This research was supported by the Mechanics Division, AFOSR, under Contract/Grant AFOSR 360-63, SREM-2.

Firestone Flight Sciences Laboratory

Guggenheim Aeronautical Laboratory

Karman Laboratory of Fluid Mechanics and Jet Propulsion

Pasadena
INVESTIGATION OF THE ACCURACY
OF LINEAR PISTON THEORY
WHEN APPLIED TO CYLINDRICAL SHELLS

by
Hans Krumhaar
California Institute of Technology
March 1963

This research was supported by the United States
Air Force Office of Scientific Research

Graduate Aeronautical Laboratories
California Institute of Technology
Pasadena, California
Piston theory was introduced into aeroelasticity in the linearized form by Ashley and Zartarian as a handy tool in 1956, see ref. 1. This theory furnishes an approximation for the aerodynamic pressure acting on a slightly deformed flat plate in a supersonic airstream. The linearized piston theory is widely used in the investigation of the flutter of flat panels. Because of the lack of appropriate approximations for the aerodynamic pressure acting on a vibrating cylindrical shell, linear piston theory is also used in investigations of the flutter of cylindrical shells, see refs. 3 and 4.

There are doubts about the accuracy of using the linear piston theory for cylindrical shells. This opinion was strengthened by recent studies at Caltech, see refs. 4, 5, and 8. In the following, a short survey of an investigation of the accuracy of the linear piston theory when applied to cylindrical shells is given. For further details the reader is referred to ref. 6.

We consider an infinitely long circular cylindrical shell of radius R, which is exposed externally to a uniform airstream parallel to the cylinder axis. The Mach number, the density and the velocity of sound of the undisturbed airstream are denoted by M, ρ_0, and a_0 respectively. Let a cylinder coordinate system x, r, θ be chosen, where the positive direction of the x-axis coincides with the positive direction of the airstream. (I.e., a negative Mach number means that the airstream is moving in the negative x-direction.) The shell is assumed to be slightly deformed by a harmonically oscillating standing wave of the form

$$w = w_0 \cos(n\theta) s(x) e^{i\omega t}, \quad \omega > 0$$

(1a)
The radial displacement of the shell, \(w \), is measured positive in the outside direction. By proper superposition of the formulas, set forth by Leonhard and Hedgepeth in ref. 7, one obtains an exact expression for the aerodynamic pressure \(\Delta p \), which is originated by the shell vibration (1). Two of the main parameters of these expressions are

\[
M_1 = M - \frac{\omega}{v}\quad;\quad M_2 = M + \frac{\omega}{v}\quad,(2)
\]

These exact expressions involve fractions of cylinder functions and their first derivatives. Applying the well-known asymptotic expansions for cylinder functions (see ref. 2) we obtain for these fractions the following asymptotic expansions for \(\xi \to \infty \) (we restrict \(\xi \) to real, positive values):

\[
\frac{H_n^{(1)}(\xi)}{H_n^{(1)'}(\xi)} = 1 - \frac{1}{2} \xi^{-1} - \left(\frac{2}{3} \xi^{-2} - \frac{3}{8} \xi^{-3} \right) + O(\xi^{-4}),
\]

\[
\frac{H_n^{(2)}(\xi)}{H_n^{(2)'}(\xi)} = \left(\frac{H_n^{(1)}(\xi)}{H_n^{(1)'}(\xi)}\right)
\]

\[
\frac{K_n(\xi)}{K_n'(\xi)} = -1 + \frac{1}{2} \xi^{-1} + \left(\frac{2}{3} \xi^{-2} - \frac{3}{8} \xi^{-3}\right) - (n^2 - \frac{3}{8} \xi^{-3} + O(\xi^{-4}),
\]

for \(\xi \to \infty \).

Here and in the following \(O \) denotes the Landau-symbol. (The barred symbol in (3b) denotes the conjugate complex term.)
The asymptotic expansions (3) lead to asymptotic expansions for the aerodynamic pressure \(\Delta p \). These expansions allow an investigation of the accuracy of the linear piston theory approximation

\[
\Delta p = a_0 \rho_0 \left\{ a_0 M \frac{\delta w}{\delta x} + \frac{\delta w}{\delta t} \right\}
\]

when applied to cylindrical shells. Furthermore improved approximations can be obtained from the asymptotic expansions of \(\Delta p \).

For

\[
\left| M_1 \right| > 1; \quad \left| M_2 \right| > 1
\]

one obtains finally, separating the linear piston theory expression (4),

\[
\Delta p = a_0 \rho_0 \left\{ a_0 M \frac{\delta w}{\delta x} + \frac{\delta w}{\delta t} \right\} + \sum_{m=0}^{3} \frac{1}{R^m} \left(F_m w + F_m^* \frac{\delta w}{\delta x} \right) + \nonumber
\]

\[
+ w \left[O \left(\frac{1}{v^3 R^4} \frac{1}{M_1^3 \left[1 - \frac{1}{M_1^2} \right]^{5/2}} \right) + O \left(\frac{1}{v^3 R^4} \frac{1}{M_2^3 \left[1 - \frac{1}{M_2^2} \right]^{5/2}} \right) \right] + \nonumber
\]

\[
+ \frac{\delta w}{\delta x} \left[O \left(\frac{1}{v^3 R^4} \frac{1}{M_1^3 \left[1 - \frac{1}{M_1^2} \right]^{5/2}} \right) + O \left(\frac{1}{v^3 R^4} \frac{1}{M_2^3 \left[1 - \frac{1}{M_2^2} \right]^{5/2}} \right) \right] \]

with

\[
F_0 = \frac{1}{2} \frac{1}{i v a_0} \rho_0 \left(- \frac{M_1}{\left[1 - \frac{1}{M_1^2} \right]^{1/2}} + \frac{M_2}{\left[1 - \frac{1}{M_2^2} \right]^{1/2}} - \frac{2 \omega}{v a_0} \right); \quad (6b)
\]

\[
F_0^* = \frac{1}{2} \frac{2}{a_0} \left(\frac{M_1}{\left[1 - \frac{1}{M_1^2} \right]^{1/2}} + \frac{M_2}{\left[1 - \frac{1}{M_2^2} \right]^{1/2}} - 2 \omega \right); \quad (6c)
\]

\(^{(1)}\) Here and in the following we always choose the positive square-root.
\[F_1 = -\frac{1}{4} a_0^2 \rho_0 \left(\frac{1}{1 - \frac{1}{M_1^2}} + \frac{1}{1 - \frac{1}{M_2^2}} \right) ; \]
\[F_1^* = \frac{1}{4\nu} a_0^2 \rho_0 \left(\frac{1}{1 - \frac{1}{M_1^2}} + \frac{1}{1 - \frac{1}{M_2^2}} \right) ; \]
\[F_2 = \frac{1}{4\nu} (n^2 - \frac{3}{2}) a_0^2 \rho_0 \left(\frac{1}{M_1^2[1 - \frac{1}{M_1^2}]} + \frac{1}{M_2^2[1 - \frac{1}{M_2^2}]} \right) ; \]
\[F_2^* = \frac{1}{4\nu^2} (n^2 - \frac{3}{2}) a_0^2 \rho_0 \left(\frac{1}{M_1^2[1 - \frac{1}{M_1^2}]} + \frac{1}{M_2^2[1 - \frac{1}{M_2^2}]} \right) ; \]
\[F_3 = -\frac{1}{2\nu^2} (n^2 - \frac{3}{2}) a_0^2 \rho_0 \left(\frac{1}{M_1^2[1 - \frac{1}{M_1^2}]} + \frac{1}{M_2^2[1 - \frac{1}{M_2^2}]} \right) ; \]
\[F_3^* = \frac{1}{2\nu^3} (n^2 - \frac{3}{2}) a_0^2 \rho_0 \left(\frac{1}{M_1^2[1 - \frac{1}{M_1^2}]} + \frac{1}{M_2^2[1 - \frac{1}{M_2^2}]} \right) . \]

The terms \(\frac{1}{R^m} F_m w \) and \(\frac{1}{R^m} F_m^* \frac{\partial w}{\partial x} \), \(m = 0, \ldots, 3 \), in (6a), we call "correction terms", the following terms are referred to as "remainder." It is obvious that the remainder tends to zero as soon as one of the parameters \(M, R, \omega \), and \(|v| \) tends to infinity.

An inspection of eqs. (6) leads to the following conclusions:

\[\Delta p - \left\{ \Delta p^{**} - \frac{a_0^2 \rho_0}{2R} w \right\} \rightarrow 0 \quad \text{for} \quad |M| \rightarrow \infty ; \]
\[\Delta p = \left[\Delta p^{**} - \frac{1}{4} a_0^2 \rho_0 \left\{ \frac{1}{M_1^2 M_2^2} + \left(\frac{1}{3} \right) \frac{\nu a_0^2}{\omega} \left(M_2^5 - M_1^5 \right) \right\} \right. \]
\[+ \left. \left(\frac{1}{3} \right) \frac{\nu a_0^2}{\omega} \left(M_2^5 - M_1^5 \right) \right\} \frac{\partial w}{\partial t} + \ldots \]
\[\frac{\partial w}{\partial t} . \]
The latter result is obtained after \(F_0 \) and \(F_0^* \) have been expanded in power series of \(\frac{1}{M_1} \) and \(\frac{1}{M_2} \) and after some regrouping. Obvi-
osely the terms \(M_2^\mu - M_1^\mu, \mu = 3, 5, \ldots \), contain the factor \(\frac{\omega}{\sqrt{2} \rho_0} \). The terms \(M_2^\mu + M_1^\mu, \mu = 3, 5, \ldots \), contain the factor \(M \). The relations (7) and (8) lead to

\[
\Delta p - \Delta p^\ast * 0 \quad \text{for} \quad |M| \rightarrow \infty; \quad R \rightarrow \infty.
\]

Further one obtains

\[
\Delta p - \left[\Delta p^\ast + \frac{\rho_0}{2R} w \right] \rightarrow 0 \quad \text{for} \quad \omega \rightarrow \infty.
\]

Hence

\[
\Delta p - \Delta p^\ast \rightarrow 0 \quad \text{for} \quad R \rightarrow \infty; \quad \omega \rightarrow \infty.
\]

In order to investigate the limiting process \(|v| \rightarrow \infty \) we restrict \(M \) by \(|M| \geq 1 \). Thanks to this inequality the inequalities (5) are satisfied for sufficiently large values of \(|v| \). Then we learn

\[
\Delta p - \left[\Delta p^\ast + a_0 \left(\frac{|M|}{[M^2 - 1]^{1/2}} \frac{M^2 - 2}{M - 1} - 1 \right) \frac{\partial w}{\partial x} + a_0^2 \frac{\rho_0}{2R} \left(\frac{|M|}{[M^2 - 1]^{1/2}} - M \right) \frac{\partial w}{\partial x} - \frac{a_0^2 \rho_0}{2R} \frac{M^2}{M^2 - 1} w \right] \rightarrow 0 \quad \text{for} \quad |v| \rightarrow \infty.
\]
From (12) we arrive at

\[\Delta p - \left\{ \Delta p^{**} - \frac{2 \rho_0}{2R} w \right\} \rightarrow 0 \text{ for } |M| \rightarrow \infty, \quad |v| \rightarrow \infty, \quad (13) \]

\[\Delta p - \Delta p^{**} \rightarrow 0 \text{ for } |M| \rightarrow \infty, \quad |v| \rightarrow \infty, \quad R \rightarrow \infty. \quad (14) \]

These investigations demonstrate that for the case \(|M_1| > 1; |M_2| > 1\) the linear piston theory expression \(\Delta p^{**}\) can be considered as a first order approximation of the aerodynamic pressure \(\Delta p\).

Nevertheless the replacement of \(\Delta p^{**}\) by the approximation

\[\Delta p^{***} = \Delta p^{**} - \left\{ \frac{2 \rho_0}{2R} w - \frac{a_0 M}{\delta x} \frac{\partial w}{\partial x} + \frac{\rho_0}{\delta x} - \frac{\rho_0}{2R} w \right\} \quad (15) \]

is suggested as a first order step of improvement for the application to cylindrical shells. Improved approximations can be obtained from eqs. (6). For large values of \(n\) especially the correction terms of the order \((l/R)^2\) and \((l/R)^3\) in eqs. (6) can become quite significant. For flutter investigations it is often necessary to consider values of \(n\) up to the order of 20.

Further investigations along this line (see ref. 6) disclose that in the cases a.) \(|M_1| < 1; |M_1| < 1\), b.) \(|M_1| < 1; |M_2| > 1\), c.) \(|M_1| > 1; |M_2| < 1\) the linear piston theory expression \(\Delta p^{**}\) can no longer be considered as a first order approximation for the aerodynamic pressure \(\Delta p\).
References:

