NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SCATTERING OF OBLIQUELY INCIDENT LIGHT WAVES
BY ELLIPTICAL FIBERS

Cavour W. H. Yeh

ELECTRICAL ENGINEERING DEPARTMENT
Requests for additional copies by Agencies of the Department of Defense, their contractors, and other Government agencies should be directed to the:

Defense Documentation Center (DDC)
Arlington Hall Station
Arlington 12, Virginia

Department of Defense contractors must be established for DDC services or have their "need-to-know" certified by the cognizant military agency of their project or contract.

All other persons and organizations should apply to the:

U. S. Department of Commerce
Office of Technical Services
Washington 25, D. C.
SCATTERING OF OBLIQUELY INCIDENT LIGHT WAVES BY

ELLIPICAL FIBERS

Cavour W. H. Yeh

ELECTRICAL ENGINEERING DEPARTMENT
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES 7, CALIFORNIA

AF 19(604)-6195
Project No. 4642
Task No. 464202

USCEC Report 82-211

April 1963

Prepared
for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS
The exact solution of the scattering of obliquely incident plane waves by an elliptical dielectric cylinder is obtained. It is found that each expansion coefficient of the scattered or transmitted wave is coupled to all coefficients of the series expansion for the incident wave except when the elliptical cylinder degenerates to a circular one. Both polarizations of the incident wave are considered: one with the incident electric vector in the axial direction, and the other with the incident magnetic vector in the axial direction. It is noted that in the general case of oblique incidence the scattered field contains a significant cross-polarized component which vanishes at normal incidence.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>FORMULATION OF THE PROBLEM</td>
<td>1</td>
</tr>
<tr>
<td>III</td>
<td>SCATTERING OF AN OBLIQUELY INCIDENT PLANE WAVE</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>A. E-WAVE</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>B. H-WAVE</td>
<td>16</td>
</tr>
<tr>
<td>IV</td>
<td>CONCLUSIONS</td>
<td>16</td>
</tr>
</tbody>
</table>

APPENDIX - FORMULAS FOR a_m,n, β_m,n, γ_m,n' AND χ_m,n | 17 |

REFERENCES | 18 |
I. INTRODUCTION

The problems of scattering of waves by a circular dielectric cylinder have been considered by many authors (Refs. 1-3). Most recently, the exact solution of the problem of diffraction of normally incident plane waves by a dielectric elliptical cylinder was obtained (Ref. 4). However, the general case for oblique incidence has not been considered. It is the purpose of this paper to present a complete solution for this general problem. It is hoped that the results will be applicable to the problem of scattering of light by noncircular fibers.

II. FORMULATION OF THE PROBLEM

To analyze this problem, the elliptical cylinder coordinates \((\xi, \eta, z)\), as shown in Fig. 1, are introduced. In terms of the rectangular coordinates \((x, y, z)\), the elliptical cylinder coordinates are defined by the following relations:

\[
x = q \cosh \xi \cos \eta \\
y = q \sinh \xi \sin \eta \\
z = z
\]

\((0 \leq \xi \leq \infty, \ 0 \leq \eta \leq 2\pi)\)
where q is the semifocal length of the ellipse. The contour surfaces
of constant ξ, are confocal elliptic cylinders, and those of constant η
are confocal hyperbolic cylinders. One of the confocal elliptic cylinders
with $\xi = \xi_0$ is assumed to coincide with the boundary of the solid dielec-
tric cylinder, and z-axis coincides with its longitudinal axis. It will be
assumed that this dielectric cylinder, which has a permittivity ϵ_1, a
permeability μ_1, and a conductivity of zero, is embedded in a homogeneous
perfect dielectric medium \((\epsilon_0, \mu_0)\). A possible solution of the wave equation is then \(R(\xi) \theta(\eta) e^{i\beta z} e^{-i\omega t}\) where \(R\) and \(\theta\) satisfy the differential equations

\[
\frac{d^2 R}{d\xi^2} - (c - 2\gamma^2 \cosh 2\xi) R = 0
\]

(2)

\[
\frac{d^2 \theta}{d\eta^2} + (c - 2\gamma^2 \cos 2\eta) \theta = 0
\]

(3)
in which \(c\) is the separation constant and \(\gamma^2 = (k^2 - \beta^2) q^2 / 4\), \(k\) being the wave number.

The periodic solutions of the equation in \(\eta\) are of two types: even about \(\eta = 0\), and odd about \(\eta = 0\) (Ref. 5). They are possible only for certain characteristic values of \(c\). The even and odd functions are respectively denoted by \(ce_n(\eta, \gamma^2)\) and \(se_n(\eta, \gamma^2)\) with the sequence in \(n\) according to increasing values of \(c\). It should be noted that these functions are orthogonal functions. The solutions of (2) corresponding to the even function \(ce_n(\eta, \gamma^2)\) having the same characteristic values of \(c\) are \(C_n(\xi, \gamma^2)\) and \(F_{en}(\xi, \gamma^2)\), and those corresponding to the odd function \(se_n(\eta, \gamma^2)\) are \(S_n(\xi, \gamma^2)\) and \(G_{en}(\xi, \gamma^2)\) (Ref. 5).

The proper choice of these functions to represent the electromagnetic fields depends upon the boundary conditions. For the region within the dielectric cylinder, all field components must be finite. All field components for the scattered wave must satisfy the Sommerfeld's
radiation condition at infinity. Consequently, the appropriate solutions of the wave equation for the region inside the dielectric cylinder are

\[
\begin{align*}
\left\{ \begin{array}{c}
C_n(\xi, \gamma_1^2) c_n(\eta, \gamma_1^2) \\
S_n(\xi, \gamma_1^2) s_n(\eta, \gamma_1^2)
\end{array} \right\} e^{i\beta z} \\
\end{align*}
\]

and those for the scattered wave are

\[
\begin{align*}
\left\{ \begin{array}{c}
M_n^{(1), (2)}(\xi, \gamma_0^2) c_n(\eta, \gamma_0^2) \\
N_n^{(1), (2)}(\xi, \gamma_0^2) s_n(\eta, \gamma_0^2)
\end{array} \right\} e^{i\beta z} \\
\end{align*}
\]

where

\[
M_n^{(1), (2)}(\xi, \gamma_0^2) = C_n(\xi, \gamma_0^2) \mp i F_n(\xi, \gamma_0^2) \\
N_n^{(1), (2)}(\xi, \gamma_0^2) = S_n(\xi, \gamma_0^2) \pm i G_n(\xi, \gamma_0^2)
\]

\(\gamma_1^2\) and \(\gamma_0^2\) are given in the next section.

III. SCATTERING OF AN OBLIQUELY INCIDENT PLANE WAVE

Two types of incident waves are possible. The one, called an E-wave is defined by \(H_z = 0\), and the other called an H-wave is defined by \(E_z = 0\).
It can be shown that a plane wave with its direction of propagation defined by the angles \(\phi \) and \(\theta \) (see Fig. 1) is given by

\[
e^{i k_0 (x \cos \phi \sin \theta + y \sin \phi \sin \theta + z \cos \theta)}
\]

\[
e^{i k_0 \left[q \sin \theta \left(\cosh \xi \cos \eta \cos \phi + \sinh \xi \sin \eta \sin \phi \right) + z \cos \theta \right]}
\]

\[
= \sum_{n=0}^{\infty} \left[\frac{1}{P_{2n}} \text{Ce}_{2n} (\xi, y_0^2) \text{ce}_{2n} (\eta, y_0^2) \text{ce}_{2n} (\phi, y_0^2) \right.
\]

\[
+ \frac{1}{s_{2n+2}} \text{Se}_{2n+2} (\xi, y_0^2) \text{se}_{2n+2} (\eta, y_0^2) \text{se}_{2n+2} (\phi, y_0^2)
\]

\[
+ \frac{i}{P_{2n+1}} \text{Ce}_{2n+1} (\xi, y_0^2) \text{ce}_{2n+1} (\eta, y_0^2) \text{ce}_{2n+1} (\phi, y_0^2)
\]

\[
+ \frac{i}{s_{2n+1}} \text{Se}_{2n+1} (\xi, y_0^2) \text{se}_{2n+1} (\eta, y_0^2) \text{se}_{2n+1} (\phi, y_0^2) \left] e^{i k_0 z \cos \theta}
\]

where \(y_0^2 = k_0^2 q^2 \sin^2 \theta / 4 \), \(k_0^2 = 2 \pi / \lambda_0 \), and \(\lambda_0 \) is the free-space wavelength. \(P_{2n}, \ P_{2n+1}, \ s_{2n+2}, \text{ and } s_{2n+1} \) are joining factors (Ref. 5).

In order to simplify the notations for the Mathieu and modified Mathieu functions without any ambiguities, the following abbreviations are used:

\[
\text{Ce}_n (\xi, y_0^2) = \text{Ce}_n (\xi) \quad \text{ce}_n (\eta, y_0^2) = \text{ce}_n (\eta)
\]

\[
\text{Se}_n (\xi, y_0^2) = \text{Se}_n (\xi) \quad \text{se}_n (\eta, y_0^2) = \text{se}_n (\eta)
\]

\[
\text{Ce}_n (\xi, y_1^2) = \text{Ce}_n^* (\xi) \quad \text{ce}_n (\eta, y_1^2) = \text{ce}_n^* (\eta)
\]

\[
\text{Se}_n (\xi, y_1^2) = \text{Se}_n^* (\xi) \quad \text{se}_n (\eta, y_1^2) = \text{se}_n^* (\eta)
\]
\[M_{e_n}^{(1),(2)}(\xi, \gamma_o^2) = M_{e_n}^{(1),(2)}(\xi) \tag{9} \]

\[N_{e_n}^{(1),(2)}(\xi, \gamma_o^2) = N_{e_n}^{(1),(2)}(\xi) \tag{10} \]

with \(\gamma_o^2 = (k_1^2 - k_2^2 \cos^2 \theta) q^2 / 4 \) where \(k_1^2 = \omega^2 \mu \epsilon \).

A. E-WAVE

The axial components of an incident E-wave are

\[E_z^i = E_o \left\{ \text{the right-hand side of Eq. (8)} \right\} \tag{11} \]

\[H_z^i = 0. \tag{12} \]

It is interesting to note that, unlike the case for a normally incident wave or for a perfectly conducting cylinder at oblique incidence, the boundary conditions for the present general case of oblique incidence on a dielectric elliptical cylinder cannot be satisfied if the z component of the scattered or transmitted magnetic field is taken to be zero for an incident E-wave, or if the z component of the scattered or transmitted electric field is taken to be zero for an incident H-wave. Hence, referring to (4) and (5), we see that the axial components of the scattered field and of the transmitted field inside the dielectric cylinder must be of the form
\[
E^s_z = \sum_{n=0}^{\infty} \left[A_{2n}^{(1)} \psi_{2n}^{(1)}(\xi) \psi_{2n}^{(1)}(\eta) \psi_{2n}^{(1)}(\phi) \right. \\
+ B_{2n+2}^{(1)} \psi_{2n+2}^{(1)}(\xi) \psi_{2n+2}^{(1)}(\eta) \psi_{2n+2}^{(1)}(\phi) \\
+ \epsilon_{2n+1}^{(1)} \psi_{2n+1}^{(1)}(\xi) \psi_{2n+1}^{(1)}(\eta) \psi_{2n+1}^{(1)}(\phi) \\
+ \frac{B_{2n+1}}{s_{2n+1}} \psi_{2n+1}^{(1)}(\xi) \psi_{2n+1}^{(1)}(\eta) \psi_{2n+1}^{(1)}(\phi) \left] e^{ik_0 z \cos \theta} \right.
\]

(12)

\[
H^s_z = \sum_{n=0}^{\infty} \left[C_{2n}^{(1)} \psi_{2n}^{(1)}(\xi) \psi_{2n}^{(1)}(\eta) \psi_{2n}^{(1)}(\phi) \right. \\
+ D_{2n+2}^{(1)} \psi_{2n+2}^{(1)}(\xi) \psi_{2n+2}^{(1)}(\eta) \psi_{2n+2}^{(1)}(\phi) \\
+ \epsilon_{2n+1}^{(1)} \psi_{2n+1}^{(1)}(\xi) \psi_{2n+1}^{(1)}(\eta) \psi_{2n+1}^{(1)}(\phi) \\
+ \frac{D_{2n+1}}{s_{2n+1}} \psi_{2n+1}^{(1)}(\xi) \psi_{2n+1}^{(1)}(\eta) \psi_{2n+1}^{(1)}(\phi) \left] e^{ik_0 z \cos \theta} \right.
\]

(13)

and

\[
E^t_z = \sum_{n=0}^{\infty} \left[F_{2n}^{(1)} \psi_{2n}^{(1)}(\xi) \psi_{2n}^{(1)}(\eta) \psi_{2n}^{(1)}(\phi) \right. \\
+ G_{2n+2}^{(1)} \psi_{2n+2}^{(1)}(\xi) \psi_{2n+2}^{(1)}(\eta) \psi_{2n+2}^{(1)}(\phi) \left]
\]
\[H_z = 2E_0 \sum_{n=0}^{\infty} \left[\frac{P_{2n}}{p_{2n}^*} C_{2n}^* (\xi) C_{2n+1} (\eta) C_{2n} (\phi) + i \frac{Q_{2n+1}}{s_{2n+1}^*} S_{2n+2}^* (\xi) S_{2n+2} (\eta) S_{2n+2} (\phi) + i \frac{P_{2n+1}}{p_{2n+1}^*} C_{2n+1}^* (\xi) C_{2n+1} (\eta) C_{2n+1} (\phi) + i \frac{Q_{2n+1}}{s_{2n+1}^*} S_{2n+1}^* (\xi) S_{2n+1} (\eta) S_{2n+1} (\phi) \right] e^{ik_0z} \cos \theta \]

(14)

where \(A_n, B_n, C_n, D_n, F_n, G_n, P_n, \) and \(Q_n \) are arbitrary unknown coefficients that can be determined by applying the boundary conditions. \(P_{2n}, P_{2n+1}, S_{2n+2}, \) and \(S_{2n+1}^* \) are joining factors. All transverse fields can be derived from Maxwell's equations with the knowledge of the axial fields.

The boundary conditions require the continuity of the tangential components of the electric and magnetic field at the boundary surface \(\xi = \xi_0; \) i.e.,
\[\frac{1}{k_0^2 \sin^2 \theta} \left\{ ik_0 \cos \theta \frac{\partial}{\partial \eta} \left[\text{r.h.s. of Eq. (10) with } \xi = \xi_0 \right] \right. \\
+ ik_0 \cos \theta \frac{\partial}{\partial \eta} \left[\text{r.h.s. of Eq. (12) with } \xi = \xi_0 \right] \\
- iw_0 \frac{\partial}{\partial \xi_0} \left[\text{r.h.s. of Eq. (13) with } \xi = \xi_0 \right] \right\}, \]

\[= \frac{1}{(k_1^2 - k_0^2 \cos^2 \theta)} \left\{ ik_0 \cos \theta \frac{\partial}{\partial \eta} \left[\text{r.h.s. of Eq. (14) with } \xi = \xi_0 \right] \right. \\
- iw_1 \frac{\partial}{\partial \xi_0} \left[\text{r.h.s. of Eq. (15) with } \xi = \xi_0 \right] \left. \right\}, \]

\[\frac{1}{k_0^2 \sin^2 \theta} \left\{ -iw_0 \frac{\partial}{\partial \xi_0} \left[\text{r.h.s. of Eq. (10) with } \xi = \xi_0 \right] \right. \\
- iw_0 \frac{\partial}{\partial \xi_0} \left[\text{r.h.s. of Eq. (12) with } \xi = \xi_0 \right] \\
- ik_0 \cos \theta \frac{\partial}{\partial \eta} \left[\text{r.h.s. of Eq. (13) with } \xi = \xi_0 \right] \right\} \\
= \frac{1}{(k_1^2 - k_0^2 \cos^2 \theta)} \left\{ - iw_1 \frac{\partial}{\partial \xi_0} \left[\text{r.h.s. of Eq. (14) with } \xi = \xi_0 \right] \right. \\
- ik_0 \cos \theta \frac{\partial}{\partial \eta} \left[\text{r.h.s. of Eq. (15) with } \xi = \xi_0 \right] \left. \right\}, \]
where r. h. s. means the right-hand side. It is noted that in contrast with the spherical or circular cylinder case the angular functions in the elliptical cylinder case are functions not only of the angular component but also of the characteristics of the medium. Consequently, the summation signs and the angular functions in the above equations may not be omitted. However, it will be shown that this difficulty may be overcome by the orthogonality properties of Mathieu functions. Substituting the expansions

\[\text{ce}_m^\ast(\eta) = \sum_{n=0}^{\infty} \alpha_{m,n} \text{ce}_n(\eta) \]
\[\text{se}_m(\eta) = \sum_{n=0}^{\infty} \beta_{m,n} \text{se}_n(\eta) \]
\[\frac{d}{d\eta} \text{ce}_m(\eta) = \sum_{n=0}^{\infty} \gamma_{m,n} \text{se}_n(\eta) \]
\[\frac{d}{d\eta} \text{se}_m(\eta) = \sum_{n=0}^{\infty} \chi_{m,n} \text{ce}_n(\eta) \]

into Eqs. (16) through (19), and applying the orthogonality relations of Mathieu functions, leads to the following expressions:

\[\frac{1}{p_n} \left[\text{ce}_n(\xi_0) + A_n \text{Me}_n^{(1)}(\xi_0) \right] \text{ce}_n(\phi) = \sum_{m=0}^{\infty} \frac{F_m}{p_m} \text{ce}_m^\ast(\xi_0) \text{ce}_m(\phi) \alpha_{m,n} \]
\[
\frac{1}{s_n} \left[S_{n}^1(\xi_0) + B_{n} N_{n}^1(\xi_0) \right] \text{se}_n(\phi) = \sum_{m=0}^{\infty} \frac{G_m}{s_m} \text{se}_m^*(\xi_0) \text{se}_m(\phi) \beta_{m,n}, \tag{22}
\]

\[
\frac{C_n}{\rho_n} M_{n}^1(\xi_0) \text{ce}_n(\phi) = \sum_{m=0}^{\infty} \frac{P_m}{\rho_m} \text{ce}_m^*(\xi_0) \text{ce}_m(\phi) \alpha_{m,n}, \tag{23}
\]

\[
\frac{D_n}{s_n} N_{n}^1(\xi_0) \text{se}_n(\phi) = \sum_{m=0}^{\infty} \frac{Q_m}{s_m} \text{se}_m^*(\xi_0) \text{se}_m(\phi) \beta_{m,n}, \tag{24}
\]

\[
\sqrt{\frac{s_0}{\mu_0}} \cos \theta \left(1 - \frac{k_0^2 \sin^2 \theta}{k_1^2 - k_0^2 \cos^2 \theta} \right) \left[\sum_{m=0}^{\infty} \frac{1}{s_m} \left[S_{m}^1(\xi_0) + B_{m} N_{m}^1(\xi_0) \right] \text{se}_m(\phi) \chi_{m,n} \right]

- \frac{C_n}{\rho_n} M_{n}^1(\xi_0) \text{ce}_n(\phi) = (-\frac{\mu_1}{\mu_0}) \left(\frac{k_0^2 \sin^2 \theta}{k_1^2 - k_0^2 \cos^2 \theta} \right) \sum_{m=0}^{\infty} \frac{P_m}{\rho_m} \text{ce}_m^*(\xi_0) \text{ce}_m(\phi) \alpha_{m,n}, \tag{25}
\]

\[
\sqrt{\frac{s_0}{\mu_0}} \cos \theta \left(1 - \frac{k_0^2 \sin^2 \theta}{k_1^2 - k_0^2 \cos^2 \theta} \right) \left[\sum_{m=0}^{\infty} \frac{1}{\rho_m} \left[C_{m}^1(\xi_0) + A_{m} M_{m}^1(\xi_0) \right] \text{ce}_m(\phi) \gamma_{m,n} \right]

- \frac{D_n}{s_n} N_{n}^1(\xi_0) \text{se}_n(\phi) = (-\frac{\mu_1}{\mu_0}) \frac{k_0^2 \sin^2 \theta}{k_1^2 - k_0^2 \cos^2 \theta} \sum_{m=0}^{\infty} \frac{Q_m}{s_m} \text{se}_m^*(\xi_0) \text{se}_m(\phi) \beta_{m,n}, \tag{26}
\]
\[
\frac{1}{s_n} \left[S_n'(\xi_0) + B_n N_n^{(1)}(\xi_0) \right] S_n(\phi) \\
+ \sqrt{\frac{\mu_0}{\epsilon_0}} \cos \theta \left(1 - \frac{k_0^2 \sin^2 \theta}{k_l^2 - k_0^2 \cos^2 \theta} \right) \sum_{m=0}^{\infty} \frac{C_m M_m^{(1)}(\xi_0)}{P_m} c_m(\phi) \gamma_{m,n} \\
= \frac{k_0^2 \sin^2 \theta}{k_l^2 - k_0^2 \cos^2 \theta} \sum_{m=0}^{\infty} \frac{G_m}{s_m^*} S_m'(\xi_0) S_m(\phi) \beta_{m,n}.
\]

(27)

\[
\frac{1}{p_n} \left[C_n'(\xi_0) + A_n M_n^{(1)}(\xi_0) \right] C_n(\phi) \\
+ \sqrt{\frac{\mu_0}{\epsilon_0}} \cos \theta \left(1 - \frac{k_0^2 \sin^2 \theta}{k_l^2 - k_0^2 \cos^2 \theta} \right) \sum_{m=0}^{\infty} \frac{D_m}{s_m^*} N_m^{(1)}(\xi_0) c_m(\phi) \chi_{m,n} \\
= \frac{k_0^2 \sin^2 \theta}{k_l^2 - k_0^2 \cos^2 \theta} \sum_{m=0}^{\infty} \frac{F_m}{p_m^*} C_m'(\xi_0) C_m(\phi) \alpha_{m,n}.
\]

(28)

\[(n = 0, 1, 2, 3, 4 \ldots).\]

\[\alpha_{m,n}, \beta_{m,n}, \gamma_{m,n}, \text{ and } \chi_{m,n}\] are given in the Appendix. The prime on the summation sign means that when \(n\) is odd, the above series are summed over all odd values of \(m\), and when \(n\) is even, the series are summed over all even values of \(m\). The primes on the modified Mathieu functions denote differentiation with respect to \(\xi_0\). The unknown coefficients \(A_n, B_n, C_n, D_n, F_n, G_n, P_n,\) and \(Q_n\) can now be obtained from the above equations. Combining Eqs. (21), (24), (26), and (28) gives
\sum_{m=0}^{\infty} F_{m}^{e} \mathcal{m}_{mn} + Q_{m}^{e} \mathcal{m}_{mn} = 0 \quad (29)

\sum_{m=0}^{\infty} F_{m}^{e} \mathcal{m}_{mn} + Q_{m}^{e} \mathcal{m}_{mn} = w_{n} \quad (30)

(n = 0, 1, 2, 3 \ldots)

and combining Eqs. (22), (23), (25) and (27) gives

\sum_{m=0}^{\infty} G_{m}^{0} \mathcal{m}_{mn} + P_{m}^{0} \mathcal{m}_{mn} = 0 \quad (31)

\sum_{m=0}^{\infty} G_{m}^{0} \mathcal{m}_{mn} + P_{m}^{0} \mathcal{m}_{mn} = w^{0} \quad (32)

(n = 0, 1, 2, 3 \ldots)

where

\begin{align*}
\mathcal{m}_{mn}^{e} & = \sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \cos \theta (1 - x^2) f_{m} \sum_{r=0}^{\infty} q_{mr} \mathcal{m}_{mn} \\
\mathcal{m}_{mn}^{0} & = \sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \cos \theta (1 - x^2) g_{m} \sum_{r=0}^{\infty} \beta_{mr} \mathcal{m}_{mn} \\
\mathcal{m}_{mn}^{e} & = \left[\frac{\mu_{1}}{\mu_{0}} x^{2} q_{m} - \frac{b_{m}}{b_{0}} q_{m} \right] \beta_{mn} \\
\mathcal{m}_{mn}^{0} & = \left[\frac{\mu_{1}}{\mu_{0}} x^{2} h_{m} - \frac{a_{n}}{a_{0}} h_{m} \right] \alpha_{mn}
\end{align*}
The following abbreviations have been used:

\begin{align*}
 h_n &= \frac{1}{p_n} \text{Ce}_n(\xi_0) \text{ce}_n(\phi), \\
 g_n &= \frac{1}{s_n} \text{Se}_n(\xi_0) \text{se}_n(\phi), \\
 a_n &= \frac{1}{p_n} \text{Me}_n^{(1)}(\xi_0) \text{ce}_n(\phi), \\
 b_n &= \frac{1}{s_n} \text{Ne}_n^{(1)}(\xi_0) \text{se}_n(\phi), \\
 h'_n &= \frac{1}{p_n} \text{Ce}^{(1)}_n(\xi_0) \text{ce}_n(\phi), \\
 g'_n &= \frac{1}{s_n} \text{Se}^{(1)}_n(\xi_0) \text{se}_n(\phi), \\
 a'_n &= \frac{1}{p_n} \text{Me}^{(1)}_n(\xi_0) \text{ce}_n(\phi), \\
 b'_n &= \frac{1}{s_n} \text{Ne}^{(1)}_n(\xi_0) \text{se}_n(\phi),
\end{align*}

(33)
\[f_n = \frac{1}{p_n} C e_n^*(\xi_0) e_n(\phi), \quad f'_n = \frac{1}{p_n} C e_n^*(\xi_0) e_n(\phi), \]
\[g_n = \frac{1}{s_n} S e_n^*(\xi_0) s_n(\phi), \quad g'_n = \frac{1}{s_n} S e_n^*(\xi_0) s_n(\phi), \]

\[x = \frac{k_0^2 \sin^2 \theta}{k_1^2 - k_0^2 \cos^2 \theta}. \quad \text{(34)} \]

The coefficients \(F_m \), \(Q_m \), \(G_m \), and \(P_m \) can be obtained readily from Eqs. (29) and (30), and Eqs. (31) and (32) respectively. Knowing \(F_m \), \(Q_m \), \(G_m \), and \(P_m \), the coefficients \(A_n \), \(B_n \), \(C_n \), and \(D_n \) can be found, respectively, from Eqs. (21) through (24).

It is interesting to note that the roots of the determinant of Eqs. (29) and (30) provide the propagation constants of a set of surface waves along an elliptical dielectric cylinder (Ref. 6). Due to the asymmetry of the elliptic cylinder, it is possible to have two orientations for the field configurations. The propagation constants of the other set of surface waves are obtained from the roots of the determinant of Eqs. (31) and (32). This surface wave problem has a direct application to the problem of guiding light waves along a flat fiber—i.e., the fiber optics problem (Ref. 6).

The transmitted fields in the dielectric cylinder and the scattered fields in free space due to an incident E-wave are now completely determined.
B. H-WAVE

The corresponding result for the case of an incident H-wave is of the same form as above if E is replaced by H, H is replaced by $-E$, ε is replaced by μ, and μ is replaced by ε, throughout.

IV. CONCLUSIONS

The exact solution of the problem of the scattering of an obliquely incident plane wave by an elliptical dielectric cylinder, or by a dielectric ribbon is obtained. It is noted that unlike the case for a circular dielectric cylinder, each expansion coefficient of the scattered or transmitted wave for the elliptical dielectric cylinder is coupled to all coefficients of the series expansion for the incident wave. Hence, the results are much more involved. Numerical investigation for the case of normally incident plane waves shows that the infinite determinants representing these expansion coefficients for the scattered or transmitted wave converge quite rapidly for small values of $k_0q/2$; only the first few terms in the determinants are needed as long as $k_0q/2$ is less than 5 (Ref. 4). This range of $k_0q/2$ covers, however, most of the range not covered by the usual approximate diffraction theory. The results presented here are particularly useful in studying the scattering of light by thin fiber ribbons.
APPENDIX

FORMULAS FOR $\alpha_{m, n}$, $\beta_{m, n}$, $\gamma_{m, n}$ AND $\chi_{m, n}$

It can readily be shown from the theory of Mathieu functions that

$$\alpha_{m, n} = \int_0^{2\pi} \text{ce}_m^1(\eta) \text{ce}_n(\eta) \, d\eta / \int_0^{2\pi} \text{ce}_n(\eta) \, d\eta$$

$$\beta_{m, n} = \int_0^{2\pi} \text{se}_m(\eta) \text{se}_n(\eta) \, d\eta / \int_0^{2\pi} \text{se}_n(\eta) \, d\eta$$

$$\gamma_{m, n} = \int_0^{2\pi} \text{ce}_m(\eta) \text{se}_n(\eta) \, d\eta / \int_0^{2\pi} \text{se}_n(\eta) \, d\eta$$

$$\chi_{m, n} = \int_0^{2\pi} \text{se}_m(\eta) \text{ce}_n(\eta) \, d\eta / \int_0^{2\pi} \text{ce}_n(\eta) \, d\eta$$

where the prime signifies the derivative of the function with respect to its argument. The above integrals can easily be integrated using the series expansions of Mathieu functions in terms of trigonometric functions (Ref. 5).
REFERENCES

The exact solution of the scattering of obliquely incident plane waves by an elliptical dielectric cylinder is obtained. It is found that each expansion coefficient of the scattered or transmitted wave is coupled to all coefficients of the series expansion for the incident wave except when the elliptical cylinder degenerates to a circular one.

(Over)

Both polarizations of the incident wave are considered: one with the incident electric vector in the axial direction, and the other with the incident magnetic vector in the axial direction. It is noted that in the general case of oblique incidence the scattered field contains a significant cross-polarized component which vanishes at normal incidence.