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KABSTRACT
The radiation characteristics of a line source of magnetic current are

studied for the case in which the source is situated in a half-space of isotropic,

compressible plasma which is bounded on one side by a perfectly conducting, rigid

plane screen. In addition to the electromagnetic and plasma space waves, the line

source excites a boundary wave. This boundary wave is a coupled wave. It has

associated with it both a magnetic field component and the pressure term. This

is in contrast to the space waves which can be decomposed into an electromagnetic

(EM) mode with no pressure term and a plasma (P) mode with no magnetic field

associated with it. The characteristics of this boundary wave are evaluated.

The boundary wave propagates for all frequencies and the power carried by the

boundary wave becomes smaller as the frequency is increased.
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INTRODUCTION

The study of the radiation characteristics of localized electromagnetic

sources in ionized gaseous media, known generally as plasmas, has application

to the problem of radio communication with missiles and space vehicles passing

through the ionized regions in space. In this paper, the radiation characteristics

of a line source of magnetic current situated in a compressible plasma medium

of semi-infinite extent and bounded on one side by a perfectly conducting, rigid

planar screen, is investigated. The special case for which the line s.ource is on

the screen becomes equivalent to the problem of radiation into a plasma half-

space from an infinitely long slot radiator whose width is very small in comparison

to the wavelength. In a previous paper [1] , the same problem was investigated

for the case of an incompressible plasma in which the longitudinal plasma waves

cannot be sustained. In this investigation, the previous analysis.is extended to

the case of a compressible plasma which is capable of supporting both the

transverse electromagnetic waves and the longitudinal plasma waves.

Only recently, the radiation from sources in a compressible plasma has

been studied. Hessel and Shmoys [2] have treated the problem of radiation from

a point source of electric current in a homogeneous isotropic plasma. Hessel,

Marcuvitz and Shmoys [3] have investigated the radiation from a line source of

magnetic current in a vacuum in the pres.ence of a plasma half-space. In this

paper the radiation characteristics of a. line source of magnetic current are

investigated for the case in which the source is located in a half-space of

isotropic, compressible plasma which is bounded on one side by a perfectly

conducting, rigid plane screen. In addition to the EM and P space waves, a

boundary wave is found to exist along the screen. This boundary wave is a

coupled wave; it has associated with it both a magnetic field and a pressure

term. This is in contrast to the space waves which can bedecomposed into

two distinct, uncoupled modes, namely the transverse electromagnetic (EM)

mode and the longitudinal plasma (P) mode. The characteristics of this

boundary wave are evaluated.
-i1-
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The space wave parts of the electromagnetic and the plasma modes do not

propagate for frequencies less than the plasma frequency. But the boundary

wave propagates for all frequencies. The power carried by the boundary wave is

decreased as the frequency is increased,

FORMULATION OF THE PROBLEM

Consider a perfectly conducting and rigid, planar screen of infinite extent,

Let a right-handed rectangular coordinate system x, y and z be chosen such

that the screen occupies the plane z = 0 . (Fig. 1). The half-space z > 0 is

filled uniformly with a homogeneous, electron plasma. A line source of magnetic

current is located in the plasma at x = 0 , z = d ; it is parallel to the y-axis

and may be represented as

Jm = y Jm  = y J 0(x)6(z-d) (1)

It is desired to investigate the radiation characteristics of this line source with

particular reference to the boundary waves that propagate along the screen.

Attention is given only to the steady-state problem. The current source

is assumed to have the harmonic time dependence of the form e . The

frequency of the source is assumed to be sufficiently high so that the motion of

the ions may be neglected. In addition, the strength of the source is assumed

to be so weak that only small amplitude waves are excited, thus justifying the

use of a linearized plasma theory [4] . According to the linearized theory,

all the field components will have the same harmonic time dependence as that

of the source, namely e -i 0t , which may, therefore, be conveniently suppressed.

The collisions between electrons and other particles are neglected and the

drift velocity of the electrons is assumed to be zero.

Let N be the average number density of electrons, p the pressure

deviation of the electrons from the mean and V the velocity of electrons. Let

E and H be the alternating electric and magnetic fields, respectively. The

linearized, time-harmonic hydrodynamic equation of mo:tion of the electrons is

-itwm No V = Noe E -Vp (2)
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where e is the charge and m is the mass of an electron. The linearized

equation of continuity together with the equation of state gives

2 -A
a mN V- V = iwp (3)0

where a is the velocity of sound in the electron gas. In addition, the electric

and magnetic fields satisfy, in the half-space z > 0 , the following time-harmonic

Maxwell 's equations:

V x iw 0 H - J, (4)

Vx H = -iW&g E + N'°  (5)

where p 0 and S0 are respectively the permeability and the dielectric constant

of free space.
The source and the geometry of the problem are independent of the y

coordinate and, hence, all the field quantities also are independent of y . On

substituting 8 = 0 in (4) and (5) , it is found that the electromagnetic fielday
is separable into E and H modes. Since only a line source of magnetic
current is present, the H mode is not excited, and, hence, E = H = H = 0

y x z
From (2), it is seen that V = 0 also . Only a single component of the magneticy
field, namely, H is present.

By making use of (2) and (5), Ex, E z Vx and Vz are easily expressed
in terms of H and p as follows:y

E = 1 8 H -- N (6)x To-C 8Z No elI X P

1 a(I - ,i

V e H - P.I (8)
WineIy N 0 --

e Ws--- 0 8Vz 2 -- -P (9)
.W meo81 L 0"

o -
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where ( . (10)

/Noe 2

and the plasma frequency is, w 0 The substitution of (6), (7), and
(1) in (4) yields 0

+ +ke 2 H(X Z)= - io 8 1o6 (x), 6 (z-d) (11)

where, 
2

ke =r (I-S =  p" .

c c W

and c is the velocity of electromagnetic waves in free-space. In a similar

fashion, the use of (8) and (9) in (3) gives

2  + +kP] p(x'Z) 0 (13)

whe re 8x 8

2
w2 2

kp =--T &I = --z- 0 - (4

a a W

It is advantageous to rearrange the field quantities given in (6) - (9) into

two distinct groups. The magnetic field component H and the first terms in

(6) - (9) constitute the first group which is called the electromagnetic (EM)

mode. The pressure p and the second terms in (6) - (9) constitute the second

group which is called the plasma [P] mode. The EM mode and the P mode are

written down separately as follows:

EM mode

E x H - 6 H

.A e &m 8- H( 
15

-- x, _;z Hx ( r

ol
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P mode

p, Ep - - ecX fz 8 ~N Noee ax bx

= 1 x b + , bp (6
S iw mNO, Lax 8z

The subscripts e and p denote the EM and the P modes, respectively. For

the EM mode, it is seen that VxE e / 0 V' Ee = 0 and V Ve = 0 . Therefore,
it is obvious that the EM mode has a magnetic field component associated with it

but has no charge accumulation. Moreover, the EM mode has a y component of

the magnetic field and this is perpendicular to the xz-plane in which the propagation

takes place. Therefore, the EM mode is a transverse mode. For the P mode,

it is found that VxE = 0 V. E /0 and VxV =0 . The P mode obviouslyp ' pp

has charge accumulation associated with it, but no magnetic field. Since it does

not contain any y component of the field, it is a longitudinal mode. Using the

generalized Poynting vector for a compressible plasma given in [2] , it can be

shown that.in an unbounded plasma, the EM and the P modes are uncoupled in

the sense that the total power can be obtained as the sum of the powers in the

individual modes. However, as will be seen later, if a surface wave exists along

a plasma boundary, it is a coupled wave .

It is clear from (13) that in an unbounded plasma, the line source (1) does

not excite p (x, z) . Therefore, it is evident from (16) that the P mode is

absent and only the transverse EM mode is excited. However, in a plasma

half-space, on account of the presence of the boundary at z = 0 , the longitudinal

P mode is excited. Since the bounding surface z = 0 , is a perfectly conducting

and rigid screen, the following boundary conditions are to be satisfied:

Ek (x, 0 ) = 0 (17)

Vz (x, o) = 0 (18)
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INTEGRAL EXPRESSIONS FOR THE FIELDS

The solution of (11) and (13) subject to the boundary conditions (17) and

(18) will yield H (x, z) and p(x, z) . Once H (x, z) and p(x, z) are known,Y Y
the other field quantities Ex (x, z), E (x, z), Vx(x, z)and V(x , z)are easilyobtained

with the help of (6) - (9) . Integral expressions for H (x, z) and p(x, z) can bey
easily obtained in the following manner.

The geometry of the problem suggests the following representations for

-the field components:

00

Hy(x,z) R 5 fly( z) ei~x dr (19a)

-00

00

p(x,z) p-- 5 P( ' z) e i1 x dt (19b)
-00

Integral representations similar to (17) are assumed also for Ex (x) z) and

Vz(X, z) . Then it follows from (6), (9), (11) and (13) that
X( .)_ i _ Hy( , z)- i (1"-i )

E z)i 0 I  -z- NeM ) P( z) (20)

e. We Iy(i

MZ 2me Noe 8 - p  z (21)

d eJ+ el - 0 Co1 J 0 (z - d) (22)

and

+ p Z) 0 (23)

where
+ Jki 2 2 ki >

= + i 2 -k1 2 > k for i =ep (24)1 1p
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The solution of (22) gives
i. z. -i~eZ

C Ae + Be e z>d-Z)
Hy( , z) = ~ -~

Ce e z  + De" z <.d (25)

and

"-d l(,d+) -- d ( ,d -)= i w 0 1J (26)
dz y dz yo10

.,Similarly, the. solution of (23), gives

i~pz .-i~pz

P (C, z). = E e + Fe p (27)

.The usual phase radiation condition is found to be applicable for both

modes. An examination of the dispersion curves w-ke and w-k for the EM• p
and the P modes shows that there are no backward wave regions. Therefore,

the radiation condition requires that H (X, z.) and p(x, z) have outward

traveling phase fronts for .z tending to infinity. Hence, B F = 0 . From the

boundary conditions (17).and (18), it is clear that Ex(r, 0).= x 5( , 0) = 0

It follows, therefore, from (20), (21), (25), (27).that

ge (C-D) ic(i-)l) E

0 oo N
1  

C 1(

and

-i (C+D).+ NC -e = 0 (29)
0

The .requirement that the tangential component of the magnetic field should

be continuous at z = d gives

i e d ited -ited
Ae Ce + De (30)
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The use of the jump conditions (26) in (25) leads to

i ed i ed -iged WCEl J

Ae - (C e De e = _ 0 (31)

The expressions for A, C, D and E may be obtained from the solution of the

simultaneous equations (28) - (31) . The results are

A WoIJo 0 -i ed + e- 1) 2 iged

2g e ep+ (I-F1)

B =0

C= - 2Eo1J[ e-(1_81) 2] i~ed
2 e [ep +(I-cl) ]

gogl Jo i~ed
D = - e d

N e

0 0 o(32)
eM + (l ) 2

and

F =0

The substitution of (32) in (25) and (27) and the use of (19) yields the following

integral expressions for H y (xlz) and p(x, z) :
y

H(z) 1 ol Jo "~d ~ 18)2leI
e + 2  e e-o zz e M + +(1-ej

for d < z < oo .(33a)
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H0 WC 0 C ~e I -o e1 i z 2 ig d ) i x+i E z" -co" ze e +e p + (- - e d

for 0 < z < d,. (33b)
and

NoeC 1 Joi d+ i~x+i~p

p(x, z) = e& 1-1 0 q e e erxie P dC (34)
2V o F ~ + (l- 1 j

SINGULARITIES OF THE INTEGRAND

The contour for the integrals in (33) and (34) is along the real axis in

the -plane as shown in Fig. 2. It is desired to find the singularities of the

inte.grands in (33) and (34). Branch points are seen to occur at C = +k e and

= + k p. With the. help of (12) and (14), it is obvious that the branch points

at + ke and + k occur on the real or the imaginary axis of the c-plane

depending on whether w is greater or less than w.p
The poles of the integrand are obviously determined by the roots of

the equation

. e (k _ 2 + (1- 1 )C 2 = 0 (35)

On eliminating the radical in (35), is found to satisfy a biquadratic equation,

the solution of which gives the following pair of possible solutions of (35) as

= u +\U - W (36a)

and

r2 = U -U W (36b)

where
k 2 + k 2 k k 2

U= e p e (37)
4 4
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In obtaining (37)., use has been made of (10). Only that root from (36a, b)
which also satisfies (35) on the proper Riemann surface, is the proper root
of (35). For finding out which one of (36a, b) is a proper root, it is
advantageous to simplify (36a, b) by making use of the fact that the ratio of the

a. -4plasma to the electromagnetic wave velocities -aL is of the order of 10-
2 ca

Hence, a is very small in comparison with unity. It is seen from (37) that2

2. C
U is very large compared to W and, hence, the following approximation
to (36) may be used,

2=W W 2  (38)

2 81 U

Case 1: For w >wp , both k 2 and k 2 and, hence, U and W arepe p
positive and, hence, the two roots given in (38) may be simplified to yield

2 2 L 2U
2- ks 4 .u " (39a)

L0i
and

2 2 W W 2  2 k 2 W 4
o =k -. +  = k [1- 2 4 ] (39b)0 1 e ;-2 4(3b8U W

The root 2 given in (39a) is greater than k , since w > w For this
root, in view of (24) and the fact that k 2 > kP2 PPePethe first term in (35) is
negative and the second term is positive and they can add to zero. Hence, the

root (39a), which is an approximation to the root given by the upper sign in
(36) is on the proper Riemann surface. Moreover, this root is real and occurs
at + ks in the C-plane. With the help of (39b), the root of 2l is seen to2
be slightly less than k e  It follows, therefore, that on the proper Riemann
surface defined by (24), the first term in (35) is positive and so is the second
term. They cannot add to zero and, hence, the root (39b) is not on the proper
Riemann surface. It is to be noted that for w > W + C is a real pole on
the improper Riemann surface.
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Case a: The root i given in (36a) and approximated by k s given in (39a)

is real and positive even for w < w . For w < o , k and k are negative and= z. p p e p
C2 ks is positive, the first term in (35) is a negative real number and the

second term is a positive real number and they can add to zero. Hence, the root

Ci is a proper real root of (35) and gives a pair of real poles in the C-plane. For

w < to with the help of (12) and (14), it is evident that U > 0 and'W < 0. Since
p 2

W <0 VU-W > U. Hence, the root is.negative. Moreover,

2 22-k 2 2 o 4 2 k /eo
2  2 k 2 e < 0andk 2 2=k 2 e+ < 0ke 2 k 2 o r2 p

Pp p

Hence, the first term in (35) is negative real and the second term is also

negative real and, therefore, both the terms in (35) cannot add to zero. Hence,.

for w < , + i 21 gives a pair of purely- imaginary poles on the improper

Riemann surface.
Therefore, it is seen that the root (39a) gives rise to a pair of real

poles at = + ks for all values of o . The root (36b) is on the-improper

Riemann surface-; it-is real or imaginary depending on whether o is greater

or, less than ciP

SURFACE WAVE CONTRIBUTION

The contour for the integrals in (33) and (34) is along the real axis in

the c-plane (Fig. 2). Since the branch points at = + ke , and = kp are on

the real axis for to > w ,o the contour of integration has to be indented

suitably at these points. As was mentioned earlier, the phase-type radiation

condition is applicable to the space-wave parts of the total field. Since the

dispersion curves. for the space waves for both the EM and P modes do not

contain any backward wave regions, the radiation condition is satisfied by

requiring the phase fronts of the EM and the P space waves to be traveling

outward. Hence, the contour is indented from above at C = - k and
p

- ke and from below at = +k e and + k . For to < Wp , no ambiguity in

the integration contours at the branch points occur, since for to < o k and
p e

k are purely imaginary.
p
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In addition to the branch points, the integrands in (33) and (34) have

poles at r = +k s on the real axis for all w . For w > wp , this pole occurs

beyond both branch points. It is obvious that the contour of integration should be

indented from above at - k s and from below at k s (Fig. 2a, b-) or

vice versa. The former type of indentation will be chosen for all wo . This

ensures the surface wave to have outward traveling phase fronts. As was shown

in an earlier investigation [5] , in a compressible plasma, the requirement of

outward traveling phase fronts does not necessarily imply that the net power

is traveling outward at infinityih spite of the absence of backward regions in

the dispersion curve. It remains, therefore, to be verified that the total power

is indeed traveling outward at infinity.

For x > 0 , the integrals (33) and (34) may be evaluated by closing the

contour in the upper half of the r-plane. The contribution to the integrals

(33) and (34) is the sum of the residue at the pole r = ks and the two branch-cut

integrals. The values of the branch-cut integrals depend on some inverse

power of x and, hence, for large x are negligible compared to the contribution

due to the pole. Thus, for positive large x (33) yields
ikx - zk 2  2

H (x,z) = H s (x,z) = H  e e (40)y ys

where

o 2 e
H~~~ s (1

2 2 k-
2k ,k 2 -k _ _ e -ks 2k 2 /  Lk s2 _ke2 f 2

Similarly,the contribution from the pole of (34) gives

ik x z \/ks2- k 2

p (x,z)= pS(x,z) = P e s p (42)
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where

-d/k -~k2 s- fk2wp (
Ps e~ eJ (43

It is evident that H S(x, z) and pS(x, z) given respectively in (40) and (42)
yrepresent surface waves which propagate in the positive x direction and are

exponentially attenuated in the z direction. The phase velocity V of boths

H y(X, z) and 'pS(x, z) is given by

v a _2 (44)
s k3

The phas.e velocity is infinite for w = 0 reduces monotonically as the frequency

is increased and, for w = w reaches a value which is equal to './ times the

acoustic velocity in the electron gas. As the frequency is still further increased,

the phase velocity continues to decrease and asymptotically reaches the value

a , the acoustic velocity in the electron gas, in the limit of infinite frequency.

A plot of phase velocity v. versus the frequency w is shown in Fig. 3.

The attenuation factor a. for the decay of Hy (x, z) in the z direction

is given by

2 ,2-.1/

CLh k5 -kp +~- (45)h =  ske - a 1(425

.Similarly, the attenuation factor a for p(x, z) is obtained as
V 03 ;' Z 1/2C = 2 k P (I + (46)

p s p a 2

p

It follows, therefore, that H S(x, z) and p(x, z) which propagate with the samey
phase velocity in the x direction are attenuated differently in the z-direction,

as seen from (45) and (46). The attenuation factor ah is a monotonically

increasing function of frequency. It starts with the value of zero for co = 0
0

increases to the value P for w = w and thereafter continuously increases
av / P
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as W is increased. However, the attenuation factor ap for the pressure wave

is amonotorically decreasing function of frequency. It starts with the value

P for w = 0, decreases to the value . for w = u and thereafter
a a /f\ZP

asymptotically approaches zero as w is increased indefinitely. A plot of the

attenuation constants a h. and a p as a function of w is shown in Fig. 3. For

W , W both the attenuation constants are equal. For w <w , a > a and
p. p p h

therefore, the pressure field is more tightly bound to the guiding surface than

the magnetic field. But for w > wp Y ap < ah resulting in the pressure field

being more loosely bound than the magnetic field.

It is desired to evaluate the total power radiated per unit length of the

source in the form of surface waves. It can be shown (see Appendix) that the

total power radiated by the line source is obtained as the sum of the powers

in the space wave and the boundary wave separately. Hence, it is meaningful

to speak of the power radiated in the surface waves alone. It has been proved

[ 3 , 5] , that the time-averaged, outward normal flow of power through unit

area is given by

=+Re[ ExH * +V ] (47)

The total power transmitted by the surface waves is, therefore, given by

Ws = W+s + W_ , (48)

where W+ S and W are the net flow of power respectively in the positive

and the negative x directions. With the help of (47) , W and W are

easily obtained as

0:,

2 Re [EsxH s* +spVP dz

0

I Re [ - E z (x, z) H (x,z) +p (x, z) Vx (x, z)]dz
• y

0

(49a)
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and

wS 1 Re.[ -E z(x,z) HyS*(x, z) +pS(x, z)V s (x, z)] dz (49b)
2

0

where H S(x, z) and pS(x, z), for x > 0 , are given in (40) and (42) respectively.
y

For x < 0 , H y(x, z) and pS.(x, z) can be obtained easily as

-ik x-z k 2 -k Z
H s(x, z)=H e s s e (50a)y s

and 22-ik x-.z k 2 -k
p (x,z) -P e S 8 e (50b)

For x > 0 , the expressions for EzS(x, z) and VxS(x, z) are found by substituting
(40) and (42) in (7) and (8) . The result is

k (1-e )a S
EX (x,z) - s Hy (x,z) + (x,z) (51)z S ot I Noes ri

eah k

V (x Z) 2 H ( XZ) + S p (x, z) (52)
tw mES I  

o

When (40), (42), (51) and (52) are used in (49a) , it is found that
k 2 k (l-Sl)

w H + s p H P (53)S4wo1 h s 4weiNom CP  s 2N e l  s s.
0 n10 p0 1

In a similar manner W s can be calculated and is found to be equal toW+s

as expected. Hence, the total power transmitted by the surface waves per

unit width of the screen is obtained from (48) and (53) as

)s 2W
s  k k (1-

_ k s 2 k s 2 (1P (54)
3V '= 2 So61 a2h s 2w& 1Nomap Ps NoeC I Hs s

The expression (54) for W s can be considerably simplified when

advantage is taken of the fact that a 2  is of the order of 10-8 and, therefore,

C
negligible in comparison with unity. In view of this fact, it follows from (IZ),

(14) and (39a) that

42 .k 2 k 2  2 _k 2 " k 2 - (
k s ke ks ks p k s Li4(55)
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The substitution of (55) in (41) immediately gives

-1

Hs o 1 o e (56)

In a similar manner, the use of (55) in (43) yields

W2 W j-I1 k
P =-Ne J L-- - e (5'7)

With the help of (45), (46), (55) - (57) in (54), itis possible to show, after

considerable simplification, that

-s 2W s  e a 7
w (58)

where &- (0

p
, S.

It is seen from (58) that W is always positive, showing that the

requirement of the boundary wave to have outward traveling phase fronts does

lead to the fulfillment of the radiation condition, which requires a net outflow

of power at large distances from the source.

It is seen from (58) that the power delivered to the surface wave is a

maximum when the line source is on the screen, i.e., when d = 0 . Also,an

increase in the frequency E2 results in a decrease in the power in the surface

wave. Obviously,this analysis is not valid for very small 6 , since in that

case the motion of the ions cannot be neglected. For & < 1 , the space

waves are exponentially damped and all the power is carried by the surface wave.

It is well known that in an unbounded isotropic plasma the EM and

the P modes are uncoupled [2] . The presence of the boundary provides a

mechanism of coupling between these modes. Since the boundary surface

alone provides the mechanism of coupling of power between the EM and the

P modes, it is intuitively obvious that if a surface wave is present, it will be

a coupled mode in the sense that the total power in the surface wave is not

equal to the sum of the powers in the EM and P modes separately. That this

actually turns out be the case is indicated by the presence of the cross term

in (54).
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APPENDIX

Let E, H, V and P be the total field quantities. The total field is a

solution of (2), (3), (4) and (5) . Also let , ES , V and Ps be the field

quantities associated with the boundary wave part of the total field. The

boundary wave is a solution of source-free field equations. Let
S* _= ExH +) SV + s* -t _.

S Ex H+ PV + E XH + P V (A-i)

Taking the divergence of S and making use of (2) - (5) , it can easily

be shown that

V'S 1  = H Jm (A-2)

The integration of (A-2) throughout the volume V enclosed by the transverse

planes P and P. , the surface P at infinity and the surface of the screen

(Fig. 1) yields

S - Ez(X, z)Hys* (x) z) + P (x, z) Vx s * (x, z)
PlI+P 

2

Es (x, z) H (x, z) + p (x, z) Vx(x, z dz
y

H y* (x,z) J dv (A -3)

V
The integral over the surface P 0 which is located at infinity, vanishes since

the total field is bounded and the field of the boundary wave decreases

exponentially in the z direction. Also,,the integral over the surface of the
screen vanishes since z S = 0 , on the screen, in view of the boundary

conditions (17) and (18) .
The total field quantities may be written in the form

R s + R +H (x,z) = H y (x,z) + H (x ,z) P(x,z) = P (x,z) +P (x ,z)

E~~)=-R -5+ R ~ . +E(x,Z) (x,z) + B (x ,z), V(xZ) V (xZ) + V (x I z)
for x > 0 (A-4)
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and

H (x,z) H R(x,z) + H s(x z) , P (x,Z) P (x,z) + P(x ,z)
y y y

-1 R s -AR-E(xz) = E (x,z) + B (x',z), V(x,z) = V (x,z) + V (x, z)

for x < 0 (A-5)
R R -Rwhere H y(X, z), P (x, z), E (x, z) and V (x, z) denote the space wave parts

of the total field quantities. The field components of the boundary wave

traveling in the positive and the negative x directions are denoted respectively
+

by x and x-.

In view of (40), (42) and (6) - (8) , the field components of the boundary

wave traveling in the positive x direction may be represented as
ik x ik x

H ys (x+, z) H.(z) e sx, PS(x+,z) = Ps(Z) e s

ik x ik x
E .(x , z) = E (z)e e s (A-6)

In a similar way, with (50a, b) and (6) - (8) , it is evident that the field

components of the boundary wave traveling in the negative x direction, are

given by
-ik x -ik x

H S(x--,z) H (z) e s PS(x-,z) = - (z) e sy s
-ik x -ik x

Ss(x-,z) = - z (z) e Vx (x-,z) = V (z) e (A-7)

The substitution of (A-5) - (A-7) in (A-3) , after some simplification,

yields the following

.dz -E zR(xl,z) Hs (z) + PR (x, z) Vs (z)
0

-Ezs (Z) HR (xl,z) + Ps (z) VR (xl, z) e ksx

+ dz LEzR(-xz, z) H. (z) + PR (-x 2, z) V xs(Z)

0
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+E (z)H (-x ,z) - P (z)V(-x2 , z )  e
Rzs 2 x

00

H (x, z) J dv (A-8)- , y m

v

If the position of the transverse plane PI is changed, the second and

the third terms on the left-.hand side as well as the right-hand side of (A-7) are

unchanged. Hence, it follows that

e ik B dz E R(x,z) H s (z) + PR (x,z) Vs (z)

0

- Ezs(z) Hy R (x z) + PS (z) VxR (X, z)1 = constant (A-9)

In a similar manner, it may be argued that

e x 0 dz ER(Xz) H (z) + P R(x,z) Vs(z)

e- s R Vxz

0

+E zs (z) HR(xZ)+ Ps (z) VxR(X, z)] = constant (A-10)

The space wave has a continuous eigenvalue spectrum and so its dependence oniksx -iksx

x cannot annul the factor e i in (A-9) and e in (A-10) . Furthermore,

if the positions of the transverse planes P and P. approach respectively

x I = oo and x. = O, it is evident that EzlR(x z) , P(x(x, z)HyR(X, z) and

Vx (X, z) approach zero. Also, since ks is real, it follows that the constants

in (A-9) and (A-10) are zero. Therefore, from (A-9), (A-10), (A-3) and

(A-4) , it is evident that
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0 y

=, dz E z(x,z) HR(xz) + PS*(xz) VxR(x,z)
0
o

0 o (A-1l)

In view of (A- i) , it is obvious that the boundary and the space wave partp of

the total field are orthogonal in the sense that the total power flow is equal to

the sum of the powers separately in the boundary and the space waves.
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