GYROTHEORY OF A SPINNING ROTATIONALLY
SYMMETRIC SATELLITE
A New Integral of the Equations of Motion

Herbert Knothe
GYROTHEORY OF A SPINNING ROTATIONALLY SYMMETRIC SATELLITE

A New Integral of the Equations of Motion

by

Herbert Knothe

Mathematics Division
Office of Research Analyses

OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
Holloman Air Force Base, New Mexico

March 1963
ABSTRACT

Without restriction to plane or infinitesimally small motions, the differential equations for a spinning rotationally symmetric satellite have been established, using new methods, in the form of two second-order differential equations. An integral of these equations has been found.

KEYWORDS

New Integral
Gyrotheory
Spinning Satellite

This report is approved for publication.

K. W. GALLUP
Colonel, USAF
Commander, Office of Research Analyses
GYROTHEORY OF A SPINNING ROTATIONALLY SYMMETRIC SATELLITE

A New Integral of the Equations of Motion

Although some of the following deductions can be found dispersed in various American and German textbooks, the whole approach given in this paper, as well as many results, seems to be new. It is worth while to go back in the development to the very beginnings of theoretical physics, i.e., Newton's laws and Hamilton's principle.

We are particularly interested in the motion of the spinning satellite under the influence of the gravitational field of the earth, which shall be assumed as spherically symmetric. Lagrange-Hamilton's theory immediately yields the equations of motion for \(N \) mass points:

\[
\frac{\partial L}{\partial x_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}_i} = 0
\]

\[
\frac{\partial L}{\partial y_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{y}_i} = 0
\]

(1)

\[
\frac{\partial L}{\partial z_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{z}_i} = 0
\]

where

\[
L = \sum_i \left(\frac{m_i}{2} \dot{x}_i^2 - \Phi_i \right) + \sum_{i,k=1}^{N} \lambda_{ik} \left(x_i - x_k \right)^2
\]

(2)

(The vector \(\vec{x}_i \) has the components \((x_i, y_i, z_i) \))
and

\[\phi_i = -\frac{k m_i}{r_i} = -\frac{\mu m_i}{r_i} \quad (3) \]

means the gravitational potential of the \(i \)th mass point. The constants \(\lambda_{1k} \) are Lagrangian multipliers corresponding to the boundary conditions

\[(\bar{x}_i - \bar{x}_k)^2 = \text{const.} \]

which express the fact that for a rigid body the distance between two arbitrary mass points remains constant.

Equations (1) can now be condensed into the vector equation

\[m_i \ddot{x}_i + \frac{k m_i}{r_i^3} x_i + 2 \sum_{k=1}^{N} \lambda_{1k} (\bar{x}_i - \bar{x}_k) = 0 \quad (4) \]

We substitute

\[\bar{x}_i = \bar{x}_0 + \bar{y}_i \quad (5) \]

and neglect higher than linear terms of

\[\frac{|\bar{y}_i|}{|\bar{x}_0|} \quad (6) \]

which is certainly justified because the diameter of the satellite is extremely small compared with the radius of the earth. From equation (5)
it follows

\[r_1^2 = (r_0 + \Delta r_1)^2 \approx r_0^2 + 2r_0 \Delta r_1 \approx \bar{x}_0^2 + 2\bar{x}_0 \bar{y}_1 \]

or

\[\Delta r_1 = \frac{\bar{x}_1 \bar{y}_1}{r_0} \] (7)

Therefore, equation (4) can be transformed into

\[
m_1 \dot{x}_0 + m_1 \dot{y}_1 = -\frac{\mu m_4}{r_0^3} \bar{x}_0 + \frac{3\mu m_4}{r_0^5} (\bar{x}_0 \bar{y}_1) \bar{x}_0 - \frac{\mu m_4}{r_0^3} \bar{y}_1 - 2 \sum_{k=1}^{N} \lambda_{1k} (\bar{y}_1 - \bar{y}_k) \]

(8)

We now sum over all mass points and take into account

\[\sum_{i=1}^{N} m_1 \bar{y}_1 = 0 \] (9)

which states that \(\bar{x}_0 \) is the center of gravity of the satellite, and

\[\sum_{i,k=1}^{N} \lambda_{1k} (\bar{y}_1 - \bar{y}_k) = 0 \] (10)

Equation (10) is a consequence of the fact that \(\lambda_{1k} = \lambda_{k1} \) since \(\lambda_{1k} \), \(\lambda_{k1} \) are multipliers belonging to the same boundary condition

\[(\bar{x}_1 - \bar{x}_k)^2 = \text{const.} \]
We obtain

\[(\sum m_i) \ddot{x}_0 = - \frac{\mu \sum m_i}{r_0^3} \ddot{x}_0 \tag{11} \]

Equation (11) states that the motion of the center of gravity of the satellite is not influenced by the satellite's librations, at least not as long as we neglect second and higher powers of \(|\bar{y}_i|/|\bar{x}_0|\). From equations (8), (9), and (11) we conclude

\[m_i \ddot{y}_i = + \frac{3\mu m_i}{r_0^5} (\bar{x}_0 \cdot \bar{y}_i) \bar{x}_0 - \frac{\mu m_i}{r_0^3} \bar{y}_i - 2 \sum_{k=1}^{N} \lambda_{ik} (\bar{y}_i - \bar{y}_k) \tag{12} \]

If we now form the vector product of (12) with \(\bar{y}_i\), sum over \(i\), and take into account that \(\lambda_{ik} = \lambda_{ki}\), we obtain

\[\sum m_i (\ddot{\bar{y}}_i \times \bar{y}_i) = + \sum \frac{3\mu m_i}{r_0^5} (\bar{x}_0 \cdot \bar{y}_i) (\bar{x}_0 \times \bar{y}_i) \tag{13} \]

or

\[\frac{d}{dt} \sum m_i (\dot{\bar{y}}_i \times \bar{y}_i) = + \sum \frac{3\mu m_i}{r_0^5} (\bar{x}_0 \cdot \bar{y}_i) (\bar{x}_0 \times \bar{y}_i) \tag{14} \]

We now make use of a fundamental formula describing the motion of a rigid body:

\[\dot{\bar{y}}_i = \bar{y}_i \times \bar{\nu} \tag{15} \]
where \(\mathbf{v} \), the instantaneous vector of rotation, is independent of \(\mathbf{i} \). Substituting (15) in equation (14) we obtain

\[
\frac{d}{dt} \sum m_i \left[(\overline{y}_i^2)\mathbf{v} - (\mathbf{v} \overline{y}_i)\overline{y}_i \right] = + \sum \frac{3\mu m_i}{r_o^5} (\overline{x}_o \overline{y}_i) (\overline{x}_o \times \overline{y}_i) \quad (16)
\]

For a short time we shall leave the vector representation and shall introduce the principal axes of inertia through the center of gravity as coordinate axes. Because of the rotational symmetry of the satellite, two of these axes are determined only to a rotation about the third axis corresponding to the axis of rotation. They may be chosen arbitrarily but perpendicular to each other and to the third axis.

Let \(v_1, v_2, v_3 \) be the components of \(\mathbf{v} \) with respect to such a coordinate system, \(I_1 \) being the moment of inertia corresponding to the axis of rotation, \(I_2 = I_3 \) being the moment of inertia of an axis through the center of gravity and perpendicular to the axis of rotation. Let \(x_1, x_2, x_3 \) be the components of \(\overline{x}_o \) with respect to our coordinate system. Equation (16) can then be written

\[
\frac{d}{dt} (I_1 v_1) = 0
\]

\[
\frac{d}{dt} (I_2 v_2) = - \frac{3\mu}{r_o^5} x_1 x_3 (I_1 - I_2) \quad (17)
\]

\[
\frac{d}{dt} (I_2 v_3) = + \frac{3\mu}{r_o^5} x_1 x_2 (I_1 - I_2)
\]
We introduce the vectors

\[\tilde{e} = (v_1, 0, 0) \]

\[\tilde{h} = (0, v_2, v_3) \]

and condense equations (17) into the vector equation

\[I_1 \dot{\tilde{a}} + I_2 \dot{\tilde{h}} = -\frac{3\mu (I_1 - I_2)}{r_0^2 a^2} (\tilde{x}_0 \tilde{a}) (\tilde{x}_0 \times \tilde{a}) \] \hspace{1cm} (18)

We still need additional equations in order to eliminate the indeterminacy of \(\tilde{h} \). At first we have

\[\tilde{a} \tilde{h} = 0 \] \hspace{1cm} (19)

Secondly we remark that the end point of the unit vector

\[\frac{\tilde{a}}{|\tilde{a}|} = \tilde{e} \] \hspace{1cm} (20)

whose initial point coincides with the center of gravity, is a point rigidly connected with the gyro satellite. Therefore, formula (15) can be applied to \(\tilde{e} \):

\[\dot{\tilde{e}} = \tilde{e} \times \tilde{v} = \tilde{e} \times (\tilde{a} + \tilde{h}) = \tilde{e} \times \tilde{h} \]

or

\[\tilde{h} = \dot{\tilde{e}} \times \tilde{e} = \frac{\dot{\tilde{a}} \times \tilde{a}}{\tilde{a}^2} \] \hspace{1cm} (21)
From equations (19) and (21) we conclude

$$\ddot{a} - \dot{h} = 0$$

(22)

and forming the scalar product of equation (18) and \bar{a}

$$\bar{a}^2 = \text{const.} = \omega_0^2$$

(23)

We replace \bar{x}_0 by $r_0 \bar{w}$ where \bar{w} is a unit vector indicating the direction earth center → satellite.

Combining equations (18), (20), (21), and (23), we obtain the fundamental differential equation for the motion of the satellite's axis of rotation, represented by the unit vector \bar{e}:

$$I_1 \dot{\omega}_0 \bar{e} + I_2 (\bar{e} \times \bar{e}) = \frac{3\mu (I_1 - I_2)}{r_0^3} (\bar{v} \times \bar{e})$$

(24)

Equation (24) is valid for any elliptical orbit.

After determining \bar{e} from equation (24) \bar{h} can be derived from equation (21) by differentiation and simple algebraical processes. Since

$$\bar{v} = \omega_0 \bar{e} + \bar{h}$$

we master the gyro motion of the satellite.

Let us apply formula (24) to the case of a circular orbit where $r_0 = \text{const}$. In order to simplify the formulae we first introduce

$$\tau = \Omega_0 t$$
as a new independent variable where Ω_s means the angular velocity of the satellite's rotation about the earth. Formula (24) assumes the form

$$I_1 \omega \Omega_s \vec{e}' + I_2 \Omega_s^2 (\vec{e}'' \times \vec{e}) = -\frac{3\mu}{r_0^3} (I_1 - I_2) (\vec{w} \times \vec{e}) (\vec{w} \times \vec{e}) \quad (25)$$

where the primes denote differentiation with respect to τ. Using the abbreviations

$$I_1 \omega \Omega_s = \tilde{I}_1$$
$$I_2 \Omega_s^2 = \tilde{I}_2$$

$$-\frac{3\mu}{r_0^3} (I_1 - I_2) = K$$

equation (25) can be written

$$\tilde{I}_1 \vec{e}' + \tilde{I}_2 (\vec{e}'' \times \vec{e}) = K (\vec{w} \times \vec{e}) (\vec{w} \times \vec{e}) \quad (27)$$

It is advantageous to refer \vec{e} to a coordinate system which rotates about the earth in the same way as the satellite's center of gravity. The axes of this coordinate system may be defined by the unit vectors \vec{w}, \vec{w}', \vec{n} where \vec{n} is defined by

$$\vec{n} = \vec{w} \times \vec{w}' = \vec{w} \times \vec{t}$$

$$\vec{t} = \vec{w}'$$

(28)

The unit vector \vec{n} is a constant vector representing the normal vector.
of the orbit plane. We express \bar{e} as a linear combination of $\bar{w}, \bar{t}, \bar{n}$

$$\bar{e} = \lambda \bar{w} + \mu \bar{t} + \rho \bar{n}$$

(29)

since

$$\bar{w}' = \bar{t}, \quad \bar{t}' = -\bar{w}, \quad \bar{n}' = 0$$

we have

$$\bar{e}' = (\lambda' - \mu)\bar{w} + (\mu' + \lambda)\bar{t} + \rho'\bar{n}$$

(30)

If we move with the satellite and observe the attitude of its axis of rotation which is given by the unit vector (λ, μ, ρ) we observe that this vector moves on the surface of the unit sphere at a velocity the vector of which has the components λ', μ', ρ' in the satellite system. Equation (30) shows the relation between the velocity vector \bar{e}' observed in a universe-fixed system and the velocity vector (λ', μ', ρ') observed in a satellite-fixed system can be written

$$\bar{e}' = \bar{z}' + (\bar{n} \times \bar{z})$$

(31)

where

$$\bar{z} = (\lambda, \mu, \rho)$$

and $\lambda^2 + \mu^2 + \rho^2 = 1$.

Applying the operator of equation (31)

$$\frac{d}{dr} + (\bar{n} \times \bar{z})$$
twice, we get

$$e'' = z'' + 2(n \times z') - z + (z \cdot n)n$$ \hspace{1cm} (32)

Equations (31) and (32) enable us to write the equation of motion (27) in the satellite-fixed system \tilde{w}, \tilde{t}, \tilde{n}:

$$\tilde{I}_1 \left(\tilde{z} + (n \times \tilde{z}) \right) + \tilde{I}_2 \left((z'' \times \tilde{z}) + 2(n \cdot \tilde{z})z' + (\tilde{z} \cdot n)(\tilde{n} \times \tilde{z}) \right)$$

$$= K (\tilde{w} \cdot \tilde{z}) (\tilde{w} \times \tilde{z})$$ \hspace{1cm} (33)

From equation (33), apparently more complicated than equation (27), an integral of the equation of motion can easily be derived, by forming the vector product of (33) and \tilde{z}'. We obtain

$$\tilde{I}_1 (n \cdot \tilde{z}') + \tilde{I}_2 (\tilde{z}' \cdot z'') + \tilde{I}_2 (n \cdot \tilde{z}) (n \cdot \tilde{z}') = K (\tilde{w} \cdot \tilde{z}) (\tilde{w} \cdot \tilde{z}')$$ \hspace{1cm} (34)

Integration of equation (34) yields

$$\tilde{I}_1 (n \cdot \tilde{z}) + \frac{1}{2} \tilde{I}_2 (\tilde{z}'^2 + (n \cdot \tilde{z})^2) - \frac{1}{2} K (\tilde{w} \cdot \tilde{z})^2 = \text{const.}$$ \hspace{1cm} (35)

Let us now write the equation of motion (33) in the coordinate system λ, μ, ρ. The motion can be described by three algebraic differential equations. One of these equations is identical with the integral (35), the second equation is obtained by forming the scalar product of equation (33) and \tilde{n}, and the third equation expresses the fact that the vector
\((\lambda, \mu, \rho)\) is a unit vector:

\[
\frac{1}{I_1} \rho + \frac{1}{2} \frac{1}{I_2} (\lambda'^2 + \mu'^2 + \rho'^2 + \rho^2) - \frac{1}{2} K \lambda^2 = \text{const.}
\]

\[
\frac{\dot{Y}_1}{I_1} \rho' + \frac{\dot{Y}_2}{I_2} (\lambda'' - \lambda''') + 2 \frac{\dot{Y}_2}{I_2} \rho' = K \lambda \mu \quad (36)
\]

\[\lambda^2 + \mu^2 + \rho^2 = 1\]

Introducing polar coordinates

\[
\lambda = \cos \phi \sin \theta
\]

\[
\mu = \sin \phi \sin \theta \quad (37)
\]

\[
\rho = \cos \theta
\]

The system (36) is equivalent to

\[
\frac{\dot{Y}_1}{I_1} \cos \theta + \frac{1}{2} \frac{\dot{Y}_2}{I_2} (\sin^2 \theta \phi'^2 + \theta'^2 + \cos^2 \phi) - \frac{1}{2} K \sin^2 \theta \cos^2 \phi = \text{const.}
\]

\[
(38)
\]

\[
\frac{\dot{Y}_1}{I_1} (\cos \theta)' - \frac{\dot{Y}_2}{I_2} (\sin^2 \theta \phi')' + \frac{\dot{Y}_2}{I_2} (\cos^2 \theta)' = K \sin^2 \theta \cos \phi \sin \phi
\]
<table>
<thead>
<tr>
<th>DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFSOR (SRIL)</td>
</tr>
<tr>
<td>Wash 25, DC</td>
</tr>
<tr>
<td>Scientific and Technical Information 2</td>
</tr>
<tr>
<td>Facility 2</td>
</tr>
<tr>
<td>ATTN: NASA Representative (S-AK/DL) 2</td>
</tr>
<tr>
<td>P. O. Box 5700 2</td>
</tr>
<tr>
<td>Bethesda, Md 2</td>
</tr>
<tr>
<td>Chief, R&D, Dept of the Army 1</td>
</tr>
<tr>
<td>ATTN: Scientific Information Branch 1</td>
</tr>
<tr>
<td>Wash 25, DC 1</td>
</tr>
<tr>
<td>AFSC (SCRS) 1</td>
</tr>
<tr>
<td>Andrews AFB 1</td>
</tr>
<tr>
<td>Wash 25, DC 1</td>
</tr>
<tr>
<td>Chairman 1</td>
</tr>
<tr>
<td>Canadian Joint Staff (DRB/DSIS) 1</td>
</tr>
<tr>
<td>2450 Massachusetts Avenue NW 1</td>
</tr>
<tr>
<td>Wash 25, DC 1</td>
</tr>
<tr>
<td>U.S. Naval Research Laboratory 1</td>
</tr>
<tr>
<td>ATTN: Library 1</td>
</tr>
<tr>
<td>Wash 25, DC 1</td>
</tr>
<tr>
<td>Institute of Technology (AU) 1</td>
</tr>
<tr>
<td>Library 1</td>
</tr>
<tr>
<td>WCL-LIB, Bldg 125, Area B 1</td>
</tr>
<tr>
<td>Wright-Patterson AFB, Ohio 1</td>
</tr>
<tr>
<td>ASD (Technical Library) 1</td>
</tr>
<tr>
<td>Wright-Patterson AFB, Ohio 1</td>
</tr>
<tr>
<td>ARL (Technical Library) 2</td>
</tr>
<tr>
<td>Bldg 450 2</td>
</tr>
<tr>
<td>Wright-Patterson AFB, Ohio 2</td>
</tr>
<tr>
<td>High Speed Flight Station (NASA) 1</td>
</tr>
<tr>
<td>ATTN: Technical Library 1</td>
</tr>
<tr>
<td>Edwards AFB, Calif 1</td>
</tr>
<tr>
<td>AFPTC (FTOIL) 1</td>
</tr>
<tr>
<td>Edwards AFB, Calif 1</td>
</tr>
<tr>
<td>Ames Research Center (NASA) 1</td>
</tr>
<tr>
<td>ATTN: Technical Library 1</td>
</tr>
<tr>
<td>Moffett Field, Calif 1</td>
</tr>
<tr>
<td>The RAND Corporation 2</td>
</tr>
<tr>
<td>1700 Main Street 2</td>
</tr>
<tr>
<td>Santa Monica, Calif 2</td>
</tr>
<tr>
<td>ASTIA (TIPCR) 20</td>
</tr>
<tr>
<td>Arlington Hall Station 20</td>
</tr>
<tr>
<td>Arlington 12, Va 20</td>
</tr>
<tr>
<td>Langley Research Center (NASA) 1</td>
</tr>
<tr>
<td>ATTN: Technical Library 1</td>
</tr>
<tr>
<td>Langley AFB, Va 1</td>
</tr>
<tr>
<td>Lewis Research Center (NASA) 1</td>
</tr>
<tr>
<td>ATTN: Technical Library 1</td>
</tr>
<tr>
<td>21000 Brookpark Road 1</td>
</tr>
<tr>
<td>Cleveland 35, Ohio 1</td>
</tr>
<tr>
<td>Redstone Scientific Information Center 1</td>
</tr>
<tr>
<td>U. S. Army Missile Command 1</td>
</tr>
<tr>
<td>Redstone Arsenal, Ala 1</td>
</tr>
<tr>
<td>Institute of Aeronautical Sciences 1</td>
</tr>
<tr>
<td>2 East 64th Street 1</td>
</tr>
<tr>
<td>New York 21, NY 1</td>
</tr>
<tr>
<td>Applied Mechanics Reviews 2</td>
</tr>
<tr>
<td>Southwest Research Institute 2</td>
</tr>
<tr>
<td>8500 Culebra Road 2</td>
</tr>
<tr>
<td>San Antonio 6, Texas 2</td>
</tr>
<tr>
<td>AFCRL (CURELA) 1</td>
</tr>
<tr>
<td>L. G. Hansford Field, Mass 1</td>
</tr>
<tr>
<td>AEDC (AOJIM) 1</td>
</tr>
<tr>
<td>Arnold AFB Stn, Tenn 1</td>
</tr>
<tr>
<td>Signal Corps Engineering Laboratory (SIGF/ER-RFO) 1</td>
</tr>
<tr>
<td>Fort Monmouth, NJ 1</td>
</tr>
<tr>
<td>Linda Hall Library 1</td>
</tr>
<tr>
<td>ATTN: Documents Division 1</td>
</tr>
<tr>
<td>5109 Cherry Street 1</td>
</tr>
<tr>
<td>Kansas City 10, Mo 1</td>
</tr>
<tr>
<td>CIA (OCR Mail Room) 2</td>
</tr>
<tr>
<td>2430 E Street NW 2</td>
</tr>
<tr>
<td>Wash 25, DC 2</td>
</tr>
</tbody>
</table>
Detachment 1
Hq, Office of Aerospace Research
European Office, USAF
47 Cantersteen
Brussels, Belgium

Hq USAF (AFCIN-3T)
Wash 25, DC

Hq USAF (AFDRD-LS)
Wash 25, DC

Chief, Bureau of Ordnance (Sp-401)
Dept of the Navy
Wash 25, DC

APMC (Tech Library MU-135)
Patrick AFB, Fla

APGC (PGTRIL)
Eglin AFB, Fla

AFSWC (SWOI)
Kirtland AFB, NMex

AU (AUL-6008)
Maxwell AFB, Ala

RADC (RAALD)
ATTN: Documents Library
Griffiss AFB, NY

Naval Research Laboratory
Dept of the Navy
ATTN: Director, Code 5360
Wash 25, DC

Commanding Officer
Diamond Ordnance Fuse Laboratories
ATTN: Technical Reference Section
(ORDTL 06.33)
Wash 25, DC

Hq OAR (RRON/Col T. M. Love)
Tempo D
4th & Independence Ave, SW
Wash 25, DC

Hq OAR (RRY)
Wash 25, DC

USAF (DLIB)
U. S. Air Force Academy, Colo

School of Aeronautical and Engineering Sciences
ATTN: Aero and ES Library

Purdue University
Lafayette, Ind

Space Technology Laboratories, Inc.
ATTN: Information Services
Document Acquisition Group

P. O. Box 95001
Los Angeles 45, Calif

Commanding General

New Mexico State University of Agriculture, Engineering, and Science
ATTN: Library

University Park, NMex

University of New Mexico
Government Publications Division

University of New Mexico Library
Albuquerque, NMex

LOCAL

NLO

RRA

RRRT
<table>
<thead>
<tr>
<th>Office of Research Analyses</th>
<th>UNCLASSIFIED</th>
<th>Office of Research Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Aerospace Research</td>
<td>New Integral</td>
<td>Office of Aerospace Research</td>
</tr>
<tr>
<td>Holloman AFB, New Mexico</td>
<td>Gyrotheory</td>
<td>Holloman AFB, New Mexico</td>
</tr>
<tr>
<td>GYROTHEORY OF A SPINNING ROTATIONALLY SYMMETRIC SATELLITE: A New Integral of the Equations of Motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 1963, 12 pp</td>
<td>Spinning Satellite</td>
<td>March 1963, 12 pp</td>
</tr>
<tr>
<td>ORA-63-6 Unclassified Report</td>
<td></td>
<td>ORA-63-6 Unclassified Report</td>
</tr>
<tr>
<td>Without restriction to plane or infinitesimally small motions, the differential equations for a spinning rotationally symmetric satellite have been established, using new methods, (over)</td>
<td></td>
<td>Without restriction to plane or infinitesimally small motions, the differential equations for a spinning rotationally symmetric satellite have been established, using new methods, (over)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
<th>I. Herbert Knothe</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Integral</td>
<td>II. In ASTIA collection</td>
<td>New Integral</td>
</tr>
<tr>
<td>Gyrotheory</td>
<td></td>
<td>Gyrotheory</td>
</tr>
<tr>
<td>Spinning Satellite</td>
<td></td>
<td>Spinning Satellite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCLASSIFIED</td>
<td></td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
<th>I. Herbert Knothe</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Integral</td>
<td>II. In ASTIA collection</td>
<td>New Integral</td>
</tr>
<tr>
<td>Gyrotheory</td>
<td></td>
<td>Gyrotheory</td>
</tr>
<tr>
<td>Spinning Satellite</td>
<td></td>
<td>Spinning Satellite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCLASSIFIED</td>
<td></td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCLASSIFIED</td>
<td>UNCLASSIFIED</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>in the form of two second-order differential equations. An integral of these equations has been found.</td>
<td>in the form of two second-order differential equations. An integral of these equations has been found.</td>
<td>in the form of two second-order differential equations. An integral of these equations has been found.</td>
</tr>
<tr>
<td>in the form of two second-order differential equations. An integral of these equations has been found.</td>
<td>in the form of two second-order differential equations. An integral of these equations has been found.</td>
<td>in the form of two second-order differential equations. An integral of these equations has been found.</td>
</tr>
</tbody>
</table>