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1. Introduction Kettelle (1962) presents an algorithm for allocating

redundancy so as to maximize system reliability without exceeding a

specified cost (or equivalently, achieve a specified reliability at

minimum cost). In the present paper we develop an algorithm to solve

the more general problem of maximizing system reliability without

exceeding any of several linear constraints.

Specifically, we consider a system consisting of k "stages".

The system functions if and only if each stage functions. Stage i

consists of ni (to be determined) units of type i in parallel, so
ii

that stage i functions if and only if at least one of the ni units

of type i function, i = 1,2,...,k. Suppose unit i has a "cost" c.

th
of the j type, i = 1,...,k;j = 1,...,r. As an example, the first

type of cost might be weight, the second volume, and the third money.

A linear constraint exists on each cost as follows:

kZlc ij ni < c j, j =1,2,...,r. (1)

Thus in the example the total weight of the system might be required not

to exceed a specified amount cl, the total volume required not to exceed

c2, and the total cost in dollars required not to exceed c3.

A unit of type i has probability pi of functioning, independently

of the functioning or non-functioning of the other units of the system.

Thus system reliability P(n), where n (nl,...,nk), is given by

k ni
P() = TT (1 - ql )' (2)

i1l
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where qi= 1 - pi. Our problem is to choose n (a vector of positive

integers) so as to maximize P(n) in (2), subject to constraints (1).

k .th
2. Domination Let cj() cij ni represent the j cost of

1i 2
the redundancy allocation n. Then ni is said to dominate n2 if
cj(n) c cj(a 2 ), j = 1,... ,r, while P(nl) E 2). If, in addition,

at least one inequality is strict, then nl is said to dominate n2

strictly. A sequence S of redundancy allocations n hI h = 1,2,...j,

satis fying the cons traintsl I,-ssaY•- a6 gs

Sh
no n is strictly dominated, and if every n satisfying the constraints

(1) which is not strictly dominated occurs in S.

It is clear that to solve our problem we n,.ed only consider the

members of the dominating sequence S. Specifically, we seek that alloca-

tion of S with maximum reliability P(n) among the members of S.

Procedure for Two-Stage System First, to generate the dominating

sequence corresponding to a system consisting only of stages 1 and 2, we

set up a two-way table in which the entry in row nl, column n2 consists

of the vector (c(nl,n2 ),c 2 (nl,n 2 ... ,Cr(nl,n 2 ) ,Q(nl,n 2 )), where

c 1(nl'n2) cljnl + c 2 .n ,2 j = l,...,r and Q(nl,n 2 ) = 1 - (l-qI )(l-q 2
2 )).

This is the vector of costs and unreliability resulting from using ni '.

units of type 1 and n2 units of type 2. Only entries satisfying the

constraints (1) are included. We then eliminate from the table any

strictly dominated vector, that is any vector all of whose coordinates

are at least as large as the corresponding coordinates of some other

vector in the table, with strict inequality for at least one coordinate.

The remaining undominated allocations constitute a dominating sequence.
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See the worked example of Section 5 to help clarify these steps.

Next we shall show that we can construct the dominating sequence

corresponding to an s stage system from the dominating sequence corres-

ponding to a subsystem of s - 1 stages. Once this is established we

will then be able to construct the dominating sequence for the full k

stage system recursively; i.e., first for a subsystem consisting of stages

1 and 2, next combining the resulting dominating sequence with stage 3

to yield the dominating sequence for stages 1,2, and 3 combined, etc.,

until the dominating sequence for the full k stage system is obtained.

The fcllowing procedure includes the Procedure for Two-Stage Syztem as

a special case.

Procedure for s Stage System (called Procedure for short) Set
th

up a two-way table in which the ns row corresponds to ns units of

type s, while the h column corresponds to n , the a member of

the dominating sequence for the first s - 1 stages. The entry at -ow

ns, column h, is the vector (c ,c 2 ( ,ns),... n (Eh ),Q(r'n),

the vector of costs and unreliability resulting from using the vector

h h n(n nas ). Note that c -i nS =n C a ) + C sjns'Y j = , . , , while

Q(n ,ns) = 1 - (1 - Q(n h))(1 - qsS). Only entries satisfying the con-

straints are included. We eliminate from the table any strictly dominated

vector (strictly dominated by some other vector in the table). The

remaining entries constitute the dominating sequence for stages 1,2,...,s,

as we prove in

Theorem 1 The vectors that remain strictly undominated in the



two-way table generated in the Procedure constitute a dominating

sequence foi the s-stage system.

Prcof: We need to prove (a) the allocations obtained following

the Procedure include all strictly undominated allocations, (b) every

allocation obtained using the Procedure is strictly undominated.

We prove (a) inductively. First note that for a single stage

the allocations obtained by the Procedure for a j stage system, where

j = 1,2,...,s - 1, include all strictly undominated allocations satis-

fying (1). Consider any allocation n = (nl,...,ns) satisfying (1).

Then by inductive hypothesis (nl,...,ns5 1 ) is dominated by some

strictly undominated allocation (n!,...,nh) obtained by the Procedure.

Thus by definition Q(nl,...,ns) > Q(n... n...,n• _l> ~, sl)cnI .. ,n*s) cl1

>,nsl j = l, .. ,r. It follows that Q(n) = 1 - P(nl,...,n5 9P(n

> 1 - P(n*,...,n*_l)P(n*), where n* = ns, and that c.(n)

C (nl,...,n + c (n) > cj(n*,...,n*1 ) + c.(n*) = c jr

so that n is dominated by n*. On the other hand, n* being an entry

in the two-way table generated by the Procedure is itself dominated by

an allocation obtained following the Procedure. Thus we have proved

that every allocation satisfying (1) is dominated by some allocation

generated following the Procedure. Hence the inductive proof of (a) is

completed.

0
To prove (b), suppose n is an allocation obtained using the

Procedure. If !0 is strictly dominated by any allocation satisfying

(1) it must also be strictly dominated by some undominated allocation



satisfying (1). But we have just proved that all undominated allocations

satisfying (1) are obtained by the Procedure. Thus no is strictly
1

dominated by say n also obtained by the Procedure. This is a contra-

diction since no allocation obtained under the Procedure can dominate

any other allocation obtained under the procedure.

3. Approximations In applications of the Procedure we may generally

n, n2  nI n2  nI n2
Q(nl,n 2 ) = 1 - (I - ql)l- q2 ) = ql+ q. - ql q2 '

we disregard the product term and use

nI n2

Q(nln 2 ) 2 q1  + q2

Similarly, for an s stage system, we approximate (where n = (nl,...,ns_l):

Q(n,ns) ` Q(n) + qs" (3)

Kettelle (1962) shows that the use of this approximation for the case

r = 1 results in an error in P, tie system reliability achieved, of

at most Q2 (where P + Q = 1). For the present case of r > 1, the

proof goes through just as in Kettelle (1962). We do not repeat the

details.

In any applications of the Procedure we will use approximation

(3) throughout.

Another approximation that may reduce the length of dominating

sequences is the following. In comparing a pair of entries in the table

developed following the Procedure we may introduce a tolerance factor
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Sfor the jth type of cost and/or a tolerance factor e for unrelia-j q

thbility. If two entries in the table differ by e or less in the j

thtype of cost, they are considered alike as far as the j type of cost

is concerned; similarly if they differ by e or less in unreliability.q

The result is that domination becomes more likely so that the lengths

of dominating sequences are reduced. Problems that might be otherwise

unsolvable because of excessively long dominating sequences can some-

times be solved (approximately y introducing one or more toerance

factors. The most conservative procedure is first to try to solve the

original problem without tolerance factors. Then if the dominating

sequences are too long to permit a solution, introduce a small tolerance

factor E on the unreliability. If the dominating sequences are stillq

too long either increase q or introduce additional tolerance factorsq

E.. Continue increasing or adding tolerance factors until a solution

is attained.

4. Starting Values for the ni. As we shall see later the lengths

of the dominating sequences determine the limiting size of the problems

that can be handled on a computer and the time required to compute solu-

tions. It is therefore of utmost importance that the lengths of the

dominating sequences be kept as small as possible. Cne way to reduce

their size is to use as large a starting value for each ni as is

conveniently possible.

We now describe a method for finding such large starting values.

(1) Add one unit of each component type in succession until finally a

constraint will be violated upon the next addition. (2) Compute the

h ýA



reliability P of the resulting system. (3) Determine ni, the alinin

number n of units of type i required to achieve a reliability of P

or greater, from

P_• - qi. (4)

Then it is clear that the solution to the allocation problem will require

a value of ni at least as large as ni. (4) Thus the starting value

of ni may be taken as-

To illustrate the value of this starting procedure, note that in

ong problem involving 10 stages and 3 constraints using this procedure

reduced the length of the dominating sequence from the starting point

until a constraint was violated from 334 to 62. In a second problem

involving 20 stages and 3 constraints, without this procedure the computa-

tion had to be halted at the 10th stage with the length of the dominating

sequence 559, while the use of the procedure led to a solution with the

final dominating sequence of length 69.

An alternate method for generating starting values for the ni is

to use tolerance factors as described in Section 3 to obtain an approxi-

mat( solution. After the approximate solution is obtained, use steps

(2),(3), and (4) above.

5. Example We illustrate the application of the algorithm with the

following worked example, based on one that appeared in Kettelle, 1962.

Consider a four-stage system with unit costs and unreliabilities as
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follows:

Stage, 1 1 2 3 4 Constraint

Cost, Cil 1.2 2.3 3.4 4.5 47.0

Weight, 012 1 1 1 1 20

Unreliability, qi .2 .3 .25 .15

We wish to choose (nl,n2 ,n3 ,n 4) so as to maximize system reliability

(2) explicitly given by

P(nln 2 ,n3 ,n 4 ) = (1 - .21)(1 - .3n2)(l - . 2 5 fn3 )( 1 - . 1 5n 4 ), (5)

subject to constraints (1) explicitly given by

1.2nI + 2.3n2 + 3.4n3 + 4.5n4< 47.0,

(6)

n1 + n2 + n3 + n4 < 20.

First we shall obtain starting values for the ni following the

procedure of Section 4. Starting with n. = ln 2 = ln 3 = l,n 4 = 1, we

add one component at a time until adding an additional component would

violate a constraint. As shown in Table 1 we arrive at a system composi-

tion (5,4,4,4) with system reliability .9872. Solving for nl, the

minimum n satisfying

1 - 2n .9872,

w. = 4,n0 = o 3, as shown in Table 2.we obtain n= 3. Similarly n 2 4,n 3 4,4 3,ashwinTbe2
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Table 1 - Computation to Find an Attainable Reliability
before Violating a Constraint

Stage Stage Stage Stage Cost, Weight
1 2 3 4 J=l _ __

1 1 1 1 11.4 4
2 1 1 1 12.6 5
2 2 1 1 14.9 6 Constraint 1 = 47.0
2 2 2 1 18.3 7
2 2 2 2 22.8 8 Constraint 2 = 20
3 2 2 2 24.0 9
3 3 2 2 26.3 10
3 3 3 2 29.7 11

4 3 3 3 35.4 13
4 4 3 3 37.7 14
4 4 4 3 41.1 15
4 4 4 4 45.6 16
5 4 4 4 46.8 17 4 Attainable Reliability =.9872
5 5 4 4 49.1 18

Table 2 - Computation of Minimum No. of Each Stage Required
to Achieve Attainable Reliability of .9872 for
That Stage Alone

Stage 1 Stage 2 Stage 3 Stage 4

No. Rel. No. Rel. No. Rel. No. Rel.

1 .8000 1 .7000 1 .7500 1 .8500
2 .9600 2 .9100 2 .9375 2 .9775
3 .9920 3 .9720 3 .9844 3 .9966

4 .9919 4 .9961
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Next, following the Procedure of Section 2, we obtain the dominating

sequence for Stages 1 and 2 combined, as shown in detail in Table 3.

Table 3 - Dominating Sequence for Stages 1 and 2

Stage 1

1 3.6 4.8 6.0 7.2 8.4
c2 3 4 5 6 7

Q .0080 .0016 .00032 .000064.000013

4 7 8 9
.0081 .0161 .0097 .00842 016 113

s 11.5 15. 16.3 17.5 18. 19.

t 5 9 10
.00243 01043 .00403 .00275 249. 2443

a
13.8 17. 18.6 19.8 21.0 22

g 6 1 10 11 12
e 000729 08729 .002329.001049 .000793 42

2 16.1 19.820. 22.1 23.3 24.5
7 12 13 14

.00022 00822 0182 .00054 .000281.000233
e

t
c.

Note that we have listed the costs and unreliability starting with

0n= 3 and adding one unit at a time for Stage 1 across the top.

Starting with n• = 4 and adding one unit at a time we list the costs

and unreliability for Stage 2 down the side. We obtain entries in the

body of the table by adding the respective costs and unreliabilities;

only entries satisfying the constraints are retained. Proceeding

systematically, comparing pairs of entries, we eliminate all strictly
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dominated entries. Thus the entry in row 1, coluen 4 is eliminated

since it is dominated by the entry in row 2, oolumn 2. (Note that

each figure in the latter position is less than the corresponding

figure in the former position.) Similarly the entries shown with a

line through them are strictly dominated. The remaining entries are

not strictly dominated. Note that only a portion of the complete table

is shown; actually entries continue to be made until a constraint is

violated.

In Table 4 the dominating sequence is obtained for Stages 1, 2,

and 3 combined. Across the top of Table 4 are listed the entries of

the dominating sequence of Stages 1 and 2 obtained in Table 3. Down

the side are listed entries corresponding to a6.ding one unit of type 3

at a time starting with n= 4. Only entries satisfying the constraints

are listed in the body of the table. Again proceeding systematically

comparing pairs of entries, we strike out all dominated entries. Thus

the entry in row 2, column 2 is eliminated since it is dominated by

the entry in row 1, column 4. The remaining entries constitute an

undominated sequence.

Finally we form Table 5 to yield the dominating sequence for

Stages 1, 2, 3, and 4 combined. Proceeding as before we obtain the

dominating sequence for the full system. The solution to our problem

is the entry in the table with lowest unreliability, namely the entry

with costs cI = 46.8, c 2 = 17, and unreliability .00840. To obtain

the corresponding system composition we mAst trace back through Tables 5,
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Table 4 -Dominating Sequence for Stages 1,2, and 3

cv\ 0

N

Lr *w-

a'4 -~ -ý -. to

M' H CN N Cn

NIN
H H

Co r- MH 00 NHJ H 0% 0- H
0H C' -4 8

N 0

H 0 CR 0! tC', % \ t CNC
H~ 08 0V

~OH

to C)



13

Table 5 - Dominating Sequence for Stages 1, 2, 3 and 4

Stages 1, 2, 3
c 26.4 27.6 28.8 2).9 31.1 32.2 33.4 33.3 34.5
c2  11 12 13 13 14 14 15 14 15

Q .0200 .0136 .01232 .00793 .00665 .00622Z. OC4949 .00500 .00372

13.5 39.9 41.1 42.3 43.4 44.6 45.7 46.9 46.8 48.3 14 15 16 16 17 17 18 17

t .0034 .0234 .0170 .01572 .01133 .01005 .00962 .008349 .00840 07:2
a 18.0 44. 45. 46

g 4 etc.

e
22.5

4 5
000076

4, and 3. Note that from Table 5 the optimal n4 = 3, while from

Table 4, the optimal n3 = 5. From Table 3, the optimal nI = 4,

n2 = 5. Actually in the machine program (see Section 6) the composition

of the system is retained at each stage so that no retracing is necessary.

Thus our solution consists of a composition of nI = 4, n2 = 5, n3 = 5,

n4 = 3, with associated reliability (exact value) from (5) of

Q(4,5,5,3) = (1 - .24)(1 - .35)(1 - .255)(1 - .153) = .9916.

2Note that the error using approximation (3) throughout is < .0084 =.000071

6. Computer Program The procedure described in Section 2 above was

programmed for the IBM 7090 Data Processing System. The program was

written with the capacity to handle one, two, or three cost constraints,

a maximum of sixty-four stages, a maximum of ten units for each stage,

and a maximum of 1024 entries in the dominating sequence at any combining
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step. The essential features of the program are presented in the flow

chart of Table 6. The following notation is used in the flow charts

Input Quantities: k - no. of stages

r - no. of cost constraints
Lhi

c - value of the J. cost constraint

cij - th cost of one unit of the ith stage

pi - reliability of one unit of the ith stage

S- tolerance for tn-rael yq

S- tolerance for jth cost

Computed Quantities.: qi - unreliability of one unit of the ith stage

si - no. of units of ith stage to start algorithm

P0 - trial system reliability

Hi - no. of row headings for the ith stage

NCih - no. of units of the ith stage at the hth

column heading

M - no. of column headings

I - index for the stage currently being combined
into the system

QCh - unreljbility of the system represented at
the h"" column heading

QRHh unreliability of the no. of units of the I
stage represented at the hth row heading

th thCCHjh Jt cost of the system represented at the ht
column heading

CRH~h jh cost of the no. of units of the Ith age
represented at the hth row heading

TEij indicator for the table entry at the ith rowand jth column (0 indicates entry is in the

dominating sequence; 1 indicates entry is not
in the dominating sequence)

TNCih - temporary storage for the no. of units of the
ith stage at the hth column heading



15W

The circled mnmbers appearing by the boxes of the flow chart

refer to the following explanatory notes:

1. The input quantities required are entered into the computer

through the appropriate input device.

2. The unreliability of one unit of each stage is computed. The

s are initialized to one.

3. This loop adds one unit of each stage successively until one

of the cost constraints 3s exceede.

4. The last si to which a unit was added is reduced by one so

that the system represented by si units of the ith stage,

i = l,...,k, is one which violates no constraints.

5. The trial reliability, PO, of this system is computed.

6. The si are initialized to zero.

7. This loop computes the number of units, si, of each stage

required so as to make the reliability of that stage at least

equal to the trial reliability, P0. The resulting si are

the values used to start the algorithm.

8. The number of row headings for the ith stage is computed to

be the largast integer, Hi, such that Hi • the maximum

number of units permitted for each stage, and " n , c c
for r.n=lfor j 1 ,.. ,r.n1 ci c

9. The units count for the first stage, NCih, is set at each

column heading, h.

10. The index, I, of the stage to be added to the system is set

to two. The number of column headings, M, is set.

11. The unreliability of the system represented at each column

heading is computed.
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12. The costs of the system represented at each column heading

are computed.

13. The unreliability of the units represented at each row heading

is computed.

14. The costs of the units represented at each row heading are

computed.

15. This loop computes the costs that occur at each entry in the

tabd4~g.h~oa~ta ~ttha rAnnAti. . rnu~ And rnolumn

headings. If any of the costs exceed a cost constraint the

entry is marked as not being in the dominating sequence,

otherwise the entry is marked as being in the dominating

sequence.

16. This loop steps the indices from table entry to table entry

and checks the table entry indicator to see if the entry is

in the dominating sequence. If it is not, then the indices

are stepped to the next table entry. If it is, then the next

loop is executed.

17. This loop compares the table entry just chosen with every

other entry in the dominating sequences and marks every entry

which it dominates appropriately. It then goes back to con-

tinue the loop described in 16 above.

18. When the loop described in 16 above has been exhausted, the

table entries marked with a zero are the true dominating

sequence. The units counts for the column headings are now

moved to temporary storage locations so that the column headings

may be updated.
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19. This loop updates the units counts for the column headingp.

20. If all stages have not been combined into the system, then

the index I is stepped for the next stage, the number of

column headings is set, and the program is repeated from

point A

21. When all stages have been combined into the system, this

loop selects the set of units counts having the maximum

hav reultd fom ttempse =to solve probem ofarigsz

vector n and represent the optimum redundant system.

22. The vector n is printed through the appropriate output

device.

p. Problem Solving Experience

The purpose of this section is to present some of the experiences

which have resulted from attempts to solve problems of varying size

and complexity using the computer program described in the previous

section. This discussion is included because it is often difficult to

predict whether the solution to a given problem is practical without

prior experience on a similar problem. Even though the solution to a

problem may appear to be practical in the sense that the basic quantities

do not exceed the program limitations, it may turn out to be impractical

because the dominating sequences developed exceed computer capacity. It

is also possible that the computer time required may be excessive. The

experience recorded here may provide some guideposts in estimating the

practicality of attempting to solve future problems.
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A series of problem was devised 0o test the progria ystmati"elly.

Table 7 presents the basic data for the problem and indicates the nature

of the results. One additional problem involving twinty-five stages was

attempted but was not successflly completed because the dominating

sequences became so large that the computer time required :.w excessive.

This does not necessarily mean that all problem involving more than

twenty stages are impractical. The only positive method for determining

whether it is practical to solve a given problem is to attempt to find

the solution.

Table 7 - Problem and Results

No. of No. of Upper Limit Tolerance Average Maxinmu Error in
Stages Constraints Set on No. Factor, a Length of Length of

of Units of Dom. Seq. Doam. Seq.
Each Stage

10 3 6 0 62 113 0

10 3 6 10-7 35 62 0

10 3 6 10-6 21 47 0

10 3 6 1o-5 9 19 0

10 3 6 i0-4 2 3 17 x 10-5

20. 2 5 0 198 341 0
20 2 5 i0-7 174 155 0

20 2 5 10-6 27 48 63 x 10-8

20 2 5 10-5 15 21 10-5

20 3 5 0 124 214 0
20 3 5 10-7 98 150 0

20 3 5 10 64 112 0

20 3 5 i0-5 31 58 78 X10-7
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8. Other Problem Solvable by the Same Method The method developed

above applies to a number of problems other than the redundancy alloca-

tion problem.

(1) Spare Parts Kit (See Proschan, 1960.) A system is required

to operate during [O,t]. 'Wen a component fails, it is instantly

replaced by a spare, if one is available. The components considered

operate independently and are essential to continued system operation,

so that a shortage of any component results in system shutdown. Only

the spares originally provided may be used for replacement.

Let Pi(n) be the probability that n or fewer spares of type i

are required (i.e., n or fewer failures of type i occur during [O,t]),

i = is,...,2k. Then the probability P(n) of system survival during [O,t]

if a spares kit of composition n = (nl, ... ,nk) is provided is given by

kP : TTPi(ni) .

The problem is to choose n, a vector of positive integers, so as to

maximize P(n) subject to linear constraints (1).

Note that in the typical application the failure distribution for

component type i is often taken to be exponential, 1 - e . In

such cases Pi(n) is the Poisson distribution

-%t (% i t n
Pi(n) = a• (I + X it +..+- -- )

(2) Optimum Spares Kit when Repair Is Allowed As above, the

system is required to operate during [O,t]. !Wen a component fails
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it is replaced by a spare, if available. Repair is begun immediately

on the failed component. There are wi units of the ith type simul-

taneously in operation in the system with ni spares available for

replacement, i = 1,2,...,,k. The failure distribution of a component
-it

of type i is exponential, 1 - e , while the repair distribution

is arbitrary with mean pi, with wi Xiýi < 1. All failure and repair

times are independently distributed.

The system is considered to have failed if for any component type

no spare is available to replace a failure; i.e., if say for type i,

a failure of one of the wi operating components occurs while all ni

spares are simultaneously under repair. It can be shown (Karush, 1957)

that under these assumptions, the steady state probability P(n) that

the system will be "available" (i.e., not shut down due to shortage)

is given by

k
P(n) = TT Pi(ni),

where n i (w~ ~)h/ni+I (w i Xii) h

Pi(ni) =" (8)

As before, the problem is to choose n a vector of positive

integers so as to maximize P(n) subject to linear constraints (1).

Karush, 1957, shows how to solve (approximately) the problem when a

single constraint is present (r = 1).

The algorithm presented above applies to the solution of both

problems (1) and (2). The only change is to use the Pi(ni) appropriate

for the particular problem, in carrying out the Procedure of Section 2.
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