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1. Introduction Kettelle (1962) presents an algorithm for allocating
redundancy so as to maximize system reliability without exceeding a
specified cost (or equivalently, achieve a specified reliability at
minimum cost). In the present paper we devélop an algorithm to solve
the more general problem of maximizing system reliability without

exceeding any of several linear constraints.

Specifically, we consider a system consisting of k "stages".
The system functions if and only if each stage functions. Stage i
consists of ng (to be determined) units of type i in parallel, so
that stage i ~functions if and only if at least one of the ng units

of type i funection, i =1,2,...,k. Suppose unit i has a "cost" c,,

1J
of the ™ type, i =1,...,k;] = 1,...,r. As an example, the first
type of cost might be weight, the second volume, and the third money.
A linear constraint exists on each cost as follows:
k . (
1§1cijni < ey 3= 1,2y000,T (1)

Thus in the example the total weight of the system might be required not
to exceed a specified amount cy» the total volume required not to exceed

Cys and the total cost in dollars required not to exceed Cqe

A unit of type 1 has probability Py of functioning, independently
of the functioning or non-functioning of the other units of the system.
Thus system reliability P(n), where n = (nl,...,nk), is given by

k n

P) = TT (1 -qY), (2
i=1
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vhere q = l- Py» dﬁr problem is to choose n (a vector of positive

integers) so as to maximize P(n) in (2), subject to constraints (1).
) .

N

tne redundancy allocation n. Then ot

represent the jth cost of

is said to dominate n° if

2. Domination Let cj(g) =

cj(g}) < cj(g?), J = 1,eesyr, while P(g}) > P(g?). If, in eddition,

at least one inequality is strict, then g} is said to dominate g?

Strictly. A sequence S of redundancy allocations EP’ h=1,2,000e,

satisfying the constraints (1) I1s sa1d €0 be & domlnating Sequence 1T
no gh 1s strictly dominated, and if every n satisfying the constraints

(1) which is not strictly dominated occurs in S.

It is clear that to solve our problem we nced only conslider the
members of the dominating sequence S. Specifically; we seek that alloca-

tion of S with maximum reliability P(n) among the members of S.

Procédure for Two-Stage System First, to generate the dominatingz

sequence corresponding 1o a system consisting only of stages 1 and 2, we
set up a two-way table in which the entry in row Dy column n, consists
of the vector (cl(nl,nz),cz(nl,nz)...,cr(nl,nz),Q(nl,nz)), wherﬁ X

- s _ 1 2
cj(nl,nz) = ¢y + Coyfipr = l,...,r and Q(nl,nz) = 1- (1-q1 )(l-q2 ).
This is the vector of costs and unreliability resulting from using n, %

units of type 1 and n, units of type 2. Only entries satisfying the

2
constraints (1) are included. We then eliminate from the table any
strictly dcminated vector, that is any vector all of whose coordinates
are at least as large as the corresponding coordinates of some other

vector in the table, with strict inequelity for at least one coordinate.

The remaining undominated allocations constitute a dominating sequence.



See the worked example of Section 5 to help clarify these steps.

Next we shall show that we can construct the dominating sequence
corresponding to an s stage system from the dominating sequence corres-
ponding to a subsystem of s -1 stages. Once this is established we
will then be able to construct the dominating sequence for the full k
stage system recursively; i.e., first for a subsystem consisting of stages

1 and 2, next combining the resulting dominating sequence with stage 3

’“iom§iéid"¥5é‘agﬁlgkting sequence for stages 1,2, and 3 combined, ete.,
until the dominating sequence for the full k stage system is obtained.
The fcllowing procedure includes the Procedure for Two-3Stage Syctem as

a8 special case.

Procedure for s Stage System {(called Procedure for short) Set

up & two-way table in which the nsth row corresponds to ng units of
type s, while the ht“ column corresponds to gé, the ntn member of
the dominating sequence for the first s -1 stages. Tae entry at cow

. h h n L
n , column h, is the vector (cl(g ,ng),cz(g ,ns),...,cr(g ) ,Q(n mg)) s

the vector of costs and unreliability resulting from using the vector

n \ h
(n ,ns). Note that cj(g shg

) = cj(gh) + ey yfgs § = Lyeenyr, while
Q(g?,ns) =1-(1- Q(gﬁ))(l - qzs). Only entries satisfying the con-
straints are included. We eliminate from the table any strictly dominated
vector (strictly dominated by some other vector in the table). The

remaining entries constitute the dominating sequence for steges 1,2,...,s,

as we prove in

Theorem 1 The vectors that remain strictly undominated in the
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two-way table generated in the Procedure constitute a dominating

sequence fo: the s-stage system.

Prcof: We need to prove (a) the allocations obtained following
the Procedure include all strictly undominated allocations, (b) every

allocation obtained using the Procedure is strictly undominated.

We prove (a) inductively. First note that for a single stage

" system, all ellccations are STrIctly undominated,  ASSUme ther tiht

the allocations obtained by the Procedure for a J stage system, where
J =1,2,..0y8 = 1, include &1l strictly undominated allocations satis-
fying (1). Consider any allocation n = (nl,...,ns) satisfying (1).

Then by inductive hypothesis (nl,...,n is dominated by some

s-l)

strietly undominated allocation (ni,...,ng_ obtained by the Procedure.

1)
Thus by definition Q(nl,...,ns_l) > Q(ni,...,ng_l),cj(nl,...,ns_l)
> cj(ni,...,ng_l), j=1,...,r. It follows that Q(n) =1 - P(nl,...,ns_l)P(n

>1 - P(ni,...,ng_l)P(ng) = Q(n*), where n¥ =n and that cj(g)

g?
= cj(nl""’ns-l) + cj(ns) > cj(ni,...,ng_l) + cj(ng) = cj(gf), J= 1yeee,ry,
so that n 1is dominated by n*. On the other hand, n* being an entry

in the two-way table generated by the Procedure is itself dominated by

an allocation obtained following the Procedure. Thus we have proved

that every allocation satisfying (1) is dominated by some allocation

generated following the Procedure. Hence the inductive proof of (a) is

completed.

To prove (b), suppose g? is an allocation obtained using the
Procedure., If g? is strictly dominated by any allocation satisfying

(1) it must also be strictly dominated by some undominated allocation



satisfying (1). But we have just pro&ed that all undominated allocations
‘ satisfying (1) are obtained by the Procedure. Thus g? is strictly

dominated by say 3} also obtained by the Procedure. This is a contra-

diction since no allocation obtained under the Procedure can dominate

any other allocation obtained under the procedure.

3. Approximations In applications of the Procedure we may generally

—-apply.-the following approximation. Instesd of using

, ! Ty M1, P2 MM
Q\nl)nz)"l-(l‘ql)(l"Q2)_ql +q2 'qlqz)

we disregard the product term and use
ny n

2
oL
Q(nl’nz) - ql + QZ .

Similarly, for an s stage system, we approximate (where n = (nl,...,ns_l):

Qn,n) = Qo) +aq,. (2)

Kettelle (1962) shows tnat the use of this approximation for the case
, r =1 results in an error in P, tae system rellability achieved, of

at most Q2 (where P + Q =1). For the present case of r > 1, the

prcof goes through just as in Kettelle (1962). We do not repeat the

detalls.

In any applications of the Procedure we will use approximation

(3) throughout.

Anotner approximation that may reduce the length of dominating
sequences is the following. In comparing a pair of entries in the table

developed following the Procedure we may introduce a tolerance factor




ej for the jth type of cost and/or a tolerance factor tq for unrelie-
bility. If two entries in the table differ by 'j or less in the jth
type of cost, they are considered alike as far as the jth type of cost
1s concerned; similarly if they differ by eq or less in unreliability.
The result is that domination becomes more likely so that the lengths
of dominating sequences are reduced. Problems that might be otherwise

unsolvable because of excessively long dominating sequences cen some-

( iimeéwngEBiﬁéa‘(gﬁgféiiﬁately) bywintroducing one or more tolerance

factors. The most conservative procedure is first to try to solve the
original problem without tolerance factors. Then if the dominating
sequences are too long to permit a solution, introduce a small tolerunce
factor eq on the unreliability. If the dominating sequences are still
too long either increase eq or introduce additional tolerance factors
Ej' Continue increasing or adding tolerance factors until a solution

is attained.

b Starting vValues for the ni. As we shall see later the lengths

of the dominating sequences determine the limiting size of the problems
that can be handled on a computer and the time required to compute solu~
tions. It is therefore of utmost importance that the lengths of the
dominating sequences be kept as small as possible. One way to reduce
thelr size is to use as large a starting value for each n, as is

conveniently possible.

We now describe a method for finding such large starting wvalues.
(1) Add one unit of each component type in succession until finally a

constraint will be violated upon the next addition. (2) Compute the



reliability P of the resulting system. (3) Determine By, the ainimm
number n of units of type 1 required to achieve a relisbility of P

or greater, from
PE1 - g (4)

Then it is clear that the solution to the allocation problem will require
a value of n, at least as large as n:. (4) Thus the starting value

~of n, may be taken as n,.

To 1llustrate the value of this starting procedure, note that in
one problem involving 10 stages and 3 constraints using this procedure
reduced the length of the dominating sequence from the starting point
until a constraint was violated from 33, to 62. In a second problem
involving 20 stages and 3 constraints, without this procedure the computa-

tion had to be halted at the 10\\'h

stage with the length of the dominating
sequence 559, while the use of the procedure led to a solution with the

final dominating sequence of length €9.

An slternate method for generating starting values for the n, is
to use tolerance factors as described in Section 3 to obtain an approxi-
mate solution. After the approximate solution is obtained, use steps

(2),(3), and (4) above.

5. Example We illustrate the application of the algorithm with the
following worked example, based on one that appeared in Kettelle, 1962.

Consider a four-stege system with anit costs and unreliabilities as



(2) explicitly given by

follows:
Stage, 1 1 2 3 4 Constraint
Coat, 47 1.2 2.3 3.4 4e5 4.0
Weight, ¢ 12 1 1 1l 1l 20

Unreliability, 9 o2 .3 25 .15

We wish to choose (nl,nz,nyn 4) 80 a8 to maximize system reliability

ny 2 o3 4
P(nl,nz,nynA) =(1-.27(1-.3991-.25°(1-.15%, (5)
subject to constraints (1) explicitly given by

1.2nl + 2.3n2 + 3.1.n3 + I..SnA g 47.0,
(6)

n1+n2+n3+n4g_20.

First we shall obtain starting values for the ng following the
procedure of Section 4. Starting with n = l,n2 = :L,n3 = 1,n4 =1, we
add one component at & time until adding an additional component would
violate a constraint. As shown in Table 1 we arrive at a system composi-

)

tion (5,4,4,4) with system reliability .9872. Solving for n,, the

minimum n satisfying

1-.2%> .9872,

we obtain ng = 3., Similarly ng = A,ng = l.,nz = 3, as shown in Table 2.



Table 1 - Computation to Find an Attainable Reliability
before Violating a Constraint

Stage | Stage | Stage | Stage Cost, |Welght
1 2 g 4 I] J= g=2
1 1 1 1 11.4 4
2 1 1 1 12.6 5
2 2 1 1l 14.9 6 Constraint 1 = 47.0
2 2 2 1 18.3 7
2 2 2 2 22.8 8 Constraint 2 = 20
3 2 2 2 24.0 9
3 3 2 2 26.3 10
3 3 3 2 29.7 1
4.3 0 .3} .3 3 34s2 12
4 3 3 3 35.4 13
4 4 3 3 37.7 14
4 4 4 3 41.1 15
4 4 4 4 45.6 16
5 4 4 4 46.8 17 + Attainable Reliability =.9872
5 5 4 4 9.1 18

Table 2 - Computation of Minimum No. of Each Stage Required
to Achieve Attainable Reliability of .9872 for
That Stage Alone

Stage 1 Stage 2 Stage 3 Stage 4

No. | Rel. No. Rel. | No. Rel. No. Rel.
mw

1 8000 1 7000 1 +7500 1 .8500

2 «9600 2 «9100 2 9375 2 9775

3 «9920 3 «9720 3 9844 3 <9966
4 .9919 4 9961
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Next, following the Procedure of Section 2, we obtain the dominating

sequence for Stages 1 and 2 combined, as shown in detail in Table 3.

Table 3 - Dominating Sequence for Stages 1 and 2

Stage 1
©2 T 3.6 %28 | 6.0 7.2 | 8.4
2 3 4 5 6 7
Q .0080 | .0016 | .00032|.000064. 000013
11 9.2 1ize 1140 15216 7
4 7 8 9
0081 || L0161 | .0097 | .00842] BoB164,008113
s| 11.5 [f 15. 16.3 | 17.5 | 18.9/] 19.
N 9 | 10
.00243 || #61043].00403 | . 00275| 602494, 202443
1 138 [17./ 1 186 | 19.8 | 20.0 | 22
gl 6 10 1 | 12
o 1000729}, 808729 . 002329} 001049] . 000793 42
2| 16.1 || 19. 20. 22.1 | 23.3 | 24.5
7 12 | 13 14
.00022 || £00822] o182 | .00054] . 000284. 000233
le
t
c.

Note that we have listed the costs and unreliability starting wj.th

ng =.3 and edding one unit at a time for Stage 1 across the top.
Starting with n) = 4 and adding one unit at & time we 11st the costs
and unreliability for Stage 2 down the side. We obtain entries in the
body of the table by adding the respective costs and unreliabilities;
only entries satisfying the constraints are retained. Proceeding

systematically, comparing pairs of entrles, we eliminate all strictly



dominated entries. Thus the entry in row 1, column 4 is eliminated
since it is dominated by the entry in row 2, columm 2. (Note that
each figure in the latter position is less than the corresponding
figure in the former position.) Similarly the entries shown with a
line through them are strictly dominated. The remaining entries are
not strictly dominated. Note that only a portion of the complete table
is shown; actually entries continue to be made until a constraint is

violated.

In Table 4 the dominating sequence is obtained for Stages 1, 2,
and 3 combined. Across the top of Table 4 are listed the entries of
the dominating sequence of Stages 1 and 2 obtained in Table 3. Down

the side are 1isted entries corresponding to acding one unit of type 3

o

3
are listed in the body of the table. Again proceeding systematically

at a time starting with nJ = 4. Only entries satisfying the constraints

comparing pairs of entries, we strike out all dominated entries. Thus

" the entry in row 2, column 2 is eliminated since it is dominated by

the entry in row 1, column 4. The remaining entries constitute an

undominated sequence. ‘

Finally we form Table 5 to yield the dominating sequence for
Stages 1, 2, 3, and 4 combined. Proceeding as before we obtain the
dominatiﬁg sequence for the full system. The solution to our problem
is the entry in the table with lowest unreliability, namely the entry

with costs c, = 4608, 02 = 17’ and un”n‘biuty omko- To obtain

1
the corresponding system composition we must trace back through Tables 5,
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Table /4 - Dominating Sequence for Stages 1,2, and 3

10 TTT 06L2! T8200, /1T 187 19 1919 90000 *
6 9 9 g L
Y 4y £y 2z v oY 6€ LE “o¢ || 8°c2
€L%7000 *|725000 8090 * [€€0T00°| 682700 16952004 662007 |L2700:/] 99 v6600,7] 7€9 42000 * |
oz | et | s 8T | 4T 4 Y 9 |B
6| Lgr | sz | vl 2o ‘6 | B LE 9¢ “G¢ {4 *¢€ | veoz |o
02 1007762100 L5 10p0- G000 1662200 7] SLE00- J00%00° | 626007149010 /| ZOLO Y| LED00~ |w
8T Lt LT 9T ¢t $T VAt v/ € 4
‘7| co7 | 1766 | o°s€ | 8°9¢ | 9°5¢| sve | €€ 2€ 1€ & JloLt
ce oo/ vaT7094 6ol 6 676700 1622900 [ 9900° |c6L00° | z€210*| 9¢T0° | 0020° || 6€00°
GT VA 1 €T €T (AN TT V4
‘g | £9¢ € e | 7°e€ | 2zzE| 1€ | 662 | ew | 9Lz | Y9z |l 9cct
- = —
€££2000 *| 782000 4 75000 * [€64000°] 670100 {62€200+| 5L200° jg0v00° | 27g00-| Leoo* | T9TO* b
vt | et | e et | T ot | ot 6 6 8 L ¢
v | €| 1rte | o'te] 86t | 98t ¢ut fe9r | st lovT | szt 1,
: Z ‘1 sedeys
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Table 5 - Dominating Sequence for Stages 1, 2, 3 and 4

Stages 1, 2, 3

! 26,4 | 27.6 | 8.8 | 2.9 | 5.1 | 32.2 | 33.4 | 33.3 | 3405
P 11 12 13 13 14 1/ 15 14 3
Q 10200 | 0136 | .01232].00793 |.00665 | .00622].0C4949] .00500].00372
S 13‘5 39-9 Al-l 4203 [+3-—/+ 4[&-6 45o7 4609 4608 480
3 14 15 16 16 17 17 18 17
t].0034 {| L0234 | .o170| .01572).01133 |.01005 |.009629.008349] .00 40} H0712
al 18.0 | 44. 45. 46
g A ete.
e 00051 02051 411 m283]
°I 22.5
i 5
i . 000076

4, and 3. Note that from Table 5 the optimal nA = 3, while from

Table 4, the optimal n, = 5. From Taeble 3, the optimal n, = by

3
n, = 5. Actually in the machine program (see Section 6) the composition
of the system is retained at each stage so that no retracing is necessary.
Thus our solution consists of a composition of n1 = 4 n, = 5, n3 = 5,
n, = 3, with associated reliability (exact value) from (5) of
Q4y5,5,3) = (1 - .2%)(1 - .37)(1 - .257)(1 - .15%) = .9916.

Note that the error using approximation (3) throughout is < .00842=.000071

6. Computer Program The procedure described in Section 2 above was

programmed for the IBM 7090 Date Processing System. The progrem was
written with the capacity to handle one, two, or three cost constraints,
a maximum of sixty-four stages, a maximum of ten units for each stage,

and a maximum of 1024 entries in the dominating sequence at any combining




step. The essential features

of the program are presented in the flow

chart of Table 6. The following notation is used in the flow charts

Input Quantities: X -

no. of stages

no. of cost constraints

value of the jt'h cost constraint

jth cost of one unit of the ith stage
th

reliability of one unit of the 1™ stage

Computed Quantities: 9 -

QCH,, -
QRH,, -

CCI-I:]h -

CRHjh -

TE

1]

TNCih -

- tolerance for unreiliabllity

tolerance for jth cost

th s

unrelisbility of one unit of the 1 tage
h

no. of units of it stage to start algorithm
trial system reliability

no. of row headings for the i.t'h stege

no. of units of the ith

column heading

stage at the hth

no. of column headings

index for the stage currently belng combined
into the system

unrel%gbility of the system represented at
the h*" column heading

unreliability of the no. of units of the Ith
stage represented at the nth row heading

jth cost of the system represented at the ht

column heading

jth cost of the no. of units of the I
represented at the h'h row heading

h

th stage

indicator for the table entry at the ith row
and jth column (0 4ndicates entry is in the
dominating sequence; 1 indicates entry is not
in the dominating sequence)

temporary storage for the no. of units of the
1th stege at the hth column heading
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The circled numbere appearing by the boxes of the flow chart
refer to the following explanatory notes:
1. The input quantities required are entered into the computer
through the appropriate input device.
2. The unreliability of one unit of each stage is computed. The

8, are initialized to one.

i
3. This loop adds one unit of each stage successively until one

of the cost constraints 18 exceeded.

4. The last 8, to which a unit was added is reduced by one so

i
that the system represented by s 1 units of the 1th stage,
i=1,...,k, 1s one which violates no constraints.

5. The trial reliability, P of this system is computed.

0’

6. The s; are initialized to zero.

7. This loop computes the number of units, s 12 of each stage
required so as to make the reliability of that stage at least
equal to the trial reliability, PO. The resulting s g are
the values used to start the algorithm.

8. The number of row headings for the ith stage is computed to
be the largsst integer, Hi , such that Hi < the maximum
number of units permitted for each stage, and ?n " %y < c5
for J =1,.. ,r. nel

9. The units count for the first stage, Ncih’ is set at each

. column heading, h.

10, The index, I, of the stage to be added to the system is set
to two. The number of column headings, M, 1is set.

11. The unreliability of the system represented at each column

heading is computed.
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12. The costs of the system represented at each column heading
are computed.,

13. The unreliablility of the units represented at each row heading
is computed.

14. The costs of the units represented at each row heading are
computed.

15. This loop computes the costs that occur at each entry in the

headings. If any of the costs exceed a cost constraint the
entry is marked as not being in the dominating sequence,
otherwise the entry is marked as being in the dominating
sequence.

16. This loop steps the indices from table entry to table entry
and checks the table entry indicator to see if the entry is
in the dominating sequence. If i1t is not, then the indices
are stepped to the next table entry. If it is, then the next
loop is executed.

17. This loop compares the table entry just chosen with every
other entry in the dominating sequences and marks every entry

which 1t dominates appropriately. It then goes back to con-

i
i
i
4
:
i
j
i

tinue the loop described in 16 above.

18. When the loop described in 16 above has been exhausted, the
table entries marked with a zero are the true dominating
sequence. The units counts for the column headings are now
moved to temporary storage locations so that the column headings
may be updated. .

o e 010 DY adddng - the costs at the respective row and column
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This loop updates the units counts for the column headings.
If all stages have not been combined into the system, then

the index I 1s stepped for the next stage, the number of

column headings is set, and the program is repeated from
point A . ‘

21. When 2ll stages have been combined into the system, this

loop selects the set of units counts having the maximum

T T ,
vector n and represent the optimum redundant system.
22. The vector n is printed through the appropriate output
devics.

7. Problem Solving Experience

The purpose of this section is to present'some of the experiences
which have resulted from attempts to solve problems of varying size
and complexity using the computer program described in the previous
section. This discussion is included because it is often difficult to
predict whether the solution to a given problem is practical without
prior experience on a similar problem. Even though the solution to a
problem may appear to be practical in the sense that the basic quantities
do not exceed the program limitations, it may turn out to be impractical
because the dominating sequences developed exceed computer capacity. It
- is also possible that the computer time required may be excessive. The
experience recorded here may provide some guldeposts in estimating the

practicality of attempting to solve future problems.
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A series of problems was devised to test the program systesatically.

Table 7 presents the basic data for the problems and indicates the nature

of the results., One additional problem involving twinty-_‘-ﬁvo stages was
attempted but was not successfully completed because the dominating
sequences became so large that the computer time required .was excessive. .
This does' not necessarily mean thaf all prbblems involving more than
twenty stages are impractical. The only positive method for determining
whether it is practical to solve a given px;oblem is to attempt to find

the’ solution.

Table 7 - Problems and Results

; No. of No. of |[Upper Limit|Tolerance| Average | Maximum |[Error in B
: | Stages |Constraints |Set on No. |Factor, ¢|Length of |Length of
of Units of Dom. Seq.|Dom. Seq.
Each Stage
10 3 6 0 62 113 0
10 3 6 - 1077 35 62 0
10 3 6 1076 21 o 0
10 3 6 107 9 19 0
10 3 6 1074 2 3 |17 x 107
20 . 2 5 0 198 340 0
20 2 5 1007 | 1 155 0
20 2 5 1076 27 i |63 x 10°°
20 2 5 107 | 15 21 10
20 3 5 0 124 | 224 )
20 3 5 1077 98 150 0
20 3 5 107 64 112 0
20 3 5 107 3 58 |78 x 1077
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8.  Other Problems Solvable by the Same Method The method developed

above applies to a number of problems other than the redundancy alloca-

tion problem.

(1) Spare Parts Kit (See Proschan, 1960.) A system is required
to operate during [0,t]. When a component fails, it is instantly
replaced by a spare, if one is availsble. The components considered
operate independently and are essential to continued system operation,
80 that a éhortage of é.ny comﬁ&fxehf reeults in ;y;tém shutdo;m.g(;\l;“MMMA
the spares originally provided may be used for replacement.
Let Pi(n) be the probability that n or fewer spares of type i
are required (i.e., n or fewer failures of type 1 occur during [o,t]),
i1 =1,...,k. Then the probability P(n) of system survival during [0,t]

if a spares kit of composition n = (nl,...,nk) is provided is given by
. .
P(n) = TT Pi(ni) .
=1

The problem is to choose n, a vector of positive integers, so as to
maximize P(n) subject to linear constraints (i).

Note that in the typical application the failure distribution for

-\t
component type 1 is often taken to be exponential, 1 - e 1 « In

such cases Pi(n) is the Poisson distribution

At (>.it)n
Pi(n) =e (1 + Mt oheeed

n

(2) Optimun Spares Kit when Repair Is Allowed As above, the

system 1s required to operate during [0,t]. When a component fails
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it is replaced by a spare, if available. Repair is begun immediately

on the failed component. There are Wy units of the ith type simul-
teneously in operation in the system with n, spares available for

replacement, i = 1,2,...,k. The failure distribution of a component

-\t
of type 1 1s exponential, 1 -e i , while the repair distribution

is arbitrary with mean Byo with wixipi < 1. All failure and repair
times are independently distributed.

The system is considered to have failed if for any component type
no spare 1s available to replace a failure; i.e., if say for type 1,
a failure of one of the Wy operating components occurs while all n,
spares are simultaneously under repair. It can be shown (Karush, 1957)
that under these assumptions, the steady state probability P(n) that
the system will be "available" (i.e., not shut down due to shortage)
is given by

k
P = P ’
@ = T 7y

where
- 171731 17171
Pi(ni) = X =5/ I =5 (8)
h=0 h=0

As before, the problem is to choose n a vector of positive
integers so0 as to maximize P(n) subject to linear constraints (1).
Karush, 1957, shows how to solve (approximately) the problem when a

single constraint is present (r =1).

* The algorithm presented above applies to the solution of both
problems (1) and (2). The only change is to use the Pi(ni) appropriate

for the particular problem, in carrying out the Procedure of Section 2.
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