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A DELIVERY-LAG INVENTORY MODEL WITH AN
' EMERGENCY PROVISION

By E.V. BARANKIN
University of California

\ 1. THE SINGLE-PERIOD CASE
\\

1. Introduction and encral discussion. This report
begins the study of 3n inventorthgdéi:gg?;hich there is a
fixed lag time of onéfperiod for delivery of orders, but in
which there is also defined an cmergency situation with
respect to initial stock at any particular inventory pointy-
w})en such an emergency situation obtains, an additional
o;der of a specified fixed size is taken with immediate
delivery. There is a certain additional cost for this
immediate delivery (although the analysis may be specialized
to the case of no additional cost). >While the particular
structure of emergency is laid down,thare is a free param-
eter left to be chosen for each period to render the defi-
nition of emcrgency fully specifiﬁ) and this parameter is
determined as part of the optimization.

There is no attempt~here9to achieve the fullest
genetality in every respect. The principal object is to
investigate the indicated emecrgency character of the
model. It is anticipated that thc n-period cases, with
n > 1, will yicld their essential properties by the device

of inductive argument,-as--in—f{iT——Chapt. gjprond that from
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these, by suitable limit considerations, the stationary
case may be studied.~~1hexguku35> Ehis first investigation
is dixected to the case of the siﬂéle-period problem, so
formulated as to present the fcaturcs which may be expected
to arise in the general n-period case.
Before we enter into the single-period problem, it
will be helpful for orientation to discuss the general n-
period model, and the attendant recursion relations,
Consider a time intcrval of n periods in length,
with the inventory points labelled 1, 2,..., n + 1 from
left to right, and the periods labelled 1 i=1, 2,..., n

' 1
' 1 12 ' In
P s
: .
-1 0 1 2 3 nn+l
FIG. I
Fori=1, 2,..., n, let x4 denote what shall be called

the intial stock in I,, and is defined to be the (positive

or negative) stock level at i inclusive of any orders that

have been placed at inventory points t < i and which arrive

at i, but not ;ggiusive of an order vhich is placed at i

and is immediately delivered. For purposes of deriving
the recursion relation, it is nécessary to consider the
n-period interval in the context of a larger interval (as
indicated in FIG. I, with inventory points 0, -1,...); thus,
the initial stock Xy takes account of orders at t = 1 which

were placed at previous inventory points.
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Now in fact, we consider that an order arrives at an
inventory point only on either immediate delivery or
delivery of one period lag. In more detail: at a point
i, ordering is done accoxrding to the followlng scheme.
There is a number v,_, . ; such that (1) 1€ x5 > Y, 4,15
then an order for z, units (the quantity z; to be dctex-
mined by cptimization) is plased for delivery at i + 1,
one period later, whereas (ii) if x; = v,_4.1, tPea in
addition to an order for z; (= the optimal order niza) anits
to be delivered at i + 1, an order for m units is placed
and these m units will be immediately delivered. The
quartity m is fixed, the same for all periods. The
numbers 13 are to be chosen in an optimal way.

The sense of this ordering schcme is clear. Ue are
ta¥ing the simplest kind of characterization of an
emergency situation; namely, when the initial stock is
below a prescribed level (the number 73). And in this
situation we are considering that the supplier will
accemmodate with an immadiate delivery, though not of
an arbitrarily large oxder, but, more realistically, of

£ixed quantity m which be is able to produce with
relative ease (but at perhaps somewhat higher cost--see
below) for immediate delivery. The invantory manager
is free to set the values of the Yy thus fully defining
the states of stock-level emergency. We shall see that
in certain cases there are simple optimal selections of

the 7j'
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We shall employ the term starting stock at the inventory
point i to designate (i) the initial stock itself if there
i8 no ordering at i of the additional m units for immediate

delivery (no emergency), or (ii) the initial stock plus m
if there is ordering of the additional m units for immedi-
ate delivery (emergency).

Let the demands in the scveral inventory periods be
independent and identically distributed, wih distribution
having a continuous density ¢:

f=0for<0

(1) ¢ (&)
L %~ 0 and continuous for § > O.

We assume that ¢(0+) exists, and we shall denote this limit
more simply by ¢(0).

We consider a holding cost function, h, and a penalty
cost function, p, applicable in each period. For any parti-
cular period, if y is the starting stock level at the
beginning of this period and ¢ is the demand in this period,
then the holding cost is h(y - ¢) and the penalty cost is
p(¢ - y), thesc costs being charged at the end of the
period. Of course, only one of these two costs may be
positive in any particular case, as follows from the first

assumptions on h and p:

= 0 for;q
(1.2) h(n) 20 for q

convex for all y.

A
o

Y
o

=Q fornzo0

(1.3) p(n) 20 for n>0
convex for all 7.
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We take a fixed cost ¢ per unit of the item under con-
sideration, However, this is thc regular cost which is
applicable only in the case of orders to be regularly del-
ivered, that is, to be delivered onc period later. In the
case of an emergency, the m units that are delivered immedi-
ately will be considered to have a unit cost co,notlcss
than ¢ and in general greater than c¢. Thus, in an cmergency,
the m immediately delivered units will have the cost com,
while the cost of thc simultancously placed, regular order,
z, will be cz (the latter cost being incurred at the time
of placement of the order).

We assume that there is no set-up cost. The discount
factor will be denoted by a .

Now, for r = 1, 2,..., n, let
(1.%)  E_(x,z,6;v,) = conditional cxpected total cost, dis-

counted to t = n - r + 1, for the
r-petiod interval fromt =n - r + 1
tot =n + 1, given that the initial
stock atn - r + 1 is x, that a
regular order for z units is placed
atn - r + 1, and that the dcmand

in the period [n - r + 1, n - r + 2)
is £; and given, also,that there is an
optimal ordering rule in effect in
[n-%+2, n+ 1], and that Yy
specifics the emergency level at

n-1r+1,



Let

-]
(1.5)  £2(x,2;7,) =\f’ o Eo(x,2,657,) o(8) de.
And, finally, let
(1.6) fr(x) = optimal value of fg(x,z;yr) among all choices of

(1) the ccnstant Y, indepencont of x, and

(ii) the quentity z depeudcrt upon x and the
choice of 7.
We have purposely not used the word "minimal" in (1.6) where
the word "optimal" appears, becausc it is not in general
true that there is a unique minimum for fg(x,z;yr} under the
condition (i) in (1.6) which demands that Y, be independent

of x. To formulat this more precisely, let

(1.7) fil)(x;vr) = min £2(x,257,)
and
(1.8) fgz)(x) = min f£1)(x;yr).

Y
Then, it makes scnse to substitute the word "minimal" in (1.6)
only if therc is some value of Yyr S8Y Vi, such thot

(1.9) £ (x) = £M (x59y), all

and in this case the value g2 will be taken to define the
emergency level, and the optimal cost function £, of (1.€)
will be fgz). If there is no such value Vs thena some new

convention must be made as to what "optimal" shall mean,
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For each r, we consider that such a ncw convention is at

hand, if necessary, to provide thc functions fr of (1.6).
Now, let us examine this question of minimality more

closely by looking at f: as given by the recursion rclationm.

For r > 1 we have

?

cz + 1 (x-1%)+a £, (x+2z £, x > v,
(1.10) f;(x,z,g;vr) =

cz+cm+ 1(x+m-£)

A

(‘ +a f. q(x+m+2z - £), x

where 1 is the function defined by
h(n), =n >0,

(1.11) 1(q) =
k p(-n), n 3G

If we set

'q ~ 00
S nn - eete) ag [ w(s - maCe) az, wo,

A g=n
(1.12) L(n) =
f p(t - nlo(s) 44, 030,
then we have, from (1.10),
,/cz + L(x) +af foo1(x+ 2z - 2)o(k)de,
‘ez +cgm + L(x + m)
{
r’ re ]
1 to; alx+mtz - g)e(g)de,
|
\- 8=0



Let us set, for r z 1:

(1.14)

Then (1.13) becomes

(1.15) £2(x,25v,) =

Let us put

(1.16)

and

(1.17)

G.(z37)

cz v u [ fin+z - e(s)d,
£=0

L(x) + G,._q(z5%),

X>'yr,

com + L(x + m) + Go.y(z5x+m) x 3 Yy

H (%) = min G, _,(z;n),

zz0

3(n) = L(n) + H(n).

Then we have, according to (1l.7),

(1.18)

4

(1
£

)(

X3Yy) =

302,

t com + J.(x + m),
\_

X

X

A
~2
Lo}

We see thus that fil) has a rather special form, and we can

inquire after conditions under which (1.9) holds.

From (1.13) we find that

(1.19)

Hence, if there is a vl such’that (1.9) holds, we have

(1.20)

£8)(x)

Jp (%)
Jp(x)

vy

min [Jr(x), com + J (x + m)].

e m + J(x + m),

c,m + Jr(x + m),

X

X

>

<

%

Yo
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Conversely, if thcre is a v, satisfying (1.20), then (1.9)
holds., Thus, the existecnce of a v} such that (1.2C) holds
is, in our case, the characteristic condition om the
function J. in order that optimality in (1.6) be definable
as minimality.

Notice that the function c_m + Jr(x + m) is, geco-
netrically, the translate of the function Jr(x) first to the
left by m and then up by the amount c m. If the function
J. 1s U-shaped, the picture may be as follows:
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In this case--thot 1is, a situation of the type dcpicted in
FIG. Il--the Y indicated in thc figure is the unique number
verifying (1.26‘.

But observe that--the naiurc of the function J, permitting--

¢, might be so large that, instead of the situation in FIG. II,

we have the following piciure:

4.

com + J (% + m)

/

/

Iy (x)

[
1
]
i
!

— - mee e e mn s aleica - -

'
|
'
!

—p K

B B

4

R

FIG. II1

This is the situation that

(1.21) J.(x) = c m + Jr(x +m), all x.

e
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In this case we may say that (1.20) holds with VL=~ o,
And operationally this means that we shall not admit any
emergency situation:--a natural consequence of too large an
emergency cost as compared with penaltics,

In subsequent investigations we shall study the question
of convexity of the successive Jr's, and the existence of
finite values Y4, ¥ = 1, 2,... as.dcpicted in FIG, 1I. For
the present we dircct the necessary first attention to the
single-period case, and find thac under natural assumptions
we do have the indicated convexity of J, and consequent analysis

according to FIG. II or FIG. III,

2. Formulation of the single-period cage. As we have
already said, our intention in fully formulating and analyzing
the one-period case is to accomplish the prototype of argumenta-
tion that can be expected to be called for intte general n-th
stage discusscd above. We shall thcrefore consider that there
is an initial stock level of x at the beginning of our single-
period, that there is an emergency lecvel vy, as previously
described, to be determined (in particular, it might turn

out that we would want to take vy = - «» (disallowance of any
emergency situation), and that a regular order for z units

is placed at the beginning of the period for delivery at the

end of the period. To completc the description, we consider
that the z units arriving at thc cnd of the period may be

used to fill any demands still outstanding. But, because such

filling of orders is late, we assume that there is a gain
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function v which does not in genecral canccl the holding cost
that is calculated at the end of the period before arrival
of the order of 2z units. Finally, we assume that if, after
late filling of dcmands, therc is still some stock left
over, it is sold for salvage, thc salvage gain function
being w.

The functions v and w will be supposed concave for
pesitive arguments; we assume, in fact, the following

properties of v and w and their first and second derivatives:

(~ v(n) =0, ns0,
(2.1) vi(n) >0, n 20 (v'(0) denotes v'(0+)),
I, v'(n) 20, n 20 (v"(C) denotes v"(0+)).

w(n) =0, n =0,
(2.2) wi(n) >0, nZ0 (w(0) denotes w'(0+)),
w'(q) S0, 120 (w'(0) denotes w'(0+)).

Correspondingly, we make the following more detailed assupp-

tions concerning the holding and pcnalty functions h and p:

h(n) =0, 30

(2.3) h'(n) >0, 1 20 (h'(0) denotes ht!(0+)),
h"(q) 20, n 20 (h"(0) denotes h"(0+)).
p(n) =0, =0

(2.4) P'(n) »0, n 20 (p'(0) denotes p'(0+)),
p"(n) 20, 20 (p"(0) denotes p"(0+)).
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Our analysis will be carried out under scveral as-
sumptions regarding the interrclations between the functions
v, w, h, and p, and the cost constant c. These are the

following:

(2.5) vy, > w (o), (v = Lin v (n)),
. >
(2.6) vl >c > wl, (w! = lim w'(n)),
@ >0
(2.7) vt(0) < p'(0),
and
(2.8) h! > w!, (h!t = lim ht(n)).
>

The significance of condition (2.5) is that therc is always

a greater gain in filling demands late, no matter how large
the amount of such demands, than in leaving some of these
demands unfulfilled and taking the salvage value of the
left-over stock instead. This intcrpretation makces usc, of
course, of the fact that the sccond derivacives v" and w' are
nonpositive for all nonnegative arguments, so that we ha@e,

in fact,

V'(nl) zvl > w(0) 2 w’('ﬂg)
(2.9)
for all ny 20 aad n, 2 O.
The left-hand inequality in (2.6) means--again taking

account of the fact that v'(n) z v! for all n Z O--that cvery
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demand filled late, no matter how large the amount of such
demands, represcnts a gain in cxcess of the (ragular) purchase
cost of the quantity of item nceded to £ill that demand., In
other words, even late filling of demands, however many, has
sufficient worth that the purchase cost of the item is no
deterrent.

Out assumptions on the function w imply, of course, that
w! is monotoncly nonincreasing from O to «, In view of this,
the right-hand incquality in (2.6) mcans that there is a
level beyond which salvage rcturns do not make up purchase
cost., Indeed, if the reverse werc true there would be gain
to be had in the purely subsidiary operation of purchasing
for resalec to salvage.

The relation (2.7)--again together with the conscquences
of the second derivative conditions on v and p--asserts
the realistic situation that the gain achieved by filling
demands late docs not make up all of the penalty that is paid

for this latencss.

And finally, taking account of the sccond derivative
condition on w and h, conditiors (2.8) means that there is
no level of stock sufficiently large that beyond this level
salvage returns make up holding costs.

Let vy denote the (to be optimaily determined) single-
period emerguency level, and lot f stond for El‘ Then we

have
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. ‘ez + 1 (x - £) - v(imin[z,¢ - x])
(2.10) f(x,z,l“;;v) = -w(x+z-£), x>,

cz +cm+ 1(x+m- ¢)

- v(oin [z, -(x + m)])
\h ~wx4+m+2z-¢), x =,
Letting £° stand for fi, we thus have
(ﬁcz + L(x) - V(x,z) - W(x +2), x>,
(2.11) £2(x,z57) =

cz + cm+ L(x + m) - V(x +m, z)

- Wx+m+2), x=Zv,

where
X+Z
[ ovts - et + viz) [ ez,
(2.12) V(x,z) =) ° x4z
X+2z >0,
v(z), x+2 20,
and
n o
(2.13) W(x) =J wix - £)o(g)de
0
Define

(2.1%) G(z;x) = cz - V(x,z) - W(x + 2);

then (2.11) becomes



IrL(x) + G(z;x), x>,

(2.15)  £°(x,z;v) = '
lcom + L(x +m) + G(z;x +m), x =7.

We put

(2.16) H(x) = min G(z;x)
2z0

and

(2.17) J(x) = L(x) + H(x).

Then we have, letting f(l) stand for fil),

(2.18) f(l)(x;,}) - J(x)’ X >,

cm + J(x + m), x <4,

A

We see that f‘l) is of the samc form as f£1) for r > 1, as
given by (1.18). Hence, the deliberations in Section 1
subsequent upon formula (1.13) are applicable here in the
single-period casce (our present G, H, and J being G,, Hy,
and J;, resp., in the notation of Section 1), and the
problem facing us is the study of the function J with the

goal of determining whether or not there exists a 7' such that

J(x)
J(x)

A

c,m + J(x + m), X >,
(2.,19)

iy
A

cm + J(x + m), X 3 ',

3. Study o the minimization of G(z;x). Our first
major task toward understanding the behavior of the function
J is to get at the function H; that is, to study thc minimi-

zation of G(z;x) with respect to z z O.
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We notice, to begin with, thac for each x, V(x,z) and
W(x + 2) are'géntinuous functions of z > 0. Hence, G(z;x)
is, for each i, a continuous function of z. In fact,'G is
differentiable with respect to z, and to calculate this partial
derivative and other dominatiwes further along in our analysis,
we set down the following morc explicit (tham (2.12) and

(2.13))formu1as§
X+2

[ vz - matode + viz) [ ota)at,
0 X-+2
. 42 x+2 >0, =20,
: fo /.
(3.1) Vix,2) = 3 [ v(e - x)e(£)et + v(z) |7 e(2)ds,
. X ’ Xz

Xx+2>0, x>0,

v(z), =x+2z320,

X+z

[ wx+z-3)e(2)dt, x+2z >0,
v 0
(%3.2) W(x + 2). =
' o, x+2 20,

From (3.1)--or, in fact, also from (2.12)~-we hLave

vi(z) [ a(e)dg,  x+z >0,
) v _ [l T x4z
oz

(3.3

vt(z), X+ 2z

] -

A

03
and from.(3.2) we get (on taking account of the fact that

w(0) = 0)
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X+z
k/ wix +2z -~ )op(e)ds, x+ 2z > 0,
(3.4) ang+2) = 0
oz ' 0, X +2z 2 C.
Hence, we have
X4z
re N . n o N ge
c -viiz)| o(g)dg “Je wix + 2z - §)e(g)ds,
(3.5) G . x+a X +2z >0,
oz

c - vi(z), X + 2z 2C.

We see readily that, for each x, 9G/dz is countinuous in

z > 0. In fact, 0G/dz is differentiable with respect to z;
but before we go ahead to find 32G/dz2, we first cxamine the
behavior of ¢G/oz.

From (3.5) we find

) X
c - v'(0>f o(¢g)de - fo wi{x - g)e(g)de,
X (V)

o0
.6 2 ) =
(3 ) (EE z=0+ X > 0,

c - vt(0), X

A
(@

By (2.1) and (2.6) we have
(3.7) v'(0) Zz vl > c.
Applying this to (3.6) we sec that

(3.8) (88) <o for sach x % 0.

The function (0G/9z) is a concinuous fuanction of x,

z2=0+



constant and negative for x 2 0. Let us examine its derivative

for x > O:

d G ' - Wt
(3.9) 4 [(-—52— )z=o+] = v1(0)e(x) - wi(0)o(x)

X
-] w'(x - £)e(2)dE, x> O,
J
O -
By (2.1) and (2.5),
(3.10) v1(0) 2z vt > w(0)

Combining this with the fact that o(x) > 0, and remcmbering

that w" = 0, we sec that

(3.11) L&) Jzo x-o
cx z=0+

Hence, (8G/62)z=o+ is monotonc nondecreasing in x. Ve
find, furthermore, from (3.6),
(3.12) lim (28

oz

) =c=-w >0
o0
X—> 00 2=0+

as a consequence of (2.6). It follows that (bG/Bz)z=O+
vanishes for some unique positive value of x or for some
closed interval of positive valucs of x. Let L be this
unique value of x, if it cxists, or the lower endpoint of
this interval of valucs of x, if an interval exists. Then,

x, is either the unique’ or the minimum number verifying
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(3.13) c - vv(o)f“ o(t)d: -fx° wi (%, = £)o(g)dE = 0.
' X 0

¢}

To sum up what we have found thus far:

/fhere is a positive number X, such that the continuous,

monotone nondecrcasing function (3.6) satisfies

< 0, X < X_,
(3.14) () °

2=0+ z 0, x X,

The number x, is the smallest solution of (3.13).

Let us observe that if ¢ is strictly positive for positive
arguments then the inequality sign holds in (3.1l). And as

a consequence of this the function (3.6) cannot vanish on an

interval. Hence:

If ¢(n) > 0 for 7 > O, then the number x  of (3.1%)

(3.15)\ is_the unique solution of 1 and _is conscquentl

the only point at which the function {3.6) vanishes.

Let us now study the sccond derivative (obtained from (3.5)):

X+2

-v'(2)f T e(e)de - [ wix sz - tele)ae
3% X+2 © -
(3.16) S + [vi(z) - w(0)]o(x + 2),

X+2z>0,

- v'(z), X+ 2z <0,
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Since v" and w" are nonpositive, and ¢ is nonnegative and
vi(z) > w(0) (see (2.9)), we sce by (3.16) that 32G/dz°

is, for each x, nonnegative for all z z O for which it is
defined, namely, (i) for all nonnegative z in case x > 0, end
(ii) for all nonnegative z except possibly z = - x in case

X < O. In either case the derivative 0G/dz is thercfore

monotone nondecreasing in z. For x < 0 we have

(3.17) lim éfg = - v'(- x), Xx.< 0,
zT-x oz
and
2
(3.18) n 28 = - v'(- %) + [vi(-x) - w(0)]e(0),
z]-x Oz .
x < 0.
Thus, by (2.9),
3% 3%
.1 lim =—% 2 lim =—3% , < 0.,
(3.19) z)-x 3z° zT-x 3z°

Strict inequality holds here if ¢ (0) > 0, as w2 sec by
(2.9) and (3.18). We have, as noted, the resul: that
9G/dz is monotone nondecreasing in z, for acch x. For

x Z x, (see (3.14)) this means immediately :hat C(z,x) has a

minimum with respect to z and it take:z cn {his wminimum value

at z = 0. In particular, for an x > x_ such that (3G/oz)

o > 0,

z=0+
the minimum of G is taken on oaly at z = 0. Hence, under the

condition of (3.15), z = 0 is thc unique minimnun point of G

for each x > x,. For x = x, we sce by (3.16) that
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3% N
.2 = - v"
(3:20) (23 )z==0+]x=x v.wif o(e)e
o] [¢]
xO
- [ Wiy - edalglde + [vi(0) - wi(0)]elx,),
0

and this is strictly positive under the condition that o(n) > O
for n > 0. Hence, under the condition of (3.15) it is true h
also for x = x that the minimum of G is taken on only at
z = 0.

We must now examine the minimization of G, with respect
to z, for values of x < X For such a value of x, G(z;x)
starts out at z = O with a negative slope (see (3.14)). This
slope is monotonc nondecreasing, by virtue of the nonnegativity
of 62G/622. We ask now if this slope eventually bccomes
positive. By (3.5) we have

(3.21) lim 86 _ c - w >0,

Z—>» © dz

Thus, the answer to our question is in the affirmative; in

fact, 0G/dz tends to the same positive linit in z == « for
every x. Therefore, in the casc of concern to us, namely,

X < X, the derivative 3G/dz vanishes at some unique positive
value of z or for all values of z in some positive interval,

and at this unique point, or at all the points of this interval,
as the case may be, the function C takes on its minimum value

in z. Now, by (2.6) and the monotone nonincreasing character
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of v', we see in (3.5) thet 3G/dz < O for every z such that

X +2z 520, It follows that thec minimizing value or values

of z must be such that x + z > C. Then, by (3.16) we secc that

under the condition of (3.15), namely, o(n) > 0 for n > O,

the second derivative BZG/'éz2 is strictly positive at a

minimizing z. Conscquently, there is a unique mininizing 2

under this condition. And this minimiziag z is the value

that causes the vanishing of tle first expression in (3.5).
Let us now gather together our results on the minimization

of G:

Proposition I. For eech x = x , G(z:x) is monotone,

nondecreasing, convex in z z 0. Its minimum ig therefore

taken on either at z = O only or at all points of a closed

interval with left cond-point z == 0. If ¢(n) > 0 for 1 > O,

then z = 0 is the unique minimrm point.

For each x < x G{z;x) is first decrcasirg and then

increasing as z ruuns from O t2 «, and it is convex., Its

minimum is taken cn either at a uvpicue positive point or at

every point of a_clonsed nositive ingerval. Such a minimum

point z satisfies x + 2z > O and is a root of the equation

X+
(3.22) ¢ - via)[ a(e)ag - [ wlx e e - Be(2)eg = .

X+2

7£f ¢(n) > 0 for 7_> O, then therc is_a uniqre minimun point

for G(z:x), aud this point is tuc uninue solvticn of (3.22).

From this stage on we shall work unde: the £ollowing
assumption, which has been shown above to be important for

uniqueness of the policy function:
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(3.23) ASSUMPTION: o(n) > O for n > O.
With this assumption we may now define

(3.24) 2*(x) ®f the unique value of z _at which G{z,x) takes
on its minimum value.

From proposition I we have:

(AO, for x 2 x_,
(3.25)  2*(x) = }‘ - 0

the unique solution of (3.22), for x < x,

and the additional fact that

(3.26) x + 2¥(x) > 0 for all x.

4, Study cof the function H(x). We have

(4.1) H(x) = min0 G(z;x) = G(z*(x); x),

zz
and we shall examine the first and sccond derivatives of H.

In general,

d z¥
(4.2) Ht(x) = ( %-?E )z=z*(x) + ( E)-g )Z==Z*(X) d—déf

But we have

3G
> ) =0 for x«<x
MR o’
(4.3) .
Q’L =O g_q;r_x>x.



Hence, (4.2) reduces to

(4.4) H(x) = (($8)

From (2.14),

(4,5) 3G _ _ 3V _ 3u(x + 2)

By virtue of {3.26) we see that the first two expressions in
(3.1) and the first expression in (3.2) are the pertinent
ones for cvalutation of the terms on the right-hand side

of (4.5). Ve find
X+2 X+2

Jovite - meedas - [ wixe e - e(ne,

oG x 20
4,6) = = ="
(4.6) ox X+2 X+2
for x+z>0 [‘ vi(e& - x)o(&)d” -\/\ wi(x +z - £)o(¢)de,
/s :
x > 0.

From (3.13) and (3.22) it follows that z* is a continuous
function, and this together with the continuity properties
of 0G/ox in (4.6) implies that H!' is a continuous function
for all x. Thus, the exception noted in (4.4), namely,
x ¢ x,, may be discarded.

We may obtain "explicit" cxpressions for H!'(x) by
substituting z*(x) for z iﬁ (4.6). If we do this and

avail ourselves of (3.22), we obtain:
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x+z2*(x) ,
RO LB w(z*(x))[“cp(e)d; - ¢,
- x+z*(x)
(4.7) HY(x) ={x+z*(x) L XE0
[ vie - wstar s v ) [ s - e,

x+£*(x)

0 < x < X5,

On

b

o[ e - e9(s)as, xzx
0

From the third expression here we get irmediately

(4.8) lim Hi(x) = - w!

K> @

To gain information about the bchavior of H' as x = - «,

we must study z* a little more closely. From (3.22) we

find: X+Z*(X)
o I )-w () Tetmratix) )= W (xsa*(x)-8) ol 2)dt
(h9) .- ©

g' fvr(z*(x))-w (0)]o(x+z*(x))
x+z*(x) -
‘L-V,C;f'(mz*(x)-c,m(a)aa-v"u*(x))f ERLE
x+2%(x)

{.‘ »
TOY X < :\O .

We see that, for x < x, dz*/dx is ncgative and bounded by 1

in absolute value:

*

Hence, z* is monotonc decreasing in x. From (4.10) we get
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(4,11) 5‘,3(- [x + z%(x)] 2 o,

and this is valid for all x. From (4.9) we see also that
if v"(n) < 0 for n > 0, then the strict inequality signs
hold in (4.10) and (%4.11). The result (4.11) tells us that

x + z*(x) is monotonc nondecreasing. Let us define

(4.12) p=1lim [x+ z*(x)] .

X=> =00
By (3.26) we have that p 2 0. The detemining equation for
p is obtained from (3.22) by letting x = - «, and noting

that in this case z*(x) = + =, by virtue of (3.26). Ve get:

o P
4.1 - ! d - ! ! - d = .
(130 e - vy [ 7 e(nae - [PwG - aaige - 0

Since ¢ > O we sce that, in fact, p > O,

1f we now consider x + - « in (4.7) we get

(4.14) lim H'(x) = v} - c.
X=» =0 .

From (2.6) and the fact that w! 2 O we have then:

(4.15) 1im  H'(x) > 0 2 1im H'(x).

K> = ex, X 0

H(x) actually changes sign as x runs from - «» to + ». In
fact there is a sign change between -« and X,, 88 we see from

the fact that

(4.16) () = - [T wilx, - et < 0.
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We now calculatc the second derivative of H; from

(4.7) we get:

(4.17) H'(x) = {va'(z*(x))-w'(O)'Jcp(x-fz*(x))
x+2*(x)

:/;w"(x+z*(x)-;)¢(€)d€} (1 + giﬁ )

x+z2*(x)
..ufo V"" x)(P( )

for x < O,
and
(4.18) H"(x%) = {TV' x))-wr( )]@(x+z*(x))
x+z*(x) .
St -0 ) (1 )
x+7% (%)
-vi{0)o(x) = [ v'(3 -~ x)o(e)dE
v ( X JC:-
for 0 < x < X,
and
(4.19) H"(x) = - w(0)o(x) - U{ﬁtf(x - t)o(t)de

for x » Xy

The information gathered above concerning the function

H will suffice to investizate the function J.



5. Studx of the function J{x). We have

(5.1) J(x) = L(x) + H(x)
and ,\x 00

[ ntx - 9e(e)ds + [ p(s - w0, x > o,
(5.2) L(x) ={ " © x

I A
o

Lot - we(e)as,  x g
G

H and L are continuous functions, and thercfore J 1is

continuous. From (5.2) we calculate:

X ]
Jonee - aetnasf pite - wae)as, x> o,

(5.3) L*(x) = -
-fo pr(e - x).(2)dE, x < O.

From this we scc that also L' is continuous, We have
already seen that H!' is continuous. Hence, J!' is com-
tinuous.

Differentiating once again, we get

[ (0#pr (0)] o) W' (x-8)a()et

(5.4) L"(x) = w
" Pe d » > s
+fx P—(s x)e(g)de, x>0

fo (¢ - x)p(£)dE,  x < O.

Combining this with (4.17)--(4.19) we get



(5.5) J3"(x) - [ [vr(z*(x))-w' (0)] p(x+2*(x))

Txz¥*(x) o
S mareo-geiae] (1 90
x+2*(x)

- [ emataias + " (o)

for x < O

and

(5.6) J"(x) = { [wi(z*(x))-w (0)]o(x+z*(x)-

C
x+z*(x) .
:/; w"(x+z*(x)-€)@(€)d§} (1+ %%' )
x+z*(x)
1/; v'(e-x)e(3)d: + [hr(0)+pr (0)-v1(0)]o(x)

of Twneesaeas + [ (emel e

for O < X <« X,

and

(1) 3'(0) = <[ "W (x-0)a(6)d5 +[81(0) +p!(0)-w (0] o(x)

of W) a(nese] B (exda(8)as

for x » Xy

We see irmddiately, by (2.1), (2.2), (2.4), (2.9) and
(4,11), that J" is nonnegative for x < 0. Taking account as

well of (2.3) and (2.7), we sec that J" is strictly positive
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for 0 < x < X, And by virtue of these also, noting that

(5.8) “p'(0) > vt (0) > w(0),

we see that, finally, J" is strictly positive for x > x,.
Hence, wc have the result that J is a convex function.

Let

&f

(5.9) P, lim pt(y).

n—#co

(p!, may be infinite.) From (5.2) we see that

(5.10) lim L'(x) = - p}

X -~

Combining this with (4.14) wc have

(5.11) lim Ji/(x) = v! - p} = c.

X=> =0

From the propertics of v and p it follows by (2.7) that

(5.12) v! < pL.

Hence,

(5.13) lim J'(x) < O.
X—> =

Again from (5.3),

(5.14) lim L'(x) = ht.
X~ 0o
Combining this with (4.8), we have

(5.15) lim J1(x) = hi - w,
K~=>c0 5



Thus, by (2.8),

(5.16) lim J'(x) > O.

X=>c0

Hence, the function J is U-shaped.
Now we are at the point of investigating J with regard to
the question centering around (2.13). For this purpose we state

state--without proof--the following

Lerma I. Let g8'x) be dcfined for all x e(- =, =), and

——————

let it have the properties

lim g'(x) < 0 < lim g'(x)
(5.17) S e
. g'(x) z 0

Furthermore, lot o and B be positive numbers, and let

(5.18) ¥(x) = g(x + a) + B.

Then, the graph of the function ¥ is either entirely above

the graph of g, the two graphs naving no point in common, or

the greph of ¥ cuts tha% of g in just one peint.

1f the graph of ¥ fails to cut the zreph of g for some

positive B, then

(5.19) lim g'(x) > -o.
K= =00 -

Converscly, if (5.19) holds and g(x) has an asymptote
as x —> -», then for all sufficiently large B tha graoh of ¥

fails to cut the araph of g
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We apply this lemma to our function J. From (5.11) we~hpve &
that sine v! is finite, the question of whether or not (5.19)
of the lemma obtains in our casc depends on p!. It follows
immediately from the lemma, then, that, whatever be m and g
there is a y' satisfying (2.19) if p! = «,

On the other hand, if p! < «» and J(x) has an asymptote as
x —>-o, then the graphs of J(x) and J(x + m) + c m will inter-
sect for all sufficiently small positive values of ¢ m, and
will fail to interscct for all values of c,m greater thon or
equal to the pertinent critical value. This critical value
depends only on the slope of thc asymptote of J, which is gifen
by (5.11). However, for completcness, we shall determine
the adymptote of J fully explicitly.

To investigate this asymptote we shall make the convenient

(and rcasonable) assumption:

(5.20) ASSUMPTION: =.f°°eq>(g)dg < -
0

that is, that the demand variablc has finite expectation.
If g is a function which has an asymptote as x + -«,

then the vertical intercept of thc asymptotc is given by

(5.21) lim  [g(x) - xg'(x)].
X~ =00

The same formula applies for x + +» if there is an
asymptote in this direction. 1In our present case, wc shall
sce that H has an asymptote a8 x —-» provided the function

v has one a8 x -+ +=, and that L has one ag x —>-w §rovided
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p does a8 x =+ +», J is the sum of L and H, and the
formula (5.21) is linear. Hence the vertical intcrcept of
the asymptotc of J is the sum of those for L and H. Let
M, and Mz denote the latter two vertical intercepts,

fespecttvely. We first calculate ) .

We supposc that the function p has an asymptotec as
x = «, Let 7‘p be the vertical intercept of this asymptote.
Applying (5.21) to (5.2) and (5.3) we have:

(5.22)  ny = 1m [ [p(emet0ds + x [Tercmner]

= lim | [p(g-x) + xpr(g-x)] o(2)d¢
K> =00 YO

= lm [ ([p(:-x) - (¢-x)p'(&-x)]
X=>-oVY 0 -

+ tpr(t-x)) o (&)dz
=fo (A + p%,i;l o(¢)de,

and so

(5.23) M, = Ap + P W

Next wo calculate Ay. Utilizing (2.14), (3.1), (3.2)
and (4.7), w have, for x < O, '
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(5.24) H(x) - xH!(x) = cz*(x) -

x+2*(x)

- [v(emio(2dz-v(z*) [ a(2)d
Y x+z " (X)
x+2” (x)
-fow(x £ 2*(x) - £)o(8)de
x+2*(x) o
- x [ vi(emoede - wve(2*(x))] ole)de
0 x+2* (%)
+cx

x+2*(x)

= c(x+z*(x)) -j [v(g-x)+xv (e-x)] o(£)de
o e

- [w(z*(x)) + xv'(z*(x))] f:’(fi)di
N x+z*(x)

x+z” (x)
-fo wix + 2%(x) - g)o(¢)de

x+z*(x)

- o (xz®()) ) [o(4-x)=(e-x)ve (-x)]o( )t
x+2%(x) '

- [ evremate)ag
0

- (e*(x) - v (] [ eleda

x+z*(x) -

(x + 2 () [ e(2)de
x+z*(x)
x+2*(x)

-fo wix + z*(x) - &)o(8)de.
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In this last form we see that cvery term has a limit, provided
the function v(n) has an asymptote as 5§ —> . Ue assume that
this is so, and we denote the vertical intercept of this

asypptote by . Then, taking limits, wc get:
N

(5:25) % = cp -, [ e(e)ar - vy [ Teee)ae

> AR ‘Ov.-' Yl e)d~
- - \,fp oe)d - o [ a(e)ag - | We-Da()ar,

or, simplifying,
pe {*p \ F

(5.26) N =C - N - p\j o(7)dg - V;\J ee(#)de “[‘W(P’E)v(E)dﬁ-
o] 0 v 0

And now cowbining (5.23) and (5.26) we have

P
(5.27) Ay = O = N + oy w - vy [ Tealeder

® p
reo o [ oateas - [ Tute - 0aere

Thus, finally, we have, by (5.11) and with Ay a8 given by
(5.27), the following equation for the asymptite of J as

x—-)- o,

(5.28) y = (vl - pL - e)x + Ap.

Now, from (5.28) we are able to calculate that the

asymptote of J(x + m) 18

(5.29) y = (v; - Pc’o - c) X + [m(v;;p;o-C) + 7‘J] .
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And we see that the line (5.29) is at a vertical distance

(5.30) m(c + pl - Vi)

below the linec (5.28). (Noticc thatthis quantity (5.30) does
not depend on Ay, and could have been reasoned to without
explicit knowledge of 1Ay.)

The quantity (5.30) is the critical value to which we
referred at the beginning of our discussion of asymptote of
J. Thus, if c,m is less than (5.30), then the graphs of J(x)
and J(x + m) + c,m will interscect; on the other hand, if
com is greater than or equal to (5.30), then thesc two graphs
will not intersect. In the casc of intersection, the abscissa
of the point of intersection is the number ' fulfilling (2.19),

Thus, we may state:

Proposition II. If (in the case of existence of
asymptotes)

(3.31) e, < ¢ +PpL -V,

then there is a number ' such that (2.19) holds. This ! is

the abscissa of the unique point of intersection of thc graphs
of J(x) and J(x + m) + cm.
1f )

(5.32) €y Z ¢ + P - VL,

then the graph of J(x + m) + c,m lies everywhere ahove the
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We state also formally the additional result noted above:

Proposgition III. If p! = =, then therc is a ' such
that (2.19) holds, Again, this number is the absciésa of

the unique point of intersection of the graphs of J(x) and

J(x + m) + cm.
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