
", " 408 627

liii1 ' 1 11111

MEMORANDUM REPORT NO. 1460
ccQ FEBRUARY 1963

C-

ANALYTICAL RELATIONS BETWEEN CONSTANTS FOR

GENERALIZED VOIGT AND MAXWELL VISCOELASTIC MODELS

A. S. Elder

RDT & E Project No. 1A222901A211

BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND



ASTIA AVAILABILITY NOTICE

Qualified requestors may obtain copies of this report from ASTIA.

The findings in this report are not to be construed
as an official Department of the Arqr position.



BALLISTIC RESEARCH LABORATORIES

EMORANDUM REPORT NO. 1460

FEBRUARY 1963

ANALYTICAL RELATIONS BETWEEN CONSTANTS FOR
GENERALIZED VOIGT AND MAXWELL VISCOELASTIC MODELS

A. S. Elder

Interior Ballistics Laboratory

RDT & E Project No. 1A222901A211

ABERDEEN PROVING GROUND, MARYLAND



BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1460

ASElder/cet
Aberdeen Proving Ground, Mi.
February 1963

ANALYTICAL RELATIONS BETWEEN CONSTANTS FOR
GENERALIZED VOIGT AND MAXWELL VISCOELASTIC MODELS

ABSTRACT

A method of calculatin. the constants of a Maxwell model from the con-

stants of the corresponding Voigt model is given. The derivation is based on

residue theory and the partial fraction expansion of the transfer functions.

As an example, constants for a 10-element Maxwell model are derived from the

constants of a 10-element Voigt model used to approximate the mechanical

properties of polyisobutylene at 25°C. Formulas for the creep and relaxation

functions are also given.
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INTRODUCTION

Voigt and Maxwell models are frequently used in analyzing data from

mechanical tests of viscoelastic materials. A generalized Voigt model is

generally more convenient for representing creep and complex compliance data,

whereas the generalized Maxwell model is usually used for relaxation and com-

plex modulus data. To compare the results of different types of tests, a

method is required for expressing the constants of a given type of model in

terms of constants of the other type. Alfrey has shown that relations between

models consisting of three or four elements may be derived by elementary alge-

braic methods. When the models consist of a larger number of elements, the

relations among the constants become very complicated, and a method based on

residue theory is more effective.

On several occasions, the author has been asked to discuss this problem

and outline a method of calculation that would be suitable for machine calcu-

lation. For this reason, a detailed analysis of the problem is given together

with a numerical example. Gross has outlined a method based directly on the

theory of limits.* However, his argument is somewhat difficult to follow. It

is hoped that this report will clarify the analytical relations between Voigt

and Maxwell models.

ANALYSIS

Springs and dashpots are the fundamental elements of a viscoelastic model.

In the linear theory of viscoelasticity, it is assumed that the stress in the

springs is proportional to the strain, while the stress, a in the dashpots is

proportional to the rate of strain, Le. The stress-strain law for the entire

model may then be expressed as a differential equation with constant coeffi-

cients:

da d de m (1)
POa + Pl -t + ... + Pn dt n = + ql T- + ... + qm dtm

Viscoelastic models differing in configuration are considered equivalent if

they are governed by the same stress-strain law.

* Pages 64-65, Reference 3



In Eq. (1), the low order terms govern the behavior at long times, while

the high order terms govern the behavior at short times. If there is long-

term viscous flow, qO = 0; otherwise qo > 0. If the material exhibits instan-

taneous elastic response, m = n; if the elastic response is retarded, m = n + 1.

These considerations lead to the four classes of models illustrated in Fig. 1.

Voigt and Maxwell representations are shown for each class. These models adhere

to the topological relations given by Alfrey* and are numbered according to

Table IV of Gross's monograph.** In this figure, the E represent the spring

constants and the IJ represent constants for the dashpots.

The limiting properties of each class and the appropriate stress-strain

law are shown in Table I. It is clear that constants for a given model can be

derived from constants of another model only if both models belong to the same

class and have the same number of elements.

Table I. Properties of Viscoelastic Models According to Class

Long Term
Class Elastic Response Viscous Flow Form of Eq. (1)

I Instantaneous Absent m = n; qo > 0

II Instantaneous Present m = n; qo = 0

III Retarded Absent m = n + 1; qo > 0

IV Retarded Present m = n + 1; qo = O

* Page 545, Reference 1

** Page 62, Reference 3



FIG. 1. EQUIVALENT VISCOELASTIC MODELS
CLASSIFIED ACCORDING TO RESPONSE
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Table II. General Form of Viscoelastic Functions**

Viscoelastic Function General Form

n+l
Complex Compliance J*(Iw) = E: -1 +

J= E~ i m

n+l C
Transfer Function J(s) = a -_A- +

J=3 a
n+l % t

Creep Function, t > 0 J(t) = E (1 - e ) + 61 (t)
J=3

Complex Modulus G*(i) = I + G* l(m)

n CO S
Transfer Function G(s) Z = OJs + GI(S)

J= K. -

n
Relaxation Function, t > 0 G(t) = e + al(t)

J=K

Table III. Remainder Term for Each Class of Model**

Remainder Terms, Class of Model
Viscoelastic Functions I II III IV

1 1 1 11l E E1 +ine i-

Jl(s) A A + B 0 B
a a

el(t) A A + Bt 0 Bt

G*l(im) E'1  0 E'1 + iwn 2 2

GI(s) A' 0 A' + B's B's

al(t) A' 0 A' + B'8(t) B'8(t)

< 2- 3 1
In Tables 11 and III, c is the circular frequency, s the transform variable
in the Laplace transform, and t is real time.
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The Voigt and Maxwell representations lead to expansions in terms of

partial fractions. Expressions for the creep and relaxation functions are

written in terms of the constants occurring in these expansions. The general

forms of the various viscoelastic functions are shown in Table II. A remainder

term depending on the class of model must be added to the general form in order

to obtain the complete expression; these remainder terms are given in Table III.

In these tables, the Xj are roots of the polynomial equation

m
q%+ qs+... + qs =0 (2)

while the Vj are the roots of the equation

n
PO + pls + ... + pns =0 (3)

The delta function 6(t) is required in the expression for the relaxation func-

tion for Classes III and IV,* since the models in these classes cannot yield

instantaneously to a load of finite magnitude.

Transformation of models can be carried out only for models belonging to

the same class.** Consider for instance, the generalized Voigt model and the

corresponding Maxwell model of Class II, and suppose the constants for the

Voigt model are known. The roots Vl, L2 ... of the equation

A B a

are calculated by some method of successive approximation. These roots are

real and negative, and are interlaced with the roots Xl, X2

The constants C' are obtained by a limiting process.

J(s) = A +2 + j

ZC

C1
G(s)=

*Page 31, RIeferenc 2

sPages 61 and 62, Reference
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so that

C li (SB IJ) S)

But G(S) =1J8

J s)

(B - ) =(s)

B - IL1

s(A + + j

and

CI l:m - C '' s- g j s(A + +/s.J .

The indeterminate form on the right is evaluated by L'Hospital's rule.* The

final result is

= (5)

To go from the Mxwell model to the Voigt model, the roots , )2 "' of

the equation

Z it 0 (6)XS - IJ~

are calculated in the manner indicated above. The coefficients C are calcu-

lated from the formula

c (7)

k-l Ji g-

* This rule iB given in standard texts on the calculus. Bee for instance,
Page 346, Reference 4.
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The constants A and B are derived from the relation

G(s) ,J(s) = 1

A+ + -- -

or

Let s 0 0; then

B 1(8)

/- j

The value of A is found by allowing s to become infinite.

A= 1 (9)

Formulas for the other three classes of models may be obtained in the same

manner.

AN EXAMPLE

Consider a generalized Voigt model used to approximate the dynamic data

for polyisobutylene at 250C. The fitting constants were calculated by a semi-

graphical method described in Reference 5. The calculated values of the complex

compliance generally agree with the measured values within the limits of experi-

mental error over the entire frequency range.
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COMPLEX COMPLIANCE OF POLYISOBUTYLENE

250C

Measured Values (Ref 6) Calculated Values (Ref 5)

Frequency J' (D) X' (W) J' (m) X' (()

cps cm 2/dynes cm 2/dynes cm 2 /dynes cm 2 /dynes

30 2o4 102 203 100
40 184 93.6 186 100
45 182 107 178 100
60 156 98.0 159 99.6
80 137 97.8 158 97.7
100 119 95.2 122 94.5
140 98.4 88.1 99.5 86.-
200 79.0 77.9 79.3 76.0
280 65.3 65.0 64.4 66.2
400 51.2 56.4 51.4 56.9
600 38.5 46.9 58.9 47.3
800 32.1 41.o 31.7 40.8
1000 27.1 36.4 27.1 36.3
1400 20.7 30.1 21.3 30.5
2000 15.7 26.5 16.2 25.0
2800 12.1 20.5 12.1 20.5
4000 8.94 16.6 8.64 16.1

The calculated values tabulated above are based on the following model constants.

MODEL CONSTANTS: 10-ELEMENT VOIGT MODEL

A B Cj
(cm2 /dyne) x 10- 9  (m2 dne x 10 - ( Idyne sec) x 9lO r/

2 9 2dyn see) Le/yese x 10 ____se

3.365 4.756

1 13110 -165

2 71380 -610

3 122600 -3000

4 264500 -15000
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The values of the j for the corresponding Maxwell model were found by

Newton's method. The fitting constants C' were then obtained from Equation 5.J
The results are given below.

MODEL CONSTANTS: 10-ELEMENT MAXWELL MODEL

(dynes/cm 2 ) x 109  _____

1 0. 003498 -17.52

2 0.0009847 -222.5

3 0.004164 -1429

4 0.01061 -7611

5 0.278o -151400
The roots X and Lj are interlaced along the negative real axis in the

manner specified by the general theory; moreover the constants A, B, Cj, and

C'j are all positive. The values of the individual springs and dashpots

derived from these constants will be positive, as required by the physical

theory.

The relaxation function is expressed in terms of the constants A, B, Ci ,

and X for the generalized Voigt model. The creep function, on the other hand,

is expressed in terms of the constants C'j and p of the generalized Maxwell

model. The formulas given in this note afford a simple method of calculating

the mechanical response of linear viscoelastic materials under a variety of

loading conditions after a model corresponding to a particular type of loading

has been established.

A. S. ELDER

13



REFERENCES

1. Alfrey, T., Jk'. Mechanical Behavior of High Polymers New York,
Interscience Publishers, 1948.

2. Bland, D. R. The Theory of Linear Viscoelasticity New Yurk,
Pergamon Press, 1960.

3. Gross, B. Mathematical Structure of the Theories of Viscoelasticity

Paris, Herman and Cie, 1953.

4. Smail, Lloyd L. Calculus New York, Appleton-Century-Crofts, Inc., 1949.

5. Goldberg, W. and Dean, N. W. Determination of Viscoelastic Model
Constants from Dynamic Mechanical Properties of Linear Viscoelastic
Materials, Aberdeen Proving Ground, BRL Report No. 1180, November 1962.

6. Fitzgerald, E. R.; Grandine, L. D.; and Ferry, J. D. Dynamic Mechanical
Properties of Polyisobutylene, Journal of Applied Physics, 24: 650-655,
1953.



DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization

1 Commanding Officer 1 Dr. J. M. Klosner
U. S. Army Test Aetivity Polytechnic Institute of
ATTN: ORDBG-TA-FT-AA Brooklyn
Yuma Test Station, Arizona Brooklyn, New York

1 California Institute of Technology 1 Dr. H. H. Hilton
Guggenheim Aeronautical Laboratory University of Illinois
ATTN: Dr. M. L. Williams Urbana, Illinois
1201 East California Street
Pasadena 4, California 1 Dr. W. A. Nash

University of Florida
1 Columbia University Gainsville, Florida

Department of Civil Engineering
and Engineering Mechanics 2 Mr. Nathan W. Dean

ATTN: Dr. A. M. Freudenthal c/o Physics Department
New York, New York University of North Carolina

Chapel Hill, North Carolina
2 North Carolina State College

Department of Mathematics 1 Mr. J. E. Fitzgerald
ATTN: Dr. J. W. Cell Grand Central Rocket Co.
Raleigh, North Carolina Redlands, California

1 Pardue University 1 Mr. C. H. Parr
Department of Chemistry Rohm and Haas Company
ATT'N: Dr. llenry Feuer Huntsville, Alabama
Lafayette, Indiana

123 Joint Army-Navy-Air Force
1 Physics Department Solid Propellant Mailing List,

University of North Carolina dated June 1962
Chapel Hill, North Carolina

1 Dr. J. H. Baltrukonis

Catholic University of America
Washington, D. C.

15



41m4,

41 N

~ 0

0 

404lot

0)) 0

4)4) 4
20 2.)04

400 0P.

o ,.4

41- 0 P. .

4'H 4

04)l 00.40-~) 0- ~ - p

ow o 4 ~R. 4
H,-) H '0 .~ > ,-I .~4 0

~.41

B ~, 2E~.~v0
O I ~1

v 44 'UI

41 44

0 ~


