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I. Introduction

By reason of their plasticity and strength level in the welded
condition, aluminum elloys containing between 4.0 and 5.5 per cent
magnesium as the principal alloy element, are gaining wide acceptance
in high strength light weight fabricated structures, The alloys are
strengthened partly by solid solution hardening and partly by cold work,
and, in the wrought condition, exhibit tensile and yield strengths and
elongations above 40,000 psi, 30,000 psi, and 10%, respectively. In
the welded condition, part of the strengthening induced by cold work
is lost, but even s0, the strength level of 5,000 series alloy weldments
compares fsvorably with the only weldable heat treatable aluminum alloy
of any importance, 6061, and the emergy absorbing capebility or toughness
is far superior to that of any heat treatable aluminum alloy in the
welded condition. It is this combination of moderate strength with high
energy absorbing capability which is of interest in addressing the
aluminum-magnesium alloys to fabrication of light weight armor. Secondly,
but still of real significance, the aluminum-magnesium slloys offer
stmospheric corrosion resistance quite superior to thet of other high
strength aluminum alloys.

A survey study of the strength and plastic properties of welded
aluminum-magnesium alloys constituted the principal effort in an initial

inveatiaationl’ 2, which was principally concerned with the influence of such

Y)



2
welding variables as arc energy input and filler metal composition on
the overall strength and energy absorbing capabilities of various plate
materials welded at different levels of initial cold work. These
studies were conducted at low rates of strain (i.e. the order of 0,025
min-l), and the principal findings were: (1) %he varisbles of welding
and initial plate condition generally exhibited a profound influence on
the strain distributions observed in welds subjected to transverse tension,
but the overall strength and toughness properties, at these low strain
rates, were surprisingly insensitive to process variables. (2) The
plastic properties of material in-the weld zone, the heat affected zone,
and the unaffected base material frequently appeared in sharp contrast
to one another, as reflected in markedly non-uniform strain distributions.
(3) Joint geometries and welding procedures were developed which reliably
deposit welds substantially free of porosity, but at the same time it was
found, in these alloys, gas porosity, even when severe, exerted little
influence on transverse tensile properties.

In spite of the fact that the integrated strength and plasticity
characteristics of 5,000 series weldments were found insensitive to
process variables, there was fundamental interest in the properties of
individusl regions in the weld metal, and the heat affected zone, and
the influence strain rate might have on these properties. Of particular

interest were variables influencing weld metal properties, since in most ceages
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it was the weld metal which was strength limiting to the structure, and

the observation of plastic behavior at impact strein rates, at various
locations in the weld and the heat affected zone, were considered vital
in view of the contemplated use of this materiesl in light weight armor.
Accordingly, a more detailed study of metallurgical responses and re-
actions in welding was initiated.

I1. Experimental Program and Procedures

A. Materials
Previous work had clearly shown that the highest integrated

strength and toughness were associsted with matching or over-matching
the filler to the base material with respect to magnesium content, ie.
that the weld metal should contain as much or more magnesium than tHe
base material in order to prevent excessive strain concentration in the
weld zone under transverse testing, and thereby promote strength and
toughness., For this reason, all of the work reported herein concerns
filler compositions 5183 and 5356. The 1/2 inch thick base materials
were 5086, 5083, 5356, and S456. The nominal and the exact compomitions
of the plate and wire materiels are presented in Table I.

Detailed heat affected zone studies at low as well as impact
rates of strain were made in 5086-H112, 5083-F, and 5356-H321, using
m.nieture tensile and tensile impact test specimens. Smell specimens were

also ugsed to observe properties in weld fusion zones in the transverse and
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longitudinal directions using 5183 and 5356 filler on 5083 and 5456

base material (all four combinations).

B. Welding Procedure

The modified double - "U" preparation described in earlier
reports was used throughout this study, end all welds were deposited
with two passes, one from each side, using an inert gas shielded con-
sumable electrode apparatus powered by constant potential transformer

rectifier, adjusted to give the conditions shown below in Table II.

TABLE II

Welding Conditions

Shielding Gas Helium

Ges flow rate 80 efh
Carriage speed 15 ipm

Gun angle (from vertical) 15 ©

Gun height 1/4- 3/8 in.
Open circuit wltage 34 v,
Welding voltage 31-32 v.
Amperage 260-270 a.

C. Mechanical Tests

The specimen uged for both impact and strain rate
tensile testing was a standard 0.l inch diameter 0.75 inch gage length
bar shown in Figure 1. Low strain rate tests were performed on an

Instron machine, and tensile impact date were obtained using a drop
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weight impact machine equipped with a load cell and oscilloscope, on

which load-time curves were recorded photographically. With auxiliary
information on extension versus time, also derived from the oscillo-
scope, complete stress strain curves were evolved at impact strain rates
(10, 000 min-l). Specimens were machined from predetermined locations

in the weld metal itself and in the heat affected zone. Specimens taken
from the heat affected zone were correlated with the peak temperatures
experienced at the various specimen locations. For comparison, specimens
were also machined from samples of base material which had been subjected

to various peak temperatures by furnace heat treatment.

D. Temperature Distritutions
In order to correlate mechanical properties with peak
temperature, distributions of peek temperature were eatablished and
confirmed by processes of calculation and measurement. The equation
giving pea}( temperature as a function of distance from the weld 13:3

1

TTO_— = 413 p Cs r't < * T (1)
where
Tp = peak temperature experienced at a distence, r', from the
edge of the weld zone in a plate of thickness, t.
To = initial temperature of plate,

V = velocity of arc.



q = heat flow rate from arc into plate.

py C v Tm = density, specific heat, and melting point, respectively,
of aluminum.

To use equation (1), knowledge of the efficiency with which heat
is transferred from the arc £o the plate is essential, because q is the
net transfer to the plate, not the total volt-ampere product. In general,
with the consumable electrode inert gas process, heat transfer efficiencies
have been found greater than 90%. Combining this with the known thermal

properties of aluminum yields:

1000 v
—'.l‘_;-_T;=168°tr N + 0,82 (2)
vhere
E = arc voltage and
I = arc amperage.
and t,r, and V are expressed in inches and in./min.
Calculation of the peak temperature distribution was supplemented
by measurement using temperature sensitive lacquers, and all results

reported herein pertain to welds in which measured and calculated temperatures
agree within 30°F.

E. Process and Testing Variebles
(1) The variables included in the heat effected zone studies

vere peak tempersture (produced either by heat treatment or welding), strain
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rate (0.025, 2.5, and 10, 000 min'l), and, of course, the composition
and initial degree of cold work in the materisl. Measurements were
made of yleld strength, tensile strength, elongation, and total energy
absorbed in fracture.

(2) Fusion Zone
The variables in the fusion zone studies were, in
addition to weld metal composition, the orientation of the test
specimens (longitudinal and transverse), whether the specimen weas
machined from the first or second pass, and strain rate (0.025 and
10, 000 min-l). Again, determinations were made of tensile and yleld

strength, elongation, and energy absorbed in fracture,

I11. Experimental Results

A. Correlation of Toughness with Strength and Elongation.

Using large transverse temsile specimen, at low rates of
strain, it had been found in earlier studies that the total area under
the stress strain curve was proportional to the product of maximum load
(in pounds) and total elongation (in inches). This correlation is shown

in Figure 2 and can be represented by the equation:

U = 0.88 PL (3)
where
U = total energy absorbed (inch 1lbs)
L = total elongation

g/
n

maximum load
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It has been established this correlation holds also for the
subsize tensile specimens taken from either the weld metal or any
part of the heat affected zone, and at all rates of strain including
impact. This simply means, regardless of composition and processing
history, the shapes of stress-strain curves in aluminum-magnesium alloys
exhibit very little variation.

The stress-strain curves obtdned under impact conditions are
derived from oscilloscopic traces, examples of which are presented in
Figure 3. One significant detail is the appearance of a distinct yield
point at impact strain rates, which is never observed in conventional
tensile testing of these aluminum alloys.

B. Distribution of Mechanical Properties in the Weld Heat Affected

%8ne.

Heat affected zone data are presented in Tables III, IV, and
V. Deta are also included in these tables from specimens subjected to
furnace excursions to various peek temperatures, and the tables arem
arranged that direct observation can be made of the effect of strain rate,
and the difference between the very high speed heat treatment imposed on
material by welding and the vastly slower thermal cycle imposedly furnace

heat treatment.



(1) 5356-H321 9
Whether by furnace heat treatment or the heat effect

of welding, the higher the peak temperature, the lower are the yield
and tensile strengths in the weld heat affected zone. It is difficult
to define a specific softening or recrystallization temperature but
close scrutiny of the data indicate, with furnace heat treatment, the
softening effect is concentrated in the region 450-500°F, whereas in the
heat affected zone of the weld a corresponding temperature is much higher,
700-800°PF. Stated another way, at any giver peak temperature the furnace
treated specimen is substantially softer than the weld "heat treated"
specimen. This reflects the time dependence of softening reactions,
which shows up in strength measurements but is not evident in hardness
measurements. Hardness as a function of peak temperature for 5356-H321
ig shown in Figure 4 which represents both furnace and weld heat affected
samples. Figure 4 led to the tentative concluaion that softening is an
instantaneous reaction depending only on temperature and not on time, but
the real meaning of Figure 4 in the light of Table III is that hardness and
strength are not simply related in this meteriel, and are differently influence:
by excursions to elevated temperature. Increasing strain rate from 0.025
to0 2.5 min'l brings sbout a decrease in tensile strength, an increase in
yield strength, and very little affect on ductility at all locations in
the heat affected zone. Further increasing the strain rate up to impact
brings about a slight reversal (decrease) in yield strength, a further
decrease in tensile strength, and a substantial decreasse (by a factor of

2 or 3) in elongation.
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Upon comparing the properties at various locationsin the heat
affected zone with total transverse weld strengths reported erlier,
it is found that when 5356-H321 is welded with matching filler, trens-
verse tensile strength is J'.ower than in any part of the heat affected
zone and the strain is concentrated in the weld zone. Clearly, with
matching chemistries, the weld metal is definitely sof'ter than even
that part of the heat affected zone which has experienced a peak
temperature of 900PF, whichshould be high enough to bring about complete
snnealing.
(2) 5086-H112
With this material there I : no distinct softening
temperature, but rather a gradual decresse in strength starting at
relatively .low })eak temperatures. In fact, the only alloy studied
in this or earlier investigations which exhibited anything like a
distinct softening temperature was 5356, and this is reflected in Figure
5 which shows, in terms of hardness, the response of various work hard-
ening alloys to different maximum temperatures imposed by furnace heat
treatment.
Here again, increasing the strain rate from 0.025 to
2.5 min-l brings about a decrease in tensile strength and an increase in
yield strength, with no important effect on ductility, as was the case with
5356. However, further increasing the rate of strain to impact levels

brings about a further increase h yield strength and a restoration of tensile
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strength to the level observed at 0.025 min™t, The elongation is
substantially reduced by increasing strain rate to impact level.

These results lend themselves to comparison with eerlier
work which involved welding 5086 - H112 with overmatching 5356 filler,
and it is found that the ultimate transverse tensile strength of the
weld is slightly less than at locations in the heat affected zone which
experienced a peak temperature of 850°F. The indication is that even
with overmetching filler, the anneesled part of the heat affected zone
is not necesserily strength limiting.

(3) 5083-F

Impact data were not collected with this material, and, as
with the other two alloys, there was observed an increase in yield
strength and a decrease in tensile strength with no important effect
on elongation, upon increasing the strain rate from 0.025 to 2.5 min™L,

As was the case for 5086 there does not appear to be any distinct softening

temperature,

C. Weld Metal Properties
The transverse strength and plasticity properties of welds,
supplemented by the property distributions in weld heat-affected zones,
described in the preceeding paragraphs and set forth in Tables III, IV,
and V, clearly identify the weld zone itself as the region in which plastic
strain tends to concentrate. For this reason it is the weld metal which

determines strength, and is of critical fimpertence to transverse ductility



and toughness. The major effort during the last 9 months of this

program was directed to studies of weld metal properties and factors

influencing these properties. The results are presented below in

somewhat more exhaustive detail than in the section on heat affected

zone studies, partly because it is felt the values may be of more

documentary value and partly because the resulisare less predictable

from the standpoint of classical physical metallurgy. Some fairly

surprising patterns of behavior have been developed which may have more

meaning in the future, when the state of knowledge of the structure and

mechanical behavior of rapidly solidified alloys is more highly d.eveloped.h’ 5
All the work reported in the following paragraphs pertains to

two-pass welds on 1/2 inch plate, one pass on each side. It had already

been established from scrutiny of the transverse tensile test and, hardness

distributions reported earlier, that weld metal hardness and strength increased

with increasing magnesium content anddecreased with increasing arc energy

input. The purpose of this last phase of the investigation has been primarily

to obtain more exact information on the properties of weld metal at both low

(0.025 min'l) and impact (10,000 min'l) rates of strain, and to determine

the dircctionality of properties in weld metal, and the influence which the

heat of a second pass in a deposit has on the properties of the first pass.

In this sense, the properties described below all have been determined using

test bars from complete welds, so that the first pass has experienced the

heat influence of the subsequent pass, and the second pass is in the as-

deposited condition, with no subsequent heat treatment of any kind.
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The data for this phasc of the investigation are summarized in

Tables VI and VII.

(1) Slow Versus Impact Strain Rates

The effect of strain rete on weld metal properties can be
gained from careful comparison of the values in Tatles VI and VII, end
are substantially the same as were observed for the weld heat-affected
zone, reported in Tables III, IV, end V.,

Ultimate Tensile Strength:

Slow strain tensile strength was always about 4-5000

psi higher than impact tensile strength.

Range of Values Average of all Values
slow strain 36,000 - 43,650 38, 600
impact strain 30,167 - 37, 700 33, 900

Yield Strength:

Slow strain yield strength was always about 3-8, 000

psi lower than impact yield strength.

Range of Values Average of all Values
slow strain 17,000 - 22,250 19, 000
impact strain 18,917 - 29,250 23,100

Per Cent Elongation:

Slow strein elongation was always about 3 to 5 times

greater than impact elongation.
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Renge of Values Average of all Values
slow strain 15.5 - 30.9 214
impact strain 2.8 - 7.5 5.25
Toughness:

Slow strain toughness was always about 4 or 5 times greater
than impact toughness. This difference in toughness is attributable almost

entirely to the corresponding difference in elongation.,

Range of Values Average of all Values
slow strain 4,960 - 10,480 T, 40O
impact strain 785 - 2,198 1,500

Typical curves of stress versus strain demonstrating
the effects above are shown in Figures 6 and 7.

(2) First Pass Versus Second Pass Properties

The effect of the second weld pass on the properties of the
first are not perfectly clear cut, but the trends are of sufficient interest
to be setforth in detail.

Ultimate Tensile Strength:

At low strain rate, there was no difference between the
tensile strength of the first and second passes.

Averasge of all Values

second pass 38,619
first pass 38,643
At impact strain rates, the tensile strength of the second pass was
always slightly lower than that of the first pess, vhen testing was done in
the longitudinal direction (parallel to the axis of the weld, perpendicular
to the direction of principal heat flow during solidification, and therefore

perpendicular to the axes of the columnar grains in the weld metal). When
testing was done in the transverse direction, just the opposite was observed,
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the tensile strength of the second pass was generally higher than that
of the first pass.

Yield Strength:
At low strain rate the yield strength of the second
pass was higher than that of the first pass (except for one combination,
5183 wire on 5456 plate).

Average of all Values

second pass 19,708
first pass 17, 604
At impact strain rate, the situation was reversed, the
yield strength of the second pass being lower than that of the first pass
(again except ®6r 5183 wire on 5456 plate).

Averege of all Values

’second pass 21,840
first pass 2k, 520

Per Cent Elongstion:

At low rates of strain the elongation of the second pass
was generally greater than that of the first pess, although the difference
is not regerded as particularly significant.

Average of all Values

second pass 23

first pass 19
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At impact strain rates, the elongation of the second
pass was again generally slightly higher than that of the first pass.

Average of all Values

second. pass 5.3
first pass L4
Toughness:

At low strain rate, the toughness of the second pass
was significantly greater than that of the first pass (except for 5183
filler on 5083 plate).

Average of all Values

second pass 8, 06

first pass 6, 508

At impact strain rates, there was no significant difference
in toughness betwecen the first and second pass. Stress strain curves
presented in Figure 8 show the reduction in ductility of the first pass,
brought about by the hea;b of the second pass.

Hardness:

On the Rockwell B scale, the hardness of the second pass

wag always about 3 points lower than that of the first pass, for all alloy
combinations tested.

(3)_Trensverse Versus Longitudinal Properties

The interplay among strain rate, weld metal chemistry,

and directionality is rather involved, but the following trends are inescapeble.
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Ultimate Tensile Strength:

At low strain rate, no directionality waes observed in
the second psss, but in the first pass, the longitudinal tensile strength
wag greater thdn the transverse, At impact strain rates there was no
directionality in the first pass, but in the second pass the transverse
impact tensile strength was somewhat greater than the longitudinal.

Yield Strength:

There was no directionality observed in yield strength,
except in the second pass at impact strain rate, where yield strength
wag greater in the transverse than in the longitudinal direction.

Per Cent Elongation end Toughness:

Elongation and toughness were generally greater in the
longitudinal then in the transverse direction, where the transverse direction
is considered to be perpendicular to the direction of welding.

(4)  Summary

The second pass heat effects and the directionality observed
in weld deposits strongly suggest that the metal solidifies partially as
a supersaturated solid solution, which is subject to precipitation upon
sulsequent heating. The strength gain from this precipitation is more
than offset by loss in ductility and toughness, leading to the recommen-
dation that, wherever possible, 5,000 series alloys should be welded by

single pass procedures.
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IV. Conclusions

(1) The response of cold worked 5,000 series aluminum alloys
to the heat of welding shows that softening 1s a time dependent
phenomenon in terms of strength distributions, although this is not
reflected in hardness distributions. Furnace heat treatment to a given
peak temperature always results in s greater strength reduction than is
brought about by rapid heating and cooling to and from the same peak temp-
erature in the weld heat affected zone. The peak temperature which
accomplishes a given degree of softening in a work hardened 5,000 series
alloy is higher in the weld heat affected zone than it is under conditions
of furnace heat treatment.

(2) 1In weld metal and in heat affected zones, generally the
effect of increasing strain rate up to impact levels was to increase yield
strength, decrease tensile strength, and masrkedly decrease elongation and
toughnes;. There were some instances of reversal of the above trend in
yield and tensile strengths, notebly in 5356, but the influence of strain
rate on the strength level was not large enough to be of great significance,
One effect of interest was the observation of a distinct yield point at
impact strain rates.

(3) subsequant passes in 5,000 series aluminum alloy welds do not
improve the properties of prior deposits. Elongation and toughness are
higher in weld metel which has not been heat affected by subsequent passes.

(t) Elongation and toughness are directional in 5,000 series

weld metal, being higher in the longitudinal than in the transverse

direction.
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TAPLE I

Chemical Composition of Plate and Filler Material

5356

5183

5356-H321
5086-H112
5083-F
5456

Form

Filler
Vire

Filler
Wire

Plate
Plate
Plate

Plate

Filler
Wire

Filler
Wire

Plate
Plate
Plate

Plate

Noriinal Composition

Mg (%) cr (%)

4.,5-5.5 0.05-0.20

4.3-5.2  0.05-0.15

5.1 0.12
4.0 0.10
L,0-k.9 0.05-0.25

L,7-5.5 0.05-0.20

Actual Composition

5.01

Mn ()

0.05-0,20

0.50-1.0

0.13
0.ks
0.30-1.0

0.50-1.0
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Figure 2 - Toughness Versus the Product
of Ultimete Tensile Strength
and Elongation in Four Inches
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