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ON THE ACCELERATION OF MAGNETOGASDYNAMIC CEANNEL

FLOWS THROUGH THE SONIC VELOCITY

by F. D. Hains

SUMMARY

e possibility of passage through the sonic

velocity is examined for the magnetogasdynamic flow through
 a diverging, straight-walled channel. In addition to the
usual assumptions ;f continuum MGD, the electrical conduc=
tivity is assumed to be small, but the effect of Hall
‘current is included. A number of different cases afise,
depending on whether or not one or more parameters vanish
- or are small. .

Numerical results for the case where the Hall
current vanishes, and the problem becomes analogous to the
gasdynamic source, indicate the sonic point can be placed
anywhere albng the cﬁannel by proper selection of the

electric and magnetic field strengths and boundary condi=~

tions.



I. INTRODUCTION

This report deals with the flow of compressible, electri-

cally conducting gases of sufficient density to satisfy the continuum

assumptions of gasdynamics. An attempt will be made to obtain exact

solutions, either closed form or numerical, of the magnetogasdynamic

flow equations. Since the MGD equationé reduce to those of ordinary

gas dynamics when the electrical conductivity vanishes, it is logi-

cal to seek solutions which will reduce to known exact solutions cf’

gasdynamics. Two exact solutions of gasdynamics are the source=

sink and source~vortex. This report will consider the MGD: source

and will emphasize those solutions which pass through the sonic

. velocity.

In Reference 1, three simple sblutionq for the MGD source

‘were. presented. The configuration studied is shown in Figure 1. A

y

soufce flow with radial velocity u interacts with crossed'electric

and magnetic field. The electric field is uniform in the z direc=

tion, while the mggnetic field is produced by a wire along the 2z

axis. The‘three'cases considered are summarized in Table I.

TABLE I /
Case Rm K E | B _Commenté
i A | 0 | 0 0 Finite| Closed form solution‘
" B | 0 0 Finite ‘0 Solution sketched
c ) 0 |Finite | Finite One particular solution

Closed form solutions were obtained in Case A, where the electric



field vanishes and the flow is isoenergetic. The velocity distri=-
bﬁtions for various values of B are shown in Figure 3. Only the
solution for B = 0.6 passes through the sonic velocity u = 0.5.
All other solutions terminate. with sonic velocity at a limit circle.
Some of these solutions lie inside a limit circle while others lie
outside a limit circle. The solutions for Case B are sketched in
Figure 4. It appears that all solutions for this case are bounded
in finite regions formed by two limit c¢ircles. In Case C, a parti-
cular solution was obtained which proceeds at constant Mach number..
The cases discussed in this report are shown in Table II.
‘Eecause of the non-iiﬁearit& of the equations, numerical integra-

tion is usually réquired for these cases.

v

TABLE II
Case Rm K E | B Comments.
1 o Finite | Finite | Finite |
2 0 Finite | Finite | Finite | One particular solution |
3 o [ O Finite | Finite| w # O |
4 ) 0 Finite | Finite {w = O
5 Finite 0 0  Finite
6 Finite 0 0 o Solve for By




II. BASIC EQUATIONS

The basic MGD equations in vector form are

continuity T.pg = 0 _ (1)
momentum p(q+WNg + ¥p =T xB : (2)
energy p(a:-‘_f)H = E . 3‘ (3)
- - -l ry -B‘ )
Ohm's law j= a[E‘ +qx3B = ﬁ-x—e] (%)
e
Maxwell's . T.5=0 ‘ (5)
equations .
7=Fx8 (6)
7. g =0 (7)
v X E=o0 . (8)
v.E=0 (9)
gas law p = PRT (10)

Equations (1) = (9) can be expressed in the following scalar form in

the r-9-z coordinate system of Figure 1l.

1 9 1 9 3 '

;g(rpu) s -a—é-(pv) +-a-;(pw) =0 (11)

p—u -a—u--f! 6u_v2 23 22- B B (12)
| Or r d r+wbz+ar"j92'jz9 ,
[ dv. v dv  uv ) ap .

pLu rtraetT *V 3_2']+ 3%' szr - jrBz (13)
L w, vow owl 9 _ .gp o _,p |

pLu T R Oz:l+ 5> = i,.Bg ‘jeBr (14)




35 pv B S _ :
Pl ar* T 30*P" 32 = Er.‘jr * ESJG + Ezjz (15)
- , "
j.=o0 ‘_Er +VBz~WB9-§(‘19Bz - 3239)_ (16)
[ 1 NN
Jg = cLEe+wBr-uBz--ne—e(szr - JrBz)- 17?7)
r— 1 -
i, = c_Ez +uBe-vBr--ﬁ-e—e-(jrBe - jeBr)- (18)
Chj 3]
1l 9 . 1 6 z .
TR s P - (9
3B drB,
1 r 8
jr - r<6§ T oz > (20)
- 1/%B, 9B, _
Ig = ;<‘57 - -a?> | (21)
‘ orB 0B .
A § 8 ___r '
Jp F r( dr 65> (22) .
3B 3B
1l 2 1°76 zZ '
T ar(rBr) My M Pl 0 | (23)
3E orE, 4 :
B 1 Ml vt 0 ‘ (24)
3E_,  OE,
"‘a—z" - "3';- = 0 S - ] (25)
OrEe OEr .
— - 53 =0 ' (26)

1 1 2 .
T or +r69+éz=o ’ (27)
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To obtain solutions to this set of equations without further simpli-

fying . assumptions would be difficult.

For the source shown in Figure 1, we can assune

d
Br=Bz=Er=E9‘=a—§=o
Ez = E (a constant)

(28)

Eqs. (23) = (27) are automatically satisfied by these assumptions.

In addition, Eq. (13) is satisfied by v = O, and Eqe (21) leads to

je = 0. The remaining equations simplify to

Tl

3 3, '
3;(rpu) +3;ﬁpw) =0

(29)

(30)

(31):

(32).

(33)
(34)
(35)

(36)



. l o N

J or

z

Combining Eq. (33) and (34)

oB

g 6 .
i = 5|~ wBg + -n—;-(E + uBy) (38)
(dBe) e
l+|——
ne
e
‘and
2
. . 0B w
j = S E + uBy + neee (39)

These two equations are us;ad to eliminate :jr and Jz from the other
equations. |

“All equations up to this point are dimensional, although
, tfxe tilda which indicates a dimensional quantity has been omitted
for .simplicity. It is convenient at this point to non-dimensidnalizg, ’

using the following definitions:

. - ~/ - ~ - ~ - ~
r =T/t . p.=0/p, cou=u/u P = p/p,

z = z/ro T = T/T w = w/um By = Be/Bo

p (40)
.o _ 5 o _%/Y s
Ip T Jr/cmmBo g T Jz/m‘lmBo E= E/umBo i = %-1 Pq
N o82r 3B, N

R = our N = K= —= m=mn/rpu

m ) Pgln T3 osm

Many of these are the same used in Case A of Reference 1 where thg

flow is isoenergetic (E = 0) so that

x %
15,

(41)

N'Ecm



Although E is generally not zero in this report, it is convenient

to retain the same definitions.

and

The non-dimensional form of the basic equations is

0

1l 3 9
= -a-;(rpu) + 3';(9")

2
-NBe[E+uB9+KwBe:|

1+KZB§

du ou _6_2
Pu ar”’“ Oz+a or

p 2[
NBE| ~w+K(E+uB )]
ou °"-+pw 0w % _ _8 ]

or 0z 0z 1+K2BS

. . 2
2NE(E+uBe+KwBe)

1+K233

_ : 2

1 9 rBe (—w+K[E+uBe:\) 2 E-o-uBe-o-KwBe

RiT o7 5.3 *% 23| =9
1+K°Bj 1+K“By

oH )
PU TR P T

R, wBe-KBe(E+uB9)]

2.2
1+K Be

1l 9
T -O_(rBB) =

N 27
) Rm[E+uB\e+KwBe]‘

1+k°B2

L2

°|°'
A.
-
(s}

<)
e
[

]

H=T+u2+w2

(42)

(43)
(44)

(45)
(46)
wn
(48)

(49)

(50)



IITI. CASE 1

In m.ost applications of MGD channel flow the electrical
conductivity is small. ‘For this reason this case will be restricted
to solutions with Rm = 0. Physically this means the 'magnetic field
will interact with the flow, but not vice versa. 'i’he basic equations
simplify with Eqgs. (47) and (48) satisfied by By = 1/r, and the

remaining equations become

1l 3 0

;B?(rpu) + -a-;(pw) =0 : (51)
du du . _a_R _ =N[Er +u +Kw/r]

e T A S T v 2 .2 (52)

. : r +K

ou 2N, ow O L o 22 . Nl-w + K(E +P/?)] (53)

or dz 0z - 2 2
[ r“+I§
pu -ﬂ{- + pw oH ‘= Z.NE!‘[qu!‘ +U +K¥_V/I‘JA ‘. , (54)

0z r2+K

In this form the equations are still very difficult to solve, so we
assume -a%- = 0, and reduce to the féilowing set of ordinary differen=-

tial equations

rPu = m (55)

ou | o %% - «-N{Er +u + Kw/r] ‘ (56)

r2 +K2

dw _ N{-w +K(E +u/r)] ‘ ' (57)

Pu =
dr r2 + K2

ou di - 2NEr[Er +u +KwLI‘] (58)
dr r2 +K2
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Using Eqs. (49), (50) and (55) to eliminate p, p, and H, we obtain

& . .g (59)
where

F = u{B[—% rau2 - (B‘erl'g' Er3 +:f-f—1- Kwr)u - 2E2r‘h - 2r2w2]+ (r2+K2)T}
| ' (60)

G = r(r2+K2)[7%T ua-T] (61)

dw _ Bl-wr+ K(Er +u)] (

aw _ 62)

ar (r2+K2)

) .
dT _ 2BEr[Er +u +Kw/r] _ du _ aw
ar - 2,52 Tl v (63)

For given boundary conditions and specific values of the parameters

Yy B, E and K, these equations can be integrated numericaily to

yield the solution.

Before doing this, it is interesting to study the limit

circle where F # 0, G = 0. Eq. (59) indicates the gradient in u is

infinite SO‘the solution cannot penetrate the limit circle. From the

definition of local Mach number given by

2 u2+w2
-1 T

=2
|

(64)

the flow must be supersonic at the limit circle. As in Case A shown

in Figure 3, we expect solutions which lie inside the limit circles,

and others which lie outside the limit circles. The type of results

that might be expected are sketched in Figure 5(a) = 5(d).



In this report we seek solutions which do not terminate in

limit lines. A characteristic point (rc, u T, wc) is one which

¢' ¢

satisfies the conditions F = G = O. Since %% is indeterminate, more

than one integral curve may pass through the characteristic point.

The singularity condition G = O leads to

B, . ‘
T = ToT Yo | (65)

and the regularity condition F = O leads to the expression
2 2\ _ (n.02yp2
BAYUS + (2y=24AW)U + (y=1) (1+W)p = (1+A°)U° = © (66)

In the last equation ohe variable has been eliminated by introducing

the quantities

u, We K

c [~ c

The slopes of the integral curveé at the characteristic point are

found by L'Hospital's Rule.
dul _ Lim du _ Lim dF;dr . (68)
dr/ ~ r-r_ dr = r-r dG/dr "’
c . c c ’
Two curves pass through each characteristic point with slopes

<du> _=b x Vb2 - bac

(69)

——

dr/ ~ 2a
c

where

a= 2rc <r§ + K2) <%]f>uc : , (70)
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b = [Yi-rf pri + 2:-5 + 21(‘2]u(2= f% B[Erz +chrc]uc - Zﬂrcw - 2BE rl' (71)

2
(7-1)<r§+x%

[Z(YB-I)rz + (2By + 52 - 2)rcK2]uz

c =

+ 2 [( SY-Z)BEr:: + (57-2+B)BEK2r§ + (Y+2ﬁ7-33)-BKr§wc

(v-1) (r +K%)

+ YBK3 ]uc +._£E_[3E r5 + 3E Kzr3 + <r3+r K -25r3) 2

r2+K2 c
c

+ ZBKErzwc]uc : (72)

If, for example, r, and u, are specified, the other coordin=-
ates T and w  of the characteristic point are found from Egs. (65)
and (66), respectively. The slopes of the two solutions are then
found. from Eq. (69). This information is sufficient to sfart inte~
gration of Egs. (59), (62) and (63) at the characteristic point in both
the upstream and downstream directions.

In Reference 2, a study is made of an accelerator similar
to the one éhqwn in Figure 2. The electrodes are assumed to be para-
llel to the r-€ plane so that at these surfaces w = O. Egs. (59) and
(63) were solved for supersonic flows with the assumption w = O every-
wheres It is claimed this is a reasonable approximation as long as

K < 1. The real criteria should be how large is the term KéEr+g)
r +K

in Eq. (62). Even if K <1 this term might be large and make the
approximation a poor one. In order to obtain an exact solution one
must return to the set of Egqs. (51)=(54) which allow for a variation

in the z direction.
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. IV. CASE 2

: The non-dimensional forms of Eqs. (38) and (39) are

1
j_ = == |=wr +K(Er +u) (73)
r r2+K2 [ ] ‘
1l 2 -
J = =—=——IEr +w+Kw (74)
z r2+K2[ ]

The introduction of w and the Hall current usually results in a

. radial component of current. If we specify that

W = K(Er + u) : (75)

r

so that j. = O, Egs. (59), (62) and (63) are satisfied by the solu-

tion
u = ;f‘f r (76)
" e g (77)
: ) . ‘
p=R SN (£))
o = - m('g +21) (79)
BEr ‘

The Mach number is constant
2 .

This particular solution reduces to Case C when K = O,
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Ve CASE

If K = 0, Eqs. (59)=(63) reduce to

du u{ﬁ‘[- 2L 2 -5]-}_213 Eru - 2E°r2 - 2w2]+ '1‘}

du _ Y-1 = £

= = : r(_z_ u2-‘1‘> =37 (81)
Y=1

w = clr-B | (82)

4L _ 2E[Er +ul-2u %-h% , (83)

where cy is a constant of integration. With the Hall current absent,
solutions can still be obtained with jr Z O. The numerical integra=-

tion of these equations is treated in the same way as in Case 1.



VI.
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CASE U4

If ¢; = 0, so that w = O, Egs. (81)

_al2y 2 by-2 2 2]
du _ up To1 u +;Y“1 Eru +2Er7| +ul
dr [ 2 2 ]

rl—su -T
v-1

4qT du
= = 2BE(Er +u) = 2u =

and (83) become

(84)

(85)

In this case, the flow velocity is in the radial direction and the

electrodes shown in Figure 2 are planes perpendicular to the wire. It

is convenient to split this problem into two subcgses, depending on

the sign of E.

If E < 0, the introduction of the similarity parameter®

leads to

{ = - Er
2 3 by-2 2 2
du _ B[—--}-’—_rl—u MEZS) fu” =2¢ u]+uTE£
dat = -2 2o G
v-1% 77)
dT

2(C-u) - 2u %E-

(86)

(87)

(88)

Again we restrict our interest to solutions that do not terminate in

*

The similarity parameters U = %% and t = L

parameters are used in the treatment of tE
Appendix A.

> could also be used. These

e constant area channel in
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limit lines. Since w = O, the flow is sonic at the limit circle, so
the solutions we seek must pass through the sonic velocity.

The singularity condition G = O is the same as Eq. (65),
while the regularity condition F = O leads to

c . _ 8 _ ‘
= = v (89)
:c 2(y - %3-) :

The two roots Wl and WZ are plotted as a function of‘a in Figure 6 for
a monatomic gas. Only positive values of ¥ are plotted since u, must
be positive. For this reason WZ is not shown for B < O.6. The graph
shows that 0 S ¢1 < 0.4 and 1.0 < ¢2.
Eq. (89) shows the locus of the projection of the character-
istic points (Cc, uc,.Tc) on the uc-Cc plane is a straight line for
each value of B. Some of these lines are shown in Figure 7. No charac-
teristic points lie in the region.separated by the lines B = «.
Following the method used in Case 1, the slopes of the two

solutions passing through a characteristic point are

dul _ =-b & Vbz-Ll»aC (90)
dc c 2a

where .
a = 8¢
b = (158 -1)¥2~12pYy | (91)
c = (2-5V)Y

For each value of ¥, two values of (du/dC)c are obtained. The slopes
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are a function of p only, and hence are constant along each of the
straight lines in Figure 7. The variation of slope with B is shown
in Figure 8. Only one of the four curves is negative, so that most
of the solutions are accelerating-flows. The curves corresponding to
72 terminate at B = 0.6 wheré Va is infinite, and the curves corres-
pon?ing to *1 terminate at B = 0.3 where the slopes become complex.
These results are shown in Figure 7.

Numerical solutions were obtained for Cc = 1.0 and B = 2.0,
The results are compared with the ordinary gasdynamic flow E = B = 0O

in Table III.

TABLE III
u T M p/m p/m
Fig. 9 | Fig. 10| Fig. 11|Fig. 12| Fig. 13
f $ T | |
E=B=20 '

——— f b ! f

—_—— } jMint | tHax) | |

— | puat | 4] )| twaxd |

The solid curve in Figures 9 - 13 corresponds to an accel=-

erating flow which becomes asymptotic to the solution given by
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Eqs. (76) = (80) in Case 2 with K = O. The solution begins at a finite
radius with infinite density, finite pressure, and zero velocity, tem-
perature and Mach number. Energy is continuously fed into the gas as
it accelerates through the sonic velocity.

The solution shown by the dashed curves is an accelerating
flow whose temperature and pressure increases as the Mach number and
density decreases. The solution begins with zero pressure and density,
and finite velocity, temperature and Mach number. As the velocity
increases, the rapid rise in temperature causes a drop in the Mach
number until the initially supersonic flow becomes subsonic. Again
energy is continuousiy added to the gas, but at any point in the flow
this solution has a higher stagnation enthalpy than the previous one.

The dot-dashed curves begin at { = O with infinite pressure
and density, and finite velocity, temperature and Mach number. The
flow éccelerateS‘through the sonic¢ velocity and becomes asymptotic to
the solution for Case 2. In order to accomplish this, a minimum occuré
in the temperature curve and a maximum in the Mach number curve. Energy
is extracted from the flow up to { = 2.2 and added to the flow beyond
that point. .Thus, the flow acts first as a generator and then later
as a motor.

The solution plotted as heavy dashed curves is the only de-
celerating flow at the sonic point. The flow begins at a finite radius
with zero temperature and pressure, and finite velocity, density and
Mach number. The supersonic flow decelerates through the sonic velo=
city, reaches a minimum velocity, and begins to accelerate. The density

reaches a maximum while the flow is still decelerating. The flow



changes from a generator to a motor after passing the sonic point.
The second subcase occurs when E > O. Introducing the simile-

arity parameter

L L, (92)
dg 2_ 42 .
elyr v - 7]
ar d
‘CTE = 2p(z + u) - 2u -a-lé- (93)
Following the procedure used in the first subcase,

u -1l+2v 2 J Ey=1) I] +1

£ . T (94)
;c 2y - -é-)

(ﬂ) ="."*.“’2“"’° | )
c o .

a = 8¢

-3
"

(156 -1)9° + 1289 - | (96)

(2 +59)pe

[¢]
n

The variation of the quantity ¢ appearing in Eq. (94) is shown in



Figure 6. This quantity is positive only if B < 0.6, and takes on all
positive values. Hence, all ﬁoints in the u~f plane can be charac-
teristic points. The slopes of the solutions at the characteristic
points are plotted in Figure 14 as a function of B. The slopes are
both negative and are real for 0.32 < B < 0.60. The locus of possible
characteristic points which yield real solutions are shown in Figure 15.

Numerical solutions were obtained for g, = 1.0 and B = 0.5.
These results appear in Figures 16-20. Only curve I is shown because
an infinite number of curves pass through the characteristic point with
the same slope as curve II, which is the envelope of the cufves. The
numerical integratioh in a direction away from the characteristic point
was found to be unstable while integration towards the characteristic
point was stable. Two solutions called IIa and IIb are shown in Fig-
ureé 21-25 for a small region near the characteristic point. Away froﬁ
the cﬁaracterietic point these solutions are practically the éame as
curve I and cannot be distinguished in the scales used in Figures 16~
19. No attempt was made to extend the envelope II or to extend the
curves IIa and IIb into the region where f < 1.

Curve I begins at a finipe radius with zero temperature and
pressure, and infinite Mach number. The velocity and deﬁsity are
finite. As the flow decelerates through the sonic velocity the tem-
perature and pressure increases as the density decreases. Energy is
added to the flow for all solutions with E > O.

The reason why an infinite number of solutions must pass
through the characteristic point is that both curves I and II are

decelerating and supersonic when [ < gc, and both decelerating and
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éubsonic when E > ;c. This mgans they pass from region 1 to region 3
in Figure 26. The curve AC is the locus of characteristic points, or
the intersection of the surface F = O with the sonic surface G = O.

In regions 1 and 2 above the sonic surface the flow is supersonic, and
in regions 3 and % below the sonic surface the flow is subsonic. The
curves I and II intersect at the characteristic point B. The surface.
E'is generated by curve I aé B moves from A to C and the surface D is
a similar surface generated by curve II. Solutions which pass through
points in region 1 lying between surfaces D and E must pass through
the curve AC with the two permissible slopes of curves I anﬁ II. The
solutions cannot penetrate £he surfaces D or E except along AC, for
this would producé a characteristic point which can occur only along

AC. Neither can they be parallel to AC because the projection A'B'
du .
d

on the u~f plane has a positive slope while _Z < 0 in region 1. Thus,

as numerical integration shows, curve II is an envelope of solutions
such as IIa and IIb which pass through the characteristic point with
the same slope.

Ip all tﬁe cases for E < Q, which are shown ;n Figure 9,

the two curves passing through the characteristic point are always

separated by a sonic surface and the surface F = O for any given value

of C. Thus, at the same { one solution is subsonic while the other
is supersonic. This means the surfaces corresponding to D and E in
Figure 26 always lie in different regions, and only two curves can
pass through the characteristic point.

Some solutions for acceierating supersonic flows were pre=-

sented in Reference 3. One type of solution is asymptotic to'Case 2
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with K = O. The second type of solution accelerates to a maximum
velocity and then decelerates and terminates at a limit line. No

solutions for acceleration through the sonic velocity were presented.
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VII. ChSE‘ﬁ

This case deals with solutions for finite values of Rm.
First, the method of small perturbations is used to find solutions
which hold for small values of Rm. The one solution of Case A which

passes through the sonic velocity is chosen as the zero order solution.

Let
u = u_ + Ru +‘R2u +
= o m 1 na2 """
2
p = pO + R pl + R pz + o o o
> (97)
P = pb + R pl + R p2 + o o
By = (ﬁ ) + R <§ ) + R2<B:>
e - 9 8 )
With E = <= = 0, Egs. (42)-(50) reduce to
rou = m : (98)
- S
pu oo+ O gs = NuBg (99)
2 . L.
p+pu” = p ~ (100)
B .
0 5] .
Ty + —IT- = RmuBe . (101)

Substitution of Eq. (97) into Egs. (98)-(101) and collection of like

powers of Rm yields:

rpu_ = m (102)

du dp,, 2 .
pu =2 a2 = - Nu°<39>° | ‘ (103)



_p +

)"2_
lo—

d<34> (§é>

pluo

u
pOO

* poul

du

=G
=N [u(Be): + 2u°<B e>°<39>1]

0

1 +pluo

. + 20 U u, + u2
Py Poot1 * P1Y%,

- d<Be> (Be)

- 24 -

du
dr

=

.pl

(?é)

In this analysis the higher order terms will be neglected.

(104)

(105)

(106)

(107)

(108)

(109)

The zero order equations (102)-(106) are satisfied by the

solution of Case A with B =

1
R

n
wh‘

-

B~

-1
Y

(110)
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Combining Egs. (106) and (108),
- (ﬁ + %) u. : (112)
1
and integration of Eq. (109) leads to

(?;)

is the integration constant. Elimination of P, and (ﬁé}
1

In C R
(113)

where C1

from Eq. (107) yields

d(Rul) : - 44n C R

1
dR r[(y+1)=(y-1)R%]

(114)

1]}
@l

The singﬁlarity‘condition G = Ofis

R, = J@E% o . (115)
and the Regularity condition F = O is

.Cl. = ,‘% | ] (1i6)

Integration of Eq. (114) results in

-1
Y+1‘R

=4 In x
u, = GaR > dx (117)

x(1-x7)
vEE_T.
Y+l

The variation of (ﬁé} s U

1y Py and py with R when v = 5/3 is

shown in Figure 27. (ﬁé} is negative upstream of the sonic point, and

zero at the sonic point. Downstreanm of the sonic point it is positive,
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and reaches a maximum at R = 2e. The curve for u1 increases rapidly
from zero to a maximum at the‘sonic point. The perturbation in pressure
and the perturbation in density decreases from zero to =~ 2.5.

The previous method is valid only for small values of the
magnetic Reynolds number. The application of the method to some other
solutjons of Case A other than the one with B = Y-l is difficult because
of the complicated form of the zero order solution. For these reasons
an attempt is made to solve Egs. (98)-(101) directly for finite values
of Rm' The numerical approach of Case 4 is used.

Integration of Eq. (101) yields

r

1
By = T exp Rm/ u dr (118)

r,
1

As will be shown later, all solutions passing through the .sonic velo-
city are decelerating so that r:,L is either zero or the place where
u = l. Elimination of the density and pressure from the momentum equa-

tion results in the expression

232 y=1\ . 2
du -Brru, By +<I§-Y—> u(1l=-u“)

ar ” i'[u‘2 -(lzlyl-)(bruz)]

Restricting our attention to y = 5/3, and substituting Eq. (118) for

(119)

r
Be' -5u3ﬂ exp [ZRm ,{: u dr]+ u(l-u2)
i .

du
r[‘b(u‘2 - 1]

= F
i 3 (120)

Since we wish to start integration of Eq. (120) at the sonic point, it

might appear thaf the unknown integral in the numerator might be
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‘troublesomel. Fortunately, thi§ is not the case because the regular=-

ity condition requires the product of B and the exponential factor to
be a known constant at the sonic point. Thus, it is pessible to inte-
grate without knowing the value of Be at the sonic point. Be is cal-
culated from Eq. (118) after u is found. The singularity condition is

u, = # and the regularity condition leads to

B = %exp 2Rmfiudr (121)

r
c

8o that Eq. (120) becomes

. . . ,
-(1 +3 exp [ZRm f u dr])u +u
du r -

ar - r<l+u2 - ;>

The sonic point is now the logical point to begin numerical integration.

(122)

The slope at the sonic point is given by

a1 -‘h‘/l--gRr a
m cC

du ‘ '
_<E£>. = I - : - (123)
c c

The slope is always negative and real if Rmrc = 2/3. This equation is
plotted in Figure 28 for several values'of Rm. Through each character-
istic point (0.5, rc) there can be at most two possible slopes, both of
which are negative. The larger of the two-slopes‘kin absolute value)
lies in Region I. Each slope in Region II‘corresponds to an infinite
number of solutions as in Case 5 when E > O. This was expected since -

both slopes are negative and are also subsonic and supersonic in the
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same regions.

If we limit our calcﬁlations to slopes in Region I, the
solutions which pass through r, = 1l appear like those in Figure 29.

As R is increased from 0 to the maximum value of 2/3, the value of B
drops from 0.6 to 0.31. All the curves choke at a limit circle whose
radius decreases rapidly as R - 2/3.

By fixing Rm and integrating backwards from each value of
e Ty and P are obtained. These results are plotted in Figure 30 for
slopes in Region I. For Rm =0, B =0.6s As Rm increases, B can take
on values less than O«¢6. The maximum value of ry decreases with an
increase in Rm. .

The line‘ri = 3,5 intersects the curve Rm = 0.5 in points A
and B. These points also appear in Figure 28 in Region I. Note that
poinf A does not lie on the dashed liney which divides £he two regions,
50 thﬁt.a portion of the curve extends below point A in Figure 30.
Points between A and B in Figure 30 have values of P which correspond t;
solutions which pasé through the sonic velocity with slopes in Region II.
Therefore, as we increase B, there is first a jump in slope from A to A'
in Figure 28.‘féllowed by a path to B! along the Rm = 0.5 curve, which
is terminated by a second jump to B. If ry is reduced to é.S, point D
lies in Region I and all points from D to C, including C, lie in
Region II. Points which do not lie under the curve Rm = 0.5 choke..

In Figure 31, the range of values of Rm and B which permit

passage through the sonic velocity is shown for r = 0s35« The solid

i

curve CED contains points in Region I, and the shaded area, including

the dashed curve CD, contains points in Region II. Line segment AB is
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the same as in Figure 30.
The solution for r, = 0.35 is shown in Figure 32. As B is
reduced to the value O.41 all the solutions choke. For B = O.41, we

dr
28. As B is decreased the slope jumps to Region II from B' to A',

have point B in Figures 30 and 31 and (ﬁﬁ) is in Region I of Figure
c

and then back to Region I for point A. For values of B < 0.31 which

corresponds to point A the solutions again choke. An infinite number

of solutions pass through the sonic velocity in the range 0.31 < g < O.4l.
It Rm = 0, this region shrinks into point D in Figure 31

and B = 0.6, The solution is shown in Figure 33. A compariéon canlbe

made with Figure 3 wﬁeré the.stagnation boundary condition was used

instead of ri = const.



VIII. CASE 6

Case A treats the limiting case R = O, N £ 0, in which the

magnetic field interacts with the flow, but is not itself changed by

the flow.

For non-zero values of Rm and N both the flow and magnetic

fields mutually interact. This case is concerned with the other limit-

ing case when N =0, RA # 0. In this case, the flow distorts the

magnetic field but is not itself changed by the interactione.

Assuming ﬁ% = 0, Egse. (42) - (48) reduce to

rpu = m (124)
du d

pugs + @ 5& = 0 (125)

H = 1 (126)

dB B

E: + ; = Rm(E + uB) (127)

The first three equations are the ordinary gasdynamic equations

which integrate to yield

r = —_7—
u(1 -u2)3'2

m

(128)

This is the source flow which corresponds to the B = O curve in Fig=-

(129)

ure 3.
Equation (127) can be placed in the form

u i r ]

dr

ERm‘f r 35 °XP Rmf udrldu +Bcrc-
u L r J
B = £ S

B f 1
r exp -Rm udr
L rc o
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where r_ is given by Eq. (128) with u, = 0.5. Substitution of Eg. (128)

into Eq. (129) yields

u.
ERmf £(u)g(u,mR_)du +1

B = 1/2r © (130)
z g(u,mRm)

where
2

by©-1

flu) =
u3(l-u2)
(131)
. mRm 2 :2/-—2- \
u
g(u,mR ) =. (2+3) - exp|= (l-u2)37 79
1 +,/1=u ‘

In Eq. (130) the boundary condition B,r. = m has been applied.

The results of numerical integration of Eq. (130) are plotted
in Fiéures (34) = (37). For a subsonic source with E = 0, as r/m = =,
B -~ 0 when mR <1, B - 0.366 when mR =1, and B - @ when mR_ > 1.
These results are shown in Figure (34). If E is increased to one,

B = O when mR_= O, and B - const. when O <mR_ S 1. When mR, >1,
B - », These results appear in Fiéufe (35).

For a supersonic source the magnetic field B ﬂiﬂ with r/m
when mRm > 0 and B = O when mRm = O+ The distribution of B is shown in
Figure 36 for E = O and in Figure 37 for E = 1.0.

The limiting values of B for large r/m are summarized in

Table IV.
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TABLE IV

SUPERSONIC SOURCE

SUBSONIC SOURCE

-0 0<mR <1
m

= 0 B-ow ~ 0.366 mRm =1
- mR > 1
m
-0 mR =0
m
= 1.0 B~o - const, O‘<mRm$l

- mnR >1
m
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IX. CONCLUSIONS

Solutions have been obtained for magnetogasdynamic source
flow with crossed electric and magnetic fieldg. The solutions have
been restricted to those which pass through the sonic velocity.

For the case where R = K = O, the sonic circle can be placed
at any radius. If E >0, an infinite number of solutions deceierate
tﬁféugh M = 1 with the same velocity gradient. There is one other solu-
tion which also decelerates through M = 1 with a different gradient in
velocity. If E < O, four different solutions can pass through sonic
velocity at any‘give@ location of the sonic c¢ircle. Three ;f these are
accelerating flows. |

The effeet of non-zero magnetic Reynolds number was found for
source flow with E = O. When Rm = O there is one solution which passes
thréugh M = 1 when B = 0.6. When Rm > 0 there is a range of B in which.
solutions are possible. If Rm is increased beyond a certain limit, no
solutions are possible.

The displacement of the magnetic field by ordinary gasdynamic
source flow was obtained for the liﬁiting case when B = O, Rm #Z 0. For
a sﬁpersonic source the magnetic fieid always increasés to infinity
with the radius for finite Rm' For a subsonic source this occurs only‘
if mRm > 1l. For other values of mRm the field approaches a constagt
value or zero.

These results indicate many possibilities exist for the
passage through the sonic velocity without~the need of a throat in

magnetogasdynamics.



APPENDIX A

ACCELERATION THROUGH A CONSTANT AREA CHANNEL

This section deals with the flow through a constant area
channel with crossed electric and magnetic fields. The configuration
is shown in Figure A-1l.

The governing equations in dimensionless form are

pu = m (A-1) -
du e _ . : -

PUTE * %5y = N(E +u) (A=2)
daT du

pu[dx + 2u dx] = 2NE(E +u) (A-3)

p = pT

Eliminating the pressure and density yields

%g_ ] -gu(l-g)(z-su) e g_ (A~5)
- -t
dt qaU
E;,:_ZB(I-U)-ZU P : (A-6)
where
v o= -2 t=-%-'7=5/3 (a-7)
E
The singularity condition G = O leads to
' 2
t, = 30 . ‘ . (a-8)
and the regularity con&ition F = 0 leads to
Uc = 0, Uc = 1, Uc = Ouh ) (A.9)
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The two slopes at a characteristic point are

4u p(12 - 1506)
[, - 5

au
®, -
[+

The properties at the three characteristic points are summarized in

(A.10)

Table A-I.

TABLE A-I
d at
uc itc Cch Cdx>c
0 0 0 1.58 2B 28
0.4 0.48 | o | 0.758 1.2p 0.6p
1.0 3.0 | O -0.3758 | © 0.75p

Since Eqs. (A~5) and (A-6) do not contain x, we can divide

_the two equations to eliminate dx to obtain

av | U(50 - 2) P ;
i 3 5 a 5 A (A.11)
- 10U7 + 10U° - 2t

This equation in the phase plane is independent of B. TIwo character=~
‘istic points exist and the properties of the solutions through these
éoints are summarized in Table A-II.

TABLE A-II1

)
uc ‘ tc <;t

[+]

0.4 0.48 . 0 1.25
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The solutions in the phase plane are shown in Figure A-2.
The projection of the soluti;ns on the U-x and t-x planes are shown
in Figures A-3 and A-l4, respectively.

Solution Ia accelerates from zero temperature and velocity
through the sonic velocity to M = /5 at x = ». The temperature reaches
& maximum at x = 0.9 where U = 0.9. Energy is always added to the
fiow, but the rate of addition diminishes with x. In solution Ib, the.
velocity is constant and the temperature increases linearly with x,

80 that the initially supersonic flow becomes subsonic. Energy is .
added to the flow at a constant rate.

Energy is first eitracted from the flow when it is super-
sonic and then added when it becomes subsonic in solution IIa. The
flow begins at U = 2.34 with zero temperature and decelerates to
U = Ocl and infinite temperature. Solution IIb ie a constant Mach
numb;r flow at the sonic velocity.

A closed form solution corresponding to Ia and Ib appears

"in Reference 4. Solutions Ia and IIa were discussed in Reference 5,

but calculgtionsvieré not made.
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Fig- A-1.

Geometry of crossed field constant area channel.
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