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STRONG INTERACTION ON A PLATE WITH CONSIDERATION
OF SLIP AND NEAR-WALL TEMPERATURE JUMP

A. A. Bogacheva, V. S. Galkin

We will solve the problem of the motion of a perfect gas in a
laminar boundary layer on a seml-infinite flat plate at zero angle
of attack, taking into account the slip and Jjump of gas temperature
at the wall and the strong ilnteraction between the boundary layer
and a hypersonic inviscid flow. It 1s assumed that the viacosity
coefficient u linearly depends on temperature T, Prandtl number Pr = 1,
In order to calculate pressure P we used the method of tangent wedges.
The slip and near-wall temperature Jump 1s taken into account by
linearization of the solﬁtion of the relatively well-known self-similar
solution with the usual boundary conditions of "adhesion" * (no slip).
We will examine the case of an insulated plate and the case of a cooled
(Tw < To) plate (plate temperature Ty = constant, Ty 1s stagnation
temperature of the free-stréam flow, 1.e., the temperature of the

insulated plate).

* We are concerned with a self-similar solution for a strong
interaction of zero order in the nomenclature of Hayest work (7].
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This statement of the problem was used earlier in Shidlovskiy!'s
work [i] for the case Tw = To. Calculations were conducted at a value
of the specific heat ratio n = 1.4 and » = 5/3, and the solution of
the zero-approximation equation was found by 1nterpdlation of the well-
known Falkner-Skan solution tables for other values of the parameter
entering into this equation. Obviously, mistakes were made during
this interpolation which led to qualitatively false conclusions: slip
increases pressure P and the boundary-layer displacement. thickness §,
‘whereas the nature of 1ts effect on the local coefficient of frictional
drag Cf depends on the magnitude of u. In-this work equations of the
zero and first approximations were solved simultaneously in the elec-
tronic computer which, incidentally, allowed us to refine the datﬁ of
works [2], [3] for a strong interactlon without regard to the rare-
faction factors. The results of the calculations for » = 1.4 and
n = 5/3 show that when Ty £ To, slip and temperature jump decrease P,
6, Cf and especlally the heat-transfer coefficlent from the gas to the
plate, '

1. We wlll examine mgtion in a laminar boundary layer on a plate
under conditions of strong interaction of the boundary layer with a
inviscid flow. A strong interaction occurs [4] when M2, (d§/dx)2 > 1,
where M, 1s the free-stream Mach number, » 1s the coordinate along the
ﬁiate. In addition, magnitudes of the order M;’ must be negligibly
small in comparison with unity (we assume that the magnitude 2/(x — 1)
is not one of the determining parameters when evaluating orders of .
magnitudes, 1.e., 2/(n — 1) ~ 1). Otherwise strong interaction
occurs at the leading edge of the plate belng passed by a flow with
M, >> 1, where the rarefaction effects, caused by sllip and gas tem-

perature Jump on the plate, and the entropy effects, caused bi
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vortlclty of thé inviscid flow on the outer edge of the boundary-
layer flow, can he particularly significant,

The investigation of these effects can be facilitated since we
can study them individually by means of boundary-layer equatiomns, [1],
[5]1-[7], while appropriately changing the boundary conditions, since
the effects of rarefaction and vorticity are small, approximately of
order one. Actually, let the terms of the boudary-layer equation be
of the order of unity. Then these rarefaction effects are maximum
in a case of strongly heated plate [5] when they are of the order of
8/x. The order of magnitude of entropy effects 1s equal [7] to
(8/x)2=/(s%)

In the zero approximation magnitudes of the order of §/x and
higher are disregarded. Here, the boundary-layer equations have a
self-similar solution. Terms of the order of §/x are taken into
account in the first approximation. By virtue of their smallness we
can llnearize the problem with regard to the zero approximation,
i1.e., we can investigate 1lndividually the effects of rarefaction and
vorticity, while appropriately changing the boundary conditions for
boundary-layer equations.

Therefore, when investigating the effects of rarefaction the
boundary conditions on the outer edge of the boundary layer remain
the same as In the zero approximation: the velocity at the edge of
the boundary layer 1s Ugy ~ U, total enthalpy Hb ] u:/2, 1.e., the
temperature Té =~ 0. The boundary conditions of sBlip must be fulfilled
on the plate [8]

AT = T|  —Ty= ax2—ga (ol
"-O "} bl/z P (paéy),_.'

" - % 2—6 (B du 2x 2—a g°
PR 2 ot v b= ’ ’
3 pa dy Y=, x4+1 a 2—g¢
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where a 1s the speed of sound, p 1s the density, a 1s the accomodation
coefficlent, o 1s the reflection coefficient. The term (3/*) ku/br)
(3T/3x), negligible within the limits of applicability of the bound-
ary-layer equations i1s discarded in the formula for slipAvelocity.
When solving the problem we will look for the dependence of
pressure on x in the form of P* = P/P, = Pox1x-/2(1 + dx-1/4), since
in the zero approximation P* ~ x“/’, and the correction, caused by
rarefaction is of the order of §/x ~ x~Y/4, Here coefficient Po and
small parameter d are subject to determination, X1 = X when x = 1,
x =M Re;‘/é, Re, = ux/v, v = p_/p,. We will introduce now (gener-
alizing [1]) the dimensionless dependent and independent variables by
the following formulas:

u (e \ My e PP AR o X
G = §=(§) ¥y, §=4Pgx's, k "\v;) jpudy' (1.2)

We will note that the self-similar motions depend only on A.
Using variables (1.2) in boundary conditions (1.1), when A = 0 we
obtain

W, = 0y, AG —=00G, 0=- /278 Heo (Yw)”.

» =0T, AG = b0G, 1/2 : e (=) (1.3)
where, obviously, $ i1s the small parameter of the problem under con-
sideration. Using further variables (1.2) in boundary-layer equation,

we will reduce them by the usual method for boundary-layer theory, to

fﬂ’; d__ LY
o 2Ea ¥y — Vi — 2tV Waa) =P (1 + ;x"'h) (a -= \yg) +

+ (:‘f‘).’.\ym 0+ 4x-'/‘)- . (1.%)

Ug \ 1
% (f)' (Ge¥a — GaWy] = (1 + dx—"/) G



Here the terms of the order of d? and higher are discarded,
In order to obtain a system of zero-and rirst;approximation
equations from system (1.4), we will introduce the coefficient k by

the relationship ax~1/4 = k3; moreover we set
YO0 = (3 e+ 00 G0 0= 20+ 0g (b

Substiuting these formulas into relations (1.3), (1.4) discarding
at first terms of the order of §, and then of the order of $2 as com-
pared to unity, we obtain a system of equations and boundary con-

ditions corresponding to them in zero and first approximations.

9"+ 99" +B(E— 9 =0, g +9g=0,
9O =9 O)=0, £(0)=TuTo ¢(e)=gle)=1; (1.5)
P+ o + (I—23) 9’ + Bgy = k. [w’ + —g— 80— @”) ] .
g + (9g)" = — kg
Lo =0 TO=6¢(0. £(0)=bz(0. Ico)=gi(e)=0, (1.6)

p::x:i , TJT,,=”_2" ‘w;' dd(L) =( )r-

In order to solve system (1.6) i1t 1s necessary to express k in
terms of unknown functions. For this we use formula P* = % [(x + 1)/2]
M2 (d8/dx)2, ylelded by the method of tangent wedges where the bound-
ary-layer displazement thickness 1is

L 0y,
b 1 2% Yy ()" (P2
§(1— o) oo (32) e
(physically this method of calculating pressure 1s Justified because
when calculating an inviscid flow with an error of approximately
(8/x)2 we can disregard flow through the layer, the boundary-layer
thickness can be identified with the displacement thickness, and we

can consider the outer edge of the boundary layer as a solld wall,
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Using these formulas we will find

Y P,
3. % (x -+ 1) - =5L_ - 2~¢ :x(u—i)__.
P, ‘l/_z (x—N1e & ,":. 0 - ]/ N T.%i;. (1.7)

ly= S(g.-—-tp")dk. I =§.(L_'.—20'C')d’--

e — .
— =0, -;z—{l-g-;:-(l,-—kl.)}, O = = -‘ lo

2. In order to simplify the problem we will assume, generalizing
[1], that
s :
(=0 +h{2dh, g =g +hg.
*

By means of (1.5) we will reduce relation (1.6) to the form

2492 +(1-29'7 = — B + S (@a— 9™ + 09", (2.1)

g +(9g) = —ge
. bt - (2.2)
2(0) =2(c0)=0, g(o0)=0, g(0)=-——e.(0)

Taking (1.5) into account we have the following solution of Eq.
(2.2):

- b=t 2.
g=gi(—n+ A )+[g.(0>+gf(ong.(';- (2.3)

Here
k=—4(TyT,) (71, —4L), L= 5 (@—29"2)d)\.
In order to simplify I, we will integrate termwise Eq. (2.1).
Then

Bly= 4" O+ £ O =D o — lim (2). (2.4)
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From the obvious finite c—ondition of T, and zt' (0) the magnitude
e = 1lim (tpz).must a_lso be finilte, This is especially clear in a case
of an insulated plate when

]
g=00, Iy =— 28@':4&.

. [ ]
therefore for the existence offf this Integral 1t is necessary that
e=0,b°;:". )?>>l P=h—m, @ =1,
where m 18 a certain constant .
In order to determine the= value of e and the magnitude of g' (0)
we will 1nvestigate the condu—t of functions z, g in the vicinity of

A ==, and we will examine mEly the principal terms of the correapond-
ing asymptotic expanslions. S$Elnce

. . 3
&o(l=g,(0) exp (-—qudl) .
’
then the principal terms of tFe items of function g are

2 A—m

D(l.—m)exp[~(""_'")'], g;(O.)-*-g'(O). b=const.- (2.5)
Let us substitute expris=sion (2.3) instead of g 1into the rishf-
hand side of Eq. (2.1). Thines, when9 =X - m, 9! = 1 this equation
wilth the usual sﬁbstiutions fcor such an equation reduces to a Whittaker
equation. The principal tem=s of solution of a corresponding simil'ar
equation are .

Dy(A— m)"".exp [__ _(_’“__‘—ZL)'] , Dy(A— m)tb-:;

the principal terms of a part®ial solutlon of a nonsimilar equation are

g, 0+ g0

e\ _((A"‘m)'
o ™ A(r m)exp[ ——-——-].

2

where D, and D, are arbitrary constants, A and n are known constants,
It follows from these exgpressions that the solution is not unique

since the boundary conditlions when A = » are satisfled at any values
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of gt (0). It follows, however, that from physical considerations the
thickness of totdl enthalpy loss be finite

A ==;§,(u/um)_(l —G)d: = B—ko§g¢'a,
where B 18 the finite magnitude. It rollow; from this, with con-
sideration of (2.5), that the magnitude of A will be finite only when
g' (0) = -g§ (0). Assuming g' (0) = -g§ (0) and taking into account
that Dz = 0, follows from the finlte condition e we obtain: e = 0,
functions g and z when A —» = tend toward zero with respect to the
exponent and Eq. (2.1) as the final result takes the form

Z+ef +0—290= Lo — oM +or+

+ba. | —L;—’Tij[z'w) +v'(0)—’—fl.]} .

(2.6)

At last, after several transférmations » taking into account

formulas (1.7), we cbtain

8/x == 3,V IMZ (1 — 8, Vi/Me), P = Px (1 —P, Y 1IMo),
Ct = (2/postslc) (10u/OY)yms = CLX"MZ’ (1 — C1, VI Mos),
St v (KOT/35)yme [Pocticncr (Te — TW)} ™t == SteX'*Mz? (1 — St, ﬁ/M..i.
CC=VP@ (). Ste=VPAg O —TJT)™,
8y = — 3/4ky, Py = —ky, k = —43(93], — 42° (0) — 49° (0)) "*Tw/T,,
- 2—¢ l/ Tax(x—1) T,

T= "4 P, Te®
9 BI, 97 (0)
= - — 2 fr St =2y T,
h 4 9°(0) 1= 2,(0)

When estimating the limits of applicability of these formulas
we must remember that the small parameter of the problem 1is $ =

= y¥x/M,. We note that the coefficlent Cp in this statement of the
problem becomes nonintegrable (see also [1], [5]).



Equations (1.5) and (2.6) with corresponding boundary conditions
were solved simultaneously on an electronic computer for a = ¢ in the
range 0 < ¥ < 8 with a maximum error of A S 1.107* for values or:the
magnitudes ¢" (0), g (0) and A < 10-® for values of magnitude z! (o).

During the calculations 1t was revealed that the solution of a
first-approximation equation is very "sensitive" to the solution of
zero-approximation equations, Tables 1-4 and Figures 1-3 show some
rounded-off (to save space) results of the calculations. The data in
Table 4 was computed for o = ¢ = 1, The data in Table 3 differs
‘somewhat from the corresponding data of Li and Nagamatsu [2], [3]
mainly due to the magnitude Io. For instance in the latter study [3]
with » = 1.4, values are given of Ip = 1.322, 0.9703, and 0.5956,
respectively for T,/To = 1, 0.6, and 0.2. The assumption of the
presence of such errors [2], [3] was stated before ([T}, p. 359). 1In
Flgs. 1-3 the solid lines correspond to data when Ty/To = 1, the dashed
lines when T,/To = 0.6, the dot-dash lines when T,/To = 0.2, {; =21,
The magnitude w; 1s introduced by formula

TfTo=G— uduly = g — @' 4- 0(g, — 20'L’) = 0, + Oay.

In the case of an insulated plate, the slip increases the gas
veloclty (especially in the near-wall portion of the boundary 1ayer)
and decreases the gas temperature which 1s minimum in the middle of
the boundary layer (in this case w; = 291')., A reduction of T,/To
Increases the role of the near-wall temperature Jump. In the near-
wall part of the boundary layer ' somewhat decreases, w; sharply
increases 1n the main part of the boundary-layer, which leads to an
Vincrease of g,. The presence of extremes of these magnitudes 1s
mainly because ¢t increases from 0 to 1 when A changes from 0 to =

and §' decreases correspondingly from value of { (0) = ¢" (0)to a
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value {t (=) = 0,

Slip and near-wall temperature Jump decrease the pressure, dis-
placement thickness, local coefficlient of friction drag and, espe-
clally, the heat-transfer coefficlent from gas to plate. This effect
decreases with a decrease of the ratio Ty/To.

Analogous conclusions in the case of an insulated plate have been
obtained by means of an integral form of equation of momenta in
Galkints study [5] (velocity profile in boundary layer is linear) and
in Takano's work [6] (velocity profileis a fourth-degree polynomial),
“while in the latter only the corréction for pressure due to slip'when
# = 1.4 was calculated. In case Ty/To = 1 when n = 1.%, according to
our data and others [5], [6] we have respectively: P, = 0.312, 0.20,
0.315, 6; = 0.23, 0.15, Cf‘ = 0,34, and 0.21. Hence, representing
the veloclty profile as a fourth-degree polynomial 1s sufficlently
accurate. A linear veloclty profile can be used only for very simple
approximate estimations of the slip effect, especlally in a case of
such flows about insulated thin bodies of finite thickness (for
instance, a wedge), when in the zero approximation motion 1is not self-
similar.

The authors are grateful to A. A. Nikoltskly, V. P. Shidlovskly,
and M. N. Kogan for a discussion of the results of this study.
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TABLE 1

x:==1,4
TylTe=) I Tu/Te =08 T/To =023
S
¢ -2 | ¢ [3 -2 [ X & -2
0,073] 0,034 I0.0U? 0,620 18,0291 0,039 10,239] 0,039
0,147] O,uch 19,132] 0,410 [6,626{ 0,118 {0,279{ 0,07%

)
0,216( 0,097 |0, 495) 0,01 f6,1525 0,173 10,3181 0,115
0,2821 v, 127 'u,2561 081 (0,157 0,220 [0,358] 0,10
0,345] 0,154 lu,3!16] 0,701 |0,1701 0,284 }0,397) 0,184
0,405 0,178 {0,373} 0,720 }{o,2t0) 0,338 10,436] 0,210
U,4621 0,201 10,4271 0,750 [0,2387 0,39 10,474] 0,245
0,5167 0,220 19,480 0 70 (0,262 0,4%1 [0,512] 0,27
0,566] 6,237 10,320! 0,779 |o0,284] 0,480 [0,553} 0,204
0,614 0,250 19,376{ €,797 ]0,302) 0,526 10,585) 0,313
0,698} 0,266 [0,662| 0,532 |0,326] 0,623 [0,655] 0,340
0,770} 0,268 10,757{ 0,:55 0,.533 0,700 10,7192 0,352
0,829] 0,256 0.8«)0 0,595 10,3251 0,768 10,777 0.3’6
0,876] 0,234 {0,552 0,9:9 0 202} 0,824 10,828) 0,327
0.912] 0,204 lo.8a3| o.4:9 |c.269] 0,871 |0,871] 0,296
0,960} 0,136 }0,9%9 0,90 0. 187{ 0,936 [0,933} 0,218

C_OOOO

OONOMDUARMNRNOLIB A NN

NNWRINN e r e e e OO OO

'8 [0.984] 0,076 lo.979| 0,057 [o.109] 0,972 [0,970 0,130
.2 |0.994} 0,036 o0,992| 0,45 |o.054] 0,989 [0,988] 0,067
.0 10,099 0,004 {0,499| 1,000 |0,008{ 0,999 |0,999] 0,010
. 1,000] 0,000 |1,000] %,000 {0,000 1,000 }1,000] 0,000
TABLE 2
2=t
rw/r.-x r_/r.so.s T_/r.al rw/r.-o.s
Y A
v | = e | e | - v"'—zrv'lt.J—a
0,4 | 0,683 [0,033!0,073]0,621 0,0/.0?3 1,2 | 0,735 [0,231/0,692/0,835{0,306
0,2 | 0,163 [0,0850,144]0,641 0,078, 1,4 | 0,803 [0,226,0,764|0,868 |0,307
0.3 | 0,238 10,09410,212]07662]0,414" 1.6 | 0,857 ]0,211|0.8240,897]0,29%
0.4 | 0,310 [0.120]0,277{0,652[0.148 1.8 | 0,509 |0.188)|0,872/0,922]0,2¢8
0,5 | 0,377 10,14510,34010,7¢310,179] 2,0 | ©¢.930 ]0,163{0,9%90,9:2|0,
0,6 | 0.440 ]0,16610,399[0.723|0.208% 2.4 | 0,970 {0,101[0 938{0,971|0,
0,7 | 0,499 [0,185,0,4553/0,743|0,233 2,8 | 0,989 10,054]0,084(0,088]0,
0,8 | 0,554 [0,201.0,5090,763|0,255- 3,2 ( 0,996 {0,024(0,994{0,995(0,
0,9 0,605 {0 213[0 56010,75210,274 1 4,0 1,600 10,00370,99514,00010,
1,0 0,653 [0,222{0,60710,801 0,289.‘; 5,0 1,000 |0,000)1,000{4,000}{0,
. TABLE 3
TS v |8 4 | A & |- ¢, st
1 0,7627 [0 1,2003 | 0,501 | 0,730 | 0,5442 | -
x=14 | 0,6 | 0.6775 [0,2025 09507 | 0.3657 | 0,622 | 0,4007 | 0,1531
0,2 | 0,5883 {0,3946! 0,5592 | 0,2174 { 0,4797 | 0,2743 { 0,1150
0,0 | 0,5443 10,4817 03728 0,1449 03917 02072 00926
z=8y |1 0,854 [0 41,2194 | 0,9089 | 0,8527 | 0,8148 -—
0,6 | 0,7429 [0,2063] 0,8764 | 0,6532 | 0,7229 | 0,6004 | 0,2084
FID-TT-63-304/1+2+4 -11-



TJTe] —r@ -~ Py [ A 8
H 0,347 0.6 0,312 0,24 0,344 —
vt 0,6 | 0,342 | 0,537 0,228 0,171 0,204 1,9
0,2 | 0,398 0,338 ,107 0,084 0,068 | 0,558
web/y 1 0,343 | 0,682 0,334 0,251 | 0,420 —
0,6 | 0,406 0,531 0,238 0,178 2252 2,308

Fig. 2.
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