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ABSTRACT

A receiver which employs coherent, or synchronous, detection must have a priori

knowledge of the phase of the received signal. The receiver acquires this knowledge by

performing measurements on the channel. The result of the measurement process is a

noisy phase reference which is used by the receiver in the detection processing of the

incoming signals. In this report, the effect of using baud decisions to direct the phase

measurement process is investigated by means of computer simulation of a coherent

communication system employing either orthogonal or phase-reversal signaling. Error

rates are given for several signal-to-noise ratios. A major conclusion of this study is

that phase measurements obtained through such a decision directed technique result in

system error rates which are generally less than error rates of corresponding non-

decision directed phase measurement schemes at all signal-to-noise ratios; no threshold

exists below which a decision directed phase measurement system deteriorates rapidly.
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I. INTRODUCTION

For a wide class of communication channels a lower error rate can be realized

at a given received signal-to-noise ratio if the receiver employs coherent, or synchro-

nous, detection rather than incoherent, or envelope, detection. To perform coherent

detection, however, the receiver must know a pri the phase of the received signal;

in general this knowledge must be obtained by measurements on the channel, either by

using a "pilot tone" or by observation of the previous signals themselves.

In a recent study concerning the optimum division of transmitter power between

pilot tone and information bearing signals, Van Trees1 has shown that best over-all

performance is achieved if the transmitter power is devoted entirely to the information

bearing signals. We are therefore interested in optimum means for performing a

channel measurement based on these signals.

Since the signals to be used in determining the channel phase are corrupted by

noise, the measurement yields only an estimate of the true phase of the received signals.

In a recent report Price 2 analyzed the effect of the "goodness" of this estimate on the

performance of a binary communication system employing coherent detection with a

particular form of channel measurement. By simulation on a digital computer we have

studied empirically the performance of systems employing other channel measurement

techniques with orthogonal as well as anticorrelated signals; in particular we have

investigated the effect of using the baud decisions to direct the measurement process in

order to obtain a less noisy measurement.

II. CHANNEL MEASUREMENT

The binary communication system under consideration consists of two signaling

waveforms, say sl(t) and s 2 (t), which are of duration T (baud length) and are either

orthogonal or anticorrelated, i.e.

T s-d0, if orthogonal
fo s l (t ) 8 2(t) dt=

0 -E, if anticorrelated



where

s (t) dt = f (t) dt = E

0 
0

The disturbance is assumed to be additive, white gaussian noise.

The parameter which represents the length of the channel measurement is called

the "effective measurement time," T m . If the channel is time-invariant, Tm together

with the received signal-to-noise ratio E/N provide a measure of the quality of the

measurement; for a given E/N , knowledge of the received signal phase is improved as

T is increased.
m

We shall express the effective measurement time T in units of the baud durationm

T, i.e., Tm = yT where (usually not but necessarily) y >- 1. If y = 1, the channel

measurement corresponds to the duration of a single baud and is usually carried out

during the baud just preceding that for which a decision is to be made. This holds for

both orthogonal and phase reversal signaling. For orthogonal signaling only, y = 1 may

also correspond to envelope detection, where the channel measurement is now derived

from the incoming signal instead of the signal from the preceding baud. For extended

measurement into the past, i. e., y > 1, one may choose various forms of weighting of

past inputs. If the channel is time-invariant, the type of weighting used will not be

critical. However, if the channel phase shift is changing with time, one should form the

channel measurement by choosing the weighting to match the channel characteristics.

As an example of the way in which channel measurement may be performed, let

us suppose that the signals are orthogonal and the receiver consists of two matched

filters, one matched to the "mark" waveform and the second matched to the "space"

waveform. Furthermore, assume that y = I so that the channel measurement is of

duration T, and that this measurement is made in the baud just preceding the one on

whicl a decision is to be made. The measurement can be made by passing the received

signal into the pair of matched filters and sampling the outputs of these filters near the

end of the measurement interval. If there were no additive noise, only one filter would

have an output at the sampling instant. The amplitude and phase of the sum of the filter

outputs would then be an exact measure of the gain and phase shift of the channel.
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In the presence of additive noise, however, both filters will have a non-zero

output at the sampling instant. At this point, a channel measurement can be obtained

in either of two ways. The outputs of the two filters may be added to form an estimate

of the channel signal strength and phase shift. This procedure, which we call non-

decision directed channel measurement, causes the channel measurement to be degraded

by the noise from both matched filters. Alternatively, one can first decide which of the

two filters contains the signal and use this filter output as the reference for the detection

of the signal during the next baud. This latter scheme will be called decision directed

measurement.

Channel measurement in a matched filter system with orthogonal signaling may

be extended to include more than one presignaling interval in the following manner. The

two matched filters are sampled at the end of each baud, and a single sample is formed

through either decision directed measurement or addition of the two filter outputs (non-

decision directed measurement). This sample is then added to the weighted sum of such

samples from earlier presignaling intervals. The weighting is with respect to the past

and, as we previously mentioned, should be chosen to match the channel.

If the signaling waveforms are anticorrelated, as in differential phase-reversal

signaling, channel measurement is performed in a different manner. Here, there is

only a single matched filter output at the end of each baud. The amplitude of the noise-

free filter output is proportionai to the signal strength, but,since information is conveyed

in phase differences between successive bauds, its phase is a function of the transmitted

information as well as the channel phase shift. For this type of signaling we are

constrained to use decision directed measurement in order to remove the modulation.

If y = 1, there is no problem, as we are using the measurement from the previous baud

as the phase reference for the detection of the incoming signal. However, for y> 1, the

channel measurement is formed by a weighted addition of more than one baud, requiring

that the information carrying phase modulation be removed from the individual bauds

prior to their addition. The modulation is removed from each phase measurement by

reversing its phase if it differs by more than ± 900 from the referenLe phase; otherwise,

the phase measurement is left unaltered.

For both orthogonal and anticorrelated signaling, decision errors will occur in

the presence of additive noise. It is not clear a priori which of the two channel
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measurement techniques will result in fewer decision errors. In a practical system we

have a choice of the type of channel measurement technique to use if the signals are

orthogonal. For anticorrelated signals, this choice no longer exists.

An analytical comparison between the channel measurement techniques has not

proved mathematically tractable. As an alternative, an orthogonal and a differential

phase-reversal signaling system were simulated on a digital computer; for each the

error rates with decision and non-decision directed channel measurement were compared.

In the phase-reversal signaling system, we simulated an artificial non-decision directed

technique to form a basis for comparison with the decision directed channel measurement. *

The results of the simulation are presented in following sections.

III. ORTHOGONAL SIGNA LING

A matched filter detection system with orthogonal signaling was simulated,

using decision and non-decision directed channel measurement with both exponential

and uniform weighting into the past. The simulation used a simple detection procedure.

Two noise vectors were formed from a sample of normally distributed zero-mean and

unit variance pseudo-random numbers (Appendix A), and a signal component was added

to one of the noise vectors. If V 1 contains the signal, then V1 = (X 1 + s + jY 1 ) and

V=(X2 +jY), where X Y X andY are mutually independent, zero-mean and2x2 2 )  X1, Y' X2 Y2

unit variance normally distributed variables. t Using these two vectors, dot products

were formed with the reference vector resulting from the channel measurement. The

two dot products (corresponding to the outputs of two matched filters) were compared

and the largest chosen as containing the signal component.

When decision directed channel measurement was used, the output of the filter

which gave the largest dot product was added to the weighted sum of the previous

measurements. For non-decision directed measurement, the two filter outputs were

summed and added to the weighted sum of previous measurements. For each scheme

the number of errors in 5000 trials are shown in Table 1.

The value of y indicated in this table corresponds to the length of channel

measurement. For each value of y the first row contains the results for decision

* As explained later, we assumed that the "measurement portion" of the receiver knew

exactly the transmitted message.

t It follows that E/N o = 1/2 s2
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TABLE I

ORTHOGONAL SIGNALING SYSTEM

Uniform Weighting

E/ 5 1.0 1.5) 2.0 3.0 4.5 8.0

1 1867 1352 1011 729 383 144 20
1963 1550 1208 963 599 293 49
1992 1559 1241 999 605 291 57

2 1612 1074 738 526 251 115 17
1801 1289 906 672 345 150 20

5 1370 874 616 448 244 99 14
1503 997 680 488 265 116 15

10 1263 828 597 431 228 102 15
1370 865 595 436 249 106 15

Exponential Weighting

1 1867 1352 1011 729 383 144 20
1963 1550 1208 963 599 293 49

2 1614 1108 727 517 264 109 17
1782 1287 910 684 364 153 18

5 1380 867 613 440 236 105 15
1533 1007 684 475 260 110 15

10 1264 833 595 431 228 99 14
1368 882 604 448 242 106 13

Number of Errors in 5000 Trials
First row -- decision directed measurement
Second row -- non-decision directed measurement
Third row -- envelope detection (y = 1 only)
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directed measurement, the second for non-decision directed measurement. For the

special case of uniform weighting with y = 1, two possibilities exist for non-decision

directed measurement: either the previous baud or the present baud may be used as

reference, the latter case corresponding to envelope detection. The results for

these two alternatives are shown in the second and third lines, respectively; they are

quite similar, as, might be expected from the analytical comparison presented in

Appendix B.

For exponential weighting, it can be shown that the equivalent value of y is given

by the relation
I +D

y=I - D

where D is the decrement (D < 1) used in the channel measurement to provide weighting

into the past. At the end of each signaling interval, the new reference vector for the

incoming signal is formed by adding the measurement from the present signaling interval

to D times the previous reference vector, i.e., VR = V0 
+ DV R- = V 0 

+  D i - i ).

The valuE - of D = 0, 1/3, 2/3 and 9/11 were used, corresponding to y = 1, 2, 5, and 10.

The improvement in system performance resulting from the use of decision

directed measurement is evident from Figure 1. As might be expected this improvement

is much more pronounced for small values of y than for the large values at which the

measurement signal-to-noise ratio is already good. It is especially interesting to note

that even for very low E/N 0 the corresponding high error rate does not degrade the

decision directed measurement; no threshold exists, below which the decision directed

syst-m deteriorates rapidly.

IV. DIFFERENTIAL PHASE-REVERSAL SIGNALING SYSTEM

In this section we present results from the simulation of four differential phase-

reversal systems. In each, information is conveyed by means of reversals of phase
between successive bauds. The systems differ only in the method of channel measure-

ment by which a phase reference is obtained. Coherent detection was performed by

forming the dot product between the incoming signal and the phase reference vector; the

decision as to which symbol was transmitted is determined by the sign of this dot product.
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Since information is conveyed by phase reversals between successive bauds, an error

in any baud will very likely be followed by an error in the succeeding baud, i.e.,errors

will generally occur in pairs.

As a reference (but physically unrealizable) phase-reversal signaling system, we

assumed that the measurement portion of the receiver knew exactly the transmitted

message; the receiver then formed the reference vector by multiplying the received

signal-plus-noise vector for each baud by either plus or minus one depending on the

(known) sign of the transmitted phase. This type of measurement is really a case of

non-dtcision directed channel measurement using phase-reversal signaling. Although

physically unrealizable, it has two advantages as a basis for comparison; error rates

can be predicted analytically, 2 and the difference between the error rate for this

technique and for decision directed measurement is attributable directly to the effect of

errors on the phase reference.

As a modification of the system described above, we consider a system in which

bauds in error are not added into the measurement. The channel measurement is now

decision directed and, for all practical purposes, is still physically unrealizable.

Note that the manner in which the reference vector is obtained rules out uniform weighting

of a small number of past measurements, since a number of successive errors will

cause the loss of the reference vector,

The third system employed decision directed channel measurements and is

physically realizable. The measurement was performed by multiplying the incoming

signal -plus -noise vector for each baud by minus one if this vector differed from the

reference vector by more than ± 900, i. e., the sign of the dot product was negative;

otherwise, the incoming vector was left unaltered. With the modulation thus removed

(if the baud decision was correct), the signal-plus-noise vector for each baud was

added to the weighted past measurements.

In the fourth system the phase modulation was removed rom the channel measure-

ment by squaring the signal-plus -noise vector received during each baud. The squared

vector was then added to the weighted sum of squared vectors from previous bauds to

* At least in principle,either of the above techniques could be realized with error-

correcting coding,
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form a reference vector having (in the absence of noise) twice the true reference phase.

The phase reference desired for the detection processing of the incoming signal was

obtained by dividing the phase of this reference vector by two. As a result of the

squaring operation, there is a loss in the channel measurement signal-to-noise ratio.

For each of these four systems the number of errors occurring in 10,000 trials

is listed in Table 2 (also, see Fig. 2). The weighting is exponential in all cases. For

each value of y, the error rates are given in the order in which the systems were

discussed, i.e.

(a) First row--non-decision directed channel measurement

(b) Second row -- errors omitted from channel measurement

(c) Third row--decision directed channel measurement

(d) Fourth row -- square and divide channel measurement

For Y = 1, the reference vectoi used in the detection processing of the incoming signal

is the signal received in the previous baud. For this case, the best non-decision directed

measurement scheme can perform as well but not better than its decision directed

counterpart. Hence, at best, the two channel measurement techniques result in an

identical error rate. In the second system, the manner in which the reference vector

was obtained precluded any results for the y = 1 case.

For y = 2 and all E/No, the er.'-or rate of the receiver employing decision directed

channel measurement was (statistically) significantly lower than that obtained from the

receiver which used non-decision directed measurement. For all practical purposes,

the performances: of the two measurement schemes for both y = 5 and for y = 10 are

identical. Observation of results from the second row (for all y) indicate that very

little is gained by omitting errors from the measurement.

Perhaps the most interesting comparison is that between the third and fourth rows

of Table 2 (also, see Fig. 2), i.e.,the two realizable systems. Especially for short

measurement times (small y) decision directed measurement results in significantly

(Appendix C) fewer errors. In view of the relatively small difference in performance

between the two measurement techniques, it is questionable that one would exchange

the square-law measurement scheme for the more complicated (circuit-wise) decision

directed procedure.

9



TABLE 2

DIFFERENTIAL PHASE-REVERSAL SIGNALING SYSTEM

Exponential Weighting

"_y__E/No .5 1.0 1.5 2 3 4.5

3141 1922 1217 750 291 66

3494 2333 1502 975 428 104

2 3387 2085 1199 697 246 44

3413 2091 1203 701 248 42
3154 1887 1070 629 221 39

3350 2093 1237 733 250 46

5 3171 1789 1011 552 192 36

3081 1761 995 555 192 36
3131 1786 1014 557 191 37

3221 1867 1047 586 192 30

10 3027 1647 929 534 176 30
2979 1631 931 524 174 30

3047 1667 946 529 173 31

3135 1739 943 550 178 30

Number of Errors in 10,000 Trials
First row -- non-decision directed channel measurement

Second row -- errors omitted from channel measurement
Third row - - decision directed channel measurement
Fourth row - - square and divide channel measurement
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In conclusion, it is interesting to note again, that even at low E/N the corres-

ponding error rate does not degrade the decision directed measurement system.

V. SYSTEM "START-UP"

In the tabulated results of the previous sections, the initial phase reference was

a noise vector chosen from the set of random vectors. This procedure of turning on the

receiver is a reasonable one. In practice, receiver noise will always be present and

will have the same effect.

Through simulation, the problem of ihitial acquisition of a reference vector was

studied in more detail, We assume that the transmitter had been turned off and that the

receiver had been operating only on noise for a period of time long compared to Tm .

Then the transmitter was turned on and we examined the baud to baud buildup of the

reference vector.

For non-decision directed measurement, one would expect the receiver to

establish a meaningful phase reference in a period of time comparable with the effective

measurement time. Our simulation results substantiated this conjecture. In fact for

high signal -to -noise ratios, initial acquisition was obtained in a time less than Tmo

In the case of decision directed channel measurement it is difficult to predict

how rapidly the receiver will establish a good: reference. Our simulation results,

which were obtained for exponential weighting with y = 10 and E/N o between 0. 5 and

8.0, indicate the following conclusions: (a) for small measurement times and all signal-

to-noise ratios, the receiver acquires a proper measurement rapidly; (b) for long

measurement times, as for example y = 10, and large E/No, the receiver acquires a

good measurement in a time comparable to (and sometimes less than) Tm; (c) for long

measurement times and small E/No, the receiver acquires a good measurement in a

period of time which is usually greater than Tm but always less than 2 Tm

From the above we may conclude that a receiver need not be primed when

operating with either decision directed or non-decision directed channel measurement.
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APPENDIX A

Generation and Characteristics of the Random Number Sample

The 20,000 normally distributed, zero mean and unit variance, pseudo-random

numbers used in the simulation were generated on the computer. This was done by

23first generating a number of period 2 , and uniformly distributed in the interval (0, 1).

The computation procedure is as follows:
a) Computer 1 = Mri od 35) i = 1,2,...

b) Designating the floating point equivalent of r i by ui , compute

Vi = 4/7oe .5(1-1 yf

c) Then, N+ + a 2 vi 2

N. = m+r {sign (u-.) [v i - 1+bV+bv 2 +bv 3  }
1 1 i 2 1 3i

where Ni is the normal variable of mean m and variance o , and r 0 = initial random
= 36

number as a fixed point binary odd integer (r 0 = 2 - 1 has been used to start the

routine).

M 513

a = 2.515577 b I = 1.432788

a = .802853 b 2 = . 189269

a 2 = . 010328 . b3 = . 001308

The total time to generate a single number is approximately 12 milliseconds.

Some of the characteristics of the pseudo-random sample were investigated.

The 20,000 numbers were divided into two sets, the X-sample being comprised of the

first set of 10,000 numbers and the Y-sample being comprised of the second set of

10,000 numbers. The cdf of each set is plotted in Figure 1A. As can be observed, the

Y-sample is a better fit to the normal distribution than the X-sample. Application of
2

the X goodness of fit test (Tables Al and A2) verifies this same conclusion.

* Routine AANDRN
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TABLE Al

(vi - nPi)2
Range Box No. np.)No. of Samples P1  np1  npi

-100.00000 0t
-4.00000 of
-3.75000 0 15 .00135 13.5 .17
-3.50000
-3.25000 10)
-3.00000 18 .00165 16.5 .14
-2.75000 44 .0032 32. 4.51
-2,50000 66 .0060 60. .60
-2.25000 115 .0105 105. .95
-2.00000 168 .0173 173 .14
-1.75000 301 .0267 267 4.33
-1,50000 416 .0388 388 2.02
-1.25000 548 .0530 530 .61
-1,00000 691 .0680 680 .18
-0.75000 797 .0819 819 .59
-0.50000 893 .0927 927 1.25
-0.25000 974 .0988 988 .20
0.25000 956 .0988 988 1.04
0.50000 924 .0927 927 0.
0.75000 799 .0819 819 .49
1.00000 630 .0680 680 3.68
1.25000 538 .0530 530 .12
1.50000 405 .0388 388 .74
1.75000 285 .0267 267 1.21
2.00000 172 .0173 173 0.
2.25000 100 .0105 105 .25
2.50000 64 .0060 60 .27
2.75000 52 .0032 32 12.50
3.00000 17 .00165 16.5 .02
3.25000 9
3.50000 f
3.75000 0 12 .00135 13.5 .17
4.00000 1

100.00000

36.17

Pr(X 5 > 36.17) 07
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TABLE A2

Svi (vi nPi)2

Range Box No. of Samples Pi nvi npi

-100.00000 1
-4.00000 0
-3.75000 414 .00135 13.5 .02
-3.50000 1
-3.25000 9J
-3.00000 10 .00165 16.5 2.56
-2.75000 32 .0032 32. 0.
-2.50000 73 .0060 60. 2.82
-2.25000 97 .0105 105. .61
-2.00000 167 .0173 173. .21
-1.75000 257 .0267 267. .37
-1.50000 375 .0388 388. .44
-1.25000 552 .0530 530. .91
-1.00000 690 .0680 680. .15
-0.75000 799 .0819 819. .49
-0.50000 914 .0927 927. .18
-0.25000 962 .0988 988. .68
0.25000 960 .0927 927. .01
0.50000 930 .0819 819. 2.82
0.75000 867 .0680 680. 1.41
1.00000 711 .0530 530. .05
1.25000 525 .0388 388. .44
1.50000 401 .0267 267. 2.16
1.75000 243 .0173 173. .47
2.00000 182 .0105 105. 0.
2.25000 105 .0060 60. 2.00
2.50000 71 .0032 32. .28
2.75000 29 .00165 16.5 .02
3.00000 16
3.25000 9
3.50000 6
3.75000 1 17 .00135 13.5 .91
4.00000 0

100.00000

20.80

r 2
r 25>20.8)•70
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To test the independence of the samples, the autocorrelation function of the set

of 20,000 random numbers was computed for shifts through forty and is displayed in

normalized form in Figure 2A.
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APPENDIX B

Statistical Properties of Dot Product Differences

in Detection of Orthogonal Signals

(a) Envelope detection vs. non-decision directed measurement with y = 1.

For envelope detection, the decision quantity (DQ) is just

D =X+)2 +Y2 _X2 _Y2 (B-I)
DQ=(X 1 +s) +Y l -X2-Y2 Bl

11 2 2

where s is the signal voltage, (X 1 + jYI) is the additive noise vector from the matched:

filter containing the signal, and (X2 + jY 2 ) is the additive noise vector in the second

matched filter. The X. and Y. are assumed to be independent, zero-mean and unit
1 1

variance normal variables. Then,

E(DQ) = s2 (B-2)

and

2 2 2 2 2 22E{(DQ) 2 } E{(s 2 +2sX I +X1 +Y -X 2  Y2 ) 1

4 2 4

8a
4 +4s

2 a2 +s

2 4

=8+4s2 +s (B-3)

This gives a variance for (DQ) of 8 + 4s 2

In the case of non-decision directed measurement where only the previous baud

is used as the channel measurement for the incoming signal, the (DQ) is

(DQ) = (s + X1 + X2 ) (s + X3 - X4) + (YI + Y2 ) (Y3 - Y4) (B-4)

19



Again,

E(DQ) = s2 (B-5)

and

E{(DQ)2 } = E{s +X I + X2 )2 (s + - X4 )2 + (YI + Y2 ) 2 (Y3 - Y4 )2 }

4 22 4

= 8 4 +4s2 a2 +s (B-6)

Therefore,

var (DQ),= 8 + 4s2 (B-7)

The means and variances of the decision quantity in the two schemes are identical. In

view of this, the expected error rate from the two measurement techniques should be

similar.

(b) Decision directed vs non-decision directed channel measurement with y = I.

For convenience, let us choose uniform weighting with y = I and examine the mean

and variance of the decision quantity for the two types of channel measurement. In the

case of non-decision directed measurement, the mean and variance of (DQ) are given by

Equations (B-5) and (B-7).

In the case of decision directed measurement, let us assume that the reference

vector consists of signal plus noise, i.e., the previous baud was received correctly.

Then,

DQ = VR " (V son- Vn

= (XR + s) (X1 - X2 + s) + YR(YI - Y2 ) (B-8)

2The mean of (DQ) is s . The second moment is

E{(DQ)2} = 4a 4 +3s 2 a 2 +s 4

2 4

4+3s 2 +s (B-9)

* If the distribution functions of (DQ) in the two measurement schemes were identical,

the expected error rates should also be identical.
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and

var (DQ) = 4 + 3s 2  (B-10)

if VR is the correct vector.

Suppose now that the reference vector is pure noise so. that

VR = XR +j YR

Then,

DQ = XR (X 1  X 2 + s ) + YR(Y1 - Y2 ) (B-i1)

and

E(DQ) = 0 (B-12)

Also,

var (DQ) = E{(DQ) 2 } = E{X2 ( X2 + X2 +S2)+Y2

var (DQ) = 4u 4 + S 2 a2

var (DQ) = 4 + s 2  (B-13)

When the system is operating at low error rates, the decision directed scheme is clearly

better than non-decision directed measurement because of the difference in the variance

of (DQ). For high error rates, decision directed measurement continues to yield a

smaller variance for (DQ) but, on the average, the mean of (DQ) is also decreased.
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APPENDIX C

Variance of Error Rate Estimates

The variance of the error rate estimates given in the tables is difficult to calculate

for the decision directed measurement techniques because of the dependence of errors

between bauds. However, for orthogonal signaling and non-decision directed measure-

ment, the errors between bauds are independent. In this case, the standard deviation

about the expected value of the error rate is

/Pe QPe)
N n

where Pe is the expected error rate, i.e. the true error rate, and n is the total number

of samples. For 5000 trials, and Pe = .3 We obtain a = 32,5 errors; if Pe = . 01,

a 7 errors. For 10,000 trials, and Pe = .3we obtain a a =46 errors; if Pe -01,

a= 10 errors.
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