Determination of Plasma Properties by Free-Space Microwave Techniques

R. Bueser and W. Bueser
U. S. Army Signal Research and Development Laboratory, Fort Monmouth, New Jersey

Time-resolved free-space microwave measurements are used to study the loss mechanisms in the afterglow of an intense He discharge between 100 and 1000 MHz. The method of evaluation is developed in detail and the results of the measurements and their accuracy are given. Some of the problems and limitations of the microwave method are discussed; in particular, plots of the field pattern between the horns are presented indicating that a reasonable interpretation in terms of an integrated path length is possible.

INTRODUCTION

The free transmission of a microwave signal through a gas discharge provides a very useful tool for the study of electron loss processes. Many applications have been reported in connection with plasma research mainly used to calculate the electron density. Because of the complexity of the possible processes involved in a time-varying plasma, however, one commonly resorts to approximations and simplifications, which are not easy to justify. Since, in addition, the plasma is in many cases located in the near-field zone of the transmitting and receiving horns (an area where the field pattern is complex), it is not immediately apparent that a reasonable interpretation of the measurements is possible.

This paper reports an attempt to improve the interpretation of free-space microwave measurements. We first explored how the electron decay mechanisms (ambipolar diffusion, volume recombination, and attachment) are connected with the quantity measured, namely, the integral index of refraction (optical path) and its change with time. We then applied the theory to measurements made on a pulsed high current He discharge. We found that either ambipolar diffusion or attachment, or both, provide a good explanation for the measured electron decay. Additional experiments with a magnetic field may allow the separation of ambipolar diffusion from attachment. We finally discuss the validity of an important assumption, namely, the plane wave condition, which is necessary for a detailed interpretation of the measurement.

EXPERIMENTAL PROCEDURE

The Discharge System

The discharge circuit is composed of a plasma container 90 cm high and 7.1 cm in inner radius (consisting of a Pyrex glass tube with stainless steel electrodes), a coaxial airgap switch with a trigger electrode, a 15,000 joule condenser bank, a power supply, and the necessary timing circuits (Fig. 1). Triggering of the airgap switch discharges the condensers, and a high current* (of the order of 10⁴ A) is conducted through the discharge tube and creates a plasma, the properties of which depend on voltage, pressure, and gas used. After about 100 usec the discharge current ceases, after about 1000 usec the plasma becomes transmitting, and after several milliseconds, the original state is reached again (Fig. 2).

Prior to the discharge the vessel was pumped out (oil diffusion pump with liquid nitrogen cold trap) and moderately baked for several hundred hours. "High" purity He was then filled into the discharge tube. During the measurements, the relative intensity of certain impurity lines was monitored by a monochromator-photomultiplier system, showing weak lines (which we identified as nitrogen, oxygen, and iron) in a strong background continuum. Since the sensitivity of this system is limited, there may have been other impurities that we could not identify. The pressure range of all experiments was between 100 and 1000 μ (the lower limit given by the maximum permissible voltage on the condensers (20 kV), and the upper limit given by the "noisiness" of the records, indicating turbulent motion at the time of measurement. The pressure itself was measured by a thermocouple gauge.

*Peak current \(i = U_{max} \) of the order of \(10^4 \) A is conducted through the discharge tube and creates a plasma, the properties of which depend on voltage, pressure, and gas used. After about 100 usec the discharge current ceases, after about 1000 usec the plasma becomes transmitting, and after several milliseconds, the original state is reached again (Fig. 2).

The measurement of pressure transients is explained in a note submitted to The Review of Scientific Instruments.
The source energy (reflex klystron, 70 kMc, 50 mW) was divided into two paths: a measuring path, where a microwave beam interacts with the plasma, and a reference path. The relative change of phase produced by introduction of a time-varying plasma was then detected by a phase bridge, amplified, and recorded on two oscilloscopes with cameras attached, one giving an over-all pattern of the full phase cycle (heating and decay), and the other extracting by proper scope adjustment an enlarged "detail pattern" from the over-all pattern that permits a higher accuracy in the evaluation process. In addition to the phase measurement, we recorded the transmitted energy (intensity pattern), and checked periodically the reflected energy, the latter being generally very small.

The klystron was modulated with 4.5 Mc, and the amplifiers were resonance amplifiers tuned to 4.3 Mc with a bandwidth of approximately 400 kc. Use of a modulated interferometer circuit has some advantages: Even at a very low power output of the klystron, which is preferable in order to avoid any influence of the microwaves on the plasma, the signal can be sufficiently amplified without distortion by thermal noise. The adjustment of a particular zero phase was essentially very simple, and any changes of the zero phase in the course of a long series of measurements could easily be corrected. The change of phase due to the plasma appeared in this way as a modulation of the 4.5-Mc signal, and since the oscilloscope sweep was not synchronized with this latter frequency but chosen appropriate to the discharge mechanism, the phase change (and similarly the change of intensity of the transmitted wave) was given by the envelope of the record. An analysis of the errors introduced by use of a modulated phase bridge showed that these were negligible compared to those encountered in reading the records and to others that are discussed later.
DETERMINATION OF THE INTERFERENCE
PHASE PATTERN

Proceeding in the manner described, we obtained three simultaneous measurements on the propagation characteristics of the plasma. Figure 4 shows an over-all pattern (actual interference pattern), a detail pattern of the interference measurement, and an intensity pattern of the transmitted wave, all as a function of time and representing a typical gas-discharge cycle. Each record also has time scales, and on some records, superimposed identification pips that give a fix-point in time on all three records. Since each record has its own time scale, we were able to correct for distortions caused by nonlinearities of the oscilloscopes.

Determination of the Integral Index of Refraction

We start with four assumptions. The plasma is a lossless medium, the wave transmitted and received by the horns is a plane wave, the diameter of the microwave beam is small in comparison to the plasma diameter and the index of refraction \(n \) changes slowly compared with the wavelength and reflection is therefore negligible. Our measurement then leads to an integral index of refraction as described below.

In Fig. 5 we show a schematic representation of the over-all pattern and the intensity pattern. Let \(t_i \) be the time of the \(i \)th extremum and \((i=1 \ldots n) \) is only a running index let \(t_i \) be the time of the last recorded extremum. Only at \(i = \infty \) is \(n \) strictly 1 throughout the discharge tube. As can be seen from Fig. 4, however, phase and intensity of the measuring wave reach their final values soon after the last extremum. We have then the following set of equations expressing the phase angles in terms of the microwave vacuum wavelength \(\lambda_0 \):

\[
\int_{-R}^{+R} n(t_i,r) \, dr = \int_{-R}^{+R} n(t_{i-1},r) \, dr = \frac{\lambda_0}{2} \phi_{\omega} \quad (1)
\]

where \(R \) = radius of the discharge tube, \(r \) = radial coordinate, \(t = \) time, and \(\phi_{\omega} \) = zero-density phase angle between reference and measuring wave at \(t = \infty \).

Since

\[
\int_{-R}^{+R} n(t_i,r) \, dr = 2R, \quad (2)
\]

\[
\int_{-R}^{+R} n(t_{i-1},r) \, dr = 2R - \frac{\lambda_0}{2} \left(\frac{\phi_{\omega}}{\pi} + (k-l) \right), \quad (3)
\]

Thus, Eq. (3) gives the integral refractive index as a function of time.

We derive the zero phase angle as follows (see Fig. 6). Let \(A \) = amplitude of reference wave, \(B \) = amplitude of measuring wave, and \(K' \) = constant of proportionality. Then these relations hold, if the detector follows a square-law relation:

\[
F = K'A^2 \quad G = K'(A + B)^2 \quad H = K'(A^2 + B^2 + 2AB \cos \phi_{\omega}), \quad (4)
\]

(see Fig. 5), and

\[
\cos \phi_{\omega} = 1 - \frac{G/F - H/F}{2[(G/F)^2 - 1]} \quad (5)
\]

For high accuracy of the measurement of the zero-density phase angle, we see that it should be \(\approx 90^\circ \); this is approximately true if we choose \(H \approx F \) and the latter can be adjusted very simply even without a calibrated phase shifter.

If we consider the plasma as a phase shifting and lossy medium (removing our first assumption), we
replace Eq. (1) by:

\[
\int_{-R}^{+R} n(l, r) dr - \int_{-R}^{+R} n(l_i, r) dr = \frac{\lambda_0}{2} \left(\frac{\phi_m - \phi_n}{\pi} \right)
\]

\[
\int_{-R}^{+R} n(l, r) dr - \int_{-R}^{+R} n(l_{i+1}, r) dr = \frac{\lambda_0}{2} \left(\frac{\phi_{n+1} - \phi_{n-1}}{\pi} \right)
\]

\[
\int_{-R}^{+R} n(l_{i+1}, r) dr - \int_{-R}^{+R} n(l_{i}, r) dr = \frac{\lambda_0}{2} \left(\frac{\phi_{n+1} - \phi_{n-1}}{\pi} \right)
\]

where \(\delta \phi_1 \) is the (generally small) angle caused by the increase of \(B \) with time (Fig. 7). Its magnitude depends on the rate of change of \(B \) and cannot be given without further analysis. If \(F, G, H, A, B_m, B_1, \) and \(\varphi_m \) have the same meaning as explained before, we have

\[
F = K^'A^2
\]

\[
G = K^'(A^2 + B^2 + 2AB_0 \cos \delta \phi_0)
\]

\[
H = K^'(A^2 + B^2 + 2AB_0 \cos \phi_m).
\]

With \(g = B_0/B_1 \), there follows

\[
H/F - 1 = \frac{\cos \varphi_m}{2g[\{G/F - (1 - \cos^2 \phi_0)\} - \cos \delta \phi_0]}
\]

\[
- g/2[\{G/F - (1 - \cos^2 \phi_0)\} - \cos \delta \phi_0].
\]

As can be seen from Eq. (9), \(\delta \phi_0 \) only appears as a second-order influence upon \(\cos \varphi_m \) (provided that \(G \) is sufficiently greater than \(F \)) and moreover tends to cancel out. Since the rate of change of \(B \) in the neighborhood of \(l_b \) is small, \(\delta \phi_0 \) will be quite small and we can substitute Eq. (10) for Eq. (9).

\[
\cos \varphi_m = \delta \left(\frac{G/F - \frac{1}{2} + \frac{1}{2} G/F^2}{G/F^2 - 1} \right)
\]

which replaces Eq. (5).

Interpretation of the Phase Pattern Under the Assumption that Ambipolar Diffusion is the Dominant Loss Process

In the following analysis the simplified Eqs. (3) and (5) will be applied. The equation describing the electron density as a function of time and space is

\[
\frac{\partial n_+}{\partial t} = D_A \nabla^2 n_+
\]

where \(n_+ \) = number of electrons/cm\(^2\) and \(D_A \) = ambipolar diffusion coefficient. If \(D_A \) is assumed to be constant with space and time, then the solution of Eq. (11) for cylindrical coordinates, considering only solutions symmetrical in \(\theta \) is

\[
n_+(r, \theta, t) = \sum_{r, \mu} C_{r, \mu} \exp\left(-\frac{i}{\tau_\mu} \int j_{r, \mu} \frac{r}{R} \sin \left(\frac{\mu \pi H}{R} \right) \right)
\]

\[
1 \frac{1}{\tau_\mu} = D_A \left[\left(\frac{j_{r, \mu} R}{R} \right) + \left(\frac{\mu \pi H}{R} \right)^2 \right].
\]

For the boundary condition

\[
n_+(r, \theta, H) = n_+(r, \theta, 0) = n_+(r, \theta, H) = 0,
\]

where \(H \) = height of discharge tube, \(z \) = axial coordinate, \(C_{r, \mu} \) = constants given by the initial distribution, \(j_{r, \mu} \) = Bessel function of order zero, and \(j_{r, \mu} \) = its \(\mu \)th root. Since we always measure at \(z = H/2 \), that is, the middle of the discharge tube, and with the abbreviation of

\[
J_{\mu} = \frac{j_{r, \mu} R}{R} + \frac{\mu \pi H}{R}.
\]

then Eq. (12) reduces to

\[
n_+(r, \theta) = \sum_{r, \mu} C_{r, \mu} \exp\left(-\frac{i}{\tau_\mu} \int j_{r, \mu} \frac{r}{R} \sin \left(\frac{\mu \pi H}{R} \right) \right)
\]

For sufficiently large \(t \), all the higher modes vanish, and the electron density is determined solely by the first mode. With \(C_{r, \mu} = C_{r, 1} \), \(\tau_{11} = \tau_1 \) we have

\[
n_+(r, \theta) = C_{r, 1} \exp\left(-\frac{i}{\tau_1} \int j_{r, 1} \frac{r}{R} \sin \left(\frac{\mu \pi H}{R} \right) \right)
\]

\[
1 \frac{1}{\tau_1} = D_A \left[\left(\frac{j_{r, 1} R}{R} \right) + \left(\frac{\mu \pi H}{R} \right)^2 \right].
\]
Let \(C_1 \cdot K = C_1 \), then with \(n = [1 - (\omega_0/\omega)^2]^1/2 \), \(\omega = \) angular frequency of the electromagnetic wave, and \(\omega_0 = \) plasma frequency.

\[
n(t,r) = \left[1 - \left(\frac{\omega_0}{\omega}\right)^2 \right] = [1 - n_{\text{is}}(t,r) \cdot K]^1/4 \\
= \left[1 - C_1 \exp \left(-\frac{1}{\tau_1} \right) \cdot J_0(\frac{r}{R}) \right]^1/4, \tag{17}
\]

and with \(\alpha = C_1 \exp(-1/\tau_1) \), \(\alpha_1 = C_1 \exp(-1/\tau_1) \)

\[
\int_{-R}^{+R} n(t,r) dr = \int_{-R}^{+R} \left[1 - \alpha_1 \cdot J_0(\frac{r}{R}) \right]^1/4 dr. \tag{18}
\]

It is convenient to choose \(R \) as the unit of length, thereby simplifying Eq. (18) to

\[
\int_{-1}^{+1} n(t,r) dr = \int_{-1}^{+1} \left[1 - \alpha_1 \cdot J_0(\frac{r}{R}) \right]^1/4 dr. \tag{19}
\]

The left side of Eq. (19) is known through Eqs. (3) and (5), each \(I \) and \(I_t \), respectively, thereby determining one \(\alpha_1 \). Because of \(\alpha_1 = C_1 \exp(-1/\tau_1) \), we get

\[
0.6 \quad I_t \quad 0.6 \quad \alpha_1 \quad \tau_1 \quad C_1 \tag{20}
\]

(The constant 0.6 proves to be numerically convenient.) Plotting \(I_t \) vs \(\ln(0.6/\alpha_1) \), one should get a straight line whose slope yields \(\tau_1 \) and \(D_A \), and whose intercept yields \(\ln(0.6/C_1) \) and therefore \(C_1 \).

Interpretation of the Phase Pattern Under the Assumption that Ambipolar Diffusion and Electron Attachments are the Dominant Loss Processes

The equation which describes the time dependence of the electron density is as follows,

\[
\frac{\partial n_\text{is}}{\partial t} = D_A \nabla^2 n_\text{is} - \beta n_\text{is} \\
\beta = \text{attachment frequency.} \tag{21}
\]

Again assuming that \(D_A \) and \(\beta \) are constant with space and time, the solution of Eq. (21) is the same as that of Eq. (11), except that

\[
\frac{1}{\tau_\mu} = \beta + D_A \left[\left(\frac{J_0}{R} \right)^2 + \left(\frac{\mu_r}{H} \right)^2 \right]. \tag{22}
\]

All that has been said for Eqs. (12) and (13) applies here too. If it is possible to determine in an experiment a \(\tau_\mu \) and \(\tau_\rho \), \(D_A \) and \(\beta \) may be computed from Eq. (22). Another possibility is to measure \(1/\tau \) as function of the magnetic field, which only influences the value of \(\beta \).

\[D_A \] but not \(\beta \). It should be remembered, however, that strictly speaking, \(D_A \) has to be derived from a three-particle model, since attachment means that besides positive ions and electrons, negative ions are also present. The above statement is true only if the concentration of negative ions is negligible.

Interpretation of the Phase Pattern Under the Assumption that Volume Recombination is the Dominant Loss Process

In this case it is

\[
\frac{\partial n_\text{is}}{\partial t} = -\alpha v n_\text{is}^2, \tag{23}
\]

where \(\alpha v \) is volume recombination coefficient.

If \(\alpha v \) is assumed to be constant, then the solution of Eq. (23) is

\[
n_\text{is} = \rho(r)/\left[c + \alpha v \rho(r) \left(t - t_0 \right) \right], \tag{24}
\]

where \(c = \) constant and \(\rho(r)/c = \) spatial distribution of the electrons at \(t = t_0 \). The spatial distribution of the electrons at some fixed time has to be known in order to evaluate Eq. (24). It could be known, for example, by some independent optical measurement. Since we do not know \(\rho(r) \), however, we shall make two reasonable assumptions and check them against the experiment. While this method is not correct it should at least give an idea whether or not volume recombination is the dominant loss process. If we assume a homogenous distribution

\[
\rho(r) = \begin{cases}
1 & 0 \leq r < R \\
0 & r = R,
\end{cases} \tag{25}
\]

and with Eq. (17)

\[
\int_{-R}^{+R} n(t,r) dr = \int_{-R}^{+R} \left[1 - \frac{K \rho}{c + \alpha v \rho(t - t_0)} \right]^1/4 dr = 2RA_1, \tag{26}
\]

\(K = \) constant.

Again, the left side of Eq. (26) is known from Eqs. (3) and (7), each \(I \) and \(I_t \), determining uniquely one \(A_1 \). Furthermore, we have

\[
\int \frac{1}{(1 - \alpha v r)} = \alpha v t_0 \pm \left[\frac{c}{\rho} - \alpha v t_0 \right] / K. \tag{27}
\]

Plotting \(I_t \) vs \((1 - \alpha v r)^{-1} \) one should get a straight line, whose slope yields \(K/\alpha v \) and therefore \(\alpha v \).

If we assume a Bessel function for the spatial distribution

\[
\rho(r) = J_0 \left(\frac{j_{0,1} \cdot r}{R} \right) = J_0(\frac{r}{R}), \tag{28}
\]

and

\[
\int_{-R}^{+R} n(t,r) dr = \int_{-R}^{+R} \left[1 - \frac{K J_0(\frac{r}{R})}{c + \alpha v J_0(\frac{r}{R}) \cdot (t - t_0)} \right]^1/4 dr. \tag{29}
\]

We choose \(t_0 = t_0 \), thereby determining \(c \) since the left

\[11\text{ H. J. Oskam, Philips Research Repts. 13, 335 (1958).}\]
side of Eq. (29) is known for every l. Let

$$\frac{(2)}{a(l)} = B_l$$

then

$$\int_{-\infty}^{\infty} u(t, r) dt = \int_{-\infty}^{\infty} \left[1 - \frac{K/c}{1/J_0^2(r) + B_l} \right] dr$$

Each l and t_l corresponds uniquely to one B_l. Plotted t_l vs B_l one should get a straight line whose slope is c/a_l and therefore yields a_l.

If ambipolar diffusion and volume recombination are the dominating loss processes, the differential equation cannot generally be solved.

EVALUATION OF PHASE RECORDS, ESTIMATE OF ERRORS

The positions of the extrema on the phase pattern were measured with a thread mark moved by a micrometer. In the same way the time marks on each picture were measured whose distances were known to be exactly 100 μs. Thus the relative positions of the extrema were obtained in μs, and nonlinearities of the oscilloscope or distortions of the photograph were eliminated. The error in defining the position of an extremum generally did not exceed ± 5 μs, the last extremum being an exception. Because of its flattened shape, the reading error was about ± 25 to 50 μs.

The next step was to compute the zero angle φ_0 [Eq. (5) or (10)]. We found that g [Eq. (10)] was very close to 1 within the limited accuracy with which the intensity pattern could be read because of its ripples. Therefore Eq. (5) was used. The error in computing φ_0 was $\pm 5^\circ$. Next, a_l had to be determined from Eq. (19). Based on a computer calculation l_0A/ω_4

was plotted against:

$$\int_{-\infty}^{\infty} [1 - a J_0(r)] dr = \int_{-\infty}^{\infty} u(t, r) dt$$

and since

$$\int_{-\infty}^{\infty} u(t, r) dt = 2R - \frac{4a}{2 \pi} \frac{\varphi_0}{l_0} + (k - 1)$$

l_0A/ω_4 could be simply read off the plot for every l and t_l if t_l was plotted against l_0A/ω_4, the slope giving t_l. The error in determining l_0A/ω_4 arises from the inaccuracy of φ_0 and is generally ≤ 0.05 for $l=8$, ≤ 0.02 for $l=5-1$ and successively smaller for decreasing l. Since the last point ($l=4$) is the most unreliable, the slope of t_l plotted against l_0A/ω_4 was determined from the next-to-last points. Figure 6 is a representative example. It can be seen that there is a systematic error insofar as all maxima ($l=8, 6, 4, \ldots$) and all minima lie on a straight but slightly different line. The cause of this was the electronic circuit and has not yet been remedied. Therefore the slope was determined from an interpolation between maxima and minima, as shown in Fig. 8. It can also be seen that the points deviate slightly from the straight line, and the possible causes of this will be discussed later.

The error in computing t_l does not exceed $\pm 2\%$.

RESULTS AND DISCUSSION

In Fig. 9, we give a typical representation of the records in terms of volume recombination, assuming a homogeneous or a Bessel function type distribution of the plasma across the discharge tube [Eqs. (36) and (34)]. In Fig. 6 we show the same record interpreted in terms of ambipolar diffusion and attachment [Eqs. (18) and (22)]. Many data of the type given in Fig. 8 have been evaluated. In Table I for example, we checked the question of reproducibility (maximum differences of $1/t_l$ are in the order of 3%). In Table II

![Fig. 8. Typical representation for plot of l vs l_0A/ω_4; $t_{l_{\text{max}}} = 2.40 \times 10^5$ (Ambipolar diffusion and attachment).](image)

![Fig. 9. Typical representation for plot of l vs $(1 - A)^{-4}$.](image)
we show a few measurements in which we studied the pressure dependence. The results of the measurements so far indicate the following:

(a) Volume recombination cannot be a major loss mechanism (Fig. 9, where we should find a straight line). This is in agreement with other measurements in the literature for line discharges in the late afterglow.22
(b) The measurements can be fairly well interpreted by either ambipolar diffusion or attachment, or both (Fig. 8), the latter being most probable.

One way to assess the importance of both effects is to study their dependence on a magnetic field. According to the classical theory:22

\[
[D_A(H) = D_A(H^2), \gamma \propto \beta(H)].
\]

\(H = \) magnetic field, and accordingly (in the presence of an axial field)

\[
\frac{1}{\gamma} \propto \frac{D_A(H)}{(H^2)} + \frac{D_A'}{(H^2)}. \quad (32)
\]

\(D_A' = \) ambipolar diffusion with magnetic field.\(^{10}\)

Obviously, any dependence of \(1/\gamma\) on the magnetic field \(H\) will indicate ambipolar diffusion. Some preliminary measurements with axially magnetic fields show indeed a marked influence and lead to \(D_A = 5000\) for \(H = 1000\) (indicating a high degree of impurities). The assumption here is, that the initial conditions of the gas discharge are essentially unchanged.

If we then take \(D_A = \) a value of the order of \(5000 \text{ cm}^2 / \text{sec}\) we have, if \(T = \) electron temperature \(T_e\) and ion temperature \(T_i\) are equal,23

\[
D_A = D_A'(T_e) \left(1 + \frac{T_i}{T_e}\right)^2 = 2D_A'(T_e), \quad (33)
\]

\[
D_A = \left(\frac{\mu_k T_e}{e}\right) \approx T_i = T_i. \quad (34)
\]

(assuming the ion mobility \(\mu_i\) at temperature independent) and therefore

\[
[D_A(T_i) = D_A(T_i) = T_i/T_e]. \quad (35)
\]

Furthermore, in Eq. (37) we neglected any radial dependence of \(D_A\) and \(\gamma\) which might give a similar effect. In this case Eq. (21) reads:

\[
\frac{\partial n_i}{\partial t} = \nabla \times [D_A(n) \nabla n_i - \beta(n) n_i]. \quad (36)
\]

THE PLANETARY ASSUMPTION

The basic assumption on which essentially every free-space interferometer technique is based is that the horns transmit and receive a well-collimated plane wave. Then, the measurements define simply an integrated index of refraction that can be interpreted as discussed previously.

This plane-wave condition is only an approximation of the quality of which depends on the radiation pattern of the transmitter and receiver, on the location of the plasma between the horns (near-field far-field), and on the relation of glass container and plasma (ratio of plasma diameter to beam width). To estimate the errors involved in this approximation and to give an improved analysis, we would first have to describe the field pattern of the transmitting antenna in the near field region and in the transition region between near field and far field, because the plasma is usually placed

\(^{12}\)A. W. Engel and W. Stembeck, "Elektrische Geleitfähigkeiten" (Springer-Verlag, Berlin, 1944), Vol. 11.

\(^{13}\)Another explanation of the curvature stems from the fact that the amplitude of the measuring wave is not constant but changes with time, and Eq. (4) should be correctly used instead of Eq. (3). The deviation caused by this effect should be considerably smaller, however, and would be most zero for late times, since the amplitude changes very little then, but the representative Fig. 8 shows that the last point \((t = k)\) is regularly somewhat above the straight line, indicating that the curvature exists even there.

TABLE I. Reproducibility of measurements.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(U(\text{KV}))</th>
<th>(1/\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>553</td>
<td>6.115x10^6</td>
</tr>
<tr>
<td>225</td>
<td>553</td>
<td>6.165x10^6</td>
</tr>
<tr>
<td>225</td>
<td>553</td>
<td>6.185x10^6</td>
</tr>
<tr>
<td>225</td>
<td>553</td>
<td>6.205x10^6</td>
</tr>
<tr>
<td>225</td>
<td>553</td>
<td>6.200x10^6</td>
</tr>
</tbody>
</table>

TABLE II. Pressure dependence.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(U(\text{KV}))</th>
<th>(1/\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>375</td>
<td>1585</td>
<td>4.277x10^6</td>
</tr>
<tr>
<td>365</td>
<td>1685</td>
<td>4.251x10^6</td>
</tr>
<tr>
<td>365</td>
<td>1685</td>
<td>4.240x10^6</td>
</tr>
<tr>
<td>230</td>
<td>1685</td>
<td>4.200x10^6</td>
</tr>
</tbody>
</table>

If we use \(D_A = 600(\text{cm}^2 / \text{sec mmHg})\), at \(300^\circ \text{K}\) from the literature, we obtain \(T_i = 750^\circ \text{K}\). Many more measurements are necessary to determine the accuracy of these calculations.

\(^{23}\)A. W. Engel and W. Stembeck, "Elektrische Geleitfähigkeiten" (Springer-Verlag, Berlin, 1944), Vol. 11.
replaced by the plasma. Only if $\lambda_e \ll \text{beam width } D$ of the incident wave $\ll \text{plasma diameter } 2R$, will the plasma be an effective slab and can the lens action of the plasma be neglected. Because of experimental limitations the ratio $2R/D$ cannot be made arbitrarily large (approximately 5 in our case), and the plasma acts more or less as a time-varying lens almost in any situation. Measurements in which we moved the receiving horn around the plasma do not indicate a pronounced effect. The lens effect has been calculated in the optical approximation too, and the application of the results to our case again indicates only small errors, especially for late times.

We feel that both these results show that the given interpretation of the measurements is based on reasonable assumptions. However, much must be done to express our argument quantitatively.

We would like to mention two experimental alternatives: An interferometer setup similar to a Fabry-Perot arrangement will lead to a highly plane wave. The introduction of cylindrical lenses and placement of the plasma in their focal line possibly avoid any lens action of the plasma. The first method seems to be limited by the losses within the plasma, the second by the quality of the lenses. A combination of both might remove the entire problem.

CONCLUSION

The measurement of the integrated index of refraction and its change with time can be successfully used to study very accurately the loss processes in a decaying plasma. In our experiment, the electron losses are mainly due to ambipolar diffusion and attachment. Additional measurements in the presence of a magnetic field seem to allow a separation of both loss processes. Mass spectrometric measurements are planned which should lead to a unique interpretation of the results.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance of P. Wolfert, Dr. W. J. Ramm, J. J. Sullivan, and I. A. Balton.

15 J. Shmoys, Research Report PIBMRI-528-60, Microwave Research Institute, Polytechnic Institute of Brooklyn (1960).

17 A. L. Gardner, University of California Lab. Report UCRL-6232-T.