB) = 0. Since our

assumptions insure that CFi = CAi for i = 0, 1, ... k-l it follows

that H(CBCABo.oCAk1B) = 0. Consider HCFkB which may be written

as HCAk-lFB - HCAkBo This shows H(CB,CAB,..CAkB) = 0. This

argument can now be repeated p-l-k times to show that H(CB,CAB ...



-51-

CAP-B) = 0. This is a contradiction, however, because H was

assumed to be nonzero and (CB,CAB,...cAP-'B) is of rank n.

Showing that if the eigenvalues of F have negative real parts

then the system with feedback defines a continuous mapping of nn

into Ck is equivalent by theorem 1 to showing that QF'B = 0 for
n

i = 0, 1, ... k-2. But as noted above CFi = CAi for these values of

if and therefore since CAB = 0 for i = 0 1, -,. k-2 the desired

result is obtained. Q.E.D.

In addition to irreducibility and nonsingularity, asymptotic

controllability is also unaltered by the type of linear derivative

feedback under discussion, provided the resulting system is stable.

The exact result is this.

Theorem 8: Assume that the system (3.4) is irreducible and

kthat it defines a continuous mapping of ,n into Cn. Suppose that

linear derivative feedback of order k-l or less is applied and that

the resulting system also defines a continuous mapping of C into
n

kC . Then the system with feedback is asymptotically controllablen

if and only if the original system (3.4) was.

Proof: Assume that the equations after feedback are given by

(3.7), (3.8), and (3.9). Because the original system was assumed

to be irreducible it follows from theorem 6 that the system with

feedback is also irreducible. Since both systems are assumed to

f define continuous mappings it follows from lemma 1 that the differ-

ential equations (3.4a), (3.7) and (3.8a) are all asymptotically

stable. Let andZ denote steady-state values. Then (3.7) im-



plies that AZ + BX + BG Y = 0. The asymptotic stability of (3.4a)

implies that A is nonsingular. Using this and (3.8b) we see that

for the system (3.7) or (3.8) we have

(I + CA-1BG ) Y + CA-1 B X - 0 (3.10)
0-

From theorem 5 it follows that the system (3.4) is asymptotic-

ally controllable if and only if CA-B is nonsingular. Equation

(3.10) shows that under the assumptions made here, this condition

is necessary for (3.8) to be asymptotically controllable also. To

show that it is sufficient it is necessary to show that I + CA-BG
0

is nonsingular.

As noted above, A is nonsingular. Moreover, since (3.8a) is

asymptotically stable F is nonsingular also. From the definition

of F and the fact that CAB = 0 for i = 0, 1, ... k-2 it follows

that FA-B = B(I + G CA-B) (3.11)
0

Notice that since CA-B is of rank n it follows that B is of rank n.

Since F and A-1 are nonsingular and of dimension n or larger it

follows that FA 1B is of rank n. But from (3.11) it follows that

the n x n matrix I + G CA1B is nonsingular. If this matrix is pre-0

multiplied by CA-lB and postmultiplied by (CA- 1) - 1 the matrix

I + CA- G is obtained. Since similarity transformations do not0

alter rank it follows that I + CAlB is of full rank and that the

system (3.8) is asymptotically controllable. Q.E.D.

It is clear that the type of feedback being discussed here can-

-
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not make a reducible system irreducible or a singular system non-

singular. In view of this, theorems 6, 7, and 8 show that irreduci-

bility, nonsingularity, and asymptotic controllability are not

affected by a rather wide class of linear feedbacks. The purpose of

the next theorem is to show that the homogeneous solutions of the

inverse equation enjoy a similar property even if nonlinear deriva-

tive feedback is applied.

Theorem 9- Assume that the system (3.4) is nonsingular and

that it maps C into Ck Consider the system
n n °

Z(t) - AZ(t) + BX(t) + BG(CZ(t),CAZ(t), ... CAk-lZ(t) (3.12a)

Y(t) = CZ(t) (3.12b)

which is obtained from (3.4) by applying nonlinear derivative feed-

back or order k-l Then any solutions Z of (3.4a) for which CZ(t)

vanishes identically is also a solution of (3.12a).

Proofs If CZ(t) vanishes identically then Y(t) does also

and hence CAiZ(t) is identically zero for i = 0, 1, .o k-l. Using

this (3.12a) assumes the form of (3.4a) and therefore has the same

solutions, Q.E.D.

What this theorem shows is that feedback does not alter the

homogeneous solutions of the inverse equation Therefore if the

differential equation of the inverse system is unstable (i.e. if

the inverse mapping is not continuous) then derivative feedback

of the type being discussed will not remedy the situation. This

can be regarded as a generation of the statement that a nonminimum
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phase system cannot be made minimum phase by the application of

derivative feedback.

The preceding group of four theorems define some of the pro-

perties of a system which cannot be affected by feedback.

The results which were obtained relate to feedback of arbitrary

magnitude and sign. In the following section we will show that by

restricting the sign some results of this type relating the stabil-

ity of the closed-loop to the stability of the open-loop system can

be obtained.

3.3 Feedback and Stability

The problem of predicting the stability properties of the

closed-loop system in terms of the open-loop behavior is a basic

one. The standard tools for designing linear control systems, such

as the root-locus and the Nyquist plot, are useful primarily be-

cause they answer this question. Our objective here is to 'discuss

the effects of linear and nonlinear feedback on stability and to

show how the inverse equation helps to predict the effects of feed-

back. We will discuss only the case where X and Y are scalars.

Consider the single-input, single-output system

Z(t) = AZ(t) + Bx(t) (3.13a)

y(t) = CZ(t) (3.13b)

and assume Z(t) is p-dimensionalo Let K denote the set of scalar

valued functions of a scalar argument which are continuous and have

the additional property that xf(x) > 0 for all nonzero x and all
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feK, The system (3.13) is said to be absolutely stable if the

differential equation (3.13a) is asymptotically stable in the large

whenever X(t) is replaced by - f(y(t)) = -f(CZ(t)) and ftK. That is,

the system (3.13) is absolutely stable if the solution Z(t) E 0 of

the equation
Z(t) = AZ(t) - Bf(CZ(t)) (3.14)

is asymptotically stable for all Z(O) and all f'K.

45
This problem has been widely studied and recently Popov and

Kalman2 5 have made important contributions. Our principle objective

here is to show that a necessary condition for absolute stability

is that either CB or CAB be nonzero and that the inverse equation

be stable. This condition is not sufficient however except in the

special case where Z(t) is two dimensional and (3.13a) is itself

asymptotically stable.

Theorem 10: If (3.14) is absolutely stable then either CB or

CAB is nonzero and the inverse equation is stable.

Proof: Since K contains all the functions of the form kx where

k > 0 it follows that if we can show that if CB and CAB are zero or

if the inverse equation is unstable then there exists a k such that

the equation Z(t) = AZ(t) - kBC0Z('b) (3.15)

in unstable we will have established the proof. From the remarks

made in section 2.6 it follows that (3.13) implies an equation of

the form

(D -X1p) (D-q2) ... (D-Xp)y(t) a(D-I))(D-, 2 ) ... (D-q )X(t) (3.16)
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where D = d/dt, Xi are the eigenvalues, and o. are the eigenvalues

of the inverse equation. Substituting x = ky = kly/a we have

D-X1 )(D-k 2 ) ... (D-Xp) + k'(D-a1)(D- 2 ) ... (D- qT y = 0 (3.18)

Now if GB and CAB are zero q < p-2. As is known from the theory of

the root-locus this implies that for large values of k the equation

(3.18) becomes unstable. A similar conclusion follows if any of the

a have positive real parts. Q.E.D.

3.4 Conclusions

A very important problem in automatic control is that of

evaluating the effects of feedback. The purpose of this chapter was

to explore the effects of feedback in terms of its effects on the

mapping and on stability. I was shown that a certain class of de-

rivative feedbacks do not affect irreducibility, invertibility and

asymptotic controllability, provided the system with feedback is

stable.

The problem of evaluating the effect of feedback on stability

was discussed and the problem of absolute stability was mentioned.

It was shown that for single-input, single-output systems stability

of the inverse equation is a ncessary condition for absolute

stability and that another necessary condition is that either CB,

or CAB be nonzero.

I



CHAPTER IV

TIDE-OPTIMAL CONTROLS

4o1 Introduction

In spite of the large amount of research which has been de-

voted to the time-optimal control problem a number of basic

questions remain unsolved. In particular, the nature of the time-

optimal forcing function for a single-input, single-output system

which has a transfer function with a nonconstant numerator is still

not well understood as Lee 
4 , Athanassiades and Falb 

4 , and Harvey20

have all pointed out. Because systems of this type are frequently

encountered in practice it is important to clarify the essential

differences between this problem and the usual problem where the

objective is stated in terms of the state rather than the output.

Similar problems are associated with multivariable systems. In

this case the difficulties are more severe and even the term

Unumerator dynamics", which is sometimes used to describe the

troublesome single variable cases, requires a careful interpre-

tation,

The problems to be considered here are similar to those dis-

cussed by Harvey 20 and Harvey and Lee 21 but the methods to beused

are quite different, The novelity of our approach centers around

the use of the inverse equation to define the so called "target

set" and the use of frequency domain methods to enable a parametric

representation of the optimal input. The result is that the time-

optimal problem is reduced to a nonlinear programming problem in

which no differential equations appear. One objective of this work

-57-
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is to derive the general form of this programming problem and to

consider some example problems.

As Harvey 20 has pointed out, when the objective of the system

is expressed in terms of the output instead of the state it is im-

portant to distinguish between several different statements of the

optimization problems which in a simpler context might be equivalent.

A further objective of this work is to enlarge upon this point and

to suggest appropriate statements for the optimization problem for

three important cases.

4.2 Problem Formulation

Consider a linear, time-invariant, system defined by the

equations i(t) = AZ(t) + BX(t) (4.1a)

Y(t) = CZ(t) (4.1b)

and assume X(t) and Y(t) are n-vectors with Z(t) being a p-vector.

One of the simplest statements of a time-optimal problem is this:

Find the input X such that jxil < ai and Z(t) is taken from the

initial state Z(O) to a desired state Z(t*) in minimum time. We

shall call this the standard problem. Some sufficient conditions

for this problem to have a unique solution can be found in reference

44.

For many purposes it is more realistic to state the objective

in terms of the output Y rather than in terms of the state as is

done above. The reason being, of course, that one doesn't usually

care what the value of the state is provided Y(t) is well behaved.

S-t
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If this point of view is adopted it is necessary to distinguish be-

tween several alternative statements of the optimization problem.

To simplify the discussion only the case where the desired value of

Y(t) is zero will be considered. In this instance the following

three formulations of the time-optimal problem have areas of

applicability and in general have different solutions.

(A) Infinite Time Problem. Given the system (4.1), the class

of allowable inputs Sx, and the initial stabe Z(O), find XS x such

that Y(t) is identically zero for t* < t and t* is a minimum.

(B) Finite Time Problem, Given the system (4.1), the class of

allowable inputs Sx, and the initial state X(t) is identically zero

for t* < t < t and t* is a minimum.

(C) Conditional Time Problem. Given the system (4.1), the

class of allowable inputs Sx, and the initial state Z(O), find XS x

such that Y(t*), Y(l)(t*).,,o are all zero and t* is a minimum.

The infinite time formulation might be suitable for a regular

problem. The finite time formulation is appropriate when the

duration of the process is fixed in advance. For problems where

the termination time depends on when the objective is reached, such

as is the case in rendezvous problems, the conditional time state-

ment should be used, The conditions imposed by A, B, and C

represent successively weaker requirements on Y and hence it is to

be expected that for a fixed Z(O) the response time associated with

A will be greater than or equal to the response time associated with

B and that it, in turn, will be greater than or equal to the response
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time for C. Some conditions under which equality holds will be

discussed below.

4.3 Constraints on the Optimal Input

'onsider again the standard problem as defined previously. It

has been known for some time that if there exists any input which

takes the system from some initial state Z(O) to a final state Z(t*)

and if the general position condition 44 is satisfied, then there

exists a unique X which minimizes the transition time. Moreover,

during the transition, X(t) assumes limiting values only. That is,

lxii = ai for all 0 < t < t*. Regardless of what the value of Z(t*)

is if it can be achieved with the allowable inputs, the shortest

time will be obtained by using inputs which assume limiting values

only.

Now return to the problems A, B, and C. We may reason that

there is associated with each an optimum value of Z(t*)p i.e., a

optimum value of Z(t) at the time at when Y(t) and all its devia-

tives first vanish. From the results cited in the previous para-

graph it follows that prior to the time t*X(t) is limiting. By

solving the system (4.1) for X(t) in terms of Y(t), as is done when

computing the inverse equation, one can obtain an expression for

X(t) when t exceeds t*. In what follows we will present a complete

argument only for the case where X and Y are scalrs but in a later

section we indicate how the results may be extended. We also

normalize the system so that the allowable values of X are lxl< 1.

S-!



Let x and y be scalars related by (4.1) and let k-I be the

least nonnegative interger such that CAB is nonzero. The inverse

equation is then given by

Z(t) = (A-B(CAk-lB)-lCAk) Z(t) + B(cAk-B)-ly(k)(t) (4.2a)

x(t) = -(CAk-!B)-lCAkZ(t) + (cAk-lB)-ly(k)(t) (4.2b)

The question as to what the set of allowable values of Z(t*) is in

each of the cases A, B,9 and C can now be answered. Define F as

A-B(CA k-B) CA k . The permitted values of Z(t*) in each case are

defined implicitly by the relations

(A) i) CAiZ(t*) = 0 for i = 0, l, ... k-i

ii) 1(CAk lB)-lCAk e FtZ(t*)l < 1 for t* < t < o

(B) i) CA iZ(t*) = 0 for i 0p 1, o. k-i

ii) (CAk-B)-ICA ke FtZ(t*)r < 1 for t* < t < t'

(C) i) CAiZ(t*) = 0 for i 0, 1, o.. k-i

ii) I(CAk-l B)lCAkz(t*) I. < 1

The only differences between problem statements A, B, and C are

that they specify different restrictions on Z'(t*). In situations

where the restrictions corresponding to the different formulations

coincide the problems become equivalent. For example, if ('C TA TC T ,

• ATkCT) is of rank p, as is the case if the system is irreduc-

ible and k = p -1, then condition i) in A, B, and C demands that

Z(t*) be zero. This is the case if the transfer function of the

system has a constant numerator, For such systems problems A, B, and
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C are all equivalent. If k = p - 2 then condition i) in each case

leaves one parameter free which must be chosen in such a way as to

satisfy ii). It is easily seen that if the one nonzero eigenvalue

of F is negative then the problems A, B, and C again coincide. If

the eigenvalue is positive the problems will in general have quite

different solutions (see example below).

Other comparisons between the cases may be made by making

alternative assumptions on the inverse equation. The important

points are, however, that from the problem statement and the inverse

equation it is possible to identify the admissible values of Z(t*)

and that the inverse equation and Z(t*) completely define x(t) when

t exceeds t*.

What remains is to determine both the best value of Z(t*) and

also the best x for arriving at Z(t*)o This problem is very

difficult and even in the case where Z(t*) is fixed there is no

really satisfactory general solution. There are many ways to obtain

solutions for particular problems, however, and what we will do here

is to show that a simple and effective procedure is to reduce the

problem to one in nonlinear programming. The basic idea is to ob-

tain a representation for the Laplace transform of x which contains

undetermined coefficients and then to derive constraints on these

coefficients. The end result is an ordinary extremization problem

involving both nonlinear and inequality constraints. In this re-
Ho22

spect our approach is similar to that of Ho

From the maximum principle it follows that until Z(t*) is
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reached x(t) is limiting. After the point Z(t*) is reached x(t) is

given in terms of Z(t*) as Ge Ftz(t*) where G = (CAk-B)-ICAk. Thus

the Laplace transform of x(t), which will be written as 7(s) can be

expressed as

(s) +((I +it -(-1)net*S(1 + G(Is-F)-lZ(t*)))
(4.3)

where the t. are restricted by the inequalities

0 t t2  < t* (4.4)O< 2 ... tn_<t

and Z(t*) must satisfy the restrictions defined above, depending

on the problem statement. The following lemma provides the basis

for the remaining restrictions which are to be imposed.

Lemma 3: Suppose y(t) is uniformly bounded on [oo0. Then

a necessary and sufficient condition for y(t) to vanish identically

for t > t* is that 7(s) have no poles in the finite part of the

plane and that lim 17(s)eSt I = 0 for t > t*.
Re (s) ->-o

Proof. Assume y(t) is uniformly bounded on [oooJ by m and

assume y(t) vanishes for t > t*. Then lY(s)[ is given by

t *-t*

I ) = o [te-Sy(t)dtl <5 mj(l-e-s St*i (4.5)

Since m(l-e-St* )/s has no nonremovable poles in the finite part of

the plane and since lim estm[(l-e-st*)/sf = 0 for t > t* we see
Re (s) -> -oo

that the conditions given are necessary. To illustrate sufficiency

it is necessary to recall that y(t) is given by
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y(t) = r- (s)ds (4.6)

where r can be taken as the infinite seimicircle which closes on the

left and has as a diameter the line Re(s) = a, provided

7(a) = fo°0e-°ty(t)dt < o (4.7)

But since y(t) is assumed to be uniformly bounded, o can be

st-
taken to be any real positive number. Because e y(s) has no poles

anywhere in the finite plane and because lim I est (s)r is finite
Re(s) ->-oo

for t > t* it follows that the integral in (4.6) is zero if t > t*.

Q.E.D.

From this lemma it follows that a necessary and sufficient con-

dition for y(t) to vanish for t > t* is that

(s-,xi ) [C(Is-A)-B(s) - C(Is-A)-IZ(O)ls_.O o (4.8)
1

where Xi are the eigenvalues of A, and hence the poles 
of (Is-A) l

,

and x(s) is assumed to have the form given by equation (4.3). Using

(4.3) in (4.8) it follows that the t. should be selected so that t*1

is a minimum and

n iesti ni nest*(4 (I -F lz t)js

- C(Is-A)-iB(l+2 Z (-l)e i-(-1) e (14G (Is-F)=Z(t*))Jx
i=l i

- ((Is-A)-IZ(O)J s=). (4.9)

This equation, together with the requirement (4.4) and the con-

ditions on Z(t*) imposed by the problem statement, completely

defines the solution to the time-optimal problem. In general both
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the t. and Z(t*) are unIown and must be selected in such a way as

to minimize t*. Equation (4.9) provides a total of p equations so

that in general one would expect that if Z(t*) can vary over a

a-parameter fmaily then n will have to be at least p-a-l but there

is no guarantee that this number is large enough to ensure that the

optimum solution will be achieved.

4o4 Examples

To illustrate the application of these ideas and to indicate

the types of solutions one may expect we now consider two examples.

The first of these is a second order system which has been examined,

4
but not solved, by AThanassiades and Falb The equations of motion

are

't'I I +x(t) 
(4.10a)

y(t) =[l 01] [ 1 (t] (4.10b)

Lz 2(ti]
and the magnitude of x(t) is restricted to be less than or equal to

one. These equations define a system whose transfer function is

(s+3)/(s+l)(s+2).

j Our objective is to find the optimal x(t) as a function of the

initial values. As a first step we compute the inverse equation as

given by (4.2) to get

I
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L t2 [ (t ] + (t) (4 .11a)

x(t) C-O i] F1 (t1 + (t) (4.11b)

Since the essential part of the inverse equation is stable and

is of first order it follows that problems A, B, and C are all

equivalent, Moreover, by setting y(t) equal to zero it follows

that x = zl(t*)e-3t for t > t*. Therefore Iz 2 (t*)l < 1 is the re-

quirement on z2(t*).

As noted above, in general it will not be known in advance what

the optimum number of switches is. However, for this problem it is
.

known to be zero or one because the eigenvalues are real and

negative. Because of this x(s) can be written as

i(s) = - (l-2e'stl +eSt* (l+as/(s+3)))/s (4.12a)

0 < t I < t* 1 (4.12b)

Let z1 (O) = u and z2 (O) - v. The constraints of equation

(4.9) can be written as

(S+3) (l-2e-stl +eSt* ( s/(s+3)))/s-(s*3)u+vj, = -l,-2= 0 (4.13)

*t
By letting rI1 

= etl1 and r 2 
= e t*the entire problem can be expressed

*The switches are counted as in reference 44. That is the number of
switches equals one minus the number of distinct intervals over
which x is a constant.
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succintly as follows. Minimize r2 subject to the contraints

2r1 - r2(l-a/2) = 1 (u + v/2) (4o14a)

Zrl 2 - r2(l-2a) = I - (2u + 2v) (4.14b)

a < I 1 < r1 < r 2  (4.14c)

This is a nonlinear programming problem and although not a

great deal is available in the way of a general theory 1, many

problems of this type can be solved either by hand or on a computer.

This particular problem can be solved to give r and r 2 as a

function of u and v. but the solution is rather involved. For con-

trol purposes it is more important to be able to determine the input

as a function of Z(t). For this example this information is con-

tained in Fig. 4.1. For values of Z(t) lying to the right of the

switch curve X(t) should be -1, for values lying to the left, X(t)

should be +1.

Fig. 4.1 also shows a typical optimum response curve. The form

of the x producing it is shown in Fig. 4.2. For the particular

initial values chosen the optimum input only assumes one limiting

value. This will be the case whenever Z(O) is in the shaded region

shown in Fig. 1. Otherwise the optimum X(t) will take on values of

both +1 and -1. It is interesting to observe that if 1Z(O)J is

sufficiently small then no switches are required and even if IZ(O)!

gets arbitrarily large most initial values still require no switches.

This is in sharp contrast with the second order system with con-

stant numerator and real roots which requires one switch everywhere
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Figure 1: The switching curve for time-optimal con-
trol of a system whose transfer function is (s+3)/
(s+l){s+2). The equation for the switch curve is z =
-2z - (1 + 6V2l.). The optimum response from (2,-3$ is
shown and the zero-switch regio is shaded. It is
bounded by the curve z2 = -2z, - (3 - V4+2 iz) .

4- t

-I
Figure 2: The optimal input for the system of figure Io

I __
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except on the switch curve.

As an example of a system for which problems A, B, and C have

different solutions consider the second order system

Lz~~~t~ [-13 ~z(~ ~ (t) (4.15a)

y(t) [o 1 Ll(tj (4.15b)

z2(t)

This system has a transfer function of (l-s)/(l+s)(2*s)° Its in-

verse equation is

LI 1 F+ o][ (4.14a)
2 (t] t)t
z(t) j L72 (~t 4

x(t) :[0 1 ] ~1(t6] - yMt (4.16b)

[Z2(t)

and is unstable. If y(t) vanishes identically for t > t* then zl(t)

0 and x(t) = z2 (t*)et for t > t*. From this it follows that in

all cases z1 (t*) = 0. For problem A z 2 (t*) must vanish, for problem

Bfz 2 *J must be less than or equal to ln(tl-t*), while for problem

C it is merely required that Iz2 (t*)I be less than or equal to one.

The constraint equations can be set up as before. The major

difference is that for problem A the solution is considerably

easier due to the vanishing of z2 (t*). The switching curves for

problems A and C are shown in Fig. 4.3 and 4.5. Again those regions

for which x(t) assumes only one limiting value have been shaded.
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Figure 3: The time-optimal switching curve for a
system whose transfer function is (s-l)/(s+l)(s+2),
problem A. +The equation for the switching curve is
z_ = -2z 1+ 2/3(l - V--6 z). The optimal response
f? om (1,1-3,5) is shown.±44

Figure 4: The optimal input for the system of figure 3.
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Figue 5 Thetim-opimalswichig cuve or-

system~ ~ ~ ~ whs rnfr-unto s(-s/sl-+

Fire~ 5:_ The tieotimalorth switching curve or a

-2z -(1 V~z. The optimum response from (l,-3.511.is shown and the zero switch region is shaded. It is
bounded by the curve z2 = _2z 1  1/5(1-\/36 -90T,)

211.

Figv.e 6: The optimal inpu.t for the-system of figure 5.
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Figures 4.5 and 4.5 also show the form of the optimum response

from the initial point (1,-3.5). As would be expected the response

time for problem A is greater and the optimum inputs in the two

cases have quite different forms.

For comparison the switch curve of 1/(s+l)(s+2) is given in

Fig. (4.7). For such a system x(s) always assumes both limiting

values unless Z(O) lies on the switch curve. Evidently if the

inverse equation is unstable then the formulation given by A yields

a switching policy is quite similar to that which is obtained for

systems having a constant numerator.

One point which should be emphasized is that formulations A

and B do not have optimum inputs which can be generated by ideal

relays. While it is true that the input is limiting up until

y(t) B 0 from this point on x(t) is generated by the inverse

equation. Thus the optimal controller must include the inverse

system as indicated in Fig. (4.8).

4.5 More General Systems

The basic approach here has been to express the optimum X in

terms of undetermined coefficients and then to determine these

coefficients in such a way as to minimize the response time. The

inverse equation was used to help parametrize the optimum input.

Now consider an n-input, n-output system which has a transfer matrix

P(s). It is obvious from lemma 3 that if X 2 (s) 0f.e-stX(t)dt

then P(s)X 2 (s) can have poles only where P(s) has poles, This

condition is equivalent to saying that X2 (t) must be generated from

I-
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Iz

Figure 7: The time-optimal switching curve for a
system whose transfer function is 1/(s+l)(s+2), The
equation for the switch curve z 2  -2z - 2z

relay + Z J system

inverse

system

Figure 8: The structure of the optimal open-loop con-
troller showing the role of the inverse system.
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the inverse equation.

This type of constraint also arises in solving least-squares

pbjis1'8,50  h a 2 s
problems l 8 0 . It has been shown that X2(s ) can have poles only

at points where det P(s) = 0 and hence if det P(s) has no zeros we

are dealing with the multivariable equivalent of the case where the

numerator of the transfer function is a constant. For such a system

problems A, B, and C are all equivalent and X2 (t) a 0. It should be

observed, however, that the condition that det P(s) has no zeros is

a very special one and therefore the distinction between problems

A, B, and C is very likely to be a significant one when dealing

with multivariable systems.

4.6 Conclusion

In this chapter it has been shown how the inverse equation can

be used to advantage in solving certain computational problems

associated with time-optimal control and it has been shown by the

structure of the inverse equation determines the structure of the

time-optimal input, Several alternative statements of the time-

optimal problem have been proposed and their differences and

similarities have been related to the inverse equation. Examples

dealing with single-input, single-output systems have been given

and an extension to the multivariable case has been indicated.

I.



CHAPTER V

CONCLUSIONS AND EXTENSIONS

5.1 Summary

The principle objective of this research was to develop a means

for characterizing multi-input, multi-output systems whose behavior

is governed by differential equations. In particular, it was de-

sired to obtain a characterization which would accurately reflect

those properties of such systems which are of interest in automatic

control. With this in mind it was shown how a system could be

viewed as a mapping whose domain is a set of functions and whose

range may be either a set of functions or a set of equivalence

classes. By characterizing the response space in various ways it

was possible to interpret the familiar properties of a system such

as stability and minimum phasity in terms of the continuity of these

mappings and new properties of interest were defined as well.

It was shown, for example, that the inverse equation not only

provides a means for studying the continuity of the inverse mapping

but also is of importance in finding the solution to optimal control

problems. The concept of nonsingularity as usually applied to

transfer matrices was applied to systems which are represented in

differential equation form. The problem of asymptotic controll-

ability was posed and the conditions for asymptotic controllability

were expressed both in terms of differential equation representa-

tions and in terms of transfer matrix representations.
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Because of the practical importance of feedback an effort was

made to determine what effect it has on a given transformation. It

was shown that although derivative feedback can affect stability it

cannot make a singular system nonsingular nor can it affect its

irreducibility or asymptotic controllability provided it is of

sufficiently low order.

Througlhout, the importance of the inverse equation has been

emphasized. In Chapter IV it has been shown how the inverse

equation can be used to help solve certain computational problems

associated with time-optimal control and examples have been given

to illustrate this idea.

5.2 Future Research

In view of the importance of the inverse equation it would be

desirable to have an expression for it which would encompass all

linear time-invariant systems. On the bases of the work done in

Chapter II it is clear how one should proceed to construct the in-

verse equation for any given linear system but no completely

general formula was given, Similarly, it would be convenient to

have an explicit formula for a matrix whose eigenvalues correspond

to those of the inverse equation. An extension of these ideas to

time-varying linear systems would also be of interest.

Certain aspects of asymptotic controllability are very in-

teresting and merit further study. For example in Chapter I it was

shown that there exist single-input, multi-output systems which

are asymptotically controllable. Clearly this type of system cannot

1.
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be accurately represented by a time-invariant linear model. The

questions of how often systems of this type occur in practice and

how such systems should be modeled would seem to be of considerable

importance.

The formalism used here also can be used to define a measure of

the accuracy of a model. For example if a physical system maps X

into Y and if a proposed model of the system maps X into Y then am

measure of the accuracy of the model is given by

ym = max ImY-Y m( .1)
xesXx

where the norm may be chosen in any way so as to reflect those

properties of the system which are of particular interest. The

problem of defining the type of interaction measures suggested by

Mesarovic41 can be treated in a similar way.
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