NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
NONLINEAR BRIDGE FOR MEASURING ELECTROTHERMAL CHARACTERISTICS OF BRIDGE WIRES

Prepared by:
Louis A. Rosenthal*

ABSTRACT: Due to thermal follow a bridgewire will generate a third harmonic voltage drop when passing a sinusoidal current. By measuring the phase lag and amplitude of this harmonic, the thermal time constant and heat loss factor can be determined. An AC bridge is employed to extract the third harmonic voltage and directly measure its phase angle.

PUBLISHED JUNE 1963

* Professor of Electrical Engineering, Rutgers University and Consultant to the Naval Ordnance Laboratory.

Explosion Dynamics Division
Explosions Research Department
U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
Nonlinear Bridge for Measuring Electrothermal Characteristics of Bridgewires

This report describes the theory, construction, and operation of a new instrument developed to determine the thermal parameters of bridgewire type electro-explosive devices. The new instrument allows much more rapid measurement of the parameters than previously possible, but of even greater significance is the fact that it allows simple measurement on devices having bridgewires of low thermal coefficient of resistivity (for instance, nichrome).

The work was sponsored by the HERO Program, Task NOL-443.

R. E. ODENING
Captain, USN
Commander

C. J. ARONSON
By direction
INTRODUCTION

THEORY

THE APPARATUS

RESULTS

CONCLUSIONS

ILLUSTRATIONS

Figure

la The Basic Nonlinear Bridge Circuit

lb The Phase Display Waveform at Balance

2 The Complete Self Contained Bridge Circuit with Component Values. (Line Frequency (60 cps))

3 The Basic Shift Calibration Curve

4 The Calibration of the Phase Shift Network to Provide the Time Constant Directly

5 The Third Harmonic Error Voltage at Balance as a Function of Line Frequency

6 Dependence of Tan β on Frequency

7 The Third Harmonic Amplitude vs the Parameter IR

8 Typical Error Waveforms

REFERENCES

INTRODUCTION

The measurement of the electrothermal parameters of a bridgewire and their dependence on the surrounding explosive mixtures in electro-explosive devices (EEDs) can be of value in EED studies. The response to various electrical input waveforms obviously depends on the thermal time constant (τ), the heat capacity (C_p), and the heat loss factor (γ). A simple and convenient thermal model based on a lumped single time constant system follows the power equation:

$$C_p \frac{d\theta}{dt} + \gamma \theta = P(t) \quad (1)$$

where $P(t)$ is the power-time function and θ is the temperature elevation of the bridgewire. The thermal time constant τ is defined according to $\tau = C_p / \gamma$. Although more complex models can be proposed when necessary, this simple model can explain many of the electrothermal characteristics observed in EEDs. The task is to measure the parameters in a meaningful and reliable manner and apply them in areas such as quality control and design.

The differential equation (1) can be solved for known transient waveforms to obtain the constants*. For example, impulse and step function power waveforms give rise respectively to exponential cooling or heating curves which can be analyzed. It has been verified that a single time constant can provide a reasonable equivalent model for most bridgewires. In order to track temperature variations, the temperature coefficient of resistivity (α) must be known since it is actually a resistance variation which is measured. In cases where α is very small it is difficult to extract temperature variation information from a transient response curve.

As another approach to the measurement of thermal response, dynamic measurements can be made for a sinusoidal power source. If a sinusoidal current is passed through a thermally sensitive element the power dissipated has an average value and a component at a frequency of 2ω, where ω is the current frequency. The cyclic power variation gives rise to a resistance variation (of the same frequency) which lags for positive α systems, the power sinusoid by some angle. This angle of lag is related to the thermal time constant of the unit. In addition a resistance variation at "2ω" when multiplied by the current at "ω" yields a third harmonic voltage at "3ω". The magnitude of the third harmonic (3ω) voltage and its phase angle are clues to the thermal parameters for the bridgewire.

* References are listed on page iii.
An earlier paper described this harmonic generation principle and suggested a system for tracking the thermal follow as a function of frequency. For example, it appears that the third harmonic will be down by 3 decibels \(1/\sqrt{2}\) where \(f=1/2\omega\). A variable frequency driving source was required. As a more direct and simpler procedure a single frequency can be used and by measuring the thermal lag, the time constant can be ascertained. A nonlinear bridge is employed for these measurements. Another advantage of the harmonic generation technique lies in the inherent high resolution provided. The presence of a third harmonic can only be a result of thermal follow. Follow being the ability of the bridgewire to thermally track the driving signal. Although the resistance-temperature sensitivity might be small, there will be a third harmonic which cannot be mistaken. The theoretical aspects of the measurement will be described.

THEORY

Consider an electrothermal element passing a current
\[i = I \sin \omega t. \]

The instantaneous power dissipation will be:
\[i^2 R = \frac{I^2}{2} R (1 - \cos 2\omega t), \]

where \(i\) is the instantaneous current and \(I\) is the maximum current. Note that there is an average and cyclic component to the power. This ac or cyclic power variation is:
\[P_{ac} = \frac{I^2}{2} R \cos 2\omega t \]

where \(R\) is the hot resistance due to an average power:
\[P_{av} = \frac{I^2}{2} R \]

Because of the ac power variation there is a temperature fluctuation \(P_{ac}/\vartheta\) and a resistance fluctuation
\[R_{ac} = \frac{R P_{ac}}{\vartheta} \]

where \(\vartheta\) is the temperature coefficient of resistance determined at the hot temperature. Note that \(R_{ac}\) is a variation of resistance superimposed on the average hot resistance, \(R\), of the EED. The resistance variation can then be described in the time dependent form
\[R_{ac} = \frac{I^2 R}{2} \vartheta \cos 2\omega t \]

providing the follow is complete. Actually the \(R_{ac}\) variation lags at some angle \(\beta\) and is in phase with \(\theta(t)\), the temperature...
rise-time function. From the basic differential equation the lag angle $\beta = \tan^{-1} 2\nu T$. The product of the instantaneous current term and the resistance variation term yields the dynamic voltage drop across the element according to

$$I^2 R^3 \cos 2\nu T \sin \omega t$$

If the trigonometric term is expanded as

$$\cos 2\nu T \sin \omega t = \sin \omega t + \sin 3\omega t$$

then a third harmonic voltage amplitude is found as

$$V_3 = \frac{I^2 R^3 \alpha}{4Y}$$

where V_3 is the maximum third harmonic voltage. Inserting the rms values results in

$$V_{3, \text{rms}} = \frac{I^2 \text{rms} R^3 \alpha}{2Y}$$

This voltage is lagging at the same angle as the resistance follow (β) and falls off with frequency in accordance with

$$1/\sqrt{1 + \tan^2 \beta}.$$

The instantaneous value of the third harmonic voltage is

$$v_3(t) = \frac{I^2 \text{rms} R^3 \alpha}{\sqrt{2Y}} \sin(3\omega t - \beta)$$

where $v_3(t)$ signifies the instantaneous third harmonic voltage. This equation describes the fall off in amplitude and the phase lag observed in the harmonic generated as a function of frequency since $\tan \beta = 2\nu C_p / Y = 2\nu T$. These equations complement the derivations of reference 3. Rather than seek the frequency where $\tan \beta = 1$ corresponding to a decrease in the third harmonic amplitude by $1/\sqrt{2}$, it is possible to measure the angle of phase lag at a fixed frequency. This can be accomplished by comparing the third harmonic generated with the fundamental current waveform in a Lissajous phase display. By introducing a calibrated phase lag into the current waveshape a zero phase shift display directly yields the value of β. This can be demonstrated by reference to Figure la which shows the basic bridge circuit.

A voltage source $V \sin \omega t$ supplies a constant current through the EED (R) under test since R_1 is much larger (100 times) than R. The voltage drop across R contains a fundamental component and a third harmonic. There is a phase shift in the fundamental due to thermal follow as shown in the expansion of equation (4a). All of the fundamental signal in the error voltage can be eliminated by means of C_x and R_x leaving a nearly pure third harmonic. At balance

$$\frac{R_{x, \text{rms}}}{R_1} \frac{R_x}{R_x}$$
neglecting the slight reactance of \(C \). The third harmonic can be measured and displayed on an oscilloscope. In addition another signal which is in phase with the current is passed through the lagging phase shift network \(R_sC_s \) to provide a reference phase voltage which can be applied to the horizontal deflection system of the oscilloscope. If the fundamental is shifted by \(1/3 \) the amount the third harmonic is shifted due to thermal lag, then both waveforms will be in phase for the oscilloscope display. The result is a unique single valued cubic waveform trace

For example if

\[
v = A \sin 3\omega t \\
\text{and} \\
h = B \sin \omega t
\]

corresponding to two waveforms starting from zero in phase with amplitudes \(A \) and \(B \) respectively, the resulting trace can be determined.

Starting with the identity

\[
\sin 3\omega t = 3\sin\omega t - 4\sin^3\omega t
\]

and substituting the vertical (v) and horizontal (h) deflections indicated

\[
v/A = \frac{3h}{B} - \frac{4h^3}{B^3}
\]

or

\[
v = \frac{3Ah}{B} - \frac{4Ah^3}{B^3}
\]

which is the equation of a cubic as sketched in Figure 1b. The amplitudes at pts 1 and 2 must be equal and the figure is symmetrical about the origin. If some fundamental is in the output or if there is a phase shift then the display opens up, as will be shown later.

Since this unique phase display is a result of matching phase lags, the phase shift of the network \(R_sC_s \) can be calibrated as \(\beta/3 \) or directly as \(\beta \). It can also be calibrated as a time constant since \(\tan \beta = 2\omega \tau \). The maximum phase shift required in the \(R_sC_s \) network is \(30^\circ \) corresponding to a \(90^\circ \) thermal lag (or no follow). All measurements can be made at a single frequency. The maximum value of \(R_s \) required is \(X_c/3 \) (for \(30^\circ \) phase lag). Knowing the phase lag and the third harmonic amplitude it is a simple matter to apply the indicated equations for a determination of \(\tau \) and \(\gamma \).

THE APPARATUS

A practical circuit is shown in Figure 2. The 60 cps line supplies power to the EED through a 500 ohm power resistor. With
25 volts available it is possible to pass 50 ma through R. If a variable transformer is applied to the input this current can be reduced to any desired safe level. The current is easily measured by replacing R with a 1 ohm precision resistor and measuring the voltage drop across it. The adjacent comparison arm includes a 20 ohm resistor and a 1K to 5K ohm adjustable arm. A 1K Helipot is included in this arm for a fine degree of balance.

At balance R=10,000/Rx and as shown the range of the bridge is 2 to 10 ohms. By reducing Rx to 10 ohms by means of a parallelled resistor, the range is cut in half. An external capacitance balances out the reactive components of bridge unbalance.

A high quality isolation input transformer raises the error voltage by a factor of 19.25. This transformer is well shielded and offers no phase shift at the frequencies of interest, which for a 60 cps input corresponds to 180 cps. Care must be taken to provide good grounds and negligible pick-up. With a typical drop of 100 mv across the BBD, a 1 millivolt error signal, after the transformer, corresponds to a resistance change of 0.05%. For adequate resolution, an oscilloscope of 1 mv/cm sensitivity should be employed.

The phase shift network is designed for 60 cps, to provide a maximum phase shift of 37°. There is a small variation in amplitude with phase shift which merely changes the horizontal amplitude of the phase display. Although the phase shift can be calculated for various values of Rx it is more convenient to calibrate this network using a commercial phase angle meter or a counter used for time interval measurements. A practical calibration curve is shown in Figure 3 to provide tan θ directly. In Figure 4, the tan θ data is plotted to yield τ, the time constant, directly based on tan θ=2πτ where ω=377. Using 60 cps, the line frequency, time constants from 200μs to 20ms can be measured. If a lower frequency power source is available, this measurement can be extended to large time constant units. Some experimental observations and measurements are presented to demonstrate this technique.

RESULTS

If the bridge of Figure 1 is supplied with a variable frequency source, the harmonic generation and phase shift can be investigated as a function of frequency. For a particular bridgewire the curve of third harmonic vs frequency is shown as Figure 5. Complete follow yields 9mv of harmonic across the bridgewire. At 130 cps the third harmonic is down by 1/2 and at 225 cps (√3x130 cps) it is down by 1/2. The curve follows the response of a single time constant circuit fairly closely.
Based on the -3 db point the thermal time constant is 610 μs. This same unit was measured to have a time constant of 685 μs from cooling curve exponential decay data.

Measuring the phase shift in the thermal follow by the technique described in the previous paragraphs there is a fairly linear relationship between tan β and ω (Figure 6) indicating that the time constant is independent of frequency. For data taken at five frequencies the average time constant comes out as 601 μs. This is in good agreement with the third harmonic response data.

The third harmonic amplitude function was checked out for another unit at a fixed frequency of 60 cps. This data is shown in Figure 7 as a plot of third harmonic voltage vs \(I_{\text{rms}} \). If \(\alpha \) and \(\gamma \) are assumed constant then a linear relationship should exist. The plot demonstrates this. Actually the bridgewire resistance varied from 2.75 ohms at 10 mA current to 3.32 ohms at 50 mA. It was observed that the time constant varied by 10% (increased) during this current range in which the power dissipation varied by a factor of 25. Previous tests have indicated that time constant can vary with power level.

Since the harmonics generated depend on the cube of current, a small variation in current will reduce the useful signal significantly. The current must be at a safe level if the device under test is loaded. Some typical waveforms observed are shown in Figure 8. At the top, the error waveform contains a distinct fundamental which can be cancelled out by the resistance (\(R_x \)) and reactance (\(C_x \)) balance to yield an essentially pure third harmonic. At balance all amplitudes are equal. As a phase display the center trace contains a fundamental component resulting in an opened type of Lissajous figure. A phase shift will produce the same general type of display. Only at balance will the single cubic trace shown at the bottom appear.

The fixed frequency bridge of Figure 2 provides a rapid measurement. After the current is set to the desired level, the bridge is balanced by means of \(R_x \) and \(C_x \). The third harmonic output is noted and the error is displayed as a phase pattern. By adjusting the phase shift network, the phase is balanced to provide a single cubic trace as previously described. From the phase reading, Figures 3 and 4 are employed to give the time constant \(\tau \) and \(\tan \beta \). Now going back to equation (5), and introducing the transformer step up ratio of 19.25 the value of \(\gamma \) is determined according to

\[
\gamma = \frac{I_{\text{rms}}^2 R_x \alpha}{2V_{\text{rms}}} \times 19.25 \times \frac{1}{\sqrt{1 + \tan^2 \beta}} \quad (7)
\]
The temperature coefficient of resistivity α must be known or determined from some other procedure. Note that multiplying the observed third harmonic by the factor $\frac{1}{1+\tan^2\beta}$ corrects the amplitude back to the complete follow region. The resistance is known from the reading R_x.

A series of measurements were made on a bridgewire to demonstrate the influence of environment on the thermal parameters. The same unit was used in all measurements at a current level of 50ma.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Resistance, R (ohms)</th>
<th>Time Constant, τ (ms)</th>
<th>Heat Loss Factor, Y (uW/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>4.25</td>
<td>4.2</td>
<td>70</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>4.15</td>
<td>1.6</td>
<td>318</td>
</tr>
<tr>
<td>Water</td>
<td>4.11</td>
<td>0.98</td>
<td>1220</td>
</tr>
<tr>
<td>Lacquer (Dry)</td>
<td>4.11</td>
<td>0.73</td>
<td>1270</td>
</tr>
</tbody>
</table>

The environment acting as a heat sink increases the heat loss factor and reduces the thermal time constant. Note also that as the heat sink increases, with the corresponding increase in Y, the lower the average temperature and therefore the lower the hot-resistance value, R. However the additional mass surrounding the wire has also increased the effective heat capacity. If an explosive mixture were to surround the wire, the intimacy of contact would similarly reflect in the change of thermal parameters.

The type of measurement possible has been indicated. The usefulness of the measurement will depend on whether electroexplosive device performance can be related. This bridge method appears to offer a quick and reliable measurement technique.

CONCLUSIONS

The measurement of the thermal time constant and the heat loss factor of a bridgewire from the amplitude and phase shift of the third harmonic generated in it by a sinusoidal current has been shown feasible. The theory and mathematics have been presented and an electronic instrument which was built for the measurements has been described and detailed. The new instrument greatly accelerates the measurements of the thermal time constant and the heat loss factor. The instrument will be particularly useful for making measurements on EEDs containing bridgewires of very low thermal coefficients of resistivity, such as tophet -C. The measurements made with the new instrument show the results to be in good accord with the theory and mathematics, and in addition
UNCLASSIFIED
NOLTR 62-205

 indicate that in general the thermal characteristics of a bridge-
wire can be described by the constants of the simple power
balance differential equation:

\[C_p \frac{d\theta}{dt} + \gamma \theta = P(t) \]
FIG. 1 (a) THE BASIC NONLINEAR BRIDGE CIRCUIT. (b) THE PHASE DISPLAY WAVEFORM AT BALANCE.
FIG. 2 THE COMPLETE SELF CONTAINED BRIDGE CIRCUIT WITH COMPONENT VALUES (LINE FREQUENCY (60 cps))
FIG. 3 THE BASIC SHIFT CALIBRATION CURVE

\[2\omega \tau = C \rho / \gamma \cdot 2\omega \]

\[\tan \beta = 2\omega \tau \]
FIG. 4 THE CALIBRATION OF THE PHASE SHIFT NETWORK TO PROVIDE THE TIME CONSTANT τ DIRECTLY
FIG. 5. THE THIRD HARMONIC ERROR VOLTAGE AT BALANCE AS A FUNCTION OF LINE FREQUENCY.
FIG. 6 DEPENDENCE OF $\tan \beta$ ON FREQUENCY
ERROR SIGNAL AND THE RESIDUAL THIRD HARMONIC

LISSAJOUS PHASE DISPLAY WITH PHASE SHIFT

TRACE AT BALANCE

FIG. 8 TYPICAL ERROR WAVEFORMS
<table>
<thead>
<tr>
<th>Role</th>
<th>Distribution Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of Defense Research and Engineering</td>
<td>Department of Defense Washington 25, D. C. 1</td>
</tr>
<tr>
<td>Chief of Naval Operations (OP 411H)</td>
<td>Department of the Navy Washington 25, D. C. 1</td>
</tr>
<tr>
<td>Chief, Bureau of Naval Weapons</td>
<td>Department of the Navy Washington 25, D. C. ... 2</td>
</tr>
<tr>
<td>RDU-3</td>
<td></td>
</tr>
<tr>
<td>RREE-5</td>
<td></td>
</tr>
<tr>
<td>RUME-3</td>
<td></td>
</tr>
<tr>
<td>RUME-32</td>
<td></td>
</tr>
<tr>
<td>RMMP-4</td>
<td></td>
</tr>
<tr>
<td>RMHO-4</td>
<td></td>
</tr>
<tr>
<td>RRMN-312</td>
<td></td>
</tr>
<tr>
<td>Director Special Projects Office</td>
<td>Washington 25, D. C. SP-20 4</td>
</tr>
<tr>
<td>Chief, Bureau of Ships</td>
<td>Department of the Navy Washington 25, D. C. ... 2</td>
</tr>
<tr>
<td>Code 423</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Yards and Docks</td>
<td>Department of the Navy Washington 25, D. C. ... 1</td>
</tr>
<tr>
<td>Code D-200</td>
<td></td>
</tr>
<tr>
<td>Chief of Naval Research</td>
<td>Department of the Navy Washington 25, D. C. ... 2</td>
</tr>
<tr>
<td>Chemistry Branch</td>
<td></td>
</tr>
<tr>
<td>Commandant</td>
<td>U. S. Marine Corps Washington 25, D. C. 1</td>
</tr>
<tr>
<td>Commander</td>
<td>Operational Development Force U. S. Atlantic Fleet U. S. Naval Base Norfolk 11, Virginia</td>
</tr>
</tbody>
</table>
Commander
U. S. Naval Ordnance Test Station
China Lake, California
Code 556: 1
Code 4572: 1
Technical Library: 2
B. A. Breslow: 1
J. Sherman: 1

Director
Naval Research Laboratory
Washington 25, D. C.
Technical Information Section: 2

Director
David Taylor Model Basin
Washington 7, D. C.
Dr. A. H. Keil: 2

Commander
Naval Air Development Center
Johnsville, Pennsylvania
Aviation Armament Laboratory: 1

Commander
U. S. Naval Weapons Laboratory
Dahlgren, Virginia
Technical Library: 1
J. Payne (WH Div): 1
L. Pruett: 1
W. Orsilak: 1
P. Altman: 1

Commander
U. S. Naval Air Test Center
Patuxent River, Maryland: 1

Commander
Pacific Missile Range
Point Mugu, California: 1

Commanding Officer
U. S. Naval Weapons Station
Yorktown, Virginia
R&D Division: 2

Commanding Officer
U. S. Naval Ordnance Laboratory
Corona, California: 2
Commanding Officer
U. S. Naval Propellant Plant
Indian Head, Maryland
Technical Library.
EODTC.

Commander
Naval Radiological Defense Laboratory
San Francisco, California.

Commanding Officer
U. S. Naval Ordnance Plant
Macon, Georgia.

Commanding Officer
U. S. Naval Ammunition Depot
McAlester, Oklahoma
R. E. Halpern.

Commanding Officer
U. S. Naval Ammunition Depot
Waipaele Branch
Oahu, Hawaii
Special Projects Officer
Quality Evaluation Laboratory.

Commanding Officer
U. S. Naval Ammunition Depot
Navy Number Six Six (66)
c/o Fleet Post Office
San Francisco, California.

Commanding Officer
U. S. Naval Ammunition Depot
Bangor, Maine
Quality Evaluation Laboratory.

Commanding Officer
U. S. Naval Ammunition Depot
Concord, California
Quality Evaluation Laboratory.

Commanding Officer
U. S. Navy Electronics Laboratory
San Diego 52, California.

Commanding Officer
U. S. Naval Underwater Ordnance Station
Newport, Rhode Island.
Commanding Officer
U. S. Naval Weapons Evaluation Facility
Kirtland Air Force Base
Albuquerque, New Mexico..............................1

Superintendent
Naval Post Graduate School
Monterey, California..................................1

Commanding Officer
Naval Torpedo Station
Keyport, Washington..................................1

Office of Chief of Ordnance
Department of the Army
Washington 25, D. C.
ORDGU...1
ORDTN...1
ORDTB...1

Office of Chief of Engineers
Department of the Army
Washington 25, D. C.
ENGNB...1
ENGEB...1

Office of Chief Signal Office
Research & Development Division
Washington 25, D. C.................................1

Commanding General
Picatinny Arsenal
Dover, New Jersey
ORDBB-TH8..1
ORDBB-TJ1..1
ORDBB-TK3..1
ORDBB-TM1..1
ORDBB-TP1..1
ORDBB-TP2..1
ORDBB-TP3..1
ORDBB-TR2..1
ORDBB-TS1..1

Commanding Officer
Army Signal Research & Development Laboratory
Fort Monmouth, New Jersey..........................1
NOLTR 62-205

Commanding Officer
Office of Ordnance Research
Duke Station
Durham, North Carolina............................. 1

Commander
U. S. Army Ordnance
Frankford Arsenal
Philadelphia 37, Pennsylvania..................... 1

Commander
U. S. Army Rocket & Guided Missile Agency
Redstone Arsenal, Alabama.......................... 1

Commanding Officer
Harry Diamond Laboratory
Connecticut Ave. & Van Ness St., N. W.
Washington 25, D. C.
 Ordnance Development Laboratory................ 1
 M. Lipnick (Code 005)............................. 1
 R. Comyn (Code 710)............................... 1
 G. Keehn (Code 320)............................... 1

Chief of Staff
U. S. Air Force
Washington 25, D. C.
 APORD-AR... 1

Commander
Wright Development Center
Wright-Patterson Air Force Base
Dayton, Ohio.. 1

Headquarters, Air Proving Ground Center
U. S. Air Force, ARDC
Eglin Air Force Base, Florida
 PGTRI, Technical Library........................ 1

Commander
Air Research & Development Command
Andrews Air Force Base
Washington 25, D. C................................ 1

Commander
Rome Air Development Center
Griffis Air Force Base
Rome, New York..................................... 1
Copies

Commander
Holloman Air Development Center
Alamagordo, New Mexico

Commanding Officer
Air Force Missile Test Center
Patrick Air Force Base, Florida

Commander
Air Force Cambridge Research Center
L. G. Hanscom Field
Bedford, Massachusetts

Commander
Hill Air Force Base, Florida

Armed Services Technical Information Agency
Arlington Hall Station
Arlington, Virginia

Office of Technical Services
Department of Commerce
Washington 25, D.C.

Director
U. S. Bureau of Mines
Division of Explosive Technology
4800 Forbes Street
Pittsburgh 13, Pennsylvania

Atomic Energy Commission
Washington 25, D.C.

Lawrence Radiation Laboratory
University of California
P. O. Box 808
Livermore, California

Director
Los Alamos Scientific Laboratory
P. O. Box 1663
Los Alamos, New Mexico

Library
Stavid Engineering, Inc.
U. S. Route 22
Plainfield, New Jersey 1

Vitro Corporation
14000 Georgia Avenue
Silver Spring, Maryland 1

Western Cartridge Company
Division of Olin Industries
East Alton, Illinois 1

Denver Research Institute
University of Denver
Denver 10, Colorado 1

Universal Match Corporation
Marion, Illinois
Mr. Wm. Rose 1

Universal Match Corporation
Marion, Illinois 1

Bermite Powder Company
Saugus, California 1

Field Command, Defense Atomic Support Agency
Albuquerque, New Mexico
FCDR .. 2

Defense Atomic Support Agency
Washington 25, D. C. 2

Commanding General
U. S. Army Proving Ground
Aberdeen, Maryland
BRL ... 1

Commanding Officer
Engineer Research & Development Laboratory
U. S. Army, Fort Belvoir, Virginia 1

Commanding General
White Sands Proving Ground
White Sands, New Mexico 1

Sandia Corporation
P. O. Box 5400
Albuquerque, New Mexico 1
Sandia Corporation
P. O. Box 969
Livermore, California. 1

Lockheed Aircraft Corporation
P. O. Box 504
Sunnyvale, California. 1

Librascope-Sunnyvale
670 Arques Avenue
Sunnyvale, California. 1

Director, Applied Physics Laboratory
Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland 1
 Solid Propellants Agency 1

Commanding Officer
Fort Dietrick, Maryland. 1

Commanding Officer
Rock Island Arsenal
Rock Island, Illinois 1

Commanding Officer
Watertown Arsenal
Watertown 72, Massachusetts 1

Commanding General
Redstone Arsenal
Huntsville, Alabama
 Technical Library 1

Commander, Ordnance Corps
Lake City Arsenal
Independence, Missouri
 Industrial Engineering Division 1

Director, USAF Project RAND
 Via: USAF Liaison Office
The RAND Corporation
1700 Main Street
Santa Monica, California 1

Aerojet General Corporation
Ordnance Division
Downey, California
 Dr. L. Zernow 1
NOLTR 62-205

Stanford Research Institute
Poulter Laboratories
Menlo Park, California

Explosives Research Group
University of Utah
Salt Lake City, Utah

Beckman Instruments, Inc.
525 Mission Street
South Pasadena, California

Bulova Research & Development, Inc.
62-10 Woodside Avenue
Woodside 77, New York

E. I. duPont deNemours
Eastern Laboratories
Explosives Department
Gibbstown, New Jersey

Alleghany Ballistics Laboratory
Cumberland, Maryland

The Franklin Institute
20th & Benjamin Franklin Parkway
Philadelphia, Pennsylvania

Welex Electronics Corporation
Solar Building, Suite 201
16th & K Streets, N. W.
Washington 25, D. C.

American Machine & Foundry Co.
1025 North Royal Street
Alexandria, Virginia

Atlas Powder Company
Reynolds Ordnance Section
P. O. Box 271
Tamaqua, Pennsylvania

Grumman Aircraft Engineering Corporation
Weapon Systems Department
Bethpage, Long Island, New York
Copies

Jansky and Bailey, Inc.
1339 Wisconsin Avenue, N. W.
Washington, D. C.
Mr. F. T. Mitchell, Jr. 1

McCormick Selph Institute
Hollister, California
Technical Library 1

Midwest Research Institute
425 Volker Boulevard
Kansas City, Missouri
Security Officer 1

RCA Service Company
Systems Engineering Facility (E. B. Johnston)
Government Service Department
838 N. Henry Street
Alexandria, Virginia 1

Redel, Inc.
2300 E. Katella Avenue
Anaheim, California
Library ... 1

Armed Services Explosives Safety Board
Department of Defense
Room 2075, Bldg. T-7, Gravelly Point
Washington 25, D. C. 1

U. S. Flare Division Atlantic Research Corporation
19701 W. Goodvale Road
Saugus, California
BIBLIOGRAPHIC INFORMATION

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>NOL technical report</th>
<th>CODES</th>
<th>SECURITY CLASSIFICATION AND CODE COUNT</th>
<th>Unclassified - 33</th>
<th>CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT NUMBER</td>
<td>62-205</td>
<td>CODES</td>
<td>CIRCULATION LIMITATION</td>
<td>CODES</td>
<td></td>
</tr>
<tr>
<td>REPORT DATE</td>
<td>5 March 1963</td>
<td>CODES</td>
<td>CIRCULATION LIMITATION OR BIBLIOGRAPHIC</td>
<td>CODES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CODES</td>
<td>BIBLIOGRAPHIC (SUPPL., VOL., ETC.)</td>
<td>CODES</td>
<td></td>
</tr>
</tbody>
</table>

SUBJECT ANALYSIS OF REPORT

<table>
<thead>
<tr>
<th>DESCRIPTORS</th>
<th>CODES</th>
<th>DESCRIPTORS</th>
<th>CODES</th>
<th>DESCRIPTORS</th>
<th>CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring</td>
<td>MEAU</td>
<td>Low temperature</td>
<td>LOWM</td>
<td>Amplitude</td>
<td>AMPT</td>
</tr>
<tr>
<td>Electro-thermal</td>
<td>ELTH</td>
<td>Temperature</td>
<td>TEMP</td>
<td>Time</td>
<td>TIME</td>
</tr>
<tr>
<td>Bridge</td>
<td>BRID</td>
<td>Equation</td>
<td>EQUA</td>
<td>Constant</td>
<td>COSA</td>
</tr>
<tr>
<td>Wires (Characteristics)</td>
<td>WIREC</td>
<td>Follow</td>
<td>FALL</td>
<td>Heat</td>
<td>HEAT</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>NONI</td>
<td>Wire</td>
<td>WIRE</td>
<td>Loss</td>
<td>LOSS</td>
</tr>
<tr>
<td>Thermal</td>
<td>THER</td>
<td>Harmonic</td>
<td>HARM</td>
<td>Factor</td>
<td>FACR</td>
</tr>
<tr>
<td>Parameters</td>
<td>PARA</td>
<td>Voltage</td>
<td>VOLT</td>
<td>Alternating current</td>
<td>ALTE</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>INSM</td>
<td>Drop</td>
<td>DROP</td>
<td>Angle</td>
<td>ANGL</td>
</tr>
<tr>
<td>Electro-explosive</td>
<td>ELEX</td>
<td>Sinusoidal</td>
<td>SNEZ</td>
<td>Explosives</td>
<td>EXPL</td>
</tr>
<tr>
<td>Devices</td>
<td>DEVI</td>
<td>Current</td>
<td>CURR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>LOWE</td>
<td>Phase</td>
<td>PHAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficients</td>
<td>COEF</td>
<td>Lag</td>
<td>LAGG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Due to thermal shock the bridge will generate sinusoidal current. By measuring the phase lag and amplitude of this harmonic, the thermal impedance constant of the bridge and the thermal resistance constant of the bridge are determined. The bridge is used to extract the third harmonic voltage and directly measure its phase angle.

Abstract card is unclassified.