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ABSTRACT '

The objective of this research work is the inves-
tigation of materials and techniques that can be used in
model studies of structures under blast-type loads. The
materials are selected on the basis of theoretical con-
siderations, and their usefulness is demonstrated by means
of actual model structure tests which are compared to
prototype tests,

The theory of structural models 1s reviewed and
extended to a very general form, with emphasis on the
basic differences in the approach suitable for analysis
by means of the methematical model and the physical model
respectively, This extension of the theory proves to be
necessary when the large number of factors affecting a
dynamic model study in the plastic range are to be taken
into account in a systematic manner, A description of
the general properties of a structure is followed by
a dimensional analysis leading to a comparison between
model and prototype., The criteria for compatibility between
model and prototype materisls are derived in deteail,
Modelling 1s discussed as a random process, and the theory
1s applied to massive structures in particular,

It 1s shown that plastic deformations during
dynamic response impose severe restrictions on the equation
of state of the model material which is to be compatible
with steel as a prototype material., The properites of phos-
phor bronze and ethyl cellulose and their usefulness as
modelling materials for steel structures under dynamic loads
are discussed, Manufacturing techniques for phosphor bronze
and the loading devices used in the studies are described
in detail., The results of model studies of beams, joints
and portal frames under static loads are compared to results

xix



obtained from tests on full scale structures, and a tech-
nique of testing models under dynamic loads 1s described
Since model and prototype results generslly show
good agreement, it is concluded that the metal phosphor
bronze can be used as a modelling materiasl in small scale
studies of welded steel structures in all cases where the
model and prototype surface loads do not have to be of )
equal intensity, This will, for instance, be the case
where the blast loading is mainly of the drag type. The
use of plastics in the modeling of steel structures
presents problems which cannot be overcome without a
reliable error snalysis of the model since in this case
the model will be distorted above the proportionsl limit.

XX



CHAPTER 1

INTRODUCTION

The use of physical models in the study of engineer-
ing problems has become prevalent in the past decade (1,2,30*.
Two general classes of problems lend themselves particularly
to a model solution. Pirst, in problems where the number of
variables or the complexity of the situation make the analyt-
ical solution difficult or particularly cumbersome and second,
in areas where the general laws governing the phenomenon
have not yet been sufficiently developed and a general theory
is lacking. The study of the dynamic response of structures
is one area of structural mechanics where the modeling
method of analysis may be used to advantage, It is the aim
of this report to discuss the problems of using structural
models to study the dynamic behavior of structures in
general and to present specific examples in the choice of
modeling materials and the modeling techniques developed
for their use,

l.1 THE STRUCTURAL MODEL

A structural model 1is a device, which being a
reproduction of the prototype following certain rules, can
be used to find particular unknown quantities about the
prototype, Two large classes of models emerge from this
definition., One encompasses all those model studies dealing
with elastic problems. 1In this case both model and prototype
are within the elastic range and the results can be compared
with those obtained analytically if such methods exist. A
second group representing a more recent approach to the use
of models is in closer agreement with present day concepts
of structural analysis and design(3lh Here, the model is

# Numbers in parenthesis indicate the particular reference

cited as listed at the end of the report.

1



a faithful reproduction of the prototype following the laws
of similitude and boundary conditions from which the ultimate
behavior of the prototype can be predicted as well as the
factor of safety which is defined as the ratio of ultimate
load to the working load acting on the structure. Although
the second approach by the nature of ita scope places more
restrictions on the model, it i1s the only one feasible in
certain problems where plastic deformations are tolerated.
Such problems arise in the study of the dynamic response

of structures where energy absorption criteria allow the
use of some plastic deformations in design, Two basic
types of models arise in our study of structural problems,
One 1s the stress model or a model which fails because of
rupture of the maeterial at local points, and the buckling
model which becomes unstable at certain critical loads and
results in large deflection., Our main concern here is the
stress type of model and we shall attempt to investigate -
its behavior,

1,2 A HISTORICAL SURVEY OF MODEL STUDIES

Physical models have been uzed to some extent in
structural analysis and design for many years. In general
the principal external forces involved in these studies
have been static in nature. Further, only the elastic
behavior of the model, hence the prototype, was of interest.
Model studias to verify the analytical results of compli-
cated structural problems are recorded in the literaturo‘so’zg)
In most of these cases the importance of the project made
it feasible to make a model study but in all these cases
the model was used as a check, It was inconceivalbe then
to base the design on the results of a thorough model study.
As teaching aids in indeterminate structural analysis, models
have found their place in the laboratories of many schoola(so)
These, however, have been predominantly of the first class
or elastic models,



More recent model studies “?.3‘:2“3]},1},3 81:13 9t3he field
of arch dams have been done in Europe 1202270277 Techniques
have been developed and refined to the point where the model
study plays a major role in the design of arch and domed
dams, Besides the extensive work on dams however, model
studies of complicated buildings and earthquake effects as
well es piloneering work in model studies beyond the elastic
limit have also been done(Bs). All being said, the European
model studies have set a good precedent and have prompted
many engineers to base their designs on a model study.

In the United States great impetus has been given
to model studies in the postwar years, This revival stems
from two main sources, Architectural taste for more compli-
cated but pleasing structural forms and the intensive efforts
to develop techniques for the design of structures and
structural elements to resist dynamic loads have introduced
some very interesting but difficult problems. The models in
studies dealing with dynamic response have been loaded
to failure in shock tubes, by impulsive loading machines
and in some cases by high explosive detonations( 8’18'26’h2‘.
In the majority of cases reinforced concrete structures
were modeled by the steel wire-mortar technique, Dynamic
tests on model or prototype steel structures are far less,
Many problems are encountered in such studies but the results
up to the present (1962) seem encouraging and it is antici-
pated that with future research enough data will be collected
to make the modeling technique an indispensible tool at the
disposal of the structural engineer,

1.3 LIMITATIONS OF PRESENT DAY MODEL STUDIES

Although the general theory of structural models
under the most gensral conditions has been known for a long
time its application to specific cases has been limited,
The reasons are many but among them one stands out as a
limitation which must be overcome before the modeling tech-
nique can be applied with confidence to non-Iinear problems
in structures and to distorted models, This limitation 1is

3



the lack of a comprehensive method of evaluating errors in
models which may be "distorted™., Thus far model studies

are limited to elastic cases and to a few known rheologically
compatible model materials, In many cases the same material
is used in the model (to be on the safe side) and external
means are employed to satisfy similitude thus introducing
errors of a different nature, An error analysis of models
would be a great coantribution to model theory and would

open new horizons in the applications of the modeling tech-
nique,

More work is needed to establish criteria on the
scale limits of model studies, It is obvious that the smaller
the model the bigger the chance of increasing the errors in
the results. Thus if there 1s a correlation between percent-
age error and scale for a particular class of problems the
experimenter would be able to pick a scale which will be
within the tolerance of his overall allowable error,

Another area which needs more study is the need of
a method of making the model and prototype materials com-
patible while satisfying the other similitude requirements.
It 1s hoped that some light will be thrown upon this prob-
lem in the sections that follow.



CHAPTER 2

A GENERAL THEORY OF STRUCTURAL MOLELS

The basic aim of the analysis of a structure 1is
the prediction of its behavior at a time different from
that at which initial conditions are specified, For the
purpose of the investigation, the nature of the structure
may be described either abstractly by means of a mathematical
model or concretely by means of a physical model, frequently
called "the structural model", Each of the two methods
hes its own specific advantages, The mathematical method
tends to use a model in which some of the physical events
occurring in the actual structure are either simplified or
neglected, As a result, a speedy analysis 1s possible with-
out excessive loss in accuracy., The physical model, on.
the other hand, permits the investigator to account accurately
for a large number of physical events and variables even
i1f they have complex space-time distributions,

This important property of the structural model
can be used to full advantage only if the experiments sre
based on & very general theory., Indeed, direct application
of formulations appropriate for use in current methods of
mathematical analysis will unnecessarily limit the scope of
structural model investigations. This reasoning has led
to the unusual formulations encountered in some of the
later sections.,

The theory of structural models forms the basis
for the planning, execution and interpretation of laboratory
studlies on a physical model which permit the prediction
of the behavior of a prototype structure under static or
dynamic conditions, It establishes the rules according to
which the geometry, material properties, initial conditions
and boundary conditions of the model and of the prototype
have to be related so that the behavior of the one can be
expressed as a function of the behavior of the other, The



degree of perfection with which these relationships can be
maintained during the actual experiment, and the effect of
any possible deviation on the accuracy of the prediction of
the prototype behavior, are discussed briefly in Section 2.5.

The physical events considered in this theory are
described in Sections 2,1 and 2,3, If an event occurs in
either model or prototype which involves physical laws not
considered in the theory presented here, the model studles
will lead to erroneous results, So, for Iinstance, electro-
magnetic effects are not taken into account since they play
no role in the vast majority of structural problems,

" 2,1 DESCRIPTION OF THE MODEL AND PROTOTYPE STRUCTURES

Before a one to one correspondence between model
and prototype can be established, the properties of and
external influences on each of them individually must be
specified. The following physical quantities in most cases
fully describe the nature of a structural problem:

2,1.1 Geometric Properties, If time 1is not considered
to be a basic dimension, & point in a structure is fully

described by 1ts three space coordinetes, A general theory
must, however, teke the variation of geometry with time
into account, so that time must be regarded as a coordinate
in the same manner as the space coordinates,

" If no mass is added to or removed from the struc-
ture during the time interval in which its behavior is to
be studied, its geometry needs to be specified at one time
t, only. The geometry at any other time t will then be
uniquely determined by the displecement vector U defined later,
But 1f, for instance, the erection period of the structure is
to be included in the model study, a complete time history
of the geometry during that interval must be given,

The position of any mass particle of a struc-

ture in space may be described in any one of the many well-
known coordinate systems, It is thus necessary to prove
that the theory loses none of its generality if it is

restricted to a single system of coordinates, Assume,



for instance, that spherical coordinates are chosen, so that
the position of point P at time t is

P = Plv,e,9, t) (2.1.1)

In all other coordinate systems, P would also be fixed by

at least one length and, in some cases, dimensionless ratios
such as angles, Thus no new physical variables will be intro-
duced by a coordinate transformation, and the theory may be
limited to the system of equation (2.1.1).

The extent of the structure 1s defined by its
enclosing surfaces which can be expressed by equations of
the form

Vv, (r,®,9) = 0 (2.1.2)

The number i of these equations varies from one upward and
is equal to the number of surfaces by which the structure

is bounded. As time varies, their number may incresse or
decrease and the region of validity of existing V1 functions
may change. Thus the limits of any two of the three space
coordinates must be given in terms of the fourth coordinate,
time:

(t) £ r, & rk(t)

ry N

QJ(§)‘01 « e, (t) (2.1.3)
where i is the same index as in equation (2.1.2)., The limits
of the third space coordinate, ¢, can be calculated from
equation 2.1.2 and the geometry of the entire structure is
now fully described.

2.1,2 Material Properties, A structure will, in the
most general case, consist of several materials, each of which
has its own particular physical properties that may, or may
not, change with time and temperature, For the purpose of
this theory it is, however, more convenient though still
perfectly general to treat the structure as if it consisted
of a single material whose properties change from point to




point in space as well as with time and temperatupe. The
intrinsic properties of the material are then given by the

functions:
Specific Mass: g=glr,e,e, t, T)
Specific Heat: c=c(r,o, 9, t, T
Coefficient of Thermal

Conductivity: x

Coefficient of Linear
Thermal Expansion:

x(r,0,9¢, t, T)

=2
[

= h(r,e, ¢, t, T)

(2.1.4)
A material is not fully specified by its intrinsic properties,
Those of the material properties which are dependent on
external influences are interrelated by the equation of
state of the material, which will be presented in Section 2.3.
2.1.3 1Initial Conditions, When the geometry of the
structure 1s specified at time t,, the material may already

be subject to initial stresses due to prestressing or other
processes that have teken place before time to. There will
also be an initial temperature distribution so that it is
necessary to specify
Initial Stress: oo
Initial Temperature : To

3’(1’,0,9, to)
T(r,e, ¢, to)

(20105)
If the history of a structure is known from the beginning

of its erection period, and all events ( such as shrinkage
of concrete) during end immediately following this period
sre taken into account in the analysis, no specific initial
conditions need to be specified. In some cases where the
molecular processes occurring in a prototype (e.g., during
curing) cannot be reproduced correctly in the physical model,
the specification of initial stresses may become mandatory
even if the entire history of the structure is known.

2.1l.4 External Influences on a Structure, The influences
acting on a structure from the cutside fall into two categories:




the forces and displacements imposed on 1its boundary surfaces

and the body forces acting as a result of the attraction

between the mass of the structure and the mass of the earth,
At every location on the face of a structure,

the imposed surface force (i.e, force per unit area) {is

defined by the vector

P = Blr,e,q, t) (2.1.6)

In the literature, & distinction is sometimes made between
point, line and surface forces, Thils distinction is arti-
ficiel since all forces necessarily have to be applied over
an area, It 1s not desirable to introduce into s struc-
tural model study without justification all the simplifi-
cations that are convenient for mathematical methods,

At some points on the surface (e.g.at a per-
fectly rigid support) displacements rather than forces
may be applied to the structure, They are specified by
the displacement vector

ﬁi = ﬁ(P,O,Q, t) (20107)

where superscript i distinguishes the externally imposed
displacements from those which are the result of the response
of the structure to other external influences such as
forces, Frequently structures are subjected to a combina-
tion of boundary forces end displacements,

The body forces caused by the earth's attraction
on the structure are described by the vector

¢ = dr,e,9) (2.1.8)

where time variations in the earth's field of attraction are
neglected, The nature of these body forces is quite different
from that of the inertia body forces caused by the response

of the structure to dynamic surface loads or support accel-
erations, as will be shown in more detail in Section 2.6.1,



The structure will also respond to temperature
changes at its surfaces, They are specified by means of
the scalar
™ = T(r,e,9, t) (2.1.9)

2.1.,5 Description of Structural Behavior, Once a

structure with given geometric and material properties and
given initial conditions 1s subjected to a set of external
influences, its response has to be registered by measuring
certaln physical quantities which are indicative of the
nature of the structure., Three different aspects of the
behavior of a structure are of particular interest to the
engineer:

a) Stress, Strain or Displacement Distribution - The
stress or strain distribution in a concrete structure, for
instance, is of importunce in the determination of the

positioning and dimensioning of the steel reinforcement,
The displacement distribubion is of importance in flexible
structures where deformations are restricted by building
codes,

Since all the properties of and influences on a
structure are space and time dependent, the stress, strain.
or displacement distributions will be known in terms of
the space and time coordinates once the following functional
relationships have been determined:

Displacements: u = ﬁ(Vi, g ¢, x, h, 0o, To, P, ﬁi, 51, pl)

Stresses: o =€'(V1, g ¢, x, h, 0o, To, P, ﬁi, C.}i,’ i)
Strains: € =e(vi: g ¢, x, h, 8o, To, F: ai, (.}1. Ti)

(2.1,10)
This 1s the most general form of solution since it is valid
for all aspace time distributions of the variables in the
brackets, For any specified space time distribution of the
variables, @, & and e are found as functions of r, ®,9 and ¢
by direct substitution,

10



Frequently, the analysis is simplified
considerably if the distribution of u, &, end € has to
be found for just one specific space time distribution
of the variables, These investigations are referred to as
case studies, and the results are obtained directly as

ﬁ(!‘,Q,Q, t)

a
¥ =5 (r,e,q, t)
(3

€(r,e, ¢, t) (2.1.11)

U, & and € are actually related through the equation of
state of the structural material and the definition of
strain:

dy (2.1.12)

where y is the distance measured in the direction of U and

€, Since the stress-strain relationship is not always unique
and in addition changes with the stress history of the
material as will be shown in Section 2,3, and since dis-
placements have to be obtained from strains by a frequently
difficult integration, it 1s customary in model studies to
observe them as if they were independent, The possibility

of obtaining @ and € separately in a physical model 1is one

of the main advantages of that method over current mathe-
matical approaches,

b) The Ultimate Load - A knowledge of the stress, strain
or displacement distribution at a load level below that
required for fallure in general does not constitute sufficient
information to predict the failure load itself, The deter-
mination of the ultimate load, which 1s of paramount impor-
tance to the safety of the structure, is thus a problem of
its own, It requires the specification of an exact failure
criterion, which in most cases depends on the purpose of
the structure studied., It may be decided to impose limits on
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i(r, e, ¢, t)

&(rjen ?, t)

u
3
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1) the absolute displacement of points in the
structure to prevent excessive deflections associated
with excessive strains,

11) the relative displacement of points in the
structure to prevent rupture,

111) spacing and width of cracks in reinforced
concrete structures,

It will be shown in section 2.5 that the choice of the
fallure criterion has considerable influence on both the
outcome and the reliability of a model investigation,

c) The Buckling Load - Thin structures such as shells

and thin structural elements such as flanges of I-beams
sometimes undergo large deflections without excessive
strains if they are subjected to compressive loads, They
are then said to have buckled., The determination of a
satisfactory general buckling criterion for the mathematical
model is at present still one of the major problems of struc-
tural engineering. The physical model here shows a very
marked superiority, It 1s possible in most cases to recog-
nize a buckling failure by direct observation. Most shells,
for instance, show a sudden snap-through. If the material
1s still in its elastic range when buckling occurs, the
originel shape of the structure is regained once the load

i1s removed,

2.2 THE RELATIONSHIP BETWEEN MODEL AND PROTOTYPE

It 1s esasentlial to keep in mind at all times that
the information eventually to be obtained from a structural
model study concerns the behavior of the prototype, not that
of the model, Since all the measurements are, however, carried
out on the model, it is necessary to develop laws according
to which the model results can be extrapolated to the
prototype, For the derivation of these laws, assume that
both model and prototype are fully described by the physical
quantities defined in Section 2,1, Model and prototype will

12



then be related if the relationship of each of these quan-
tities individually is described by means of a "correlation
function" f, In the literature (3,31) , these corre-
lation functions are frequently defined as constant ratios,
In a more general theory, they may be made functions of the
basic coordinates ¥, ¢, ¢ and t, It will then be possible,
for insatance, to use distorted models without violating any
of the similitude requirements derived later ip‘this section,
The correlation function concept will also be found useful
in Section 2,5 when structural model analysis is considered
as a random process,

2.2,1 Geometric Properties, The distance r and time
t are the only physical quantities required for the descrip-
tion of the geometric properties., Thus model and prototype
are related 1if

r

m f (v, e,¢9, t) r

p

tn

(v, @, 9, t) ¢t (2,2.1)

p
where the following conventions are observed:
1) Subscript m denotes model property
11) Subscript p denotes prototype property
111) fz denotes correlation function for the
physical quantity z and is evaluated at r,®, ¢ and t of
the prototype.
Since angles are dimensionless ratios, it follows that

and

P, =9,

2,2.2 Material Properties, Model and prototype are
related as follows:

Specific Mass: - 8n fé(r,o » 9, t)gp

Specific Heat: L fc(r, ®,9, t)cp
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Coefficient of Thermal X, = fx(r, e, ® ,t)xp
Conductivity:

Coefficient of Thermal = fi(r,e, ¢, t)
Expansion: hm LA hp

(2.2.2)

2.2.3 1Initial Conditions, Model and prototype are related

ir
Initisl Stress Eo

re,(l‘, e, ? ) to)a'cp

=3
[
]

Initial Temperature fT(r, ¢, 9, to)Top

(2.2.3)
2.2.4 External Influences on a Structure, Model and
prototype are related if

fg(n, e, ¢, 1=)Pp

-1
fu(r, e, o, t)up

Surface Forces:
Displaéements:

Body Forces:

fg.(r':e’) q, t)(.}é

Temperature:

gt FU L g7
1]

tp(r,@, 9, £)T;

(2.2.4)
It should be noted that the correlation functions defined
in Sections 2.2.1 to 2,2.4 are independent of the state of
stress or strain of the materials involved.
2.2.5 Comparison of Structural Behavior, In addition
to the quentities described in Section 2.1.5, the acceleration

- _ %
2 (2.2.5)

which occurs in many applications,will also be considered.
The required correlation functions thus are

Displacements: ﬁm = fu(r,b R t)ﬁp
Stresses: ah = Q’(r,o, 9, t);b

1y



Coefficient of Thermal X, = fx(r, e, ¢ ,t)xp
Conductivity:
Coefficient of Thermal hy = fp(r, e, 09, t)h.p

Expansicn:
(2.2.2)

2.2,3 Initial Conditions, Model and prototype are related

if

Initial Stress R fe(r,®, 9, to)?op

Initial Temperature To

fT(I', Q, ? » tO)TOP

(2.2.3)
2.2.4 External Influences on a Structure, Model and
prototype are related 1if

Surfece Forces: Em = fE(N, e, P, t)ip
Displacements: ﬁé = f(r,e, 0, t)ﬁ;
Body Forces: aﬁ = fglr,e, 9, t)-;
Temperature: T; = fT(r,e, ?, t)T;
(2.2.4)

It should be noted that the correlation functions defined
in Sections 2,2.1 to 2.2.4 are independent of the state of
stress or strain of the materials involved.

2.2.5 Comparison of Structural Behavior. In addition

to the quantities described in Section 2,1.5, the acceleration
= . %
32

(2.2,5)

which occurs in many applications,will also te considered.
The required correlation functions thus are

Displacements: 8y, f(r,®, 0, t)ﬁp

Stresses:

sq
"

flr,e, ¢, t)i'p

1



Accelerations: fa(r, e, 9, t)Ep

m
(2.2.6)
It follows from equation (2,1,12) that
- f -
é = _lin. = L& = €
m r ’'p

so that no correlation function for strains needs to be
specified.

2.2.6 Dimensional Analysis, If all the correlation
functions defined in the previous sections were independent,
the prototype behavior could not be predicted from the model
behavior. An analysis of the dimensions of the physical
quantities defining & structure will, however, reveal that
only a few of the correlation functions can be considered
as independent, Thus the correlation functions in equa-
tion (2,2.6) comparing model and prototype behavior can be
expressed in terms of the other correlastion functions, and a
prediction of the prototype behavior is possible,

Before the dimensional analysis is carried out,
a speclal type of model study that does not require this
approach will be discussed for the sake of completeness
of presentation, Suppose that quantity y describing the
structural behavior 1s known as a function of other quanti-
ties X1s X3 eee, i.e., the physical event controlling y 1is
known, Say

X X X
Rt SR

coe (2.2.8)

Chose Xys X ees in the model and prototype in such a manner
that

lexan = x Xl xg

*3m *3p
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*om Xop etc,

Then equation (2,2,8) can be used to predict the proto-
type behavior yp from the model behavior Ym since

Tm = k7 (2.2.9)

The usefulness of this method, which has been very popular
in the past, 1s restricted since equation (2,2,8) must first
be found by mathemetical investigation. The physical model
1s degraded to become an "analog computer" for the mathe-
matical model and in this manner is deprived of its main
advantage of generality.

Full generality is maintained 1f the model to
prototype relationship is based on an analysis of the
dimensions of the physical quantities describing the struc-
ture., The following concepts are of importance:

Dimension: The dimension is that part of the
description of a variable which specifies the type of physi-
cal measurement that hes to be carried out to determine 1its
magnitude, The dimension is dictated by nature and is there-
fore independent of the basic unit adopted for measurement,
which may be arbitrarily chosen by man. If the respective
magnitudes of two physical quantities with the same dimen-
sion ere determined by comparison to two different baslc
units, they cannot be compared directly. Yet the quantities
are not totally unrelated since their magnitudes can be com-
pared once the ratio between the basic units 1s specified,
This principle forms the basis for dimensional analysis of
structural models,

Dimensional Relationship: Some basic physical
laws such as Newton's second law relating mass M, length L
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and time t to force F make 1t possible to regard certain
quantities as physically completely equivalent to a pro-
duct of other terms, e.g.,
ML

F
g2

(2,2.10)

The magnitude of each of the four quantities in this equation
i1s determined by expressing it as a multiple of a chosen
basic unit, such as a foot, a pound, a meter, etc, The
numerical values that are to be substituted into the equation
thus change with the basic units of measuwrement that are
chosen, The type of measurement to be performed, e.g.,
determining a length, determining a mass, is, however,
independent of the basic units that are chosen, The type

of measwrement required to determine the magnitude of a

given variable is called its dimension, If we let F represent
the magnitude only of the variable (e.g. 10 feet, 20 pounds)
and D (F) the dimension only (e.g., length, mass) then, in
addition to equation (2.2.10), we can write

D(F) = (—2) = t’)’;m (2.2.11)

The left and right hand sides of this equation are independent
of the basic units chosen for the variables, so that the
equation is more characteristic of the phenomenon than
equation (2,2,10) was, Equation 2,2.10 could also be written

Ft2 = ML

so that equation (2.2.11) would become
D(F) [D(t)] 2 = D(M) D(L)

Thus multiplication and division of dimensions are both defined,
Fundamental Physical Quantities: There sxist a
number of quantities such as length, mass and time whose
magnitude can be determined by one specific type of physical
measurement only, They will be called the fundamental phys-
ical quantities, Their number depends on the type of exper-

iment performed since heat, for imstance, mai be considered
a fundamental quantity only if thermodynamic transformations
are not studied in the experiment,
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If s physical quantity is not fundamental, its
magnitude can be determined by several types of measure-
ment, Force, for instance, can be determined from measure-
ments of mass, length and time or mass and acceleration
or directly by comparison to a unit force,

Dimensional Independence: It follows from the
definition of fundamental physical quantities that the
magnitude of none of them can be determined by a combina-
tion of the types of measurement used to determine the other
fundamental quantities. Thus the fundamental quantities are
considered dimensionally independent, The set of all the
fundamental quantities for a specific experiment will thus
contain all the types of measurement to be carried out
during the experiment, and is thus a basis for the dimen-
sions of the other quantities describing the phenomenon,

Consider the dimensions D(q,) of all the quanti-
ties 9y that play a role in a specific experiment, Let i
range from 1 to n, If K‘1 with § =1, 2, ..., r is the
complete set of fundamental physical quaentities for the
experiment (.. n 2 r), each of the dimensions D(qi) can be
expressed as a function of all the D(K,), in the manner
demonstrated by equation (2,2.11). Thus

Dlqy) = Dy(K;, Ky uue, K) (2.2.12)

vwhere i =1, 2, ¢ee, n

Since the processes of multiplication and division of
dimensions are defined, the laws for the inversion of
mathematical functions can be applied to equations (2.2.,12).

Thus if any r of the n equations (2,2,12) are selected in
such a manner that the Jacobian

B(QIoQZo °°°!qr) £ 0
dlkys kpy ooey Kp) (2.2.13)
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it is possible to write explicitly
D(KJ) = DJ (q1, q 2’ ®o0ey q r) (20201)4-)

where J = 1, 2, vsup,

Since the K, form a complete set of dimensionslly inde-
pendent quantities, equation (2.2.14) guarantees that

q]j qz, cees 9y 2ls0 form a complete set of dimensionally
independent quantities for the experiment. Thus functional
independence is not restricted to the fundamental quantities,
Substitution of equation (2,2,14) into the remaining (n-r)
equations of expression (2.2,12) shows that

D(q,) = D,4;,9,, «c.yq ) (2.2.15)

where h = r, (r+1l), ..., n.

Dimensional Analysis - Equation (2,2.15) indicates
which quantities have to be measured '|:>e15‘ox'eqh is known,
As discussed in the section on dimensional relationships,

equation (2.2.15) must be augmented by an equation relsting
the magnitudes of the quantities concerned:

qh = Fh(ql)qz.' 00"qr) (2.2.16)

D, in equation (2.2.15) and F,, in equation (2.2,16) are
functions of identical form, 1i.e., 1if

[p(9,)]® [p(q,)] ®

then it follows that a b
(ay)° (35)
Fh (quqa,q3) E e—

(43)°
The number of variables in the event has in effect been
reduced from n to r, While the basic units of measure-

ment for q 1° Q2s ¢¢esq, cén still be chosen arbitrarily,
the basic unit of measurement for LY must now be calculated
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from equation (2.2,16). This is the basic principle of
dimensional analysis,

2.2.7 The Laws of Similitude, Suppose that the same
physical events occur in both the model and the prototype.
Then the form of function Dp» and therefore also the form
of function Fh’ is the same for both structures, Let sub-
scripts m and p denote model and prototype properties re-
spectively. Then

Y . Falim Yam or 9w

Up  0ld1pr G2pr o0r Qrp)

Since the relationship between model property'q“lend proto-
type property qp has already been defined as

S T K%

the preceding equation can be rewritten

fothp Fp(fq191ps faol2ps +++s Tqplpp)

Yhp Fn(‘hp’ 92p+ ...,qrp)

Since Fh 1s always a product or quotlient of the variables
in the brackets, it will elways be possible to factor

r Fh( fg}, rqz, LI Y fqr) Fh(qlp,QZE, -oo,qrp)

h
3 Fal@1pr A2pr +++» p)
so that
fqn = Fh(fql, fqz' cony fqr) (2,2.17)
where
h = r, (r+1), ..., 0,

The original goal of the dimensional analysis, to establish
the relationship between the correlstion functions, has

been achieved in equation (2.2.17). The correlation func-
tions may simply be regarded as the relationship between the
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basic units of measurement in model and prototype. It is
thus possible to conclude thst

i) there are as many independent correlation func-
tions as there are dimensionally independent physical
quantities,

i1) the relationship between the correlation func-
tions is of a form identical to that of the relationship
between the dimensions of the corresponding physical quanti-
ties.
The laws of similitude are defined as the relations which
must exist between corresponding physical quantities if a
one to one correspondence between model and prototype is
to exist. They are easily derived from equation (2.2,17):

qhm = rqhth = q hth(fql’ fqa, ce ey fqr)

(2.2,18)
where h = r, (r+1), ..., n.
If the (n-r) laws of similitude (2.2.18) are obeyed; model
measurements can be used to predict prototype behavior,
2.2.8 Laws of Similitude for Quantities in Section 2.1.
Both the number of variables and the number of fundamental
physical gquantities vary from experiment to experiment and
have to be guessed intuitively by the experimenter, If
superfluous variables are considered, unnecessary restric-
tions are imposed on the model since the number of laws of
similitude (2,2.18) will be large' than actually required.
If an essential variable is neglected, the model will not
satisfy one of the essential laws of similitude and the
prediction of the prototype behavior will be erroneous,
The reasoning outlined in Sections 2,2.7 and
2.2.8 will now be illustrated by the study of a specific
case: a structure fully described by the quantities defined
in Section 2.,1. To conform with practice, it is assumed
that the model will not be used to investigate thermodynemic
transformations, Then all the types of physical measurement

~.
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employed in the experiment are contained among the dimensions
of the following five fundamental physical quantities:

Table 2.2.1 - The fundamentel physical quantities for the
properties described in Section 2.1.

Quantity Symbol {Ft, Lb, Sec Unit| Mkgs Unit
Length L Ft Meter
Mass M Lb SecZ/Ft Kg Sec®/M
Time t Sec Sec
Temperature T °F °C
Heat H B.T.U. Calorie

Equations (2,2,12) are summarized in Table 2.2.2,

Table 2,2.2 - Powers to which quantities in equation (2.2.12)
have to be raised.

N rlt c]x|h|j&e} T a
Ljl1j0[-3]0f-1}10]-1]0}-2]|1
MjOojO]Jl}]-l1]jOofO}l1]|]0O}1}O
tjoil1to0jol-1101-2} 0]-21=-2
T§0|0{0|-1|-1|-1|6]1]0O©|O
Hjojo|Oo]1lj1j0]0]0]jO]O

It will be noted that
1) The equation of state does not contribute any
additional variables to Table 2,2.2, as will be shown 1in
Section 2.3,
11) P end @ are not 1listed in Table 2,2.2 since they
are dimensionally identical with ¢ and r respectively. This
guarantees that £ = f.and fu = fr. (where p is the surface stress:
The independent gquantities | PEEXEY’ qy must now be chosen
subject to condition 2.,2.13., Suitable choices are discussed
in Section 2,.3; in this exemple r, ¢, h, G and a are used:
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D(r) = D(L) D(6) = D(-F—)
Lt
p(e) = DL D(a) = D(Ly)
¢ MT : £2
D(h) = D(l)
T (2.2.19)

Condition 2.2.13 becomes

! 0 0 0 0
H H 1
0 - 0 - -
MeT MTZ  MT
d(r, ¢, h, G, a) = 0 0 o -
d(L, M, t, T, H) T
o 1 oM o 0
132 22 T 133
1 2L
0o - 0 0
% £

= —f— # 0
MLT ¢t

Thus equations (2.2.19) can be inverted to yleld

3
D(L) = D(r) p(M) = D(&)
a
(1) = D(i) D(H) = n(gﬂi)
h ah
D(t) = DHZE
(+) (‘f:) (2.2.20)

The dimensionally dependent variables can now be expressed
in terms of the dimensionally independent variables as in
equation (2.2.15):

(t) = pyI) Die) = D(Gr)
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D(T)

"
g
—
Is

1
D(=)
D(g) "

D(x)

[}
=4
%4
g

(2.2.21)

The form of functions Dh is thus known, The form of func-
tions Fh is therefore also known so that the laws of simili-
tude can be written down directly:

- _G =1
& = T & T T T
Tq Ty
2
£ f £ 3
- _cer
*m % p (2.2.22)

Equations (2.2.22) are the equivalent of equation (2.2.18)
in the general theory.

2.3 THE EQUATIONS OF STATE OF THE MODEL AND PROTOTYPE MATERIALS

The equation of state relates those of the quantities
describing the materisl which are dependent on the external
influences acting on the structure, This relationship may
be time and temperature dependent, it may, or may not, vary
from point to point in the material and it may, or may not,
be different for diiferent directions at the same point. In
addition, the events occurring in one direction mey, or
may not, affect the events occurring in all other directions
(Poisson effect)., There is some question as to whether the
events occurring at one polnt affect the events occurring
at neighboring points, eg. whether the stress gradient
has an effect on the crack formation in concrete(lo). The
general form of the equation of state will be developed in

stages,
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2.3.1 The Stress-strain Relationship, Assume that a
material is very gradually subjected to an external influence
for the first time in its history in such a manner that all
material properties except the state of stress and strain

are kept constant., The event may be described by the greph
in Pigure 2,3.1. This curve, which is particular for the
material studied, can be described mathematically as

o= ae+ be’+ .., 12.2.1)
The physical nature of the event 1s not evident from this
equation, since 1t is not dimensionally homogeneous 1if a
end b are constants, A better form is T

00 " n
e3> £ 2o

by n! -aen (20302)

=0

where n 1s a constant and the equation is dimensionally
hgmogeneous. If, in a more general case, the derivatives
%—:ﬁ are known at point A = (e,, 0, ), this equation becomes

- -c +z(e-e.)n da
° ne) Vl-l d¢”

(2.3.3)

¥ao,
where (-e)max &€ € €& (+e)max.

Both equation (2,3.3) and its limits of validity (1i.e.,
temax) may vary from point to point in the structure.
The superiority of equation (2.3.3) over equation (2.3.1)
will become evident when the equations of state of model and
prototype materials are compared later,
2.3.2 The Effect of Time, The time variable affects
the equation of state in two different manners:
a) Aging may change the shepe of the curve in Fig. 2.3.1:

n " oo } ¢
L QPRW-Y- @t e
2" (t)‘ Je” (tp) "% s| A otd tut

(2.3.4)
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' ¥
and €ra B = €t + *z.ll ¥ At

b) The rate at which the external influences are applied
may affect the shape of the curve in Fig., 2.3.1. The rate
of application is measured by means of the strain rate %%

so that - (3e_ K ) .
35 (ae) ;:@:D"'Z = Kl YN %g‘]

- £ BB el

2.3.3 The Effect of Temperature, The effect of tem-
perature on the equation of state is twofold like that of
time:

a) It may change the shape of the curve in Fig, 2,3.1:

and

(2.3.5)

(20
LY 1) 2%
S (=3 ( A Z, e Tt (2.3.6)

T=T,

and

00 L St
(-T) O €m
Eme(T) ® € (T) + g—:—, AN 3 b or.
b) A change in temperature may cause the material to

expand or shrink, setting up internal stresses and strains.
This fact has already been taken into account by the defini-
tion of the coefficient of linear expansion,

2.3.4 Materials Subjected to Several Load Cycles.
If the material in Fig. 2.3.1 is stressed to point A = (&o, ®,)
and the load is then removed, it may follow curve AB rather
than curve A0, Thus the stress-strain curve at A cannot be
described uniquely, but is dependent on a logical decision:
Follow OA on first loading cycle, continue along AC if load
is increased further, follow AB if load is decreased. AB
can be described in a manner similar to the description of OA:
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i (E’eo)n 3“&
i ea,

where the bars 1n~%%!; indicate that the "curve when unloading"

T
13 described.

The permanent delormation associated with this
phenomenon may lead to a considerable reduction of the initial
stresses caused by the manufacture of the structure. There-
fore, if a prototype structure is put through several load
cycles before it is subjected to the maximum load of its
lifetime, and the model has been manufactured in a manner
analogous to the prototype construction, the loading history
should be faithfully copied in the model,

2.3.5 The General Equation of State, The results
obtained so far can be combined if it is assumed that the
effects of time and temperature are independent, The
general equation of state then 1is

elr,e,9, t, T, 2%) = Golr,e,9, to, To, 28| ) +
at o
00 Y n
(e-6) | do - (t- t) 30’
:‘.:._rn."{ae toley I)*:,L_. ,,f S| T
“
gT--L ‘ac- ﬁ ﬁl ol
§ e seare t Z oy 3(%{) J

s0,
(2.3.7)

where the 1imits of the maximum positive strasin, for instance,

are given by:

Jde _ 9
€ .x(rr®,9,t, T, é_t) =€ x(r®,9, to, To, ait o) +
.0 ¥ ¥
(t-t) % max (T-T.) ae +
Z.i.—r-;. Togu| 50

(3% - %%l)"m°e
LB e

(2.3.8)
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Similar equations can be written for the "curve when unloading".
They are far too complicated for use in mathematical investi-
gations, but can be used to advantage in the determination
of the similitude requirements for the equations of state
of the model and prototype materials, It should, however,
be noted that material properties such as creep, relaxation,
the Poisson effect, etc., which are discussed in Sections
2.3.7 to 2.3.10 are not reflected in these equations,
It has been shown in Section 2,2 that

exn = €I> 1Um = Q,Cb
tm = fttp Tm = fTTp

(2.3.9)

Term by term comparison of equation (2.3.7), written once
for the model and once for the prototype, yields the follow-
ing similitude requirements if equation (2.3.9) 1s used:

P .

" & n
330 -7 (39)
-k o
.ag " - L n
(D) 5 (30

* Dom) . ¢ (¢ ?
3 :.u z‘:‘) hﬂ bz‘a{:“(z_gﬁ) (2.3.10)

Similarly, the similitude requirements for equation (2.3.8)
are

(T @, 4,2, ,T,)” " €pen (*)0) 9, t')TO)
4
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t Ld
2 L
9 (e S N - gemt,_i),
a1 & AT
3“ €Em - _Fk 3“(&,&'29
(3% £ (%) (2.3.11)

Once the requirements of equations (2,3.10) and (2.3.11)
are satisfied for all points (¥, ®, @) and sll values of

n, j, k and £, the model and prototype materials are
compatible,

2.3.6 Examples of Equations of State.

a) Suppose equations (2.3.7) and (2.3.8) for a particu-
lar prototype material have the form

ep=[asbtyecT +a 3fr]e, + [e +qT] ¢

(em)’ - a,+ bty +cT, + d, %ﬁ:

It 1s desired to determine the equation of state for the
model materisl if the values of f,, rt and fT are prescribed.

Comparison to equations (2.3.7) and (2.3.8) shows that for
the prototype

e d X5

e Cto T, ﬁb' @ HT " Y

zgt b Bbmes b,
v ot

D ¢

bgb’]’" = zc 'ﬁw | ] °|
-] p-Y 2

g (3¢) =4 agp ™

%’:%' (to ’To, %l.) =2¢

According to equations (2.3,.10) and (2.3.11) the correspond-
ing values for the model are

P 4
%(t.,'l'.,%%l.)' cc“' a';tg'a'r * ﬁ %’
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e { r-Y b
B3t * T, R
I D€ mex z L
a.c' o= 2 -EE' c T %T
¥ - a—

(gp (36) " fefid 3P T e

3
D -1
d¢? (t T, 3¢ L)' 2f,t
Thus the equation of state for the model material 1is

'cd [ 4 3@3'
ow = [ f0 & b, +-§—5c1',,,‘ e h A gen ] e

" ¥‘- 2
+[fe + 5 94 Tm] €m
b < -1
(emu)m‘ q’l*'T:tm"' 3 Tw + *‘gd't Mt wm
b) Assume that due to technological considerations,
both model and prototype material are specified. It 1is
desired to determine under which conditions the two materials
will be compatible. Suppose

de de
O’P- Q.Gpi-(b-'-c(se; - -a—é:

) el i)

V€m

O = [ 4+ e (T,,-T“)] €y + *(g—g;“-s&ml)e; ()

According to equation (2.3.10)

fgi f:-ﬁ-:gg.
¢ 4

Equation (1) does not contain a term corresponding to

e(Tm - T°m)exn in equation (11). Thus the model material
will satisfy the similitude requirements only if the model
is kept at a constant temperature Tm T°m so that this
term vanishes, Equation (1i1) does not contain a term
corresponding to beg in equation (1). Since Gp # 0, the

two materials are not compatible,
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¢) Fig. 2.3.2 shows several examples of compatible and
incompatible model and prototype materials., Proofs of
compatibility and incompatibility proceed as in Sections
(a) and (b) above.

2.3.7 Creep and Relaxation, Creep and relaxation are
time dependent phenomena which have not been taken into account
in the general equation of state, Creep describes those
phenomena which occur in the material i1f an external force
of constant magnitude remains applied for some period of
time, and to some extent after the influence has been
removed (creep recovery). According to F, Leonharo(ah)
the total creep strain in concrete 1is

€, = ®xiy xkyxe, (2.3.12)

where

]

601 elastic strain

§ = variable dependent on relative humidity.

=
U]

1 variable dependent on the duration of load
application,

k2 = variable depending on the composition of the
concrete and the thickness of the member,

Whereas it appears possible to control the variables on which
$ and k, sre dependent in a model study, research remains
to be done on factor k2.

Relaxation occurs where a constant displacement
is applied to a structure, In steel prestressing cables,
for instance, it 1s dependent on both the initial stress
and the composition of the materisl, Thus if £, # 1,
relaxation may be very difficult to model. Plexiglas, a
frequently used model material also displays creep prop-
erties, Fig. 2.3.3. compares typical creep properties of
steel, concrete (taken from(zh), Fig. 2.54 and 2.20) and
plexiglas (taken from 19, Fig. 1, p. 316),
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2.3.8 The Poisson Effect, The effect of the events
occurring in one direction at a point in a material on the
events occurring in another direction at the same point is
described by Poisson's Ratio4. Since this ratio 1s dimen-
sionless, it must have the same value in both the model and

the prototype structure, Different values for N in model
and prototype can lead to serious errors:

Consider a case of plane strain where strains
e‘x and ey have baen measured in orthogonal directions at a
particular point, Then the stress in the direction of
e‘x for a linear elastic homogeneous material 1is

. &
. = (1 -6 +Qe]
x (1L +Q)(1 - 23) [ x y

Ir
A)m = 0.40 (eg. a plastic) /)p = 0.15 (eg. concrete)
and
€, = 1000 mdn/in, €, = 500 win/in
then
(O'X)m = 2860 Em
(6,), = 1150 E;
€m B
Since f.. = E- = .—, the model lesads to a prediction which
E
P p

is in error by 150%, In cases where the shape and boundary
conditions of & structure do not indicate if it will be in

a state of plane stress or plane sirain, the Poisson Effect
mekes it necessary to measure strains at a point in three
mutually orthogonal directions before the stress distri-
bution can be determined.

2.3.9 Crack Formation and Deflections, It has already
been shown that similitude of deflections in model and proto-
type can be maintained only if the strains in the two
structures are the same., The concrete structures where the
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deflections are affected considerably by the formation of
cracks, further requirements have to be met before defor-
mations will be similar:

a) Strain Level at Which Crack Formation Starts -
A crack will start at a point in a structure if ¢ = @ ..
where emax has been defined in Section 2.3,5. If relation-
ships 2.3.11 are satisfied, similitude requirements for
the initiastion of cracks will be satisfied, This 1is due
to the fact that the stress gradient %o;_' , Wwhich in the
- most general case will be different in model and prototype,
has no effect on the crack formation, as discussed inRef , 10

b) Distance Between Cracks - It is shown in Ref, 10
that for f 2 }, the distance between cracks in the model
will be fr times the distance in the prototype, as required
by similitude, 1if

1) the dismeter of the individual reinforcing

bars 1s scaled correctly.

i1) the percentage reinforcement over the entire
section 1s the same in model and prototype. Hence, 1if
several bars in the prototype are replaced by a single bar
in the model, similitude requirements with respect to crack
formation may not be satisfied,

c) Width of Cracks.- The width of the cracks, which has
considersble influence on the deflection, is scaled by fr
i £ 2 ¢.

2.3.10 Demping. If a structure is subjected to dynamic
loads, its behavior is considerably affected by the damping
properties of its material., Since the ratio of the actual
damping in the material to the ecritical damping is dimernsion-
less, 1t must have the same value in model and prototype.

2.4 THE DESIGN AND USE OF STRUCTURAL MODELS

The theory presented in Sections 2,1, 2,2 &nd 2,3
can be used to make. the design of structural models & systematic
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process, This section presents two different methods of
design, one for cases where the model material 1s specified,
the other for cases where the model material can be chosen
freely. In both cases it will be assumed that the influences
on and properties of the prototype structure are known,
Where this is not the case, as discussed in Section 2.6,2,
additional problems are encountered.

Method I - Suppose that technological considerations
make the use of a particular model materisl mandatory.
Then the value of f, will be prescribed, as demonstrated
in example (b) of Section 2.3.6. The value of f, and fn
may or may not be prescribed, The design then proceeds as
follows:

i) Decide which fundamental physical quantities
are involved in the experiment. Let their number be r.

11) Decide which variables are involved in the
experimant,

111) Since there sre r fundamental quantities,

r of the properties of the model may be chosen arbitrarily
as a dimensionally ind @ pendent set as long as they satisfy
equation (2.2.13). If f, f, and fq are prescribed by the
compatibility requirements of the equations of state, as in
example 2,3.6 b, only (r - 3) of the model properties may
be chosen arbdbitrarily,

iv) Calculate the correlation functions corre-
sponding to the r dimensionally independent properties of
step (111) above.

v) Find the laws of similitude as demonstrated
in the example of Section 2.2.8.

vi) Find the value of the remaining model prop-
erties from the laws of similitude and the known values of
the correlation functions from step (iv).

Method II - Suppose that no particular material has
been specified for the model study. The design then pro-
ceeds as follows:
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1) Decide which fundamental physical quentities
are involved in the experiment., Let their number be r,

i11) Decide which variables are involved in the
experiment,

111) Choose r of the model properties arbitrarily,
but so that equation (2.2.13) is satisfied. These quanti-
ties then form a complete dimensionally independent set
for the experiment,

iv) Calculate the correlation functions corre-
sponding to the quantities in step (1i1),

v) Find the laws of similitude as demonstrated
in the example of Section 2,2.8,

vi) Find the value of the remaining model proper-
ties from the laws of similitude and the known values of
the correlation functions from step (iv).

vii) Find the equation of state for the model
material from the known values of f,, ft and rT and the
known equation of state of the prototype material, as demon-
strated by example 2.3.6 (a). The method usually breeks
down at thils stage because a model material with the required
equation of state cannot be found,

It should be noted that dimensional analysis can be used

in case studies only, i.e., it can be used to obtain equations
(2.1.11), The example of Section 2.2.8 will be used to
demcnstrate that dimensional analysis cannot be used directly
to obtain equations (2.1.10), i.e., the general solution

to the problem, Equations (2.2.22) show that

£ e " rGfr'

But 1t will be equally correct to use the remalining equations
of (2.2,22) to write

et () () () o™ o
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where a, to a, are constants., In addttiqf, since fp has

the same value as Q, another factor ( § could be
vy

multinlied into the right hend side., The value of the
constants a; to ag cannot be found by dimensional analysis
since the value of each of the brackets according to equa-
tions(2.2.22)cannot be different from one., The model can,
however, be used to find the relationship

¢= FI(G, r, t, a, g, x, ¢c, T, h, P) (2.4.2)

This is achieved by varying the terms on the right hand side
one by one, keeping the others constant, and noting the
corresponding changes in & , If expression(Z.h.Z)is in
the form of a product, it can be used to determine a; to

8g in equation 2.4.1 by forming the quotient

£ = Om - F(Gmlo-"LPm) (2.&--3)

v C’p F(Gp:-oo-:Pp)

2.5 MODEL ANALYSIS AS A RANDOM PROCESS

In the derivation of the Laws of Similitude it
was assumed tacitly that
1) physical phenomena in the prototype can be repre-
sented by a "certain" scheme of knowledge, i.e., each prop-
erty can be described by a fixed number at a particular
point in space at a particular time,
11) physical phenomena in the model can be repre-
sented by a "certain" scheme of knowledge,
111) the model to prototype relationships are "certain"
numbers, '
None of these assumptions hold in actual situations since
such random processes as manufacture and loading of model
and prototype are always involved, It therefore becomes
necessary to use the concepts of meard, veriance, standard
deviation and statistical independence as defined in the
Theory of Statistics , Ref, 16, Instead of equations (,2.1.10)
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and (2.1.11) it becomes necessary to find

1) the variance of the mean of the prototype ocut-
come as predicted from the mean outcome of the model, its
variance and the variance of the correlation functions,

11) the standard deviation of the prototype outcome
as predicted from the standard deviation of the model
outcome and the correlation functions,

While & statistical investigation is very essential to the
usefulness and relliability of a model test, particularly

in cases such as blast loading where errors may occur in

the modelling of a large number of propertles, investiga-
tions so far have been very limited due to the great number
of difficulties encountered. This section will be restricted
to a presentation of basic principles and the outline of

e method of solution.

2.5.1 Determination of Stress, Strain or Deflection
Distribution, The deviation of the actual prototype behav-
ior from that predicted by a model study will be due to
a combination of the deviations of the assumed model and
prototype properties,

i) Deviations in Geometry - The position of a_point
may deviate from its mean position in any direction in 3-
dimensional space. This can be represented by a 3-dimen-
sional density function d(v, @, q) which may vary from
point to point in the structure, {i.e,

ar,0,9 = [dir,e,9)](r,e9 (2.5.1)

Whether or not r,@and @ are statistically independent
variasbles depends on the method of meanufacture, If the
method of manufacture is such that r, ®, and ¢ for each
point are determined independently, equation (2.5.1) cean
be rewritten

[4(n0,0)¢,0,0) 2] A, d,(0),0,(0)] (v0,0) (2.5.2)

The notation on the right hand side indicates that dl(r),
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dz(od and d3(¢) may all vary from point to point in the struc-
ture.

11) Deviations in Material Properties - Consider any
material property, denoted ty A, Both the mean and the
variance of A may be different for different polnts on
the structure so that

a(a) = [aw)] (r,e,¢) (2.5.3)

Both the nature of density function d(A) and its change
with r, & and ¢ depend on the method of manufacture of

the material and the method of fabrication. of the struc~
ture, So, for instance, the variation in material prop-
erties of a welded steel structure will depend on both the
quality control of the steel mill and the workmanship of
the individual welds.

111) Deviations in External Influences - The uncer-
tainty in the exact nature and amount of such external
influences as earthquakes or blast loading 1s very large
since, contrary to cases (i) and (1i) above, there is
little human control over them, Deviations in any specific
influence B may agaln be different from point to point in the
structure, 1.,e.

a) =[a®)] (r, 0, ¢) (2.5.4)

iv) Deviations in the Equation of State - Any of the
partial derivatives used in Section 2.3 to specify the
equation of state may deviate from its assumed value,

This can again be represented by a density function

ac) = [a(0)] (r,@,9) (2.5.5)

v) Deviations in the Correlation Functions - The
necessity of using correlation functions rather than ratios
to define the relationship between model and prototype can
now be demonstrated, Assume, for instance, that the material
property A has a normal distribution in both model and
prototype. Then its density function is

Lo



[
15
g ‘ —— DITRIAUTION OF MODEL PROPERTY
% 1 ! DMTRIBUTION OF PROTOTYPE PROPERTY
° ° Il ~—=- DISTRIBUTION OF CORRELATION FUNCTION
8 1]
2
2 |
i
-y
g w
w
a
w | I
0
-]
g'-.x !
; ' .
Q| '
@
0
a1 |
| '
q.. . ¢
]
- J ’ J — N - - " >
° -0 2:0 §.0
«f

VALUE OF q OR

FIGURE 25.I

COMPARISON OF THE DISTRIGUTION OF A MODEL PROPERTY g,
A PROTOTYPR PROPERTY q_ AND THEIR CORRELATION FUNCTION ot

s}



£
S
‘
S l ——  DISTRIBUTION 0OFf MODEL PROPERTY
C 1 A DISTRIBUTION OF PROTOTYPE PROPERTY
® o " ———=  DISTRIBUTION OF CORRELATION FUNCTION
3 ‘d- M
i |
'Y
Zo
g %
& .
{
u L}
0o
o
R :
$ | |
o] i
ol
0
al !
h '
ol M
-
° — 10 + 20 * ) T 4.0 50 ' T

VALUE OF q OR g

FIGURE 251

COMPARISON OF THE DISTRIGUTION OF A MODEL PROPERTY g,
A PROTOTYPR PROPERTY q, AND THEIR CORRELATION FUNCTION f;‘

41



[ 8
A - pp)

| 29,
(A * G e
v S
A (2.5.6)
On account of equation (2.5.3) the standard deviation S

A
and the mean Ma will be functions of r,® and ¢ in both
model and prototype., The correlation function

- |5>

P

will thus also have a mean and a standard deviation depend
ing on r,®, @ so that f itself must in fact in the most
general case be a function of r,e and @,

The density function for 1‘A will not be geomet-
rically similar to that of A, Assume, for instance, that
materisl property A has mean values of L and 1 in proto-
type and model respectively. Let the density functions
have a triangular graph and maximum deviations of + 10%
in the model and t+ 15% in the prototype, as shown in Fig.
2.5.1. The density function for fA can then be determined
numerically as shown in Tables 2.5.1 and 2.5.2.

Table 2.5.1 - The table gives values of ;E .
m

'd(A,)AA, 0.0312{0,0935/0.156{0,219]0,219{0.156| 0.0935

0.0312

aAw |[A2rl3.65 |3.75 [3.85 |3.95 [L.05 [4.15 |4.25

Ll'o 35 ‘

0.055(0.875(4.16 (L4.29 |L.4o {L4.51 |[L4.63 |L4.75 |4.86
0.167(0.92513.95 |(L4.06 [L.16 |4.27 |(L4.38 {4.49 [L4.59
0.278{0.975|3.75 |3.85 [3.95 |L4.05 |L4.15 {L4.26 |L.36
0.278(1.025]3.56 |[3.66 |[3.76 |3.86 (3.95 (L4.05 |L4.15
0.167/1.075]3.40 |3.49 |3.58 [3.68 [3.77 |3.86 |3.96
0.055(1.125}3.25 |3.34 [3.43 |3.52 [3.60 [3,69 |3.78

4.97
4.70
b.yo
b.25
4.05
3.87

d(A) xa A is the probability that A lies between (A-}a8A) and
(A + aA), where AAp = 0,1,8A = 0.05, Subscript m denotes

model, p denotes prototype.
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In each column, .
) -y
AfY) afa 0t = 2 d(A)sA  d (Aw)sAnslO
Corrected values have been obtained from the previous row
by direct scaling so that

T d(f) ol 10* = 10"

as required by theory of statistics, Then
d.({:) —-r—-w [7 X CORRECTED VALUE
The last row is used to obtain the mean for fA'
« 7§, d(fn)ads = 4-00
The graph of the density function d(f*) is shown in Fig,
2.5.1. It may be concluded thst

a) The mean of f;‘equals the quotient of the
means of the model and prototype properties,

b) The maximum deviations of the correlation
function fx are considerably larger than those of either the
model or the prototype property: + 28% and - 22%.

¢) The distributicon of the correlation function
13 skew wheress that of the properties themselves was sym-
metric,

vi) The Statisticsl Model Investigation - The ststistical
model investigation proceeds as follows:

a) Density functions for the geometric and
meterial properties, the external influences and the equa-
tions of state are elther assumed or determined experiment-
ally. They will depend on the particular manufacturing pro-
cess, loading process, etc, Little work appears to have
been done in this direction up to the present,

b) The density functions for the correlation
functions of the properties in (a) are determined as demon-
strated in Tables 2.,5.1 and 2.5.2., The esmount of computa-
tion involved 1s large, end will increase if d(Am) and d(Ap)
change from point to point in the structure,

¢) The model output Dh is measured a consider-
able number of times so that its density function d(Dm) can
be found.
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d) The density function d({,) must be found
before the density function d(Dp) of the prototype output
Dp can be determined, But this requires that fD be known
as a function of all the other correlation functions of the
experiment, since D may be statistically dependent on all
the other structural properties, 1.e,, variations in any
of the structural properties may cause D to vary statisti-
cally, We come to the important conclusion that statisti-
cal analysis demands & knowledge of the general equations
(2.1.11) governing the phenomenon: a case study elone is not
sufficient, Methods to obtain equations (2.,1.11) have
already been discussed in Section 2.4. Suppose that it has
been found that

b, b, b b
fe = fe &8 7 (2.5.7)

If it is assumed that the variables on the right are statis-
tically independent, the density function for £ can be:

found from b
d(fg) = (£ d(£)-- . d(5*)
(2.5.8)

If the right hand members of equation (2.5.8) vary from
point to point on the structurs, d(f;) has to be obtained
for each point individuslly. The amount of numerical work
involved makes the use of a computer desirable,

e) Once d(f,) 1is known, it is possible to
determine d(vp) in the manner of Tebles 2.5,1 and 2.5,2,
using the relationship

d(e) = d(D (2.5.9)

vii) Conclusions -

a) If the variables involved in the experiment
are statistically independent, the mean of the prototype
outcome will have the same value as the outcome when a "cer-
tain" scheme of knowledge is assumed.

b) Since the correlastion functions tend to have
2 broad distribution as shown in the example of Fig, 2.5.1,
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the prototype outcome‘will have a much larger deviation
than the model outcome,

¢) Conclusions (a) and (b) prove the impor-
tance of taking a large number of readings of the same
outcome in the model experiment, Only in this manner can
the effect of the wide distribution of the correlation
functions be eliminated through the determination of a
reliable mean value,

2.5.2 Ultimete Load Models, Ferry Borges, Ref, 11, has
investigated the effect of fr on the distribution of the
prototype results as predicted from ultimate load model
studies, His conclusions are

a) An increase in dimensions considerably
decreases dispersions, regardless of the failure criterion
adopted,

b) The transformation of the mean values depends
largely on the failure criterion adopted, In brittle rup-
ture, the mean values decrease as the dimenslons increase.
In ductile rupture, the behavior of the mean values depends
on the number of failure surfaces, Finally, in the theory
of similitude for failure by deformation the mean values
remain constant with changes of scale. The latter result
agrees with the deduction in Section 2.5.1.

Since there ere factors besides rr which
affect the prediction of the prototype results from the
model study, this investigation is by no means complete,

2.6 STATIC AND DYNAMIC STUDIES OF MASSIVE STRUCTURES

In this section, the theory derived in preceding
sections will be applied specifically to structures whose
mass plays & significant part in their behavior,

2.6.1 The Effect of Mass on Structural Behavior.

The mass of a structure affects its behavior in two different
ways:
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a) It causes body forces due to the earth's attrac-
tion., The concept of an "earth acceleration" causing these
forces is conventional and frequently convenient, but 1t
may give the erroneous impression that model studies involv-
ing earth attraction ere dynamic in character. It is
preferable to base simllitude of model and prctotype on
Newton's Law of Mass Attraction:

mM
G- X-—{—‘r (20601)
where G = force of attraction between masses m and M
r = distance between masses
¥ = agravitational constant

Since in most cases the earth's mass M as well asx-and r,
the distance from the object to the earth's center, are the
same for model and prototype, the ratlio between the earth
attraction on them 1s entirely determined by the ratio of
their total masses, Earth attraction must therefore be
considered a static phenomenon,

b) The mass of a structure or of its loads
also gives rise to inertia forces once the structure as
a whole or parts of it are subjected to accelerstions,
These accelerations may be caused by dynamic surface loads,
support accelerations or free vibrations of the structure,
According to Newton's Second Law

P = ma = -M (2.6.2)
where F = force applied to particle mass m

a = acceleration of m due to F

F, =

1 inertia force, equal in mggnitude but
opposite in direction to F,

Since the acceleration a is the second derivative of dis-
tance with time, inertia forces are a dynamic phenomenon,
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2,6.2 Types of Model Studies Involving Mass, The
physical laws outlined in the preceding section make the sub-
division of model studies involving mass into two categories
natural, Each of the two categories will be treated sepa-
rately in more detail in later sections,

1) Static Studies Involving Mass - The body forces
are caused by earth attrection only, all surface loads are
static and the supports do not move, Typical examples are

a) Massive concrete structures such as dams,

b) Structures designed mainly to carry their
own dead welght, e.g, large span bridges,

¢) Structures subjected to loads caused by
heavy masses, e,g, grain silos and coal bunkers,

11) Dynamic Studies Involving Mass, If the prototype
structure is subjected to dynamic surface forces, support
accelerations or free vibrations, & dynemic model study with
proper regard to inertis forces has to be undertaken,
Dynamic studies mey, or may not, include also the effects
of static surface loads and earth attraction acting on the
prototype, depending on the relative size of the forces
involved. Earth attraction can, for instance, frequently
be disregarded. Since concrele, for example, has a mass
attraction per cubic foot roughly equivalent to one psi
acting on the surface, the dead weight stresses of say 12"
thick shells subjected to blast load pressures of 25 to 200
psi can safely be neglected,

Typical examples of dynamic studies are

a) Surface structures such as dams or shells
responding to dynamic surface loads,

b) Articulated structures such as bridges, trans-
mission towers or radar antennae subjected to drag loads
caused by atomic explosions,

c) Structures supporting heavy masses and sub-
Jected to either blast loads or seismic support motion,
As in the case of model studies where mass is not of impor-
tance, the following types of structural behavior may be
investigated:
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i) Stress or strain distributions and defor-
mations if a structure is linearly elastic (i.e., super-
position valid if deformetions are smell) or if the struc-
ture is nonlinearly elastic or plastic (superposition not
valid).

11) Ultimate load bearing capacity of the struc-
ture,

i{11) Determination of the loading csusing elastic
or inelastic structural instaebllity,

In addition, however, the gravity and inertia forces on
masses supported by the structure should be faithfully
reproduced in the model. Both the effect of their inertis
forces on the overall structural action and their cestruc-
tive action as missiles ere of importance, It is thus
important to reproduce the interaction between the masses
themselves, such as friction forces, as well as the inter-
action between the masses and the structure,

2,6,3 The Laws of Similitude for Massive Structures,
It will be assumed in this section that the correlation
functions can be chosen independently of the model material,
i.e., method II of Section 2.4 is used. The following
relationships hetween the correlation functions have already
been derived in Section 2,2.8:

Accelerations: £, = .18 (2.6.3)
Body Forces: fg = 0, = rsrrrgz (2.6.14)
Surface Forces: fg = for = fgfaf;

= 10272 (2.6.5)

These equations are valid for both static and dynamic studies,
Generally fr has to have a value considerably less than unity
to make a model study possible, This can be achieved by
varying either tne parameter fa which is dependent on. the
external influences or the parameters f.,and rg which are
dependent on the model material,
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The difference between the laws of similitude
for static and dynamic studies lies in the freedom that may
be exercised in the choice of the correlation functions,

In a static study where no time measurements need to be
cerried out on the model, equation (2.6.3) 1s sutomatically
satisfied since ft can be given an arbitrary velue, In a
dynamic model study, the time correlation function ﬂt is
of much more importance since the prototype load-time
function and support acceleration-time function must be
scaled for the model according to ft. The choice of ft
depends largely upon the nature of the dynamic loasd. It
is convenient to distinguish between the following types:
Load Type I - The applied surface forces are known
as a function of both space and time, If it is assumed
that the technical problems which arise, e.g. in the model-
ing of load rise times of sasbout 2 milliseconds, can be
solved, this type of dynamic load imposes no restrictions
on the correlation functions,
Load Type II - The applied surface forces are
not known as a function of both space and time, but are

caused by phenomenas subject to known physical laws, e.g.
those of aerodynamics., The model must then be subjected
to the actual physical event that causes the loading, but
the variables involved (e.g. overpressure) may be scaled
down according to the chosen values of the correlation
functions, The laws of similitude must now cover not only
the model itself, but also the events leading to the load-
ing. In many cases 1t will still be'possible to chose

fg and ft different from unity.

Load Type III - The dynamic gurfece forces and
the physical laws of the events by which they are caused,
are not exactly known, as in some types of blast loading.
The model must then be subjected to the actual prototype
losding which implies that ft = fg =1, 80 that the choice
of model materials now becomes very limited., There 1is,
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in addition, no guarantee that fr is not also one of the
parameters affecting the space-time distribution of the
loading, so that in effect structures subjected to type
III loads cannot always be modelled with confidence.

2.6, Static Model Studies with Natural Earth Attrac-
tion. According to Newton's Gravitational Law,(2.6.D,

applied to the esrth (massM) and model or prototype
respectively, the body forces are

Mgy
m Rt
Mg
G =
P '?Bt (2.6.6)
so that
G g
fg = — = = = f (2.6.7)
G g
P &
Substitution into equation (2.6.5) yields
fe = Tgfp (2.6.8)

The value of f_can generally be varied within very narrow
1imits only, as 1is shown in Table 2,6,1,

Table 2,6.1 - Typical Average Values of Density Ratio fg’

Prototype Material
Model Steel |Aluminum| Concrete| Masonry
Material [Spec. Mass| 7.75 2,65 2.40 2,00
Mortar 1.65 0.213 | 0.621 0.687 0.825
Gypsum 2,30 0.296 | 0.869 0.959 1,150
Plexiglas 1.20 0.165 | 0.454 0.500 | 0,600
Rubber 1.10 0.142 | 0,415 0.458 0.550
Steel 7.75 1,000 | 2.920 3.230 3.875
Aluminum 2,65 0.341 | 1,000 1,100 1.325
Ph. Bronze 8.90 1.150 | 3.360 3,710 4. 450

The table shows that 'the density ratio is less than 5
whereas the length ratio is normally less than 0.125.
It therefore follows from equation (2.6,8) that the stress
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ratio fo 1is less than 1., But according to the second of
equations (2.3.10), the stress ratio for linearly elastic
model and prototype materials 1s
f = n
C E (2.6.9)
p

Thus the model material must be less rigid than.the proto-
type material, It is suggested that instead of choosing
fr and then searching for a model material which is such
that f, and fg satisfy equation (2.6.8), the inverse pro-
cedure is followed, as demonstrated in the followlng exsmple,
Example: A plexiglass model of a steel bridge is tested

in the linear elastic range. If it is assumed

that E = 450,000 psi for plexiglas

E 30 x 10" psi for steel,

find the length correlation function fr required

so that static body forces are correctly repro-

duced in the model,
Solution: From equation (2.,6.9):

6
f'= 0.'.],5 x 10 = 0.015
30 x 10
From Table 2.6,1: fg = 0,165
_0.015 _ 1

From equation (2.6.8): f (Ans.)

T 0,165 11
This example demonstrates that unless f_or fa are artifi-
cially increased, relatively large models are required to
reproduce gravity stresses faithfully, Where very flexible
materials are used, e,g,, rubber models of concrete dams(h),,
smaller models are feasible, but the high Polisson Ratio of
the model material frequently makes the test results unreli-
able (see Section 2,3.8),
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2.6.5 Technical Aspects of Static Studies with Natural

Earth Attraction, If the model study 1is concerned with the
ultimate load bearing capacity or with the stability of a
structure, direct observation without the use of sensors
and recording devices for strains and deflections will be
sufficient, so that both the problems of body force load-
ing and of model observation esre automaticelly solved.
If the stress diéf;ibution in the structure is to be deter-
mined, considerable difficulties both in the determination
of the strain distribution and the derivation of the corre-
sponding stress distribution are experienced,

1) Strain Distribution - The strains caused by the dead
weight of a model are extremely small. Consider for instance
the extremely favorable case of a mortar model (E = 75,000 psi,
w = 100 pef) of a 500' aigh concrete wall with f = 0.01.

Then the maximum strein at the foot of the model 1s of the
order

€ = 5 x 100 xloé'—:"
14y x 75,000

Not even the highly developed electrical strain measuring
devices are capable of reliable detection at such low strain
levels, Another problem is the determination of a zero
reading, 1.e., a strein gage reading for zero body forces,
To overcome this serious problem and at the same time to
increase the strain levels, tests have been carried out
where the strains ere first measured with the model in an
upright position, and then with the model 1nverted(ko).

In this manner, strain readings are doubled., In addition

to the mechanical problems ceaused by the rotation of large
models about a horizontal axis, the method possesses an
inherent inaccuracy where the stress-strain properties of the
model are different in tension and in compression, In most
cases, the strain level remains too low for accurate sensing
and recording., Additional difficulties are encountered if
strains inside the model are to be measured, Since it is

SO/uin/in.
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seldom possible to make the sensing device out of the model
material, the presence of the device will cause discontinu-
ities and changes in the strain field which frequently may
lead to erroneous results,

11) The problems encountered in deriving the stress
distribution of a 3-dimensional model from its strain dis-
tribution are of a technical nature. They have already
been discussed in Section 2.3.8.

2.6,6 Static Model Studies with Earth Attraction
Artificially Induced by Acceleration, The large models
required by the method of Section 2,6.4 and the unsatisfac-
torily low strain levels obtained lead to the use of srtifi-
cial methods of simulating earth attraction. Consider
equation (2.6.5):

fo = ff,T,

Suppose that in a particular model study it is considered
essential to reproduce both the stress-strain character-
istics and shrinkage and creep properties of the prototype
material, and that this can be achieved only by using the
prototype material as model material. Then

fo =fp =1

and equation (2,6.5) becomes
fofp =1 (2.6.10)

The model must therefore be subjected to very considerable

accelerations, to which it will respond dynemically., 1In

order to demonstrate the implications of the dynamlc response,

2 typical though simplified example 1s given: consider a

310" x 4" x 1" mortar beam (E = 3 x 106 psi, w = 100 pcf)

which is simply supported on a sleigh as shown in Fig., 2.6.1,

If the sleigh is given a constant acceleration £ along

a straight line, the beam is subjected to constant forces:

F = Q3L
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at each of the supports, where

3

L

mass of beam per unit length

length of beam,

The dynamic response of the beam 1is analysed in Appendix A,
The actual bending moment at midspan 1s calculated and com-
pared to the static bending moment caused by a loadgﬂ per
unit length of the beam. Since g! is the body force per
unit length which we actually wish to obtain, and which would
have been obtained i1f the beam were perfectly rigid, the
calculations give the error caused by the dynamic response
of the beam.

The results are presented in Fig. 2,6.2, It
may be concluded that

1) The model 1s subjected to stresses far exceeding
those of the steady state, represented by 100% in Fig. 2.6.2.
The method is thus not suited to ultimate strength tests,

11) Models frequently have less than 5% of the critical
damping. No readings should therefore be taken before the
model hes been accelerated for at least 2 seconds., If 2
more seconds are required to take readings, and the model is
subjected to 20 x earth acceleration, the distance travelled
1s

s = 8t = 5150 ft.

Since the model has to be decelerated more gradusally, the
total test run becomes very long. Linear acceleration may
be eliminated as a practical method of model testing.

Accelerations can also be achieved by means of
centrifuges., 1In addition to egonomic problems and techni-
cal difficulties such as strain measurement' on fast moving
models, the method possesses an inherent source of error, which
will be demonstrated by means of an example:

Suppose that the gravity stress distribution in
a 1200' wide and 400' high concrete dam is to be determined.
A model material is chosen so that fs = 1 and fc'= 0.2.
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A 10' O" diameter centrifuge is available and accuracy in
model manufacture and straein measurements limits fr to 1
in 800. Then
ra=f—"=—5-=160.

r
A particle moving elong a circle with radius r at a constant

angular velocity w is subjected to a constant centrlpetal
acceleration

a = NZP

Thus if point A in figure 2.6.3 is to have an acceleration of
160 x 32.2 ft/seca, the frequency of the centrifuge must be

-
f = 1 .\/M = 5.25 rps

or .75

At points B and C on the center line, the acceleration

will be about 5% in error, but will act in the correct

direction. At D, the component parallel to OC will be

5% in error, and there is an additional acceleration equal

to 16% of the acceleration at A acting in direction DB.

The inherent errors are thus not excessive and the methed

will be useful if the technical difficulties can be overcome,
2.,6,7 Static Model Studies with Earth Attraction

Artificially Induced by Surfsce Forces. The earth attrac-

tion on the prototype material can also be simulated by the

spplication of surface loads at discrete locations on the

model, The method has, for instance, been used in model

studies of concrete arch dams by Rocha, Serafim and Ferreira(3u).

If the forces are applied to the face of the model, the

continuity of the model materiel need not be disturbed,

but considerable errors in the stress distribution in thick

models may result, If they are applied 1nside the model,

the stiffness of the structure 1s affected, A quantitative

analysis of these problems 1s given in Section 2.7.
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The effect of the surface losds on the model
can be represented by assigning the model material an
artificial specific mass g . Suppose

Pm = total surface load epplled to entire model,
Wh = total weight of model,
Vm = total volume of model,
g, = earth acceleration
Then
P + W P
g, = ———— = —/ +g (2.6.11)
V_ sa V_ a
me me
£ Tg = artificisl specific mass correlation function
Eb = gpecific gravity of prototype
then g P
fg = i‘m_. = ___._._m + fg .
&p Vm®% (2.6.12)

It 1s now possible to select both the size of the model
(1.e., fr) and the model material (1.e, fq and f_) then
to determine the required rg from equation (2.6.5) and
finally to compute P, from equation (2.6.12). The rules
according to which Pm should be distributed over the model
will be discussed in Section 2.7.

Artificilal increase of model specific mess could
also be achieved by making the model of 2 magnetic material
and placing it in a magnetic field., The method has the
basic limitation that magnetic lines of force leave a surface
normally, i.e., the direction of the forces would not agree
with the direction of earth attraction, 1In addition, the
magnetic force 1is not uniformly distributed over the thickness
of the model,

2.6,8 Dynamic Model Studies with Natural Earth Attraction.
A model study becomes dynamic as soon as dynamic surface

forces or support accelerations must be reproduced. The
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structure may, or may not, at the same time be subjected

to static surface loads and earth attraction, It now
becomes of importance to differentiate between loads hav-
ing significant mass, and thus subject to inertia forces
like the structure itself, and loads whose force only needs
to be simulated, The relationship between the correlation
functions and the importance of ftﬂhave already been dis-
cussed in Section 2,6.3, In this case, as in Secticn 2.6.4,

o = I,

so that fo = fgfr (2.6.13)
In addition, £, =1

so that £, = r,° (2.6.14)

Once the model material has been chosen, fg and fg are
known and rr can be determined from equation (2.6.13),
Then f, is given by equation (2.6.14). Since surface
Loads must be scaled according to the stress correlation
function fg , the load-time curve for the model is now
uniquely determined,

This method therefore permits the effect of
both earth attraction and dynamic surface loads to be
exactly reproduced in the model, but it is tacitly assumed
that the loading 1s of Type I. If the prototype is sub-
jected to support accelerations, these must be applied to
the model in the ratio fa = 1, The technical difficulties
ere the same as in Section 2.6,5. Deta recording will,
however, become more complicated since strain versus time
curves must now be obtained.

2,6,9 Dynamic Model Studies with Artificially Induced
Earth Attraction. In meny model studies, the previous method
may not be suitable because the models become too large
or because the loading is not of Type I. It will then be
necessary to simulate earth attraction artificiaelly., While
the earth attraction body forces must be reproduced artificially
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it should be noted that the inertias body forces will suto-
matically satisfy the laws of similitude as 1s demonstrated
by the following example:

Consider a polint load Pp acting on a particle
of unit volume with specific mass gp, giving it an acceler-
ation ap according to Newton's Second Law:

p T B%p ~ (2.6.15)

A model of the particle 1s made at scale fr’and the surface
forces are scaled in ratio f, . We wish to prove that
the model 1s automatically subjected to the correct inertis
body forces but that the laws of similitude for earth attrac-
tion are not satisfied unless fa = 1, a case which we have
excluded in this section,

The model properties are

P, = qrfer
&n = Te%
= 3
v, 5 (2.6.16)
According to Newton's Second Law
Pm = vmgmam
Substituting from equation (2,6.16):
2 = 3
qrfer = fffggpam

Using equation (2.6.15):

t = rc’ a
m P
frfg
R o c = frfgfa (2.6.17)

Equations (2.6.17) and (2.6.5) are identical so thet inertis
forces sare always correctly modeled,
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The earth attraction on the prototype is

Mg
Ap = X'_.B
rl (2.6.18)

where t, M and r for Newton's Gravitational Law have been
defined previously. The earth attraction on the model is

3
ME f

Am =¥ gﬁ (2.6.19)

r

But since Am is a point force, it follows that

- 2
Ap = gwfrAp (2.6,20)

Equations (2.6.18) to (2.6.20) yield

Te = ITplg | (2.6.21)

Equation (2.6.21) is a special case of equation (2.6.5)
which proves that the earth attraction is modelled correctly
only 1if fg = 1.

If £, # 1, artificial methods can be used to
reproduce the earth attraction body forces, It is con-
sidered impractical to apply both a blast load and an
artificial acceleration to the model, and the discussion
will therefore be restricted to the use of surface forces
for the simulation of earth attraction,

As shown in Section 2.6.7, both the size of the
model (1.e., fr) and the model material (i.,e., f, &nd rg)
may be chosen arbitrarily or in such a manner that they
satisfy the conditions imposed by the dynamic surface loads,
Type II or III., Then f_ 1s determined from equation (2.6,5)
and P from equation (2,6.12)., As shown previously, the inertia
body forces due to the dynamic surface loads are automatically
reproduced correctly in the model, The inertia body forces
due to support accelerations will be scaled correctly if
the support accelerations of the model are calculated
using fe as determined from equation (2.6.5).
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The problem of reproduction of gravity stresses.
in models is thus basically the same in static and in
dynamic studies, One technical problem is, however, added
in the latter case since the surface loads simulating eerth
acceleration have to remain constant when the model vibrates,
2.6,10 Modelling of Heavy Masses Supported by Structures.

A great variety of important public, industrial and military
structures support heavy masses e.g., warehouses, grain
silos, oil storage tanks, etc. Since the dynamic structural
action in these cases is largely determined by the supported
masses, their effect may not be neglected in a model study.
In particular, it 1s necessary to take into account:

a) the earth attraction on them,

b) 1inertia forces due to dynamic response,

¢) friction forces acting between individual loads
snd between the loads and the structure,

d) their destructive action if dynamic response of
the structure, or direct exposure to dynamic external loads,
turns them into projectiles.

Factors (a) and (b) may be studied in the same manner as
the dead weight and inertia forces of the structure itself,
as discussed previously. Factors (c) and (d) are discussed
individually in the following two sections,

1) Modelling of Friction Forces - Consider a proto-
type mass Mp supported by a structure so that the coefficient
of frictiorn between them 15/Lp. The:maximum acceleration
ap to which the prototype structure may be subjected before

the mass starts moving relative to the structure can be
deduced from Fig. 2.6.4

8 = Mot

where ae

Similarly for the model

am =/u'mae

earth acceleration,
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8o that

8 _ /tﬂ

& M (2.6.22)

As discussed previously, accelerations in the model frequently
ere considerably larger than in the prototype, but generally
/um"/“'p' In these cases, similarly with regard to friction
forces can be achieved by artificlal methods only.
a) Increase the normal force N, An additional
force P normal to the surface ‘between model structure and
load is provided so that

N = P+ Mmae

and

Myl = Mgl * Mpa,)

ﬁ:ﬂ_’.ﬂ[l’ +1]
ap /Lp Mmae

Once fa and QM.are known, the required value of P can be
calculated from equation (2.6.23). The force P can be
obtained by using magnets as loads and making the model of

a megnetic substance where the loads rest on it, The

method has the advantage that, once the load starts moving
relative to the structure, the full friction force will
remain acting between their surfaces and the load will again
come to rest relative to the structure once the inertia
forces ‘become less than the maximum available friction force.

This is of importance where a structure goes through several

so that

(2.6,23)

cycles of vibration béfore it reaches meximum stress or some-
times ultimate faillure conditions.
b) Increase coefficient of friction. The mass

representing the prototype load may also be glued to the
model, particularly if it is reasonable to sssume that the
load on the prototype will not move relative to the struc-
ture, so that it is only necessary to obtain & sufficiently
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large friction force in the model, It must, however, be

remembered that, once the bond s broken, the behavior

of model and prototype loads is no longer similar,

These artificial methods will not be necessary where natural

earth attraction is employed in the model study, i.e., £, = 1.
11) Modeling of Projectile Action - Once a load moves

relative to the structure, it becomes a projectile which,

upon Impact with parts of the structure or with its contents,
may cause considerable demage, True modeling of this
phenomenon 1is particularly important since a general ana-
lytical treatment of the problem is not available (see Ref, 30,
p. 127 et seq.) The following limitations are imposed upon
the correlstion functicns for the geometry and material
properties of the masses representing the model loads:

a) Since the size of the impact area may be
of importance, the model load must be geometrically simi-
lar to the prototype load, and fr for load and structure
must be the same,

b) While the load is still moving with the struc-
ture, it is subjected to the same acceleration so that ra
is the same for both, and thus ft must also be the same
(since £, 1s already fixed).

c) The ratio between the prototype and model
kinetic energles (}mvz) has to be the same for structure
and load so that in eddition to the preceding, fg =1,

d) The percentage of the kinetic energy which
must be absorbed by the structure depénds largely upon the
nature of. the impact 1f the projectile mass is considerably
smaller than that of the structure and the masses still
adhering to it, It 1is considerably less for plastic than for
elastic impacts. For this phenomenon to be correctly repro-
duced, it 1s essentiel that f, 1s the same for structure and
loed,

It may thus be concluded that, for missile action to be

correctly modeled, the correlation functions rr, ft’ fg
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and 4} have to be identical for the structure and its loads,
In addition, the requirements of Section (a) have to be
met, These conditions are not, however, sufficient to
guarantee similitude for impulsive actlon since factors
such as the crystalline structure of the prototype struc-
tural material and load may be of importance,

2.7 THE SIMULATION OF BODY FORCES BY SURFACE LOADS

It has been shown in previous sections that it
frequently becomes desirable to replace the body forces
due to earth attraction by a serles of discrete surface
loads, This section is devoted to an analysis of the
errors resulting from the approximation, and to methods
that may be employed to compensate for, or at least to
minimize, the error,.

Consider a structure loaded with n discrete
surface forces LJ such that their sum Pm satisfles the
relationship

P ™ )z’l L;\ =V Wp (r%-{%) (2,7.1)

derived in Section (2,6.7). Divide the total volume Vp
of the structure into n subvolumes VJ, each proportional
to its load Lj’ so that

v L
V-2 L -2 »
i Ly P, Wp&,'&,) (2.7.2)

The subdivision has to be carried out in such a manner that
the influence volumes are as geometrically similar as
possible, Assume that a typical influence volume, as

shown in plan in Fig. 2.7.1, 1s small enough so that its
thickness t can be considered constant, Lgt load L, be
applied as a uniform stress p over area a, such that the
centers of gravity of V‘1 and aJ coincide in plan, The
problem now becomes the determination of the stresses
caused 1in element vJ by the replacement of the uniformly
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distributed body force, which should exist according to the
requirements of the exact theory of similitude, by the
surface force L,, In the model, these stresses will be
added vectorially to the stresses caused by the oversll
structural action,

Consider a section ZZ through the center of
gravity of element Vj' taken so that the length (& + 2,)
is a minimum for the figure. If shape ABCD is not too
irregular, the direction of ZZ will be a good approximation
to the direction of maximum stiffness of the element, To
obtain an upper limit to the error stress fileld, it will
thus be safe to consider a slice of unit thickness, as shown
in Fig. 2.7.2, where £ is the smaller of lengths ll and &2.
The analysis will be based on the following assumptions and
conditions:

1) Since an upper limit to the error stress fileld
1s sought, a condition of plane stress over EFGH may be
assumed,

i1) The model material is homogeneous and linearly
elastic in the range considered, This implies either that
the entire stress-strain diagram is linear, or that the
additional stresses caused by the approximatlion of the body
forces are so small that within thaet particular range the
stress-strain diagram is linear,

111) Deformations are small, This does not imply that
the model as a whole has to undergo small deflectlons, but
rather that the relative deflections of points within
EFGH have to be small,

iv) Except for stress p, faces EH and FG are free of
external loads.

v) Element V, is restrained along EF and GH in such
a manner that E and H do not displace and

-8 AV

-W:-Wco
along EF and GH. This condition satisfies symmetry require-
ments 1f all influence volumes V, are identical and carry
{dentical loads., F and G do displace due to the elastic

deformation of lines EF and G%b
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vi) The nature of the supports of the structure es &
whole does not affect the error stress field significantly
since

a) the exterral loeds rre balanced by the body
forces so that no edge reactions sre required,

b) condition (v) eliminates the effect of re-
straints sgainst edge rotation,

¢) smell errors are csused if edge EF is not
rigidly restrained et the support.
Since the body forces Y ere balanced by the applied loagd,
equilibrium requires that for unit thickness of element EFGH

2ty = - 2bp
Y = - —b p (2-703)
tt

Using Timoshenko's Notation (12) , the equilibrium equa-
tions are

Qg‘, b‘tw\a

3% + % =0
ATue ¢
s Y FE +Y=0
dx dy (2.7.4)
and the strains will be compatible 1if
b
G, + ¥,
bx‘ a’)( (2.7.5)
The boundary conditions are
Y=0: 0y = Ty, 20 “Lexecal
X : $ . (2.7.6)
et - Q “-L egx e+t
L g (2.7.7)
6';830 I® l*bb’ 0“%- p IF Ixleb (2.7.8)
= v
x=1t “® g T ex O Oeysat (2.7.9)

The solution is simplified considerably by the introduction
of the Airy Stress Function ¢:
L3
?

—s— 3 -tﬂ
oy $ 69 (2.7.10)



The equilibrium equations are identically satisfied and
the compatibility condition (2.7.5) reduces to

vt o
A solution to this partisl differential equation is

¢ = cos ax [c, cosh ay + ¢, sinh ay + Gy coth oy +C, 4 0inh a\*]

Using (2.7.10):
0= cOs o,x[qa,icosh oy +oainh oy C,0(20inh ay + oy ogh oy)+ C,0 (2cosh aysay sinh “%SJ
U‘--a»’cos ax [c, cosh ay + ¢ 4inh ay 4y coshay + oy sinh ”J) -4Y

t"ﬁ. ~a.9in u[c‘a. sinhaytg,a. cosh ay + Cy(cosh ay+ oy ainh ag)+ ¢, (sinh ay+ a.\s.cos\\ ag)}

Using (2.7.9): T, g‘;w%‘%o ON x=tg

. al = nw
o s X
Using (2.7.6):

1]
o

caa‘t-c1 = 0

U (2.7.7): at sinh at
sing (2.7.7) Co = ok & ot cosha.tc: dyCy
To satisfy (2.7.8), a Fourier Series for-c'y is required.

Using the last three results, and replacing for Y from
equation (2.7.3

r\a -%{- Y +wc“a,"coux[-!- ainh ay + v cosh cus-n-%d,,siu\\ a.»‘]
29 . b
WT PR yet, & -LB+“Z"" 4m"—'£-mn'-["-

2 p ain ab
ot [sinh at + at coshat +ad,t swmh d:J
All the coefficients have thus been determined, and sub-
stitution yields

. c“-

—--i sinh ay + ay coshay + d, ( 2cosh ay+ ay sinhay je, cos ax
K Al | % Gyt agsinnay

nsi
(2.7.11)
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0'2 = by « Z {sinh ay + ay cosh ay + dpn ay sinh ay} €, cos ax
P tl =1
(2.7.12)
T 0
_%'.V. = Z {ay sinh ay + d, (sinh ay + ay cosh ay)} @, sin ax
ns!
2 sin ab (2.7.13
where €, 1’nisinh at + at (cosh at +dn sinh atﬂ (2.7.14)
with dp = at_sinh at AYD & = ¥ (2.7.15)

sinh at + at cosh et

The results are in non-dimensional form, depending on the
ratios t/¢ end b/C., It remains to prove that boundary
condition 2,7.9 is satisfied.

The displacement in the y-direction is

vt f(cy-)cx)d + £(x)
-3 I ""‘)el P

FY .
Since 3— and -sx contain sin T , the series vanishes

onx=i¢ sot:hatzV ? _bp
ov - a (x)= g (
‘bx‘)x[[tln'y’]+8X)SX)

Choosing g' (x) = 0 ensures that ?_Jv; = 0 for all y on

x=2%¢ Since ‘t"y = 0, this also ensures that g“ =0
y
for all values of y on x = = &, The condition that u = O
n ¥ & cannot be met since
A bp
y = %I(cx-') ) ax + £y) * - xy + £(y)

Choosing f(y) = O shows that u is caused by Poisson
effects only. This deviation from the original conditions
will be neglected,



Examples: Equations (2.7.11) to (2.7.13) will now be used
to derive the error stress distribution for

1) t=1¢ (shear type structure)

11) t = 0.1 £ (bending type structure)

In each case, three aslternate widths of load distribution
are investigated:

b=0,1£,b=0,252and b=0,54L

The case b = £ 1s trivial since the series terms in equations
(2.7.11) to (2.7.13) vanish.

2.7.1 Error Stress Field if Height t Equals Halfspan @.
This case 1s typical of massive structures where earth attrac-

tion forces may be of great importance, It 1s considered
of interest to determine both the error in strain readings
on the surface, and the distribution of major principal
stress and maximum shear stress throughout the mass, 1In
order to facilitate similar calculations for other ratios
of t:2, typical examples of the computations are given below,
It will be noted that the first four terms of the series
solution asre evaluated with slide rule accuracy. Conver-
gence 1s good except at X =0, b = 0.1 £, y = t where extra
terms were added.

Teble 2.7.1 - The information contained in Table 2,7.1 and
Table 2.7.2 is valid for all values of y.

Table 2.7.2 - The values of a-x, C'y and txy have been calcu-
lated for y = 0, O.4t, 0.6t, 0.8t and t, for each of the
three values of b, The major and minor principal stresses
0'1 and 0'2, the maximum shear stress T,,, and the angle «
between o, and &, were then found from

—o\* '
Crum 2 (B2 4 <
o, = S0 g,
0“1- El.‘.;!‘. - T max

o = % avetan —%55#5
%

)

T2
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Only the computations for 4= 0.6t, b = 0,25 £ will be shown
here., Values of maximum normal and shear stresses for
other values of y and b:& can be read off Figs, 2.7.1 to
2.7.3 and Tables in Appendix .B,
sinh 0.6 nw » cosh 06 wr

Since

equations (2.7.11 to(2.7.13 reduce to

[ ]
% s - 5 {|+o-6nw +d, (2.+o-6m)} e, Sinh O6ur cos ax
[
%& = 0:1§ + §‘ { |+ 0.6 wn (l+d,,)} 2, sinh 0-6nr cos an
(]
%"3 - g‘ {.o-s wy +d, (l+o-6mr)} Ly Sinh 0-6wer sinox
. Coefficlent of Cos ax
n | 06wnr | e,0nh 06wy or Sin ax for
Ox /P ‘&LP T&,P
1(1.88 | 1.97 x 1072| -0.1150 | 0.0850 | 0.0800
2|3.77 | 2.05 x 1073 | -0.0200 | 0.0165 | 0.0161
315.67 [-1.90 x lO-h +0,0026 | -0,0022 -0,0022
L |7.54 0,0 0,0 0.0 0.0
Using the table for dn!-;:‘!and m—'-":l, we find the

following results,
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Table 2.7.3 Typical calculations for the Error Stress

Field
Coefficient » cos ax
o'x
-’i‘ =1 n=2 =3 n=ly T
0 -0,1150 | -0,0200 +0,0026 0 -0,1324
0.125 | -0,1060 | -0,0141 +0.0010 0 -0,1191
0.250 | -0.0810 0 -0.0018 0 -0,0828
0.375 | -0.0439 | +0,0141 -0,0024 0 -0,0322
0,500 0 +0, 0200 0 0 +0,0200
0.625 | +0,0439 | +0,0141 +0,0024 0 +0, 0604
0.750 | +0.0810 0 +0,0018 0 +0,0828
0.875 | +0,1060 | -0,0141 -0,0010 0 +0,0909
1,000 | +0,1150 | -0,0200 -2.0026 0 +0,0924
Coefficient x cos ax

% =1 n=2 n=3 n=l %i

0 0.0850 0.0165 -0.0022 0 0.2493
0.125 0,0783 0.0116 -0.0008 0 0.2391
0.250 0, 0600 0 +0,0016 0 0,2116
0.375 0,032y | -0.0116 +0,0020 0 0.1728
0.500 0 -0,0165 o) 0 0.1335
0.625 | -0.0324 | -0,0116 -0,0020 0 0.1040
0.750 | -0,0600 0 -0,0016 0 0.0884
0.875 | -0,0783 0.0116 +0,008 0 0, 0841
1.000 | -0,0850 0.0165 +0,0022 0 0,0837

76




9€g0°0 | W260°0 | oo 0 081 0 09g0°0 | fhoo‘o 0 L€g0°0 | t260°0+ | 000°1
61L0°0 | TLOT°0| 9L10°0 | 9°0ST] S0°S- | S680°0 | 1€00°0O 2L10°0| 1g0°0 | 6060°0+ | Slg°0O
9910°0 | 921 0| 06€0°0 | O°€ET| 8°€1+ | 9580°0 | g200°0- | Lgfo°0} tggo*o | g2g0°0+ | 0SL°0
LS10°0 | LgN1°0| 9990°0 | 6°921}0sh €+ | 2280°0 | g120°0- | g290°0| otot°0 | 1090°0+ | S29°0
T1€20°0- | L9LT1°0 | 6660°0 | 9°LT1T]OSt 1+ | 89L0°0 | L950°0 2260°0 [s€€1°0+ | 002070+ | 005°0
8290°0- | fitoz 0| 1€€1°0 | 0"oTTjOohg 0+ | €0L0°0 | S201°0- | 6580°0| g2l1°0 | 22€0°0- ] SLE°0
0660°0- | glez 0| fitot1°0 | g*2otfilh o+ | fhoo*o | 2Lh1°0- | 80L0°0| 9112°0 | 8280°0- | 052 °0
S€21°0- | S€te*o| s€g1°0 | 1°96 |912 0+ | 0090°0 | 26L1°0- | 96£0°0| 16€2°0 | 1611°0- | S21°0
HECT 0~ | 26M2°0 | €161°0 06 0 6L50°0 | €161°0- 0| €6fe0 | fEeET 0" 0
ﬂml a“ Kw“ By » T Y™ ¢ ) +MN.D hbmmvnb HM 2 .IM...IO lunm |M|
0 0 0 0 0 000°1
2.L10°0 0 0200°0- | €110°0- | S0£0°0 Slg°o
LgE0°0 0 9100°0- | 1910°0- | €950°0 0SL°0
§290°0 0 g000°0+ | €110°0- | g€LO° 0O S29°0
. 2280°0 0 2200°0+ 0 0080°0 00S°0
6580°0 0 g000°0+ | €110°0 g€L0°0 SlE°0o
§0L0°0 0 9100°0- | 1910°0 £950°0 082°0
§6€0°0 0 0200°0- | €110°0 S0£0°0 521°0
0 0 0 0 0] 0
d f=u g=u 2=u 1= 1
me X
X8 UTS X 3JUaTOTJJ90D

PIeTd $§9d3F§ JOJJIF J0J SUOF3BNoTB) [BOTdAL 1°/°z 91q8l

77



The results of the rest of the computations are summar-
ized in Appendix B, Tables B2 to B§. The major principal ahd maximum
shear stresses given in Tables .B,2 to ,B.6 are presented
graphically in Figures 2,7.3, 2.7.4 and 2,7.5. The veriation
of horizontal stress ¥x on the lower face 1s shown in Figure
2,7.6, but the variation of @x on the upper face (y = 0) i=s
so small that no graph has been drawn,

Conclusions

1) The additional stresses introduced into the model
by the replacement of body forces by a surface load are of
the same order of magnitude as the applied stress p, rather
than the total applied load, If a 1:2) mortar model of a
24" thick concrete shell is loeded on a 2" x 2" gg}d (... 2=t),

end fg = fg =1, fg= 0.6 then from Eqn, 3.6.5 'fg = 24

and from Eqn. 2.7.1 the load applied to each influence ares

is -
Ly = vy wy (fg-fg)

100
. . Lj - ,.l. X 123 X 23.h - 5.)—‘.2 1bo
For b = 0,10 2: P = 135 psi
b= 0,25 2: p = 22pst
b= 0,50 2: p = S psi

A great reduction in the additional (undesirable) stresses
can thus be achleved by distributing the applied load over
a large percentage of its influence area,

11) Strein gage readings on the upper face of the
element in Fig, 2,.7.2 will not be affected appreciably by
the replacement of body forces bg surface forces ( 8, < 1,3%
of p). Strain gage readings on the lower face are affected
considerably ( 0, < 115% of p). Strain gages should
thus alwsys be mounted on the face opposite to that on
which the load 1s applied, -
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111) The replacement of body forces by surface
loads may considerably affect the results of ultimate strength
studies of mass concrete or lightly reinforced structures,
The additionel tensile stresses may lead to premature crack
formation in the model, or they may cause the model to
crack in pleces where the prototype will not crack, Figures
2.7.3 to 2,7.5 do, however, show that the influence of the
surface load attenuates rapidly inside the mass, so that a
slight strengthening of the material in the vicinity of the
load point will eliminate the harmful effects, Since the
stress distribution is known, the amount of additional
reinforcment required 1s readily calculated.

iv) The effect of the body force simulation on
the buckling behavior 1s not studied since buckling is seldom
a problem in massive structures,

2.7.2 Error Stress Fileld if Helght t = 0,1
times Half-span £. Tie loadpoints are spaced
st twenty times the thickness of the element, This 1is
typical of large span bending-type structures, The horizon-
tal stresses Oy on the upper and lower faces of the element
have been calculated from the first four terms of the serles
solution, except at x = 0, b = 0,1 £ where further terms

were added, The results are given in Table 2,.7.5 and sre
shown in Figures 2,7.7 and 2,7.8

Conclusions

1) As for the case t = £, the additionsl stresses
introduced into the model by the replacement of body forces
by a surface load aere of the seme order of magnitude as the
epplied stress p, rather than the total applied load, It
is thus again of advantage to distribute the epplied load
over a large percentage of its influence area,

11) Strain gage readings on both the upper and the
lower face of the element are affected by the replacement

of body forces by surface forces ( (%) max = 30% and 100%
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of the applied stress p respectivel) ., It is, however,
possible to place the strain gage so that it does not
register the error stress fleld., The exact position
in this case depends on the ratio b: £, and varies
bet'7een the quarter and half points of £ (see Fig. 2,7.8).

111) 1If the load is transferred to the model with
a ped, the stiffness of the model is altered locally, This
effect has not been taken into account in the preceding
analysis since, 1n the case of massive structures, the
relative stiffness of the distribution pad can be made
small,

iv) The effect of the body force simuletion on

the bDuckling behavior has not been studied, For normsl
(not massive) structures where this problem would be of
interest,it could be investigated by determining the strain
energy locked up in the error stress field

J [{ (Cx 40y ")“x Zgy}dxdy

This could then be compared to the total strain energy

required to buckle the structure. Locsl snapthrough at
the loadpoint would also have to be investigated.
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Table 2.7.5
Ratio of horizontsl to applied stress for t = 0,14

y = 0 y = t

3 [v=0.102|b=0.25 £|b= 0,50 £|b = 0.12| b=0.258| b=0.501

0 -0,227 | -0,285{ ~0,236 |-1.000 |-0.910 |-0.660
0.125| -0,148 | -0,258 | -0.247 }-0.535 |-0.844 |-0.752
0.250| -0,008 | -0,171 | -0,242 0.119 |-0.595 |-0.84L
0.375| 0,055 | -0,029 | -0.160 ¢.282 |-0,108 |-0.603
0,500 | 0,046 0.120 0 0.101 0.452 0
0.625| 0,043 0.198 0.160 0.094 0.74L 0.603
0.750 | 0.057 0.171 0.242 0.213 0.59 0. 84l
0.875 | 0.049 0.118 0.247 0.159 0.208 0.752
1,000 | 0.038 0.045 0.236 0.071 | 0.006 0.650
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CHAPTER 3

THE TECHNICAL ASPECTS OF THE MODELING OF STEEL STRUCTURES

3.1 SIMILITUDE REQUIREMENTS

We summarize here for convenlence the similitude
requirements for the static and dynamic response of struc-
tures locaded beyond their elastic 1imit, We shall assume
for simplicity that the correlation functions, f, do not
change with position or time as they possibly would in the
general case,

3.1.1 Static Case, In the static case assuming that

we know our prototype material, in this case structural steel,
we must examine the possibility of finding a model material
with similar elasto-plastic behavior, The correlation
functions obtained from a dimensional analysis together
with the compatibility of the material properties of the
model to prototype will determine the design of the model
and the prediction equations from which the prototype
behavior will be extrapolated,

3.1.1,1 Basic Assumptions, In the modeling
technique which is proposed here the modeling materiels are
chosen on a rational basis and then investigated to see
how accurately they can predict the prototype behavior as
compared to actual tests, The scope of this modeling technique
will be limited to structures in which the following assump-
tions hold:

(1) The gravity stresses due to the dead
weight of the structure are not important in the study and
if they do become critical, external means will be employed
to satisfy similitude,

(11) The structural members are essentially
uniaxial so that Poisson's ratio need not be identical in
model and prototype.
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(111) Boundary conditions and loading will be
duplicated adequately and are not the source of serious
model errors,

(iv) In the svatic case we assume that there
are no important differences between the temperature of the
model and the prototype, ft = ]1; and that the specific heat
of the materials does not enter, thus rc = 1; the coefficient
of linear expansion will not come into play so that fi= 1;
and also, fx = 1 since thermal conduction is no problem,

3.1.1.2 Correlation Functions, In the
static case time 1s no longer a variable thus we see that
the only relationship which must be satisfied since acceler-
ations are also arbitrary is the stress ratio, If the
model material is known then the stress ratio is determined
from the stress-strain relationship of the model and proto-
type materials, The length scale is chosen arbitrarily,

If body forces come into play, that is gravity stresses
must be modeled, then the relation which must be satisfied
is:

f_ = ff (3.1.1)

which determines the length scale if a model material is
chosen,

3.1.1,3 Stress-strain Relationship, By
neglecting the effect of time and temperature, we need only
investigate the stress-strain behavior of the materials,
We shall consider the behavior of homalogous points in
model and prototype which in most cases will be the most
highly stressed points which are of interest,

We assume further that the stress-
strain relations for a tension specimen will be representa-
tive of all stress-strain relations for compression and shear
connecting all shear strain components to the respective
stress components in the general case., Knowing the stress-
strain relation for the model material chosen one can then
determine the correlation functions which make it compatible
to the prototype materisal,
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3.1.1.4 The Use of Phosphor Bronze as a
Modeling Material for Structwral Steel, The first example
considers the stress-strain relations shown in fig, 3.,1.1.
This filgure shows the 1dealized stress-strain relationship
of structural steel and phosphor bronze. The compatibility
requirements for the different ranges of strain follow:

When

0 £ € XK€y
we have,
O—P = Ep €p (3.1,3)

Since €m =€p and G-m = r 0O it follows from

c P
Equation (2,3,10) that

O6m _ fBO'E

(3.10 )
D€n  “Ep. "
P Em = fo- Ep (3.1.5)
The materials are compatible,
When e v s G S e otm
Qm = QCym (3.1.6)
Op =SQy (3.1.7)

It follows from equations (3.1.2), (3,1.3) and (3.1,5)

that
Om = €5 ,
Gy Ep €5 O
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(STRUCTURAL STEEL)
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Q
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FIG. 3.1 IDEALIZED STRESS—-STRAIN RELATIONS FOR
STRUCTURAL STEEL AND PHOSPHOR BRONZE.
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It follows from equations (3.1.6) and (3.1.7) that

Cm . Sy . 4 (3.1.8)

The materials are thus compatible,

When ]
Estm < € € Estp

Cm - Om = &) (€n - Etn) (31,9
Op = Oy (3.1.10)

Since ém = é‘p, substitution of equation (3,1,8)

into equation (3,1.9) ylelds

' — —
fy (Op =0yp) = By (€Ep -€Estm) = 0

(3.1,11)

Since ép > € stm, this requirement cannot be fulfilled
l.e., the two materials are incompatible at this rangs,
Therefore we arrive at the conclusion that above ¢ > éstm
the model stress-strain curve should have zero slope,

This means that both model and prototype material should
strain harden at the same stralin, If the plastic deformations
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are not excessive it may still be possible to use this
modeling material up to strains .in the range of eatm
however it 1s unlikely that the full plasticity of a member
could be developed unless plastic strains of the order of
magnitude of Estp are avallable, We shall see from actual
tests that the plastic strain range is enough to develop
full plasticity of the member,

3.1.1.5 The Use of Ethyl Cellulose as a
Model Material for Structural Steel., However, if a material
such as ethyl cellulose 1s used to model steel the stress-
strain relations will be as shown in fig. 3.1.2. Looking
at fig. 3.1.2 and using the results of section 3,1.1.4
we can deduce that for

f = n
‘ E I (3.1.12)
P
For
there is no compatibility unless Em = 0, In other words

for strains beyond éyp but less estp the flatter the slope
of Em (the weaker the material used for the model) the
better is the compatibility of prototype and model materials.
However, in all such cases there will be discrepencies in
the model, i.e., the model will be "distorted" and the
degree of distortion will be a direct function Em' In such
cases the model results cannot be expected to be of a quanti-
tative nature if the model is strained beyond the yield
strain of the prototype.

wWhen estp <€s eym there will be
8 change in the value of f‘. It is now given by
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g’ (3.1:13)

Irem < € €€ gyy then the smaller
the strain hardening modulus of the steel stress-strain
curve the better the correlation, It is unlikely that the
prototype will be able to strain more than the early part
of the strain hardening range at the critical sections
where plastic deformations are taking place before the
structure fails by local or lateral buckling. Thus €stm
is probably the upper limit of strain to be considered.

It should be apparent from the dis-
cussion and fig. 3.1.2 that the relative distortion in the
model will depend on the positions of em with respect to
Eyp. The closer these two values are the better the corre-
lation. Also, the closer the values of’Gst and estm the
better the correlation,

3.1.2 The Dynamic Case. Our main concern in this
study is the dynamic response of structures on which the
dynamic loads are a result of an air blast,

p

The similitude requirements covering this phenom-
enon are derived in Chapter 2, Although similitude does not
necessarily impose a stress ratio of unity in the general
case, the phenomenon of the air blast in order to be modeled
with confidence imposes a stress ratio of one, i,e., the
model and the prototype must be tested at the same pressure,
This means that in most cases the same material must be
used in modsl and prototype since the stress-strain relation-
ship for the two materials must be identical, However,
there may be situations where this restriction is not
necessary. If the structure is made of open or frangible
type construction such as bridges, towers, trusses and
frames the main dynamic loading which results is of the
drag type. In such cases the complications resulting from
the reflected overpressures as functions of the angle of

95



i{ncidence and the peak overpressure do not arise, It will
be possible then to test the model at a smaller pressure
than the prototype. This means that a weaker material '
than the prototype can be used for the model, It is for
such cases that the model ing technique using phosphor bronze
was developed in the study of steel structures,

From the basic relation,

Ty = r'grafr (3.1.14)

in the case of phosphor bronze we have:

1 ~ 1
by = = fo = 1 f = <
r 15 8 Te 2
- -1, -1
f} = fr fé f‘
= )
= 15 xlx= = 7-5
2

* This implies that the inertial accelerations
in the model will be 7.5 times those in the prototype.
The result will be a faster rate of strain of the model
material,

3.2 CHOICE OF MATERIALS

The modeling of steel structures is a compara-
tively new phase in model analysis, Whereas in the past
many elastic model studies of steel structures have been
made these were done mainly in plexiglass or some other
easily shaped plastic, Small scale model studies in metal
are therefore relatively scarce in the literature., The
concept of loading the model beyond the elastic range to
predict the ultimate behavior of the prototype and the
other restrictions imposed by similitude requirements in
the study of the dynamic response of structures cannot be
attempted without a clear understanding of the mechanical
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properties of the materials involved, In this section the
materials of both the prototype and the proposed models
will be investigated.

3.2.1 Structural Steel, The mechanical proper-
ties of a materisl are greatly influenced by its micro-
structure a knowledge of which is very essential in the
choice of a model material which will be compatible with
the prototype., However, we shall leave this realm of
materisl behavior to the specialists in this newly expand-
ing science and as structural engineers concentrate on the

mechanlcal propertlies which are of the most immediate use
to us,

3.2.1.1 Definition of Structural Steel,
Steel is basically an alloy of iron and less than 2% of
carbon by weight, Many other metals can be alloyed with
it to give steels of various characteristics, We shall
be concerned here with structural steels which owe their
strength and other properties chiefly to carbon. According
to the AISC specificaetions of November 1961, Section 2,2
defines "structural steel" as follows:

"Structural steel shall conform to one of the
following specifications, latest edition:

Steel for Bridges and Buildings, ASTM A7
Structural Steel for Welding, ASTM A373
Structural Steel, ASTM A36"

Table 2.1 summarizes the properties
of the structural carbon steels which we shall attempt to
model.,

Of late a new series of steels which
have made their appearance on the market seem to show great
promise in imaginative applications in structures
resulting in more economical designs. These are the high
strength and high strength low alloy steels described in
table 2,2, The methods which we shall propose of modeling
steel structures can be expanded very easily to fit any of
these steels, The stress-strain curves for the steels of
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tables 3.1 and 3.2 are shown in figure 3,2,1, These are
taken from U.S, Steel Co, figures and indicate the minimum
guaranteed yield points, Note that the plastic range of
steel decreases as the yield strength increases, In compar-
ing tables 3.1 and 3.2 note that because the chemical com-
position of structural steels varles with thickness the
mechanical properties such as yleld and tensile strength
are about the same for all thicknesses, However, in high
strength steels the chemical composition 1s the same and
thus the strength properties are a function of the thick-
ness as shown in table 3.2.
3.2.1.2 "Static" Properties of Steel,

The most important mechanical properties of structural steel
can be inferred from a close study of the stress-strain
curve which results when a standard specimen is pulled in
tension at a specified rate of strain., In fig, 3.2.2 we
see such a curve,

(a) shows the whole stress-strain behavior,

(b) a magnification of its early portion will concern
us most end

(c) the idealization of the early portion which 1is
often made for analysis.

The slope of the elastic portion
of the curve 1s known as Young's modulus and is often
approximated at 30 x 106 prsi. The most important pecul-
iarity of this stress-strain diagram is the distinct yleld
point which is aelmost unique to this material., The upper
yield point 6 u 13 unstable and the large plastic deforma-
tion which takes place is at a constant value, 6y1' or the
lower yield point. After a strain of about 1.,6% the material
begins to strain harden but does not fracture except after
considerable elongation,

The uniqueness of the yield point
in structural steel can be explained on the basis of its
microstructure, It seems that carbon atoms strain the iron
latice which upon the application of an external stress
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field the strains are partly relieved and will cause plastic
yielding at a constant value of stress. This phenomenon 1is
also observed in other multiphase systems such as phosphor
bronze but not to as pronounced a degree.

The three basic methods of increasing
steel strength are adding alloys, heat treating, and cold
working., Of these, alloying is the basic method of control-
ling the properties of structural steels, The yield point
and the ultimate tensile strength rise with an increase in
the carbon content of steel but a loss in ductility and
weldability accompanies these strength gains, This is why
carbon content in structural steels is usually limited to
0.28%, the specified maximum for A373, A36 and ALLO. A7
steel is unique among ASTM-specified structural steels in
having no specified limit on carbon content. Manganese
and silicon, the most important alloying elements apart from
carbon, also increase yield and ultimate tensile strength
with a smaller relative loss in ductility and weldability
for a given percentage of element added. Copper and nickel
are the principal alloying elements used to improve the
corrosion resistancs of high strength steels. It should
be pointed out that all the high-strength structural steels
resist atmospheric corrosion better than carbon steels,

3.2,1.3 Dynamic Properties of Steel,.
Experimental evidence indicates that the strength behavior
of most materials depends among other things on the rate
of strain during testing., 1In steel these changes are shown
in fig. 3.2.3 for the case of ASTM A-% structural ateel,

The effects of increasing rate of
strain can be summarized as follows, looking at fig, 3.2.3:

1. The yield stress increases to some dynamic value,e%,.

2. The yield point strain Gy increases,

3. E, the modulus of elasticity, in the elastic range
remains consteant,
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4. The strain at which strain hardening begins, est
also increases,
5. The ultimate strength increases slightly.

The most important effect which will influence the design
of steel structures to resist dynamic loads, 1s the increase
in the yield stress, In fig. 3.2.4 the percentage increase
is yield stress 1is given as a function of the rate of strain
for two steels of different static yield stress, It 1s
evident from the figure that the increase in dynamic yield
point is greater for steels with lower static yleld points
as is shown by the higher slopes of curve A, Figure 3,2.5
shows the dynamic yield stress as a function of the time
required to reach that value of stress (typ) for ASTM A7
steel, From this curve values of design yield stress could
be found knowing the time to reach yield stress in a particu-
lar structure,.

3.2.2 The Copper Base Alloys as Model Materisls,
Our first investigation in the possibility of finding an
appropriate model material which could be used to model steel
structures is the family of metals known as the copper
base alloys. The similitude requirements for the case of
blast loads acting on structures indicate that if the sur-
face loads must be kept the same, which may be the case in
some structures such as shells and other non-uniform sur-
faces, then the same material must be used for model and
prototype since strain must be equal also, However, in
many structures made of thin exposed members or frangible
sidings 1t is the drag forces which are important and
therefore in testing models of such structures it is possible
to use lower pressures than in the prototype. This makes it
possible to use a large number of materials which have less
strength than steel but still compatible to its stress-
strain dlagram, It 1s for this class of problems of welded
construction in steel for which the modeling technique
described in subsequent sections was developed.
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3.2,2.1 Properties, Alloys having copper as
a base are on the whole the most readily machinable metals
and the ease with which they can be milled into various
shapes may be of great advantage in model making, In addi-
tion the ease of jointing them by the relatively simple
process of silver soldering adds greatly to their favor in
cases where welded structures are to be investigated or
where a large number of parts must be assembled. An exam-
ination of the stress-strain properties of most of these
alloys indicates that a distinct yield point as in the
case of structural steel does not exist, However, in two
commerical alloys namely phosphor bronze and silver nickel
a definite yield point can be established after annealing.
The important difference, however, ,is that the plastic yleld-
ing in these materials is not as pronounced as in steel,
3.2.2.2. Phosphor Bronze, Of the two commer-

clally available copper base alloys that could be investi-
gated as possible substitutes to steel in model making,
phosphor bronze is chosen on the basis of lower cost and
better machinability. The "free cutting" phosphor bronze
which 1s investigated contains 4% lead (added to improve
machinability), 4% tin, 4% zinc and 88% copper.

To obtain a definite yield point
in phosphor bronze a cold drawn specimen must be carefully
annealed to control the crystal size, The percent cold
work or the amount of reduction in cross-sectional area
during the rolling process must be between 50% and 75%.
In the case of 50% cold worked samples stress-strain curves
from strips indicate an optimum annealing temperature of
675°C for one half hour. The effect of cold work on the yield
stress of phosphor bronze is shown in fig. 3.2.6 and the
effect of annealing temperature in fig, 3.2.7.

These curves were established by
annealing 1/4 inch rods of two hardnesses (50% and 75%)
at various temperatures for one half hour, The composition
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of the phosphor bronze was that described above, The
stresses quoted in fig. 3.2,7 as "yield stresses" are
ectually the stresses at which the load was observed to re-
main approximately constant during the test, It is inter-
esting to note that the annealing has a greater influence
in lowering the yield stress in samples of larger cold work.
This may be due to the fact that in this case the crystals
are left more distorted and strained by the rolling proc-
esses,

3.2.2.2.1 Static Stress-Strain Relations,
The stress-strain properties of phosphor bronze are not readily
available in the literature., It becomes necessary then
to test actual strips the size of the flanges of the wide
flange model beams which were machined for the various tests,
Fig. 3.2.8 shows the dimensions of the test strips and
the precautions taken at the end to prevent failure at
the ends by the jaw grips of the testing machine, The
tests are made on the constant rate of strain "Ingtrom"
type of machine of the Plastics Research Lab, at M,I.T.
A gage length of 2 Iinches was used and externally controlled
to define the points on the stress-strain disgram, This is
a definite improvement over other constant rate of strain
machines where strain is measured from the jaw travel of
the machine, Two important errors arise from tests of this
type. First, there may be slippage in the jaws which
cannot be accounted for on the usual plot which the machine
gives as output and, second, if the whole length of the spec-
imen between the two jaws 1s used as a gage length there
will be errors because of the stress distortions at the ends
of the specimen., A uniform stress field will exist only
in the centeral portion of the specimen which is the region
far enough from the ends to allow this uniform field to
develop.

The material from which the
strips are cut has a cold work hardness of 50%, It is then
annealed for one half hour at various temperatures «ad then
tested. The results of three tests at a strain rate of
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1 x 10'5 in/in/sec are shown in figures 3.2,9, 3.2,10, and
3.7.11. These results indicate that the optimum annealing
temperature is 675°C for the time interval chosen. This
is therefore adopted for all the model specimens.

A comparison of the stress-
strain properties of phosphor bronze with ASTM A7 steel is
made in fig. 3.2.12. We see from the two curves that
yielding takes place at about the same strain, This is very
important in model studies since a strain ratio of unity
will not result in distorted models, However, we notice that
although phosphor bronze shows some plastic yleld at constant
stress it does not possess the uniquely large plastic range
of structural steel. Strain hardening begins much earlier
in phosphor bronze than in steel so that at very large
strains the two materials are not fully compatible, More
will be said about this point when actual test results are
discussed.

3.2.2.2,2 Dynamic Stress-strain Relations,

Strips of the same dimensions as in fig., 3.2.8 are strained
at various rates of strain to see how the yield point is af-
fected, These specimens are also annealed at 675°C for one
half hour and then pulled to failure at the rates indicated
in fig. 3.2.13, The yield point definitely increases with
increasing rate of .strain in this material, Fig. 3.2.14
shows the effect of the strain rate on the yield point
stress of phosphor bronze, Knowing the rate of strain of
the model we can estimate the yield stress of the criti-
cally stressed points where plestic deformations will
take place. The comparison is made in fig. 3.2.1ll between
structural steel and phosphor bronze yield stresses as
affected by strain rate, It can be seen that in steel the
effect 1s more pronounced, but since the rates of strain
used are of a different range no definite conclusions can
be drawn,

3.2.3 Using Plastics to Model Steel Structures,
The possibility of using plastics as a model material for
the structural elements of steel 1s also investigated, It
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1s observed that most of the plastics are characterised by
a non-linear stress-strain relationship throughout the entire
range of loading, low initial modulus of elasticity, lack
of ductility and a marked degree of creep. Most plastics,
in general, provide a ccnsiderable contrast to the mechani-
cal properties of structural steel, However, unlike other
plastics, ethyl cellulose, a thermo-plastic material, has
a remarkably similar stress-straln curve to that of struc-
tural steel (ASTM A7).

3.2,3.1 Properties of Ethyl Cellulose,
Ethyl Cellulose, an ethyl ether of cellulose, is a thermo-
plastic meterial. Its chlef characteristics are high
impact strength, toughness and a considerable degree of
ductility., PFluctuations in its dimensions due to normal
changes in temperatures and effect of humidity are quite
small, 1In spite of 1its application in various electric
appliances, radio housings, tooth-brushes and other indus-
tries, its manufacturers are relatively very few,

Tests on standard specimens of

ethyl cellulose subjected to standard rates of strain
gave the average stress-strain curve, as shown in fig. 3.2,15.
On ideallising such a stress-strain relationship, the salient
points are:

Modulus of Elasticity 0.184 x 106 psi
Yield Stress = 415 x 103 pst
Strain at Yield Stress 0.0225 1in/in
Ultimate Strain 0.172 in/in

The specific gravity of ethyl
cellulose is 1,10. A comparison of the idealized stress-
strain curve of ethyl cellulose is made to that of steel
in £ig. 3.2.16,

3.3 MODEL MANUFACTURE

The choice of the materials from which the model
is made according to similitude requirements is the most

118



|

3S0TINT13D3 TAHLI 40 3AHND NIVYLS-SS3IHLS sl1'eg’'eold

% ‘NIVYLS
91 Gl I € 21 Il O 6 8 L 9 S ¢

I ! I 1 I I 1 I | | 1 |

- R e emp i s Amn Gan WS GWw CHP G eEn. G T > ey

—N
(o)

000

0002

000¢

000t
oslv

‘S§S3M1S

isd

119



‘3S07N113D
TAHL3 ANV 1331S vHNLIONYLS 40 S3IAHND NIVHLIS —SS3HIS 40 NOSIHVAWOD 9lI'2'€ 9i1d

% ‘NIVH1S

9l 4 2l Ol 8 9 14 4 0

c2'2 n__.oo
T T T T 1 T | T T T 1 | 1 |} L

“
v \

1Isd Q| X810 =
3S071N71130 1AHL3 wo vero= 3

000’0l

00002
1sd 01 x0¢ =3 ad

ISd ‘SS3YLS

-|{{ooo‘oe
(LV-WLSV) 13318

—4 0000t

120



important step in the structural model analysis, The

second most important aspect is the actual process of making
the model, During this step many considerations must be
evaluated before an efficient modeling technique can evolve,
In this section some of the considerations on which the
decisions of the anslyst depend will be examined., Also

the details of the modeling technique for steel structures
will be described,

3.3.1 Some Considerations in Model Making, When
small scale models are to be built the accuracy of the
dimensions must be very high, The difficulty of achieving
this incresses as the scale of length decreases, At some
point it may become very hard or even impossible to get
good results from a small scale model, The accuracy to be
achieved in the model also depends on the results required
from the model and the time and funds available for the
model study. If the model 1s to be used to predict the
ultimate behavior of the prototype, then boundary conditions
and other details, such as joints, also become important.

If time and money were not limited then the model could be
refined to any degree with increasing chances of giving
more accurate results provided of course that similitude
requirements are satisfied.

It may also be possible to use many alternate
materials for the model especially in cases where elastic
behavior is to be considered, Some materials are much easier
to work with than others so a careful consideration of all
avallable methods may save considerable amount of time and
effort., Since in general model studies are on the high side
with respect to time consumption, any effort on the part
of the asnalyst to minimize this is highly advantageous,

3.3.2 Specific Examples of Modeling. We shall consider
here some examples of modeling of steel structures in which
plastic behavior during the dynamic response is of primary
concern, Tests on actual full scale structures and struc-
tural elements afford an excellent opportunity for comparisons
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with extrapolations from model studies, So far 1little has
been done in the study of the dynamlc response of actual
full scale structures or structural elements although some
model studies have been reported£26) The case of static
loads has received more attentlon and a host of data from
actual full scale structures and structural elements in
steel have been reported by many investigators especially
the Lehigh University group.(22’25’37’h1’u6) Before a
model ing technique can be generalized as an efficlent
solution to a class of structural problems, correlation tests
must be made to prove its accuracy 1n predicting the behavior
of the prototype. Comparisons are thus made with actual
tests on prototype, not with analytical solutions, since
the aim of the model study is to bypass these. At any rate
the behavior of the real structure will not be the same
as the analytical solution would indicate and will be closer
to the model prediction depending on the relative accuracy
of the basic assumptions made in each case.

3.3.2.1 Phosphor Bronze Models, A decisive
advantage of using this material i1s 1ts ease of handling.
Machining operations, fitting and especlally jointing are
easily performed by the ilnexperlenced snalyst, It should
be remembered, however, that a modeling technique 1s by
nature specific in that one attempts to solve the immedlate
problems of the structure to be modeled, In some cases
the method may be easily applied. To other problems it
may not, Keeping this in mind then, we realize that the
phosphor bronze modeling technique of making models of
steel structures is not clalmed to be the best nor the most
general,

3.3.2.1,1 Machining the Shapes. Assuming
that most structures will be designed from existing rolled
sections and not be predominantly built up, although occasion
may require some such sections, we shall try to duplicate
through machining the rolled sections in smaller scales,
For convenience one section is chosen for duplication of
some of the Lehigh tests, The section used mostly there

122



is the 8WF40 which 1s shown in fig. 3.3.1(a). A scale of
1:15 i3 chosen as the basis of being the smallest practical
scale on which the technigque would be evolved and also
a8 scale in which the joints and boundary conditions could
be duplicated faithfully, 1In order to facilitate machining
end to cut down on the cost the exact dimensions to 1:15
scale were modified as shown in fig. 3.3.1(c¢), assuming
that corrections could be applied to the results to over-
come the geometric discrepencies., Machining of the sections
was done in 30 inch pleces from 3} inch square stock by the
Chicego firm of Milled Shapes Inc, The tolerances are less
than +,005" on any dimension. Machining always tends to
warp thin sections and the machined phosphor bronze pieces
as recelved showed some signs of warpage but this was not
excessive, Another consideration in the choice of the
length scale of 1:15 was the maximum capacity of the dynamic
loading machine of L kips and the size of portal frame which
could be handled by the machine dimensions with comparative
ease, |
3.3.2.1,2 Annesling of Phosphor Bronze,
The annealing of the machined shapes 1s carried out before
the components are assembled. The optimum annealing temper-
ature of this material is found to be 675°C for one half
hour, from the stress-stralin curves on thin strips. Since
the annealing temperature and the time of annealing strongly
influence the yleld point stress in phosphor bronze, it is
necessary to find a silver solder with a lower flowing
temperature than 675°C to prevent double annealing upon
assembly of the parts. During annealing there mey be
variations in the temperature and this must be guarded
against since only a short time interval is used.
3.3.2.1.3 Silver Soldering. The diggest
single advantage of using phosphor bronze in model making
1s the ease with which strong accurate jointscan be mede.
It is this advantage that prompted the use of this material
in the small scale modeling of steel structures although
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"as seen from the stress-strain curves the compatibility of
the two materials does not extend over the whole strain
range, If the method proves satisfactory then small scale
model studies for shock tube tests where size is an impor-
tant consideration could be made of structures in the

1/15 - 1/30 scale range very easily. The problems presented
by welding of steel sections at these scales are beyond the
capabilities of the average models laboratory., Special
equipment must be available which may hinder the making of
small scale models of welded steel structures, In fact

is is highly improbable that a normal size weld as used

in steel structures could be modeled at such small scales,

As shown by fig. 3.3.2 the
process of silver soldering is extremely simple with & minimum
of equipment necessary, All that is required is a gas
tprch, silver solder wire and a borax flux. The technique
can be very easily adopted by technicians and the joints
can be done with excellent control as to thickness of weld.
The accuracy to be maintained in silver soldering is high
even for a scale of 1:15 as shown by fig. 3.3.3 where the
stiffeners which go into the wide flange beams are shown
before its assembly and below it is a finished beam ready
for instrumentation and subsequent testing.

It is important in the assembly
to make the joints as quickly as possible so that over-"
heating of the member in the vicinity of the weld will
be avoided and the material will not be weakened. The
annealing temperature of the models 1is 675°C and the flow-
ing temperature of the silver solder used was 628°C so that
we see that if excessive overheating occurs it could affect
the strength of the model at the local point of soldering.,

3.3.2,2 Fabrication of Ethyl Cellulose Models,
It 1s a simple process to bond ethyl cellulose to itself,
The following considerations are necessary for a good bond:

i) Design and Fabrication
11) Selection of Adhesive
111)Application and Assembly Technique
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FIG. 3.3.3 PARTS WHICH GO INTO THE MAKING OF A SIMPLE
WIDE FLANGE BEAM SCALE 1/15,
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1) Design and Fabrication: Strength and ductility
are important factors in the design of joints, The tensile
strength of adhesive bond is slightly lower than that of
ethyl cellulose, Therefore, it 1s necessary to increase
the bonding area in order that the joint will be as strong
as the molded part of the material, This can be done either
by thickening the wall section around a butt joint or by
using a special type of joint., Surface contamination or
poor contact of mating surfaces should be avoided in order
to obtein good bond,

11) Selection of Adhesive: There are three available
adhesives especially suited for Ethyl Cellulose, They
are known commercially as P-3l, P-34A and P-35#, These are
all the solvents for the material., The first two adhesives
heave the composition of Alcohol and Toulene in different
proportions. The last one 1s essentially Ethylene Dichloride.

111) Application and Assembly Techniques: Stronger
bonds result when the adhesive is applied to both pieces of
an assembly rather than to only one of the mating surfaces.
This can be explalined by considering that, when only one
plece is coated, the solvent first softens the coated plastic
and then begins to thicken before the non-coated piece is
pressed against it. Thus the solvent does not have as great
a chance to soften the second piece and usually a weaker
bond results,

The adhesive itself may be applied by
various methods, such as saturated felt pad, flow gun,
dripping or brush, High vapor concentrationsof the adhesives
should not be inheled, Good ventilation at the place of
fabrication is desirable, therefore,

3.4 TESTING APPARATUS AND INSTRUMENTATION

To test the small scale models made from phosphor bronze

¥
Dealer - Dow Chemical Co,, Midland, Michigan,
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special loading and supporting devices are needed. The static
tests are performed in the Models Laboratory of the Civil
Engineering Department of M,I.T, where a special lever
mechanism 1s available, The dynamic tests are performed
with the aid of the impulsive loading machine of the Soil
Mechanics Division of the same department. A description of
this apparatus and the instrumentation used in the model
tests 1s given below,

3.4.1 Loading Frame for Static Tests. The loading
frame for carrying out static tests shown in fig. 3.4.1
has a maximum capacity of 5 kips concentrated load., At
the lower bound any small load of a few pounds only could be
applied since the friction in the system was found to be
very small, The frame 1s basically a beam pivoted at one
end through a roller bearing passing through its center of
gravity as shown in the detail of fig. 3.4.1. The load is
applied in increments at the furthest extremity from the
fulcrum and the model 1s positioned at any point in between
the fulcrum and the point of load application. By varying
the position of the model from the fulcrum a variety of
multiplication factors can be achieved for the applied load,
As point B in fig. 3.4.1 approaches A the multiplication
factor increases with a practical maximum of about 10 for
this setup.

Since most of the structures to be tested are

of a planar nature a rectangular box made of aluminum plates
is used to support the small scale models in one plane,
Fig. 3.4.2 shows the dimensions of the box and the method
of supporting of portal frames which are tested to ultimate
failure., Thin brass wires of 1/16" diameter eare used for
lateral supports of beams and frames to allow the model to
reach its full plastic moment, It should be noted that the
prototype structures which were modeled are also supported
laterally but of course the detalls vary in model and
prototype since size limitations do not allow in many cases
the reproduction of details in exactly the same way. In
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Fig. 3.4.3 a simply supported model beam is being tested
in the above mentioned box, Note the lateral supports
given by the brass wires,

3.4.1.1 Method of Load Application on Models,
Loads on beams and frames were applied through small brass
bearing plates placed on the top flange, At points of
load application stiffeners were provided., Fig. 3.4.3
shows a close up of the loading and supporting arrangement
for & simply supported beam, The concentrated single
load of the loading frame is distributed to two or more
points by small stiff beams as shown in figs. 3.4.4 and 3.4.5.
The method of load application is the same for some of the

prototype tests, However, in cases where the load was
applied through the web of the beam an exact reproduction
on the model was not attempted and all loads are applied
through bearing plates on the top flange. Since the load
increments are applied by hand at the end of the beam the
load variation with time is a step variation rather than
a smooth one, Unloading of the specimen during testing is
avoided as much as possible especially after the model
passes its elastic limit,

3.4.1.2 Deflection Measurements, All deflection
measurements for the static tests are taken with Ames
dial gages with an accuracy of 0,001 inch, Usually the
mid-span deflection is of particular interest in the test
but in some cases curvatures are computed from deflection
measurements, PFigs, 3.47 and 3.48 show the mode of deflec-
tion measurements for different model tests, Since the
scale of these tests is 1:15 the deflection readings on
the model are 1/15 of those of the prototype. The gages
used are of sufficient accuracy to allow good extrapolation
to the prototype.

3.4.1.3 Strain Measurements, Strain measurements
are made by means of SR-l foil type strain gages with an
epoxy backing, Readings are taken with a Baldwin-Liima-
Hamilton Strain Indicator., A typical test setup is shown
in Fig. 3.4.6,
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FIG. 3.4.3 CLOSEUP OF FRAME SHOWING MODEL BEAM READY FOR TEST

FIG. 3.4.4 CLOSEUP VIEW OF THE LOAD APPLICATION AND THE
SUPPORT OF A SIMPLY SUPPORTED MODEL BEAM

*
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FIG. 3.4.5 PORTAL FRAME IN POSITION TO BE TESTED. NOTE
THE LOAD APPLICATION AND SUPPORT DETAILS.

FIG. 3.4.6 CLOSEUP OF SUPPORTING BOX SHOWING THE LATERAL
SUPPORTS FOR A PORTAL FRAME, THE METHOD OF
LOAD APPLICATION AND THE STRAIN INDICATOR.
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FIG. 3.4.7 CLOSEUP OF LOADING FRAME SHOWING A PORTAL
FRAME READY FOR TEST., NOTE LATERAL SUPPORTS.

FIG. 3.4.8 DEFLECTION MEASUREMENTS OF JOINT TEST WITH
AN AMES DIAL,
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The foll gages used varied in length
from 3/16" to 1" and are bonded with EPY-150 cement
according to the recommended procedure of the manufacturer,
This cement is chosen for its relatively fast cure, However,
from observations it appears that some of the gages began
to creep at strains much less than the maximum range of
about 1%. This is thought to be ceused by failure of the
bond between the gage and the model material and measurements
on such gages should be tsken only after the creeping has
ceased, Whereas the metal materiael responds quickly to an
increment of stress, the same is not true of the epoxy
which is a thermo setting plastic. When enough time 1is
allowed for creep to occur the strain measurements give
better results,
The gages are temperature compensated
for 1018 Steel but since these are used with phosphor bronze
with a different coefficient of expansion a dummy gage 1is
used in all the tests,
3.4.2 The Dynamic Loading Machine. The machine used
to test the model structures is one built for high speed
triaxial tests of soil samples., Fig. 3.4.9 shows a drawing
of the machine and Pig, 3.4.10 shows its mode of operation
in a schemstic form, Since the system had no feedback control
on the load rate, the obtained loed time curve is the result
of interaction between the specimdns and the machine and
as such the applied load is an impact rather than a predeter-
mined impulse,
Loads up to 5 kips are obtained with this
machine and load rise times ranging from 3 milliseconds up.
3.4.2.1 Support Frame, A simple braced frame
was built to hold the specimens to be tested. Fig. 3.4.11
shows the frame with a model ph?séhor bronze portal frame

ready to be tested. The supportitrame 1s clamped to the
platform of the machine during the test.
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3.4.2.2 The Load Cell, The load cell is attached
to the ram and the load applied to the model through it, It
consisted of a } inch dismeter aluminum shaft, 2 inches
long onto which are bonded two strain gages ( Baldwin-Lima-
Hemilton Type C7). The gages are laid along diametrically
opposed generators of the cylindrical shaft and wired to
form two opposite arms of & Wheatstone bridge, The other

two arms of the bridge consisted of two dummy gages attached
inside an unloaded aluminum box, This system caused the por-
tions of strains due to bending to cancel each other out and
the bridge output voltage to be proportional to the axial
load 1in the load cell, The circult is excited by a 22}
volt battery and the output signal displayed on a cathode
ray oscillograph.

3.4.2.3 Recording Equipment, The oscillograph
as shown in Fig. 3.4.12 1s a Tektronics Type 502 which had
a calibrated time sweep and could be triggered by the load
signal itself, Permanent records are obtained by using

Dumont Type 287 oscillograph record cameras operating with
Polaroid-land film,

A Twin Vise Model 60-1300 Sanborn Recorder
i3 used during calibration of the load cell,

The load cell is calibrated in a standard
beam type testing machine, the output signal being recorded
on a Sanborn unit, The signal due to a known load is com-
pared to the signal due to a fixed unbalance in a Wheatstone
bridge., After each test the signal due to this fixed unbal-
ance would be recorded giving a load scale for the data
obtained,

The deflections are measured with & Linear
Variable Differential Transformer (L.V.D.T), the signal is
converted to D,.C, and displayed on the Oscillograph. Thus
two signals are recorded with time on the seme picture, For
any time during the response the load deflection relation
would be obtained.
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FIG. 3.4.11 SUPPORTING FRAME FOR MODEL FRAMES. NOTE THE
L.V.D.T. FOR THE DEFLECTION MEASUREMENTS.

FIG, 3.4.12 SETUP SHOWING THE DYNAMIC LOADI NG MACHINE
AT THE ' LEFT AND INSTRUMENTATION,.
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The L,V,D,T. is calibrated with an Ames
dial and a plot of signal v.,s, deflection is obtained for
every test, From this plot the deflections for the response
signal recorded by the camera could be obtained,
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CHAPTER L4

PHOSPHOR BRONZE MODEL STUDIES OF WELDED STEEL STRUCTURES

Tests were made on wide flange beams, portal frames,
and connections for the static loads, and portal frames
in the case of dynamic loads, In all these tests a scale
of 1:15 was used for convenience and the section used
closely approximates an 8WF4O rolled section. 1In the
statlic tests comparisons are made between the model predic-
tions and the actual prototype tests but in the dynamic
case no prototype results were available,

4.1 STATIC TESTS ON MODELS BEYOND THE ELASTIC LIMIT

4.1.1 Wwide Flange Beams. A series of seven tests
were performed on wide flange beams with simple supports
and fixed ends from which load deflection and moment curva-
ture relations were obtained, The test results of the
model beams are summarized in table L4,l. Using the full

scale results of tests performed at Lehigh University the
predlicted behavior of the prototype from the model test is

compared,

4.1.1.1 Prototype Tests. The simply supported
wide flange beams are of two different types. The differ-
ence is in both length and mode of loading as shown in
Figs. L4.1,1 and 4.1,2.

. The "pilot" tests were made on an 8WFL0
beam of 12-ft,., span, simply supported and loaded at the
third points, The load was applied to the beam through
bearing blocks resting on thé top flange and the web was
stiffened under the load with 3/8 in, plates welded per-
pendicular to the web, From this test it was observed that
a non-linear strain variation exists at the mid-span after
the elastic 1limit was exceeded. This ceaused the neutral
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axis to move towards the tension flange but at higher per
cent strains it moved back towards the centroidal axis,
The pilot test developed less plastic strength than that'
calculated,

The "regular" tests were made on 8WF4O
beams of 1l4-ft., span simply supported and loaded at the
third points, One test was done on the beam in the as
delivered condition and the other was stress-relief an-
nealed prior to testing. The method of load application
was made to simulate a beam-to-girder connection by bring-
ing the load directly onto the web, This method of load
application could not be duplicated in the model tests
without undue loss of time, Thus the method of load appli-
cation in all the model tests was done through bearing
blocks on the top flange as shown in Fig., 4.1.3., The beams
were laterally braced to prevent lateral bucking upon passing
of the elastic limit,

From the results of these simply supported

beams the agreement between the theoretical and experimental
results was better for the annealed beam in the "regular"
test. The "pilot" beams were not annealed nor laterally
supported and also loaded on the top flange through bearing .
blocks., These may be the causes of the lower than predicted
moment of the pilot tests. Annealing although lowering the
residual stresses considerably also lowered the yileld stress
and thus the strength of the annealed specimens was less,
It 1s concluded from the test results that the moment curva-
ture curves for structural steel beams, laterally supported,
can be predicted from the stress-strain tensile test curves
and the usual theory of plastic bending based on the assump-
tions of a linear strain variation across the section and a
uniform distribution of yield,

The prototype for the continuous beams
were also of lUj-ft, span, However, the "fixity" in these tests
results from the 2 side spans of 7-ft, each of a 3 span
continuous beam, The central span of 1li-ft is considered
fixed ended., Two types of tests are reported from the
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Lehigh series on continuous beams.(uS) One has the reaction
applied to the flange through a bearing plate and the other
the reaction 1s transmitted to the web by a beam to column
simlated connection, The test results indicate that the
latter support detail has more stiffness and thus the beam
mobilized higher loads,
4.1,1.2 The Model Tests. The models of the simply
supported beams were of 1:15 scale and are soown in Figs.
4.1.3 and 4.1.4., The cross-sectional geometry was only
approximately scaled, however, due to machining difficulties
(see Appendix C). The phosphor bronze sections machined
from square stock were first annealed as described earlier
and then assembled., Fig. 4.1,5 shows a beam before testing
and below it a falled simply supported beam, failure due to
excessive deflection, 1In beam tests Bl to BS5 only centerline
deflections were recorded with load increase. Beams BlA and
Bl1B were instrumented with strain gages at the mid-span
section and also in B1B deflections were measured at 2 other
points so that moment curvature relations could be established
from the model test. The position of the strain gages is shown
in Fig, 4.1.3., The beams BlA and B1B are shown in Fig., L.,1.6
after failure, Beam B2 and B3 are shown in Fig., 4.1.7.
For the fixed ended beams Bl and B5 the
fixity was achieved in the model by silver soldering the
ends to a tube 1in the case of B4 and pouring molten lead
in a similar tube in the case of beam B5, The ends were then
fastened to the supports with two screws on each support.
The detall of the model "fixed" support is shown in Fig. 4.,1.12,
The fixed ended model beams are shown after fallure in
Fig. L4.1.8,
4L.1.1,3 Test Results. The results of the model
beams representing the "pilot" test of the prototype are
given in Tables 4.2, 4.3, and }j.;. These are for model beams
Bl, BlA and BlB respectively. The explanations following each
of these tables gives the procedure followed in obtaining the
numerical values in each column., Tables 4.5 and .6 give the
test results of model beams B2 and B3 and Tables L.7 and 4.8
give the results on the"fixed" end model beams B4 and BS,
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FIG. 4.1.5 MODEL BEAM Bl AFTER FAILURE. SCALE 1:15:
MATERIAL, PHOSPHOR BRONZE.

FIG. L4.1.6 MODEL BEAMS BlA AND BIB AFTER FAILURE, NOTE
THE STRAIN GAGES AT THE CRITICAL SECTION.
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Comparison of these results with the prototyrpe
tests is given in Fig, 4.1.9 for the "pllot" test or the
8WFL0 simply supported beam of 12-ft., span, This figure shows
the M-¢ curves obtained from strain gage readlings and also
deflection readings in the case of beam Bl1B,

Fig. 4.1.,10 1s a load deflection curve for the
predicted behavior of the prototype from 3 model tests. This
shows the method that could be used to predict ultimate
failure loads 1in more complicated structures from a few model
tests, From this figure the predicted fallure load 1s
conservatively picked at 56 kips. Backfiguring the ultimate
moment of Fig. 4.1.9 (the load deflection curve is not given
by Luxion et al.)(zs) we get a value of 52 kips for the
ultimate load.

Fig. 4.1,11 shows the load deflection curves
from model beams B2 and B3 together with the prototype
results,

Fig. L.1.12 shows the load deflect on pre-
diction curves from model tests BL and BS as compared to
two prototype tests of different boundary conditions,

L.1.1.4 Conclusions from the Model Compsrisons.
From the few tests which are reported herein a number of

conclusions could be drawn concerning the correlation of
model predictions and actual prototype tests,

1, It is obvious from all the load deflection and
the moment curvature plots that the model material strain
hardens at earlier values of straln than steel. This was
anticlipated and the tests verify it, However, as shown
by Figs, 4.1.11 and 4,1.12 the ultimate loads on these beams
could have been predicted within the accuracy required for
design purposes,

2., The results of the two simply supported model
beams B2 and B3 which modeled the "regular" tests of 14-ft,
spans indicate that the model results approach closer the
annealed 8WFLO beam rather than that as delivered as shown

by the values of Table 4.1. The failure criterion chosen
for the beams 1s of excessive deflections due to bending

deformations,
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TABLE 4.2 TEST RESULTS FOR MODEL BEAM Bl

e e e e

o Total Load | Predicted | Predicted
| Load at Mid-Span 2P Prototype | Prototype
' End of Beam| Deflection| on Model Load Deflection
' (Lbs,) (inches) (Lbs.) (Kips) (inches)

1 . 004 5.92 3.68 .06

2 . 006 11,84 7.74 .09

3 .008 17.76 11,6 .12

L .01 23.68 15.5 .15

5 .013 29.60 19.3 .195

6 - - - - - - - - - - - -

7 .019 Ll.4l 27.0 .285

8 .0215 47.36 30.9 324

9 .02, 53.28 34.8 .36

10 .028 59.20 37.4 42

11 .031 65.12 y2.8 465

12 .035 71.04 6.4 .525

13 .0395 76.96 50.2 .593

14 .0ub 82.88 54.0 .69

15 . 069 88.80 57.7 1.035

16 .148 9%.72 61,8 2,22

17 .267 100.64 65.5 4,00

18 .329 106,56 69.4 L.9%4
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Explanation of Table L,2.

Col, 1 gives the load increments on the beam of the load-
ing frame.

Col, 2 is the midspan deflection read on the Ames dial,

Col, 3 gives the total load on the model beam or the
sum of the 2 third point concentrated loads, Col. 3 gives the
values of Col, 1 times 5.92, the ratio of lengths on the
beam or the load multiplication fector of the loading frame,

Col, 4 is the predicted load of the prototype. It is
obtained from the following relation:
- -2
P = Pm X fr

o x f"l x (G.F,) (4.1.1)

where
fr i1s the length scale
f‘ is the ratio of stresses

G.F. is a geometric factorto account for the
difference in moment of inertia as explained in Appendix C,

rr'z x rs‘l X G.F. = (15)° x 2 x 1.45 = 652
Pp = .652 P (kips) (4.1.2)

Ccl, 5 gives the predicted defection at mid span of the
prototype. The values are obtained from the expression:

T e =1

—

Up - Um.fr (’40103)
where

-—p

U_ 1s a vector displacement in the prototype.

D
-:; 1s a vector displacement at the same point and
direction in the model,.

fr 1s the length scale which is 1/15 in this case,
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Explanation of Table L,3,

Col, 1 - Col, 5 are the same as in Table L,2,

Col, 6 gives the midspan moment in the model, This is
obtained from 3 x Col, 2 x L/3, where L/3 = 3,2",

Col, 7 gives the midspan moment in the prototype, The
expression for this value is: '

= -3 -1
M, M, x £.7° x £,°77 x G.F, (4.1.4)
where, fr = the length scale
fc = the ratlo of stresses
G.F. = the correction factor due to discrepenciles
In the moment of inertia as given in
Appendix ¢
Mp = Prototype moment at midspan,
Mm = Model moment at midspen
-3 -1 = 3 =
£.77 x £fg77 x G.F, (18)° x 2 x 1.45 = 976
therefore,
Mp = ,976 M, (Kip-1n) (4.1.5)

Col, 8 - Col, 11 give the strain as read on the strain
indicator from one SRL4 strain gage.

Col, 12 gives the curvature or the rotation per unit
length at midspan., The expression used to calculate this
as derived in Appendix D from the strain measurements:

1 -561+2€2-2€-3+56u

R L4 (4.1.6)

Col, 13 glves the predicted curvature or rotation per
unit length of the prototype at midspan, It 1s obtalned
from

(I/R)p = (I/R)m x £, (4.1.7)
where the subscripts indicate prototype and model respectively
and fr is the length scele,
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Explanation of Table U.L.

Col. 1 - Col. 13 are obtained in the same manner as
indicated for Table L.3.

Col, 14 is the curvature or the rotation per unit
length at midspan as-obtained from the 3 measured deflec-
tions, Since the moment 1s constant over the middle third
of the beam, the curvature is constant and has the shape
of a circular arc, The rate of change of slope at the
center line 1s then given by the following expression as
derived in the Appendix E

SL'Zé\c'SR

)

R (&x)2 (4.1.8)
where,

SL = the deflection at left third point

gb = the deflection at the center line

the deflection at the right third point

D o
>
1] (]

One sixth of span of the beam,
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TABLE U4.5.

TEST RESULTS OF MODEL BEAM B2

1 2 3 4 3
Predlcted
Total Predicted Prototype
Load at End Midspan | Load on Total Load Midspan
of Beam Deflection | Model on Prototype| Deflection
(Lbs,) (Inches) (Lbs.,) (Kips) (Inches)
1 .0115 5.92 3.88 .172
2 .017 11.84 7.74 .255
3 .022 17,76 11,6 .33
L .027 23,68 15.5 405
5 .0315 29,60 19.3 472
6 .036 35.52 23.2 .54
7 042 L1.hh 217.0 .63
8 . 046 U7.36 30.9 .69
9 .052 53.28 34.8 .78
10 .0575 59.20 37.4 862
11 .067 65.12 h2.8 1,005
12 .085 71.04 4é.4 1.275
13 .170 76.96 50.2 2,55
1l .265 82,88 54.0 3.98
15 3515 88.80 57.7 5.27
16 46lh 94.72 61.8 6.96
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TABLE 4.6,

TEST RESULTS OF MODEL BEAM B3

r

1 - L
|
Load at End| Midspan | Total Predicted
of Beam |Deflection | Load on | Total Load
§ Model on Prototype
(Lbs,) (Inches) ; (Lbs,) (Kips)
1 .005 { 5.92 3.88
2 .01 Lo11.84 7.74
3 015 1 17.76 11,6
b 019 | 23,68 15,5
5 .0225 . 29,60 19,3
6 .027 . 35.52 23.2
7 .0315 1.4y 27.0
8 .036 47.36 30.9
9 .O41 53.28 34.8
10 .0L46 ; 59.20 37.4
11 .052 . 65,12 42,8
12 063 . 71.04 h6.4
13 .107 76.96 50.2
14 .255 . 82.88 54.0
15 403 ' 88,80 57.7
16 .592 .72 61.8

]

Predicted
Prototype

Midspan
Deflection
(Inches)

.075
15
.225
.287
.336
4,06
473
.54
615
.68
.78
.95
1.61
3.38
6.06
8.90
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TABLE 4.7 TEST RESULTS OF MODEL BEAM BL

|
1 2 3 l 4 ]
Load at End| Midspan [Total Load‘ Predicted Predicted
of Beam 'Deflection on Model Total Load Midspan
f ‘ Deflection
Prototy Prototype
(Lbs.,) (Inches) (Lbs,) i, (Kips? (Inches
] .002 5.92 3.88 .03
2 .003 11.84 | 7.74 . 045
3 . 0045 17.76 |  11.6 . 0676
L .006 | 23,68 | 15.5 .09
5 .008 | 29.60 ! 19.3 .12
6 .0095 |  35.52 |  23.2 1425
7 L0115 | b1y | 27.0 .1725
8 013 | L47.36 30.9 .195
9 .015 53,28 | 3U4.8 .225
10 017 | 39,20 | 37.0 .255
11 .019 65.12 L2.8 .285
12 .021 j 71.04 i ué.h . 315
13 .023 | 76.96 ! 50.2 345
1l .025 i 82.88 ! Sh.0 .375
15 .029 | 88.80 | 57.7 436
16 .031 94.72 61.8 465
17 .033 i 100,64 65.5 1496
18 .036 é 106,56 69.6 .5
19 .0p0 | 112,48 74.0 .60
20 .ok | 118.40 77.1 .66
21 . 049 124.32 81.2 .736
22 .057 130.24 85.0 . 856
23 L065 i 136,16 89.0 .975
24 .085 142.08 92.8 1.275
25 117 148,00 96,6 1.755
26 .163 153.92 100,0 2.4l
27 . 206 159,84 104.0 3.09
28 .272 165,75 107.8 4.08
29 .363 171.68 111.8 S.45
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TABLE 4.8 TEST RESULTS OF MODEL BEAM BS

1 2 3 L 3
Loasd at End| Midspan Total Load Predicted | Predicted
of Beam [Deflection | on Model Total Load| Midspan
On Deflection
Prototype | Prctotype
(Lbs,) (Inches) (Lbs,) (Kips) ( Inches)
1 .0015 | 5.92 3.88 .0225
2 .003 , 11,84 7. 74 045
3 . 005 17.76 11.6 .075
L .007 23,68 15.5 .105
5 .009 29,60 19.3 .135
6 .0115 35.52 23,2 .1725
7 o1y | 1.4y 27.0 .21
8 017 h7.36 30.9 . 258
9 .0195 53.28 34.8 .292
10 .0225 39,20 37.4 .337
11 .025 65.12 L2.8 .375
12 .0275 71.04 L6.4 412
13 .0305 76,96 50.2 457
14 .0335 82,88 Sh.0 .502
15 .036 88.80 S7.7 5L
16 .040 94.72 61.8 .60
17 <043 100,614 65.5 645
18 .08 106,56 69.6 .72
19 .053 112.48 4.0 .795
20 .061 118,40 77.1 .915
21 r . 068 124.32 81.2 1.02
22 .077 130.24 8s5.0 1,155
23 . 091 136.16 89 1,365
2 .110 142,08 92,8 1.65
25 . 214 148.00 96.6 3.21
26 . 284 153.92 100.0 4.26
27 .323 159,84 104 4.85
28 . 380 165,76 107.8 5.70
29 420 171.68 111,8 6.3
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50

40

30

20
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| i | | I\ | |
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FIG.4.1.1I3 CRITERION FOR ULTIMATE LOAD PREDICTION
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3. The agreement in the case of the two "fixed" ended
beams is closer to the prototype test with support conditions
(a) as shown in Fig. 4.1.12, Sirce the model boundary con-
ditions in the model are simulated in a different way it
is hard to draw any conclusions as to which type of boundary
conditions the model beams approached, However, it should
be noted that there was some rotation et the supports of the
model and the extra heat applied in the manufacture of the
model at the two ends may have weakened the material at
those two points considerably more than the yleld stress
of 18,000 psi of the regular annealing process,

li., The criterion used in picking the ultimate loads
from the load deflection curve will be illustrated with
the idealized bi-linear load deflection curve of beam B2
shown in Fig. 4.1.13. At the intersection of the two linear
approximations to the predicted load deflection curve we
read a total load of 46 Kips and a midspan deflection of
1l inch. This 1s actually the minimum value of a so-called
"ultimate load" since at’es larger deflection the correlation
between the model test and the prototype test will be better,
In fact at a midspan deflection of 2.25 inches the total
ultimate load is the same for both or 48.5 Kips, Thus if
the maximum allowed deflection of the prototype structure is
known (which is the case in most structural problems) then
it is a simple matter to pick the ultimate load from the pre-
dicted load deflection curve obtained in a model study.

4.1.2 Portal Frames, In order to test the modeling
technique better in cases of real structures with more elab-

orate boundary conditions, it was decided to meke model
tests of singly redundant ?32§al frames as tested at full
scale at Lehigh University . The results from the model
test were then used to predict the behavior of the prototype
and a comparison was made between this prediction and the
actual prototype results,

4h.1.2.1., Prototype Tests, The dimensions of the
prototype and the loading set up are shown in Fig. L4.1.14 .

The rolled section used for beams and columns are the 8WFLO
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FIG, 4.1.1)4 TEST SET UP FOR THE PROTOTYPE TEST ON PORTAL
FRAMES (REF. 37 ).

FIG. 4.1.15 HORIZONTAL REACTION ASSEMBLY
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section used before in the wide flange beams, The loads
applied were two vertical concentrated loads at the 3/8
points, Side-sway and lateral buckling were prevented in
these tests, The boundary conditions used are shown in
Fig. 4.1.14. They simulate pin ended supports at the base
of the columns, The detall of the horizontal reaction meas-
ureing assembly 1s shown in Pig. 4.1.15, Side-sway was
prevented by a longitudinal support on one of the knees,
Lateral supports were provided at the corner connections and
at |, points along the length of the beam where severe plastic
straining was expected. The loads were transferred to the
web of the beam as in the case of the beam tests described
in the previous section,

4L.1,2,2 The Model Tests. The model frame was
fabricated from the phosphor bronze section shown in Fig. 4.1.16
and was at a scale of 1:15 of the prototype. Lateral
supports were provided by means of thin brass wires attached
to the stiffeners of the beam and knees as shown in Fig. 4.1.17.
The joints used are a modified version of the prototype.
This and other types of connections will be discussed in
a section that follows, The horizontal reaction was
measured by reading the strain on a stiff steel bar 1" x ,03"
in cross section, The bar together with other details of
the test can be seen in Fig, 4.1.17. The position of the
strain gages is shown in Fig, 4.1.16 together with the
horizontal reaction measuring bar,

Loads were applied to the frame by means
of bearing plates at the top flange as seen in Fig. 4.1l.17.
Side-sway was prevented by attaching a thin brass wire to
the right hand side., However, this proved to be inadequate
under very large deflections and the ultimate falilure of the
frame, after considerable plastification took place, was a
side-sway failure to the right. This i1s shown very clearly
in Figs., 4.1.19 and 4,1.20 of the failed specimen,

Deflections were measured at midspan by
means of an Ames dial as shown in Fig, 4.1,18,
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FI1G. 4.1.16 MODEL FRAME, 1:15 SCALE, SHOWING HORIZONTAL

REACTION MEASURING DEVICE AND POSITION OF
STRAIN GAGES.
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FIG. L4.1.17 ©POSITIONING OF THE MODEL PORTAL FRAME IN
SUPPORTING BOX, SHOWING LOADING METHOD.

FIG. L4.1.,18 TEST SET UP FOR MODEL FRAME
171



FIG. L4.1.19 MODEL FRAME AFTER TEST,

FIG. 4.1.20 MODEL FRAME SHOWING A LATERAL SWAY FAILURE
INITIATED BY LOCAL BUCKLING OF THE TOP
FLANGE AT LARGE DEFORMATION DUE TO BENDING,
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4.1.2.3 Test Results, The results of the test
on the model frame are given in Table 4.9 and the explans-
tion of the method of obtaining these results follows,
Fig. L4.1.21 shows the horizontal reaction variation with
half the total vertical load obtained experimentally from
the strain reading on the steel bar. The experimental
curve was used to calculate the midspan moment., Fig., 4.1l,22

is a comparison of the moment curvature relation at midspan
obtained from the model test and the prototype test, In
Fig. 4.1.23 the load deflection results are compared from the
model and the prototype results,

h.1l,2.4 Conclusions from the Portal Frame Test,
The results of this test proved a very fundamental point
which was not brought out convincingly by the beam tests,
namely that the full plastic moment could be developed in
phosphor bronze models as it is in structural steel.
Fig. 4.1.22 shows that the M-¢curves of model and prototype
agree very well considering the model was at 1:15 scale,
This close agreement as compared to the discrepancy in the

simply supported beams 1s due to the better instrumentation
of the frame where strains were based on average values
rather than a single reading.’

The load deflection predicted curve is
in poorer agreement in this case but still the error is
less than about 10%. Again it should be emphasized that
the agreement in predicting ultimate load is a function of
the maximum deflection to be tolerated in the prototype.
Once this is known then Pult can be read off the predicted
curve, Fig. 4.1.23 emphasizes this point since at deflections
of the order of magnitude of 4 to 6 inches the predicted
load is in closer agreement to the prototype test,

From the test of the model frame it was
found that the horizontal reaction measuring device was
too stiff and its strain response was low, This 1s believed
to be the main reason for the large deviation of the experi-
mental curve from the theoretical at relatively low loads
as shown in Fig. 4.1.21,
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VERTICAL LOAD P IN LBS.—
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FIG.4.1.21 VERTICAL LOAD vs. HORIZONTAL REACTION FOR
THE MODEL FRAME -
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CENTER LINE MOMENT IN KIP-INCHES
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FIG.4.1.22 MOMENT-CURVATURE RELATIONSHIP FOR
MODEL FRAME
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Explanation of Table U, 3,

Col, 1 gives the load in 1lbs, at the end of the beam
of the loading frame.

Col. 2 gives the observed deflection of the model frame
at midspan,

Col, 3 shows the average strain from two gage readings
on the top flange at midspan,

Col, 4 gives the strain in on the bottom flange at
midspan., One gage reading only.

Col, 5 is the average of two gage readings st the
upper quarter depth of the web at midspan,

Col, 6 gives the average of two readings of the lower
quarter of the web at midspan,

Col., 7 glves the curvature or rate of change of the
slope at midspan, It is calculated from the following
expressions, (See Fig. D,1 )

L -561 + 252 - 263 - 56,+

R L4

as derived in the Appendix (D,2)

Col, 8 1s the values of Col., 7 multiplied by the scale
factor of 1/15,

Col, 9 gives the total load, 2P, acting on the model
in 1bs, It 1is obtained by multiplying Col, 1 by 5.56 the

ratio of lever lengths for the particular test,

Col, 10 is the predicted total load of a prototype
structure 15 times larger than the model, It is obtained
from the following relation:

— -2
P = Pm x fr x

-1
o (G.F.)
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where fr is the length scale and r‘ 1s the ratio of stresses
as previously defined., G.F. 1s a geometric factor toc account
for the difference in moment of inertia as explalned in Ap-
pendix C.

£, x et x 6P, = (152 x 2045 = 652

Col. 11 is the value of one half of Col, 10,
-l
Col., 12 is Col, 2 times 15 or fr the length scale,

Col, 13 1s the horizontal reaction induced by the
vertical load on the frame, It is obtained from measurements
of strain on a stiff bar., The plot of P vs H is given in
Fig. L.1.21,

Col, 14 gives the midspan moment of the frame in lb,-in.
It is obtained from the expression:

M = L4.,2P - 5.6H

as derived in Appendix F.

Col, 15 gives the predicted midspan moment in Kip
inches, It is obtained from Col. 14 by multiplying with
the factor ,652 as found for Col, 10 times 15 because the
units of moment are length x force. The expression there-
fore is

-1

= -3
M = Mm X fr X f‘

. x (G,F.)

The factors are the same as stated previously,
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4.1l.3 Connections, Welded steel structures have become
increasingly more popular because of the continuity of
framed structures which ensues when jolints and connections
are carefully welded. In the model studies in phosphor
bronze it was demonstrated that the full plastic moment of
the prototype could be predicted from model studies et reduced

scales, This can occur 1in a framed structure only if the
connections can withstand the relatively large rotations
imposed by plastic design, To verify the adequacy of various
joints model connections were made and tested in a manner
similar to the tests on connections at Lehigh University(hé).
These were not model reproductions of the prototype tests
however since an 8B13 section was used in the "protntype".
This did not allow correlation with the epproximate phosphor
bronze section used in the model connections,

4.1.3.1 Prototype Tests, Since the sections of the
prototype tests could not be dupliceted in the model only
the method of testing was of real interest in the Lehigh
test serles, Some of the model joints were made in a similar
fashion as the prototype. The loading arrangement shown in
Fig. 4.1.24 was modified and used in the model tests,

4.1.3.2 The Model Tests., The joints which were
modeled are shown in Figs, 4.1,25 and 4.1.26, The joint
in Fig. 4.1.26 is a typical beam to column connection whereas
the joints of Fig, 4.1.25. show the same section in beam
and column,

The method of making the joints is i1llus-
trated in Fig. }4.1.27 which shows the various pieces which
are silver soldered together to make connecticn K., Figs,
h.1,28 - 4.1.30 show the model joints after testing.

Fig. 4.1.31 shows the method of loeding
and support of the model frames. The horizontal bar gave
the necessary alignment so that the load could be applied
concentrically, 1In Fig. 4.1.32 the whole supporting frame is
shown during a test, Only deflections were measured in
these tests, From these the rotation of the joint could be
approximated, Fig. 4.1.33 shows a closeup of a test specimen
in which“the method of support is clearly shown.
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FIG, 4.1.24 TEST SETUP FOR CONNECTION P (REP. 46
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FIG. 4.1.25 DIMENSIONS OF THE MODEL JOINTS TESTED
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FIG.4.1.26 BEAM TO COLUMN MODEL CONNECTION
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FIG, 4.1.27 PARTS WHICH GO INTO THE MAKING OF
A MODEL JOINT,

FIG. 4.1,28 MODEL JOINTS AFTER FAILURE. NOTE THE
MODE OF FAILURE IN EACH.
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FIG., 4.1.29 TYPES A AND C JOINTS AFTER FAILURE. TYPE
JOINTS WERE USED IN THE PORTAL FRAMES.

FIG. L4,1.30 TYPE P JOINT AFTER FAILURE.
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FIG. 4.1.31 TYPE "K" JOINT IN SUPPORTING FRAME
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FIG, L4.1.32 MODEL JOINT IN THE SUPPORTING FRAME DURING
TEST.

FIG. L4.1,33 CLOSEUP OF MODEL JOINT K-1 AFTFR FAILURE.
NOTE THE BUCKLING OF THE LOWER BEAM FLANGE.
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4.1.3.3 Test Results, Tables 4,10 to L4.17 give
the test results on the 8 tests made on model joints,
Explanations of the values in the various columns of the

tables are also given., The notations used for these calcu-
lations is given in Fig, 4.1.34., The moment vs, joint
rotation curves are plotted in Fig, L4.1.35 for all the
Joints except P-1, All the joints depicted in this figure
had the same dimensions, the same cross sectional area and
were tested in the same manner. The only variable was the
configuration of the corner., In Fig. 4.1l.36 the moment
rotation curve for joint P-1 is given, On the ssme plot
the moment curvature relastion for the phosphor bronze sec-
tion i1s given. Joint P-1 failed on the column side which
was aspparently much weaker, This can be observed in Fig. L.1l.30,
L.1.3.4 Conclusions from the Connection Tests,
Looking at Fig, L4.1.35 a number of conclusions may be drawn,

1, Except for connection A-1 all the joints can mobi-
lize considerable joint rotations, Joint A-1 was the
unstiffened joint,

2. The scatter from only two tests of each joint is
not bad in the case of joint M and C but it 1s bigger in
the case of joint K, This is due mainly to variation in
workmanship.

3. The strongest joints were type M which had the
most stiffeners,

4. Joints of type C show a lower value of moment
capacity than type M but since they have proved adequate
in the case of the frame tests they should be recommended
since they are considerably easier to manufacture,

5. Type K joints are considerably stronger than C
but these are as hard to meke as type M as shown in Fig.
Lt.1.25 so they have no decisive advantage over type C,
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TABLE 4.10 TEST RESULTS OF MODEL JOINT K-1

1 2 3 L ] ]
Load at Vertical Sv Total P Moment
End of Deflection Joint Load on | at Joint
Beam in Rotation Joint
(Inches) (Igches) (Inches) |(Radians)| (Lbs,) (Lbs-In)

1 . 0045 .00318 . 00146 5.91 9.1
2 . 006 .ooh2, . 00195 11,82 18,2
3 .008 . 005665 . 00259 17.73 27.3
L . 009 . 00636 . 00292 23.64 36.4
5 .011 .00777 .0035) 29,55 45.5
6 ,012 . 00846 .00388 35.46 S4.6
1 L0142 .0100 . 00459 L41.37 63.7
8 . 0165 .01165 . 00535 47.28 72.8
9 .0188 .0133 . 0061 53.19 82.0

10 .021 .01482 .0068 59.10 91,0

11 .023 .01625% . 00746 65,01 100,0

12 .026 .01835 .00832 70.92 109.0

13 ,0285 .02015 .0092 56.83 118.0

14 0314 0222 .0102 2.74 127.2

15 .034 .02 .011 83.65 136.5

16 .038 .02682 .01235 9. 56 145.8

17 . 0465 .03282 .0151 100.47 15,.8

18 .0535 .0378 .01735 106, 38 164

19 .072 .0508 023 112,29 1g3

20 .127 .090 oLl 118,20 182

21 .25 177 .0811 124,11 191
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Explanation of Table L,10

Col. 1 is the load at the end of the beam of the
loading frame, This load was applied in increments of
one pound and in such a manner that enough time was given
to the specimen to allow for creep beyond the yield point,

Col., 2 is the deflectlion in the direction of the
applied load P on the joint, This was measured with an
Ames dlal gage which reads to the nearest one thousandth
of an inch, Since the bottom leg of the joint was
prevented from moving vertically at Point B (Fig. 4.1.3})
the upper leg at the point of load application A (Fig, 4.1.3l4)
moved down 2 x .

Col, 3 1s the component of the vertical deflection
of Col. 2 in the direction of the shearing component of
force V,

Col. L4 is the total joint rotation or 2 © as shown
on the Fig. 3.1.34. This was obtained approximately by
dividing the def‘lection.\gv by the moment arm a,

Col., 5 is the load P on the joint which is obtained
from the load at the end of the beam by multiplication with
the factor of the loading ‘frame depending on the position
of the specimen along the beam,

Col, 6 is the moment at the knee or the intersection
of the 2 center lines of the members forming the joint, It
is obtained by multiplying the shearing component of P by
the moment arm a, Note that the axial force N has no moment
component at the knee,

M = (,707P) (2.18) = 1.54P (in-1b.)
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TABLE 4.11

TEST RESULTS OF MODEL JOINT K-2

1 2 3| 5
Load at | Vertical i Total P
Engd of Deflection Sv + Joint Load on
Beam in ) : Rotation Joint
(Lbs.) (Inches) (Inches) | (Redians){ (Lbs,)

1 .0018 .00127 | ,000582 5.91
2 . 004 . 00282 | .001295 11.82
3 . 007 .oou9y | 00227 17.73
in . 009 .00635 - ,00292 23.64
5 .0112 . 0079 .00362 29,55
6 .0138 . 00975 . 0oL 8 35.46
8 . 019 .0137 . 00629 L7.28
9 .021 .015, .00707 53.19

10 .02 .017 .0078 59.10

11 .028 .0198 .0091 65,01

12 032 .02262 0104 70.92

13 .036 . 0255 .0117 76.83

14 .0&06 . 0287 .0132 82.7&

15 . 050 .0353 .01622 88.65

16 . 0595 o021 .01935 9.56

17 .0735 .052 .0239 100,47

18 (111 .0785 .0361 106,38

19 .258 .1825 .0836 . 112,29

é

Moment
at Joint

(Lbs-In)

6

O
[]

O O~ O\ w -
[l \\TAVEVEE ~oi ¥, o )L N .}
L ] L ] L ] L) [ ] L ] - L]

O O -3 O\ NFE W
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TABLE .12

TEST RESULTS OF MODEL JOINT M-1

I

1 2 3 L ] ]
Load at Vertical Toteal P Moment
End of |Deflection | gy Joint |Load on | at Joint
Beam in p Rotation Joint

(Lbs,) | (Inches) (Inches) | (Radians)| (Lbs.) (Lbs, =In)

1 .00l .00283 . 0013 5.91 9.1

2 .0075 . 0053 .002};3 11.82 18,2

3 .010 . 00707 .0032, 17.73 27.3

I .011 . 00777 .00356 23,54 36.4

[ 012 . 0099 .ooL5l 29.55 4s5.5

6 .0165 . 01165 . 00535 35.46 54.6

7 .019 L0134 . 00615 h1.27 63.7

8 .0215 .0152 - 00698 u7.28 gz.e

9 .0235 . 0166 .00762 53.19 1.9

10 .0265 . 0187 . 00859 59.10 91,0

11 .029 . 0205 . 0094 65,01 100.0

12 .0315 .0222 .0102 70.92 109.0

13 L0345 o2yl L0112 76.83 118.0

14 .0375 . 0265 .01215 82,74 127.2

15 .04l . 029 .0133 88.65 136.5

16 047 .0332 .01622 94.56 145.8

17 . 060 e .01945 10C./17 154.8

18 L0745 L0526 .ozuls 106. 38 164

19 .109 077 .0354 112,29 173

20 <145 .1025 LOL7 118,20 182

21 227 .161 .0ThL 124,11 191

22 .390 . 276 .1265 130,02 200,5
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TABLE L.13 TEST RESULTS OF MODEL JOINT M=-2

1 2 3 bt 5 6
Load at Vertical Total P Moment
End of Deflection Sv Joint Load on | at Joint
Beam in P Rotation Joint
(Lbs,) (Inches) (Inches) (Radians)| (Lbs,) (Lbs-In)

1 .0025 .00177 .000812 3,22 L.96

2 .0035 .00248 .0011L 6.4l 9,82

3 . 005 . 00354 .001625 9.66 14.9

L .007 . 00495 .002275 12,88 19,83

5 . 0085 . 0060 .002755 16,10 24.80

6 .0100 .00707 .00325 19.32 29.80

g ,0115 .00815 . 00374 22,54 34.70

.0128 . 00905 .00L16 25.76 39,70

9 .0135 .00955 . 00439 28.98 LL.60

10 L0145 .01025 . 0047 32,2 49.60

11 .0159 .01125 00516 35.42 S4.60

12 .017 .012 . 0055 38.6 59.60

13 .018 .01275 . 00585 41,8 6l.5

14 .019 .01345 .00617 45,08 69.5

15 .0205 0145 00665 48,30 7.5

16 .022 .01555 00713 51.52 79.5

17 .023 01625 | .00745 Sh.7h 8l.1L

18 .0245 01732 . 00795 57.96 89.2

19 .0258 01825 .00837 61,18 93.4

20 .027 0191 .00875 6L4.40 99.2

21 .0285 0202 .00927 67.62 104, 2

22 .030 .0212 .00972 70.84 109

23 .032 .02263 L0104 7h. 06 114, 2

2l .0336 .0238 .0109 77.28 - 119

25 .0352 .0249 .011l 80.50 : 124

26 .0375 .0265 .01215 83.72 ! 129

27 .0395 .0280 .01285 86.94 ' 133.8

28 .02 .03 .01375 90.16 ., 139.0

29 . 045 .0318 0146 93.38 ! 1L3.7

30 .050 .0354 .0162 96.60 ' 149

31 . 05l .0382 .0175 99.82 ' 153.5

32 . 060 .ouzg .01945 103,04 | 159

33 . 066 oLé .021} 106,26 ' 163,5

34 .0775 .0548 . 0251 109,48 ' 168.5

35 . 087 .0615 0282 112,70 | 173.5

36 .100 .0707 .0324 115,92 | 178.2

37 .1215 .086 .0394 119.14 © 183.5

38 <146 .1032 0473 122,36 . 188.5

39 . 280 .198 .0907 125.58 193,2
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TABLE L,1'. '"E3T RESULTS OF M

-
L 2z b
Load at | Vertical } o Total
End of Defgectinn | vy Joint
Beam in P ! Rotation !
(Lbs.) (Inches) ; (Itches) (Radiansz)
1 . 001 . (00707 | .60032L
2 .002 LCY41h | 00065
3 . 0035 L 028 ,0011l
L . 005 ,0.53 . 00162
5 .006¢€ .02hé6 .00211
6 . 0082 L0458 . 00266
7 .01 .00, 07 .0032Y
8 L0115 L0012 .00372
9 L0128 . 00975 . 00415
10 L0148 . .01048 .o00y81
11 L0162 N KR . 00528
12 .018 LIl 2 . 0058
13 .020 | LoLiil | L0065
14 . 0228 ERDIGS LO07LT
15 . 025 L 05T .00812
16 .n28 [ L0328 . 00907
17 L071 00198 L0102
18 o | .02y 8 L0111l
19 Qe .ca27e% .0125
20 N . 0315 NOINI
21 . 0525 L0372 L0171
22 L0015 . 0435 .0200
23 .072 L0531 L0234
2y . 0P55 L0612 . 0281
25 L1062 L0722 .031
26 136 . 0065 L0433
27 230 .163 .075

LEL JOIKT -1
=L

o

]

Moment
at Joint

_{ (Lbs-In)

- e e

L.96

9,82
14.9
19.83
2,.80

N
.

o~

\N SO0

29' 80
34.70
39.70
. 6C

Iy 50
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TABLE 4,15 TEST RESULTS OF MODEL JOINT C-2

1 2 3 b 5 6
L.oad at Vertical Total P Moment
End of Dof}ection Sv Joint Load on jat Joint
Beanr in Rotation Joint
(Lbs.) (Inches) (Inches) (Radisns)| (Lbs.) (Lbs-In)
1 .001 . 000707 . 000325 3.22 4.96
& .0015 . 00106 . 000486 6.2h 9.82
3 .0022 . 00155 . 000712 9.66 lh.9
I .003 .00212 | .0097k 12,88 19.83
5 . 00k . 00282 .00129 16.10 2,80
6 .0052 .00367 . 001685 19,32 29,80
g .0065 . 00459 .00211 22, .70
.008 . 00565 . 00259 25.7 39,70
9 .01 .00 o7 .0032 28.98 L. 60
10 .0115 . 00815 .0037 32.6 49.60
11 .0135 . 00955 .00l 3 35.42 54.60
12 .0155 .011 .00505 38,64 59,60
13 .0178 0126 .00579 L1.86 64.5
1] .020 Lol . 0065 4s.08 69.5
15 .02)2 .0171 .00785 48.30 0.5
16 .025 Olgg .00813 51,52 59.5
1 .0266 .01 .00862 sL4.7 L.
1l .0292 . 02062 . 00946 57.9 89.2
19 .032 .0226 0104 61,18 93.4
20 .03 . 0252 .0115 6u. o] 99.2
21 042 .0297 .0136 67.62 104.2
22 .0502 . 0355 .01h5 70.84 109
gﬁ .0618 .o§38 . 201 4. 06 114.2
075 .053 0243 77.28 119
25 .0872 .0616 .0283 80.50 124
26 .106 .075 . 034l 83.72 129
2 .127 . 0898 .12 86.9 133.8
2 .151 .1068 049 90.1 141
9 .1835 .13 .0596 93.38 143.6
30 .2585 .183 . 084 96,60 148.8
31 « 300 .212 .091? 99.82 153.5
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TABLE l,16 TEST RESULTS OF MODEL JOINT A=l

1 2 3 4 5 6
Load at | Vertical S Total P Moment
End of |[Deflection v Joint Load on |at Joint
Beam in Rotation Joint

(Lbs,) | {Inches) |(Inches) | (Radians)| (Lbs,) (Lbs-In)

1 .002 +00LL41Y | 00065 3.22 L.96

2 .0055 .0039 .00179 Jly 9.82

3 .0076 . 00536 . 002146 9.66 14.9

15; .0102 .0072 .0033 12.88 19.83

.0128 . 00905 . 00416 16.10 2. 30

6 M5 .0106 . 0046 19.32 29.80

g 017 .012 .0055 22.52 34.70

9 .021 . C1482 . 0068 28.98 .70

10 .0232 016l .oogﬁ3 32.6 49.60

11 02 018} 00845 35.42 sL4.60

12 ,0285 .0201 ,00923 38.64 59.60

1 ,0316 022 .0103 41,86 6L4.5

.gﬁs 0247 .0113 45.08 69.5

1 ) .0325 .0149 48.30 4.5

16 .052 .0382 0175 51,52 79.5

1 . 06 . 0466 .021 sy.7 84.h

1 ,082 . 058 . 026 57.9 89.2

19 .110 0777 .0357 61,18 93.7
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TABLE 4,17 TEST RESULTS OF MODEL JOINT P-1

1 2 3 4 ] é
Load at Vertical S Total P Moment
End of |[Deflection v Joint Load on |at Joint
Beam in P Rotation Joint

(Lbe.) (Inches) (Inches) (Radians)| (Lbs.) (Lbs-In)

1 . 0065 . 00L6 .00211 3,22 11.7
S| Es || %E | L | 2
& .013 .009 .ooﬁ% 12,88 ﬁf.a
s 0135 .01095 .00502 16,10 58.5
6 .01 .01270 .00582 19,32 go.z
7 . 0202 . 01428 . 00655 22,5 2

8 0232 . 0164 .00755 25.76 93.6
9 .027 .0191 . 00875 28.98 1og.2

10 . 0315 .0222 .0102 32.6 118.5

11 .0365 .0258 .01182 35.42 129.0

12 .0425 .03 .01375 38.6 140.8

13 . 050 .0353 .0162 41.8 152.2

1l .0715 . 0505 .02318 45,08 164

15 .136 . 096 oLl 48.30 lgs .8

16 .239 . 169 .0775 51.52 7.2

17 .1430 . 304 .1395 Sh.74 199
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4.2 DYNAMIC TESTS ON MODEL PORTAL FRAMES MADE OF PHOSPHOR
BRONZE

Tests on fixed ended portal frames were performed
to check the dynamic response of simple structures and com-
‘pare the, increase in strength to that of a static test,

In these dynamic tests the impulsive loading machine used
is described in Section’3.4.2., The static test was performed
in the beam loading apparatus,

L.2,1 Type of Pulse Possible. The impulsive loading
machine has the capability of giving rise times down to
3-4 milliseconds, However, these are more impactive rather
than impulsive type loads since to achieve these small rise
times the ram must not be in contact with the structure but
must have an initial travel, A typical load pulse experienced
by a frame is shown in Fig, 4.2.1 where a rise time of about
3 milliseconds was achieved,

k.2.2 The Model, The portal frame was made of the
same phosphor bronze section which approximates the 8WF4O0
rolled section at 1:15 scale, The dimensions and the details
of obtaining the necessary fixity are shown in Fig., 4.2.2.

The model was supported in a special frame shown in Fig. 3.4.11
which was placed in the machine in such & way so that the
vertical travel of the machine ram produced the lateral load

on the model., Load was measured by the load cell described
earlier and the lateral displacement by an L,V.D,T. Both

of these outputs were displayed on a clthode ray oscilloscope
and a permanent record was taken photographically. PFig. 4.2.3
shows the model frame before and after the test.

4.2.3 The Test Results, The load time varistion as
experienced by the model frame is plotted from the photo-
graphic record in Fig., 4.2.4. Fig. 4.2.5 gives the displace -
ment time variation for the same freme., From these two plots
we can find the load displacement curve of the frame as
shown in Fig, 4.2.6., This is the dynamic response of the
model frame covering the early part of the response,
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PP

a., BEAM AND COLUMN PARTS BEFORE ASSEMBLY

b, WELDED FRAME BEFORE TESTING

c. FRAME #1, AFTER TESTING

FIC. 4.2.3 PICTURES SHOWING THE MODEL BEFORE AND AFTER
THE DYNAMIC TEST
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) A static test was also made on a similar frame
and the results are given in Table 4,18, The load deflection
curve for this model is given in Pig. 4.2.7.

L.2.4 Conclusions from the Dynamic Tests, No correla-
tion between model and prototype could be obtained in this
case since there were no known full scale tests to model,
However, some conclusions could be drawn from this limited
study of dynamic behavior.

1, It can be seen that the dynamic load taken by the
model frame 1s considerably larger than the static test
value., The dynamic Pult., is about 220 lbs, and the static
is about 130 1lbs, where equal deflections were used as a
criterion of finding the static Pult,

2, The mode of failure in both static and dynamic tests
was essentially the same,
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TABLE 4.18 RESULTS OF STATIC LATERAL FORCE ON MODEL FRAME

Load at End | Horizontal | Horizontal I
Of Beam Deflection Force
(Lbs,) (Inches) (Lbs,)

1 . 006 5.91
2 .071 11,82
3 .01} 17.73
L . 017 23.6l
5 .0216 29.55
6 . 0265 35.46
7 .0315 41,37
8 .0389 L7.28
9 . 045 53.19
10 .053 59.10
11 . 0625 65.01
12 .0745 70.92
13 . 090 76.83
14 .102 82.74
15 .1182 88.65
16 .1302 94.56
17 . 1485 100.47
18 174 106,38
19 .2215 112,29
20 .2825 118.20
21 .351 124.11
22 461 130.02
23 .600 135.93
2 .815 141.84
25 .986 147.75
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APPENDIX A

L]

Consider a linearly elastic beam of length L,
stiffness EI, coefficient of damping d and mass § per
unit length, The beam is subjected to a solid body
acceleration & Dby the application of constant forces

=1 om
F s S‘L' to its two ends, It is desired to deter-
mine the deviation at time t of the bending moment of points
along the beam from their steady state value

§ Fafqil 4 Faigil

> %

MASS ¢ /UNIT LENGTH
sSTiIFENEM 61

L ——

Fig. A.1

Let the x - and y- axes of Figure A,1 move with the bean,
Then the governing equation for dynamic equilibrium of the
beam 1s

4 2
g 2 - gi- Dy a2y (A1)
3yt $ Jts 2t
%
r
Initial conditions: y = ai =0 fort=o0 (42)
LR
Bound. conditions: y = ~ir—-—— =0 forx=0 (A3)
xe and x = L,

212



Since the governing equation is not homogeneous,
substitute yix,t) = ¥Y(x,t) + @ (x) (AL)
and Eqn, (Al) becomes

EI [B‘Y + _.3:.2_.:] = gi-gazY - a2 (s

9 x* ox* Atk dt
Equation (AS5) is homogeneous if a*@(x) = 9 a
“dxe BT ¥ (46)
d4Y Mty dv
EI =z - -4 (A7)
l.e. 2x+4 8§ 3= X

The boundary conditions of the new governing eqn. (A7)
are homogeneous if, according to (A3) and (Al)
2
?: 30
9 x=2

Equation (A6) with boundary conditions (A8) represents a
uniformly loaded simply supported beam so that

It remains to solve (A7) subject to the initisl conditions

=0 for x=0 and x=L (A8)

25
N
-
e
i

= - @ (x)
=0

(A10)

J«
L
-
o
A d
|

and boundary conditions
Y (o,t) = Y(L,t) = O
(Y .
O Y (o,t)22Y
9x* x

A trial solution Y = f£(x) g(t) leads to

a
freee 8""’11“8'
= - g}' = k¢ where k is real, an

r g f 1s differentiated with resp
to x, g with respect to t,.

‘Y= e [ ¢~ cos wt+ o sin wt] [c1 cos kx + c, sin kx
*

+ c, cosh kx + c, sinh kx]

(A11)

(L,t) = 0
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According to the boundary conditions (All)

and sin kL = 0

1
also w = V “"‘EI - d'
¢L* Le®
Generally thus

d
- t
2 1 t
Y = S ¢ s [°1 coswt + ¢ sinwt] sin n;x
n=1l 2

From the second of initial conditions (Al0):
- d
c’ = Z—g;l 01
so that (A13)~becom~.s

-y%
= c e d nwx
Y n; n [coawf. +2-§-;, sin wt] sin T

The first initial condition ylelds

i cn sin “_L"?.E = - @(x) = EEEF-I— [ZLx’- x*- Lax]
n=1

The Fourier coefficients, determined in the normal
fashion, ere <
2 B L [( 1) - 1] .
€
EI‘l' "

The general solution for the deflection of the beam 1s

thus gﬁ x¢ Lx° Lx ZL [( 1)- 1]
y= g YE - YAt S "

(cos wt + - sin wt) sin QL.!L]

23w

21l

(A13)



The first three terms inside the bracket represent tﬁe
static deflection of the beam, and the last term is en
oscillation the amplitude of which is decressing with
time,

The moment in the beam at time t is

& ny
M:-EI!:X = -si 12_.. Lx +2L. [1-(‘1)1 ¢23

9x® 2 2 *> =1 n?

(cos wt +-9- sin wt) sin D¥X }
Zgw L

At midspan,

e
. 2 2 9] =55t
M = g8 { =+ 2::5 ;[L_l;;i ¢2g (coswt+ .;;wsinwt)sin-l

It is desired to give the variation of M with time for
various percentages p of criticel damping. From (Al2)

dor = 220X T
Lﬂ
2 ]

and w = —2—::—- 1v/-EE (1 - 5;1

L® 9

d 't EI

iyl eV

g L $

Substitution of (Al6) and (Al7) into (All) ylelds 8ll the

desired results,
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Table B.l

Appendix B: Computations for Section 2.7.1

x y =0 y = ¢t
¥ |b=o0.18]0b=0.25 2|b=0.50 8 Jv=0.108 | b=0.25 £ b=0.50¢
0 -o,0041 | -0,0093 | -0,0128}] -1,128 | -0.753 | -0.559

0.125} -0,0038 | -0,0085 | -0,0118] -0.4L47 | -0.704 |-0.642
6.250 -0.0028 -0,006l4 | -0.0090] 0,119 | -0.506 |-0.721
0.375| -0.0014 | -0.0034 | -0.0049} 0.228 | -0.106 |-0.516
0.500)] 0,0001 | 0,0002 0 0.050 | 0.361 0

0.625} 0.0016 | 0.0036 | o0.0049] o0.070 | 0.616 | 0.516
0.750| 0.0028 | o0.0064 | 0,0090f o0.201 | 0.509 | 0.721
0.875| 0.0036 | 0,0083 | 0.0118] o0.149 | 0,149 | 0.642

1,000 0.0039 0,0089 0.0128] 0,063 0.031 | 0.559

€ x
Values of the ratio

P for t = 2,
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y = 08¢t, b=o0,12
S S S P VT T PR A
t P P P P ::_______:____4
|
0 -0,1851 |0.2490 0 90 {0,317 |0.249 | -0.185
0.125 |-0.1342 {0,1990 | 0,0968] 105 | 0.193 |0.225 | -0.160
0.250 |-0.0388 |0,1113| 0,1171f 119 {0.139 |0.180 | -0,098
0.375 | 0,0187 [0.0624 | 0,0839| 127 | 0.087 |0,127 | -0.046
0,500 | 0,0362 [0,051L | 0.0656| 132 | 0,066 |0.110 | -0,022
0.625 | 0,0531 |[0,0164 | 0.0535| 145 | 0,057 |0.091 | -0.021
0.750 | 0,0682 |0,0189 | 0,0317| 154 |0.040 |0.084 | 0,003
0.875 | 0.0642 |0,0213| 0,0072| 170 | 0,022 |0,064 | 0,020
y = 08¢, b=0.2528
x Cx 0 Tx Tmax | 1 ¢
] P Eﬁt’ -Fl « =5 ) P
0 -0.291 |0.456 0 90 ]0.373 |0.456 |-0.291
0.125 | -0.259 {0.429 {0,198 | 105 |0.397 |0.482 | -0.312
0.250 | -0.169 |0.353 | 0,195 | 108 |0.325 [0.417 |-0.233
0.375 | -0.039 |c.240 |o0.234 | 120 |0.273 |0.373 | -0.173
0.500 0.087 [0.125 |o0.208 | 132 [n.209 |0.315 |-0.102
0.625 0.162 |0.055 | 0,131 | 146 |5,142 [0.250 |-0.033
0.750 0.169 |0.047 |O.048 | 161 |0,067 |0.175 | 0,041
0.875 | 0.136 (0,076 {0,005 | 176 |C.030 [(0.136 | 0.076
1,000 | 0,056 [0.094 0 180,(0c,019 (0,094 [ 0,056
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Table B.3

y = 0,8 ¢, b= 0,502
Bl Sk | 5y | Zmo |, |fmex | Do e
14 p p p p P
0 -0,2896|0,656L4 0 90 | 0.473] 0.656 | -0.290
0.125 | -0.2802{0.6502| 0,0786| 95 | 0.470| 0.655 | -0,285
0.250 | -0,2389{0.6170| 0,1711| 101| 0.461| 0,650 | -0,282
0.375 | -0.1434}0.5316| 0.2577| 109 0.424| 0.618 | -0,230
0.500 0 0.4000 | 0.2944| 118 0,355 0.555 | -0.155
0.625 0.1434|0.268 | 0.2577| 128| 0.265| 0.471 | -0.059
0.750 0.2389|0,1821| 0,1711| 138| 0,194 | o.4o4 [ 0.017
0.875 0.2802/0.1498 | 0.0786| 155| 0.104| 0.319 | 0,111
1,000 0.2896|0.1436 0 180| 0,073| 0.290 | 0.144
y =06¢t, b=0,102
% T x o'y T’xy o T max T Ta
p p p p p p
—

0 -0.0652]0,1093 0 90 | 0,087 | 0.109 | -0,065
0.125 | -0,0860|0,1013 | 0.022,4| 98 | 0.082 | 0,105 | -0,059
0.250 | -0.0340(0,084L; | 0,0361 | 105| 0.069 | 0,095 | -0.04L
0.375 | -0.0083|0.0651 | 0,0382} 113| 0,053 | 0,081 | -0,025
0,500 0.0117/0.0505 | 0,0327 | 120 | 0,038 | 0,069 | -0,007
0.625 0.0247|0.0413 [ 0.0248| 126 | 0.026 | 0.059 | 0,007
0.750 0.0335(0.0356 | 0,0171| 134 | 0,017 | 0,052 | 0,017
0.875 0.0395|0.0323 | 0.0090 | 146 | 0,010 | 0,046 | 0.026
1,000 0.0418( 0,0300] © 180| 0,012 | 0,042 | 0.030
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Table Bch

Ty =0.,6 ¢t b= 0,25¢%

2l ox | oy |Zxy |, |Tmex | T2 | e
< p LI p p p o
0 -0,1334| 0.2L493] © 90 | 0.191] 0,249 | -0.133

0.125 | -0.1191| 0,2391|0.0398| 96 | 0,184 0.244 | -0,12}
0.250 | -0.0828| 0,2116|0,0708{ 103} 0.163] 0.229 | -0.099
0.375 | -0.0322| 0.1728|0,0859| 110| 0.133| 0,203 | -0,.063
0.500 0.,0200( 0.1335[{0,0822| 118{ 0,100{ 0,177 | -0.023
0.625 0.0604| 0.,1040]/0,0628] 127| 0.067| 0,149 | 0,016
0.750 0.0828] 0.0884/0.0387| 133| 0.039| 0,125 | 0,047
0.875 0.0909| 0,0841]0,0172| 151| 0.018| 0.107 | 0.072

y =06t b= 0,50 £
x ” K a- 1 0‘3
1 Ix 5y Txy o T mex —_
p p p p p P
0 -0.1593/0.4169 | O 90 | 0,288 0,417 | -0,159

0.125 | -0.1486|0.4068 | 0,0403| 94 | 0,280| 0.409 |-0.151
0.250 | -0.,1176|0,3867 [0,0778| 98 | 0,264 | 0.398 | -0.129
0.375 | -0.0653(0,3485 | 0,1062( 104| 0.233| 0.375 | -0.091
0.500 0 0.3000 |{0.1171| 109 0.190| 0.340 | -0,040
0.625 0.0653/0.2515 }0,1062| 114{ 0.140| 0.298 | 0.018
0.750 0.1176|0,2133 | 0,0778] 119| 0,091 0.257 | 0.074
0.875 0.1486 /10,1932 | 0,0403| 121| 0.046 | 0,217 | 0.125
1,000 0.1593|0,1832 |0 90 | 0,012| 0,183 | 0,159
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Table B.5

y =04t b=0,128
x Ux Gy T xy T max| Ta Ty
¢ P P P X P | P p
_q
0 -0.0245| 0,0569 0 {90 | o.041 |0,057 | -0.025
0.125 | -0.0219 0,0551 | 0,0067/95 | 0,039 |0.056 | -0,022
0.250 | -0,0154( 0,0505 | 0,0117{100 | 0,035 |0,053 | -0,018
0.375 | -0.0065| 0,043 | 0.0141(105| 0,029 |0,048 | -0,010
0.500 0.0026'| 0,0380| 0,0139{109 | 0,022 {0.043 | -0.002
0.625 0.0101| 0,0329 | 0,0115{113 | 0,016 {0.038 | 0,005
0.750 0,0154 | 0.0295 | 0.0079 {114 | 0,011 |0.033 | 0.012
0.875 0.0183 | 0,0277 | 0.0041 {111 | 0,006 |0,029 | 0.017
1,000 0,0193{ 0,0271 0 90 | 0,004 |0,027 | 0.019
y=0L4t b=0,25¢
x x Ty Txy oa Tmax | T2 s
e P p p P P p
0 -0.054Y | 0,1374 0 90 | 0,096 0,137 | -0.054
0.125 | -0,0492] 0.1338 | 0,0143 | 95 | 0.092| 0.134 | -0.049
0.250 | -0.,0352|0,1240| 0,025; { 99 | 0.084| 0,128 | -0.039
0.375 | -0.0222 | 0,1106 | 0,0313 | 103| 0.073| 0.118 | -0,029
0.500 0.o04y | 0,0966 | 0.0315 | 107} 0.056| 0.106 | -0.005
0.625 0,0222 | 0.0846 | 0,0267 | 110/ 0,041 | 0,094 | 0.012
0.750 0.0352 | 0,0760 | 0,0188 | 112| 0.028{ 0.083| 0,028
0.875 0.0430 | 0.0710 | 0,0097 | 108| 0,017| 0.072 0,040
1.000 0.0456 | 0,069 0 90 | 0,012| 0,069 | 0.046
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Table B,6

y = 0.4 ¢t b=0,25¢

R e A o L s Ll e

0 -0,0708 | 0.2482( 0 |90 }0.1595 | 0.248 | -0.071
0.125 | -0,0652| 0,2442|0,0170|93 |0.1550 | 0,245 | -0,066
0,250 | -0.0498 | 0.2339]0.0314/96 |0,1450 | 0,237 | -0.053
0.375 | -0.0265| 0.2183[0.0411{99 |0.1295 | 0.225 | -0.034
0,500 0 | 0.2000|0,0466{102|0,1100 | 0.210 | -0,010
0.625 | 0,0265| 0,1818(0,0411]104|0,0875 [-0.192 | 0,017
0.750 0,0498 | 0.1661}0,0314|104|0.0659 | 0,174 0.042
0.375 0,0652| 0.1557{0,0170/100{0,0481 | 0,154 0,057
1,000 | o0,0708( 0,1518/ 0 |90 [0.0405 | 0,152 | 0.071
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APPENDIX C

As discussed earlier, the cross section chosen
for the phosphor bronze models was only an approximation
of the prototype at the length scale used, This was done
in order to faciliatate the machining operations and to
cut down on the cost, It was also assumed that geometric
corrections could be easily applied to the model results,

The most significant geometric property involved
in the type of tests performed was the moment of inertia,
This was the case because bending moments were of primary
concern, The effects of axial forces and shearing distor-
tions were neglected.

We define the geometric factor, G.F,, as follows:

G.F. = Geometric property of Exact Model
Geometric property of Actual Model

For cases involving the moment of inertia of the
section the following correction should be used to the
values predicted from the model test:

I_x fru
6F, = B T
In
where,
I_ = moment of inertia of prototype about the
4 strong axis,
Im = moment of inertia of model section about
strong axis,
fr = length scale.

In the case of the 8WFLO section used as a prototype at a
scale of 1:15 the model section had an Im = ,002 1nu and
thus the G.F, 1is

G.F., = 146.2 X (1/15),4 = 1.u5
.002
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A

This was used in all computations of moment and loed predic-
tion from the phosphor bronze model tests,
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APPENDIX D

In a section under constant moment we can find
the curvature or the change in slope of the elastic curve
per unit length from the measurement of striins across
the critical section.

From elementary beam theory we know that using
the convention of Fig., D.l ‘

1 __M (D.1)

R EI

in the elastic range and where 1/R is usually taken as

azy

dx~, If we measure the strains across the critical section
and assume that plane sections before bending remain plane
after bending we get:

2.
lsi.g.s.é (D.2)

R dx dx

where ¢ is the slope to the elastic curve or the rotation
of the critical section,

Assuming that strain measurements are taken at
the top and bottom flanges and at the upper and lower
quarter points of the wed we have looking at Fig, D.1l

€, = top flange strain (-ve)
upper quarter point strain in wedb
€ 3 ® lower quarter point strain in wed
€ y = bottou flange strain (+ve)

. | = depth of section

m
n
"

For an infinitesimal length of beam at the critical section,
say dx, we have,

-

22,



S ey

dx d d/2
_€2 -6 €y = | (D.3)
a/l a/l

The average of these values is taken as the curvature:

1. 9, Ey.€1 , AG € WE- &)
R ax Ld Ld Ld
| W€, - € oW
ha
1 561-2€2+2€3-5i
R La
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APPENDIX E

If deflections are measured along a section of
a beam in which the moment is constant or approximately so,
then the curvature could be determined, Using the notation
of Fig, E,1 , we can derive an expression for the
second derivative of the deflection at point 2 as follows,

2
1 dx ~ d
= = = ¥ -4 (E.1)
R [1 R gz) 3/ dx
dx
' Slope - Slope
(Second Slope), = 2-3 Po1-2 (E.2)
AX
where y y
= 2" 71
Slopel_2 = ——,
A x
Y3 - 7J2
Slope = S
2-3 AXx ’
(Second Slope) , = (l/R)2
y3.732. yz A
= _OX -
Ax
. I3t &ty
(ax) < (E.3)
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APPENDIX F

The singly redundant portal frame shown in
FPig, F.1 was tested beyond the elastic limit, In order
to know the bending moment at the center line, the
horizontal reaction must be measured during the entire
loading cycle,

g 4br_45

£L7;1{ , 4?::7;1;

Fig. F.1 Singly Redundant Portal Frame

The bending moment at the centerline section
is given by:

M = p

NVH Y

L
- Hh « pZ
*3

P (%‘) - Hh

Substituting the values of £ = 11,2", h = 5,6"
M = uoz P' 5.6}1

The values of H were taken from Fig, 4.1.21,
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