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ABSTRACT

This report contains the results of an analytic investigation of the
Transverse Doppler Pattern Measurement Technique for determining
the far field radiation characteristics of large antennas from near field
measurements. The technique is based on using Doppler signal process -
ing to obtain the information necessa;‘y for predicting the far field pat-
terns of large antennas in their site environments. Primary emphasis
has been placed on establishing a rigorous mathematical description of
the measurement process from which system parameters and perform-

ance may be determined.

Several mathematical models have been developed which differ
both in the analytical approach and in the physical make-up of the meas-
uring system. Mathematical approximations for the diffraction field of
the aperturehave been expanded in several coordinate frames. The sig-
nal processing systems investigated include multichannel processing,
synthetic aperture processing, and directional and nondirectional sam-
pling antennas. Attention has been given to linear arrays, rectangular
arrays with separable and nonseparable distributions, circular apertures
with circularly symmetric distribution, and arbitrarily shaped radiating
apertures with large linear phase deviations. Two experimental proce-
dures have been outlined for the purpose of verifying the feasibility of

the analytical work.
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L INTRODUCTION

The far field behavior of antennas is customarily measured at dis-
tances which exceed or are at least equal to ZDZ/)\ » where D is the
aperture diameter and \ is the operating wavelength in free space., For
many large antennas, especially those used for radio astronomy, con-
ventional methods cf pattern measurement at this distance are always
difficult and often impossible. For this reason, various other techniques
have been utilized in obtaining desired data on the far field performance
of these large antennas. These techniques include actual far field meas-
urements using aircraft, ballocons, and radic stars to obtain the required
measurement distance as well as near field measurements such as prob-
ing the aperture field to obtain the aperture distribution and focusing the

antenna within the near field.l’ 2,3

Such techniques are, in general,

straightforward extensions of conventional pattern measurement proce~
dures and are more or less satisfactory depending on the particular
antenna being evaluated. They are usually inveclved and time consuming

and, in some cases, require modification of the antenna from its opera-

tional configuration with a resultant uncertainty in the measured data.

Described in this report is the analytic investigation of the appli-
cation of Doppler techniques to the large antenna pattern measurement
problem in an attempt to overcome the various difficulties associated
with more conventional methods of measurement. The aperture distri-
bution is obtained by processing the signal received by a probe antenna
which moves at high velocity across the radiating aperture at a distance
which is a small fraction of its far field distance. The far field radia~
tion pattern is then obtained directly from the measured aperture distri-

bution by performing the radiation integration. The analytic expressions



which form the basis of the Transverse Doppler Pattern Measurement
Technique are considered in detail and various methods of signal proc-
essing are examined. The technique is applied to various antenna con-
figurations and computations of the results are presented. Experiments

for determining the feasibility of the measurement technique are also

discussed.



II. GENERAL ANJALY SIS

Under the ass umption that the antenna whose characteristics are
to be measured may» be represented by an aperture lying in the £, n plane
and that the apertur— e fie 1d is uniformly polarized in the £-direction, the

diffraction field is gziven by (using Silver's scalar field approximation4):

exp (jw t) .
_ o exp (~jkr) |/, L A A W A
Up———-——4ﬂ_ ; F‘(g,n)—-—-——--r [(]k+r 1,07, +Jk1on dédn

for the geometri of Figure la. In the equation,
F(€,n) = A(§ o) exp l:j\I/(g, qﬂ,the aperture distribution

5“1 is a_ unit vector in the direction frcm the aperture
poirat £, n to the field point P

8  is = unit vector along a ray through the aperture.

Equation (1) may be= considerably simplified under the following condi-

tions:
ia k>> - or kr>>1
ii o
iii 'i‘z.é > 1

The first condition requires that the measurement distance be large com-~

pared with the opemxrating wavelength. The second requires that the
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measurement distance be large enough so that the unit vector ?1 ,
directed from an arbitrarily located current element on the aperture to
the field point P, is essentially parallel to the unit vector ﬁl directed
from the centcr of the aperture to the field point, and that the antenna
main beam be at or near broadside. The third conditicn requires that
the phase distribution be essentially planar. These conditions are, in

general, adequately met for large antennas of the type being considered

here, and the scalar diffraction equation reduces to

jkexp (jo, t) ﬁ ' exp (i
- p (-jkr)
Up = _T__ AF(g’T') _}___.. dgd-,«] (2)

Now assume that the diffraction field is sampled with an omnidirectional
probe antenna which is moving across the aperture at a constant height
h with a constant velocity v. The probe path is described by the space
coordinates x = 0, y is variable, and z = h. The y-axis is coincident
with the n-axis, and the origin of the space coordinate system coincides

with that of the aperture coordinate system as indicated in Figure 1b.

In rectangular coordinates, r may be expressed as

1/2
r = [§Z+(n-y)2+h2] (3)

Thus, in terms of the parameters, h and y, the radiated field along

the probe path is



jk exp (jo_t) 2 cx(n)
sy(h.v) = dn d¢F(€,n)

n, cl(n)

1/2
exp {-jk[_iz v 62 4y - m)) }

(624 6% 41y - n)z]llz

(4)

For y a linear function of time (corresponding to a constant probe

velocity)

and

jk exp (jwot) N2 CZ(n)
gy(hv vt) = __TZT"_’- d"] dgF(g, 'rl)

n, cl(n)

1/2
exp [—jk[(vt - 'q)z + hz + §2:| }
. : (5,

[(vt - 11)2 +h2 + 52]1/2

Now let us consider the effect of passing this time dependent signal
through a bandpass filter as it is received at the probe antenna. The
spectral density of the signal after passage through the filter is found

using the Fourier transform pair:



)
g(t) = : S\ G{w) exp (jwt) dw
'\j 2m -00
(6)
1 0
Glw) = S g(t) exp (-jwt) dt
'\I 2n =00
For a filter with a characteristic function H(w), the spectral density of
the output signal is
Sy(w) = H(w) G(w) (7)
and the output signal is (using Equation (6) above)
S (t) S S (w) exp (jwt) dw
. M2 CZ(n) ©
- > dn dEF(£,n) g dwH{w) exp (jwt)
(@m” “n, c,(n) ~o
1/2
0 exp{JkEvt' -n) +h +§2] J
o\ x exp [—j(w - ) tj a' . (8)
~00

&vt' - n)2 +h2 + gz]l/z

This equation is, in general, quite difficult to evaluate because of the

complicated way in which both the space and time variables appear.



Some simplification of the mechanics of the integrals may be obtained

by carefully choosing the filter characteristics

As examples, consider the filter functions

o - o 2
H (o) = (9
0 ; elsewhere
w-w
sin( o)
H_(w) = —\ 2B J (11
2 w-w ‘

where B is the filter bandwidth. For these cases Equation (8) may be

integrated to give

Cz(n)

jkexp (ju_t) M2
s () = ————2— dn dEF (g, n)
Y1 2 4 c

l(n)

1/2
el co o)) b
w90

1/2 "
[[v(t" +t) - n]z +h% 4 gz} ¢

for the flat top bandpass filter and



jkexp(jw t) (N2 ¢ in)
S (t) = ———0a dn deF(E, 1)
2 4 " c,(n)

/
. SI/ZB exp ('jk{[v(t" tt) - n]2+h2 * 32}1 2) dt"

1/ 2
1/2B {:[v(t,, by - n]z Jnl . gz}

sin u

for the filter. However, it appears that neither of these equations

can be integrated further in closed form.

At this point it is advisable to consider the physical counterpart of

the mathematical expression derived above. For a vehicle moving at a
velocity v and a height h above a plane surface which is uniformly radi-
ating energy at a frequency fo , the frequency of the energy received at
the vehicle from any point on the plane will be shifted from fo by an
amount proportional to the relative velocity with which the vehicle is ap-
proaching or receding from the radiating point. This is the well-known
Doppler frequency relation. It may be readily shown that the points on
the plane for which the recaived energy has a constant Doppler shift at
any given instant form a family of hyperbolas with a straight line directly
below the vehicle and transverse to its path as the limiting case corre-
sponding to zero Doppler shift. Therefore, filtering at fo allows passage
of only those frequency components which correspond to signals radiated
from the region between two hyperbolas on the plane surface as indicated
in Figure 2a. This sampling region moves with the vehicle as it passes
~over the plane. If the portion of the plane which radiates is now con-
strained to be an antenna aperture, the effect is that of moving a samp~

ling function progressively over the aperture as shown in Figure 2b.

(12



Figure 2a. Constant Doppler Frequeucy
Trace on Plane Surface

APERTURE

Figure 2b. Doppler Sampling Region on
a Planar Aperture
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Using this physical picture, a simplification of Equation (12) can
be made by recognizing that the limits of integration in t" are related
to the filter time constant and that the tiine constant is proportional to
the sampling region width divided by the probe velocity. For practical
values of the sampling region width (1/10 to 1/100 of the aperture dimen-
sions), the integrand can be approximated in a manner which is similar
exp (-jkr)
- .

to the customary far field approximation of In the phase

factor, let

1/2 1/2 .
{I:V(t.. 1) - “]2 N gz} N (hz . gz) [:1 vt (vt - n):l 0

h +£)
and, in the amplitude factor, let

1 ~ 1

= 1
. 1/2 S\ 2 (
{[v(t" +t) - 11]2 + hz + gz} (hz + ga)
With these substitutions, the integration in t" can be performed to give
N n, ¢ (n)
y 9 = £ exp (o ) dn dEF(£, n)
c,(n)
sin kv ——————(Vt =)
2B [, /2
s 2 1/2 h™ +¢
* exp [—jk(h + §) (1

kv(vt = 1)

11



The result is consistent with the physical operation of the system. The
sin u

function in the integrand is sharply peaked at vt = n and has the
effect of moving a sampling function across the aperture with a velocity

v. The resolution of the sampling function is dependent on the param-

eters k, v, B, and h. The transverse aperture variable £ also appears

both in the sampling function and in the phase factor. In the sampling
function, the effect is an aperture resolution which is a function of the
transverse variable. This results from the fact that the lines on the
aperture plane corresponding to constant Doppler frequency are hyper-
bolas rather than straight lines. The appearance of the variable £ in
the phase factor is caused by the fact that the probe antenna is in the
near field of the transverse dimension of the sampling strip. This de-~
pendence is not required in the 1 dimension since the probe is in the

far field for the width of the sampling strip in 7.

To summarize, within the accuracy implicit in the approximations
of Equations (13) and (14), Equation (15) represents the output signal
from a rapidly moving Doppler antenna system as it passes over a gen-

eral two-dimensional planar aperture. It has been assumed that the
sin u

Doppler filter has bandpass characteristics, and that the probe
antenna has an omnidirectional lower hemisphere coverage and 15 -ov~-

ing with a constant velocity v at a constant height h.

12



III. SPECIFIC APPLICATIONS

A large number of practical antennas may be represented mathe~
matically by three planar configurations: (1) the line source, (2) the
rectangular aperture with its aperture distribution separable in the
orthogonal planes containing the major dimensions of the aperture, and
(3) the circular aperture with a circularly symmetric aperture distribu-
tion. The Transverse Doppler Pattern Measuring Technique has been
applied to these configurations, and the results of the analytic investiga-

tions are presented below.

A. Line Source with Uniform Phase

Perhaps the simplest aperture to consider is the line source
with uniform phase. In addition, a detailed study of the application of the
measurement technique to the line source provides valuable information

about basic system parameters.

For a line source of length a in n, Equation (15) reduces

to
. kv
a2 sm[z-B—h (vt-n):l
S (t) = jw t dn Al
Y() exp (jo_t) &a/z nA(n) T

where a constant phase factor and a multiplicative constant have been

omitted. The aperture sampling function is

sin[zk?vﬁ (vt - n)]

kv(vt - 1)

13
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B R S

Determination of the optimum values of the parameter requires

kv
2Bh
that Equation (16) be evaluated for the particular aperture distribution
which is being measured. However, intuitive considerations can be used
to approximate the parameters. If the aperture dimension is a, the
resolution on the aperture can be expressed as a/N, where N is the
number of sampling widths within the aperture. If the sampling resolu-

tion is chosen to be the 3 db width of the sampling function, the following

relation of system parameters is obtained.

kva
5.6 BhN

= 1 . (18
An additional constraint on the system parameters is im-

posed by the approximations made in the evaluation of the t" integral

in Equation (12). The "far zone" approximation of the integrand re-

quires that

h > (19
N
or
2
_ 2a (v) .
h = x \B R a>1 . (20
When this condition is substituted in Equation (18), the equation takes
the form
v a "
BN (5.6 ) (21



e e e -

Therefore, the two equations governing the choice of the system param-

eters are

kh

1]
an
-
w|%
~—
[\¥)

B ~ N \56a

where the form of Equations (20) and (21) have been modified for conven-
ience in graphing. These equations are plotted in Figures 3 and 4 with

a as a parameter. The use of these curves to determine the operational
parameters of the measuring system can be illustrated by a typical
sample problem. Consider a line source 1000 feet in length operating

at a wavelength of 2 feet:

ka = 3142 and, for a linear resolution corresponding to
N = 10, ka/N = 314.2. From Figure 3 with ¢ = 2, kv/B = 88.3. Thus,
v/B = 28.1. If v = 600 mph = 880 ft/sec, B = 31 cps. From Figure 4,
for kv/B = 88.3 and a = 2, kh = 4960, and h = 1580 feet.

Summarizing,

h = 1580 feet
v = 880 ft/sec
B = 31 cps

N = 10

It should be noted that the same value of a must be used for both graphs.

15
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[P,

The above example indicates that the system designer has a
considerable amount of latitude in choosing the system parameters pro-
vided the parameters are selected consistent with Equations (22) and

(23).

To determine what effect the choice of the composite param-
eter K = -125%%' has upon the accuracy with which the aperture distribution
is reproduced, Equation (16) has been evaluated numerically in the form

1/2 o e -
s() = S A E’K—E}T—ﬂlﬂ dy (24
-1/2

for various typical uniform phase line source distributions and values
of the parameter K. The results of these calculations are presented
in Scientific Report No. 1 on this contract on pages 19 through 23.5 It
can be seen that the accuracy with which the aperture distribution is
measured increases as the value of K increases. This is as expected
since increasing the value of K has the effect of narrowing the sampling
function and correspondingly, the sampling width. In fact, it may be
easily shown that, if the sampling function is the Dirac delta function
(the case for K~—»®), the aperture distribution is measured exactly.
It is also apparent that the best reproduction is obtained for those dis-
tributions which are zero at the ends of the aperture rather than for those
which have abrupt discontinuities at the ends. This is to be expected
from the analogy with Fourier representations of abruptly discontinuous

functions.

18
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B. Rectangular Apertures with Separable
Distributions and Uniform Phase

If the conditions for a rectangular aperture with a uniformly

phased separable distribution, i.e.,

F(E,n) = £(£) £(n)

cl(n) = -b/2

cz(n) = b/2
n, = -a/2
n, = af2

Y ) are introduced in Equation (15), it becomes

al2 b/2 1/2
ik 2 2
S (t) = L= exp (jo_t) 5 dnf(n) S aLL(£) exp[-jk he o+ ¢ ]
y 2w hd -a/2 -b/2 ( )

h+§2

.| kv (vt - n)
sin Z—é— (-—111772 )

kv(vt - n)

' It should be noted, as mentioned above, that the transverse variable §
appears in both the phase factor and the sampling function, However,

! for typical values of h and §, the variation in the sampling function

|

resolution is less than one percent over the full excursion in § and may

19



be neglected with very little error. With this approximation Equation

(25) may be written

, b/2 1/2]
_ jk _ ol g2
Sy(t) = 5 exp (ju t) S-blz dE€f(€) exp [Jk(h +§ ) J

dnf
ol ni(n) e T—

a/2 sin [:—2%‘% (vt-n):]
. S . (2¢
Thus the dependence in £ appears only as a constant which modifies the
amplitude of the expression. Therefore the discussion in the preceding
section with regard to linear arrays may be applied directly to the con-
sideration of rectangular apertures with separable distributions. A
second measurement orthogonally oriented in space (with the roles of
£ and n in Equation (25) interchanged) is required to obtain the distri-

bution in §.

C. Nonuniformly Phased Linear and Separable,
Rectangular Distributions

If, in Equation (16), the aperture excitation function is as-

sumed to be complex, the equation has the form

. kv
al2 sin [EEF (ve - "{I
S(t) = exp (ju t) Sa/z dnA(n) exp[i¢(n)] T (27,

where F(n) = A(n) expEiq;(n):]. {(A(n) and ¢(n) are real.) In partic-

ular for the usual linear phase shift required for scanning,

20



é(n) = Bn

with B a constant. This equation has been evaluated numerically in the

form

SI/Z sin[K(‘f - Y)]
S(1) = A iBy) —e———= g
() /2 (y) exp (jpy) K(r - y) Y

for two aperture distributions, uniform and (1 - Zyz) , and values of B
corresponding to a total phase variation across the aperture of 1, 5, 10,
and 20 radians, The results of the computations are presented on pages
28 through 36 of Scientific Report No. 1 on this contract.5 In general,
the reproductions of the amplitude compare favorably with those obtained
for the in-phase apertures, and reproduction of the phase is excellent
over the aperture. The exceptions occur for small values of K and

B = 20. The relation of these ﬁarameters to the physir system may be

determined from a consideration of Equation (18). Since K = -;i;—; y We

have
kva =1 K
5.6 BAN ~ 2.8 N
or

K
N =53

where N is the number of sampling widths within the aperture. There-
fore, a value of K = 10 corresponds to a sampling strip approximately

0.28 of the aperture dimension in width. Since the aperture phase slope

21
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is 20 radians, there is a linear phase shift of 5.6 radians or almost a
full cycle across each sampling width. It is not surprising, therefore,
that the phase and amplitude resolution is poor for these values of the

parameters.

The above values of phase variation over a large aperture
correspond to relatively small scanning of the antenna beam. For ex-
ample, for a 500\ aperture, B = 20 results in a scan of approximately
two beamwidths. For scanning to an angle of 20° (of the order of 120
beamwidths), a value of § = 1075 is required. Numerical evaluations
of Equation (31) for this value of § and several distribution parameters
were also performed. These are definitely unsatisfactory with regard
to both phase and amplitude. As discussed above, however, this is not
unexpected. Even for K = 60, corresponding to approximately 21.4
sampling widths within the aperture, there is a phase slope of approxi-
mately 50 radians across a sampling strip. Since the signal out of the
filter is essentially an average signal from the sampling strip, it can be
shown that the amplitude of the signal tends to be zero except near the
edges of the aperture where a nonsymmetrical condition exists with re-

spect to the sampling function.

22



D. Circular Aperture with a Circularly Symmetric
Aperture Distribution

For a circular aperture of radius a/2 with a circularly

symmetric aperture distribution, Equation (15) has the form

al/2 '\](a/Z)Z -112

jk
S8) = 5o explju,t) S dn dEF (£, n)

-a/2
Niasz)? - 12

{ -
sin kv (vt - 1)

2B . V72
) 2 1/2 (hz + gz)
e exp -jk(h + g)
kv(vt -~ 1)
where F(£,n) is circularly symmetric in £ and n. This expression

poses considerable difficulty from a computaticnal standpoint. The prob-
lems arise basically from the facts that Equation (32) contains a double
integral and approximately N2 summations are required in its numeri-
cal evaluation (as compared to N summations for a one-dimensional
integral) and, secondly, that the phase factor containing (h2 + 52)1/2
varies over a wide range during the transverse integration necessitating
the use of a large number of increments in performing the summation.
Some effort has been expended on obtaining an alternate formulation of
Equation (32) which is more amenable to computer programming. The

results of this work appears in Appendix A.
However, a more fruitful approach has been developed utiliz-

ing both mathematical and physical modifications. This development is

presented in Section IV, A,

23
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IV. ALTERNATE SIGNAL PROCESSING TECHNIQUE

A, Multichannel Signal Processing

As was stated in the previous section, the difficulty in eval-
uating the geﬁeral sampling function equation is due primarily to the
presence of both space and time variables in the integrands of the Four-
ier transform pairs. In the analysis that follows, alternate approxima-
tions are applied which allow the time variable to be transformed into
the aperture distribution, and the transverse variable £ is eliminated
using the directional characteristics of a linear array sampling antenna.
The effect of varying the filter center frequency is also examined by
means of a more generalized filter function. The significance of these

modifications is discussed below,

Starting with Equation (8), let

where

bandwidth

w
"

w = center frequency,n=1,2,3,..., N.
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For this condition, Equation (8) becomes

‘ W - w
. 11.?. ¢ (11) o0 sin( ZBn)
S (t) = dn dé¢F(€,n) S —_— expEiw(t-t'zl dw
Yo (e > ¢ (n) -o0 n
Moo . 4 , 2 2 2
S exp [-jkN(vt' = )" +h” + ¢
Te k exp(jwot') dt' . (3:
=% ,\l(vt' - +h% 4 g
Since
5)
© sin
2B . e 1 ' 1
Sw —w-—_-;r-l— expE]w(t -t'):ldw = T exp [—an(t -t)] t- 3B < St Lt+ 5B
=0 for all other t'

Equation (33) becomes

M2 c,(n) t+1/2B
Sy(t) dn déF(€,n) S k

(n) t-1/2B

exp I:-jkd(vt' - n)z + h2 + §2]

expEi(wo -wn)]t' exp(-jg»nt) dt' . (3
kj(vt' - n)z +h2 + §2
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With the change of variable

t! t" o+t

dt'

dt " »

Equation {(34) becomes

J. S‘“z Sc"'(n) 51/213
S (t) = dn d¢F(€,n) k
y 4w n, c,(n) -1/2B

exp [—jk;\l[v(t" +t) - i'z + h2 + §2}

'\l[ . ]2 > > exp[jwo(tn+t)] exp(-jwntn) at" . (35
v(t" +t) - n]° +h° + £

The radical

,J[v(t" +t) - THZ + hz + §2 = '\lhz + §2 +{n -vt)z + (vt")2 - 2vt"(n - vt) (36

can be approximated by

[ t"(n - vt
\]h2+§2+(vt-n)2 - viin - v (37

2 2
B 46"+ (n - ve)°

in the exponent and
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\I}?‘+§2+(n -vt)2

in the denominator. These approximations of course impose certain
limitations on the functions vt" and (vt - ). In particular, the ex~-
pression (vt")2 has been ignored completely in both the phase and
amplitude factor. It is seen from Equation (36) that this term has its
greatest effect at (vt -m) =0 and £ = 0. This is comparable to the

on-axis quadratic phgse error of a linear array, where in this case, the
v
B
imum dimension of the "array" is -;— , and if the quadratic phase error

"linear array” is the flight path as illustrated in Figure 5. The max-
y g g

is to be ignored, this dimension must be limit;ed.4

14

Figure 5. Variations in R Associated with the Flight Path
v
Length 5
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Referring to Figure 6,

n’ +(—"— = R = (b +aR)®

2
h + (aR) + 2hAR

]
+
TN
ol
S’
1

Where AR is small enough to allow the deletion of (AR)Z, then

v 2
(E-E) = 2hAR

Using a % criteria for the maximum allowable phase error produces

2
VY - (e 2 A _ b
(ZB) = (vt )ma.x = 2h g =

¢ 35
A
% I \\\\\ /ZR w-*v
|
| /
| /
| /
. /
| /i
| /
|y
| 7/
l/
I .

Figure 6. Geometry for Determining the Limits on B
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This forces the condition

v

Nnn

B 2

on B. For v = 880 feet per second, h = 1580 feet, and \ = 2 feet

B > 880 = 15.6 cycles

\J3160

which is compatible with the conditions of Section III. A. Since it has
been shown that the range of (n - vt) is limited in the §,n plane, Equa-
tions (37) and (38) are comparable to the usual far field approximations.

Under these conditions, Equation (35) can be integrated with respect to

t" to give
j exp (ju b) S“z S‘%‘")
Sy(t) T dn d€F(€,n) k
n, c,(n)
) kv(n - vt)
sin ﬁ + wo - wn
exp [’jk4h2+§2+(ﬂ 'Vt)Z:I \lh2+§2+(n - vt)z
= (39
"lh2+§2+(n-vt)2 o kv(n - vt) o -w

2B
Nb2 42 +(n - vt)

2
Equation (39) differs from Equation (15) in that the term (n - vt) appears
sin u

under the radical and the term W e is present in the sampling

function, The significance of the former will become more apparent as
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the analysis continues. Regarding the term W, =W it is apparent that

this factor shifts the peak of the 2ns

functions in the n direction
ahead or behind the zero Doppler frequency trace as w is greater than
or less than W - Figure 7 illustrates the result of passing the received
signal through a multichannel filter bank. By proper choice of filter
frequencies, the £,n plane has been divided into strips where the out-
put of the nth filter is the signal transmitted from the nth Doppler fre-
quency trace. The presence of the term (n - vt) verifies mathematically
that the sampling system is of a traveling nature; i.e., with the excep-
tion of the aperture distribution function, F(£,n), each factor in the in-
tegrand of Equation (39) is a traveling function with velocity v in the n

direction.

Figure 7. Sampling Strips Produced by a Multichannel
Filter Bank
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At this point it is advantageous to introduce the effect of re-
placing the omnidirectional sampling probe with a linear array. Figure
8 illustrates the geometry of a linear array and its trace in the (£, n)
plane. The array is oriented at the point (0,0,h) in the §,7,{ coordi-

nate system with its longitudinal axis parallel to the £ axis. For an
sin u

assumed pattern, the argument u takes the form

L,
u=-;s—smﬁ ,
o

where L is the length of the array and 8 is the broadside angle measured

from the {,n plane.

3

Figure 8. §,nm Trace of a Linear Array Sampling Antenna
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Under these conditions the weighting effect of the array on a

signal received from the §,n plane can be expressed as,

sin 11: €

N -
,l 2
1 h2+§ +‘r'|2 1

1)‘.1: £ |h2 . §2 + "12
\|h2 3 E,Z +r|2

where the space attenuation factor

(4(

1

\Jh2+ §2 +n2

has been included. Equation (40) can now be generalized by rotating the
trace about the { axis through an angle « and then translating the skewed

strip along the m axis by the time function vt. The resulting expression

rL| £cosa - (n -vt) sina

sin X

mlhz + §2 +(n - vt)2

2 wL |£cosa - (n -vt) sina

A

?th + §2 +(n - vt)2

represents the trace of a linear array carried by the mapping vehicle at
an angle a¢ with respect to the direction of motion. Under these condi-

tions the expression for the filtered signal is



jexp (ju ) (M (c(N)
gt) = 4«B°S S F(g,n) ZRLr) (41

1
sin | <L kv(n - vt) o - sin mL|§cosa - (n -vt) sina
Bl 2 2 ° ° Z .2 2
._Jh +£ +(n -vt) \[h +€ +(n -vt)
) = dédn
1 kv{n - vt) te -w nL |§cosa-(n -vt) sina
o n A

2B
*\]h2+§2+(n-vt)2 r\lh2+§2 +n -vt)z

where
(r')z = h2 + §2 +(n - vt)2

Figure 9 illustrates the limiting effect of both the filter function and the
pattern factor of the sampling array. Itis seen that the array has re-
duced the sampling strip produced by the filter to a sampling increment
with dimensions in the ¢ direction comparable to those in the n direc-

tion. Hence far field approximations can now be made in the function

exp (-jkr')
2
(r')

with respect to both § and 7.

In order to select a suitable coordinate system for the far
field expression, attention is directed to the point (§0, n(') + vt) in
Figure 9. This point is the intersection of the two lines along which the

sin u
two

terms in Equation (41) have maximum values. Hence, for



Figure 9. Incremental Sampling Area Isolated by the Filter
Function and Sampling Array Pattern Factor

given values of L, W wn, and ¢, the coordinates go and n' can be
o

computed by equating each argument to zero and then solving the

two simultaneous equations for £ and m -vt as follows. From

1 kv(n - vt)
2B| i T 9 "%
'slhz + §2 +(n - vt)2

i
o

and

nL £cosa - (n -vt) sina

x -
'\jhz + §2 +(n - vt)2

=0 ,
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— = (n)? (42

¢ = n = ¢ (43

The far field approximations in polar coordinates can now be constructed

for

exp (-jkr')
2
(r')

at the (£,7,¢) origin and then translated to the point (§°, 118 +vt, 0)

as follows:

At the point (0,0, 0)

eXP(::)jzkr') ~ &XP ;-ijR) exp {jk sin 0 [&, cos ¢ + 1 sin qil]

where R is a constant slant range and 6 and ¢ are the familiar azimuth

and coelevation coordinates illustrated in Figure 10.
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Figure 10. Polar Coordinates for the Far Field Approximations
Referred to the £,7n,{ Origin

At the point (§c, n:; + vt, 0)

ex}::'-;jzkr') ¥ exP;-ijR) exp (jk sin 9{(&- go) cos ¢ +[‘q -(n(’)+vt)] sin ¢})

where now

N hk
R = 'Jh +§°2 +(n"))2 = ad . (44)

2 2 2
(kv) -(wn - wo) sec, a

The result of this translation is illustrated in Figure 11. Equation (41)

now becomes
.

36



[P

(£, ngtve, 0) ——

Figure 11. Polar Coordinates for the Far Field Approximations
Referred to the Point (§o, n(’) +vt, 0)

. . (n)
j exp (ont) ox . 2 §c2
- p (-jkR)
glt) = ——= : 5 F(£,n)

o exp(jk sin e{(g - §°) cos ¢ +[’q -(ngﬁ-vtﬂ sin ¢D WIW2 dédn

where

sin —1- kv{n - vt) +w -~w
B 2 .2 2 °c n
“Ih + & +(n -vt)
Wl = AT
1 kv(n - vt)
2B +wo - wn

\th + gz +(n - vt)Z
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. |nL | £cosa-(n -vt) sinea
sind—| ~

)\ .
\Ihz + §2 +(n - vt)2

nL|§ cosa-(n -vt)sina

A —
2 2 2
'\lh +& +(n - vt)

Although mathematically unwieldy, Equation (45) yields considerable in-
formation as tc the nature of the sampling system output. From previous
experience with the analysis of illuminated apertures, Equation (45) is
recognized as the far field diffraction integral of an irregular shaped
aperture with a tapered distribution. The weighting functions, Wl and

w clearlv have a tapering effect on the distribution function F(§,n),

2!
and for a chosen attenuation criteria establish the boundaries of the iso-
lated area in the §,n plane. It is again emphasized that the presence
of the term (n - vt) establishes the traveling nature of the integrand;
i.e., the isolated area centered at the point (éo, n") + vt, 0), the slant

range R, and the vehicle position vt are all fixed with respect to each

other and travel at a constant velecity v in the n direction.

Because of the tirne dependence of the sampling function, the
limits of the integral and hence the distribution functicn, F(§,n), are

also functions of time. This can be illustrated by making the approxi-
sin u

mations in the arguments of the functions,.

- :
r\lh +§2+(-q-vt)2 = f\lh2+§°2+n(')2 = R

which is valid for small variations in § and n about §o and né. Now
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sin [% [k_____v( nR- vt) + wo - wn]]

W, = (49)

1 ,
1 {kv(n - vt) .
2B [ R T " “n

sin [% [g cos a = (; - vt) sin a]]

w = . (50)

2 L §cosa-(n-vt)sina]
A R

Figure 12 illustrates the sampling increment under the conditions of
Equation (48). The point, (§°, n(‘) + vt), has been computed in Equa-
tions (42) and (43).

Figure 12. Incremental Sampling Area Using a Constant
Value of R in the Filter and Array Functions
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Using the 3 db attenuation criteria, the limits on § and n

are computed from

1

2B

and

[k

vin - vt) o

- = .3
R o wn:I +1.39

R

% l:f., cos a ~(n - vt) s1na] = £1.39

From which follows

'q-

and

£ =

Under these conditions, the limits of integration in Equation (42) are

Cl(n)

Cz(n)

vt

R
4+ — 2. '
kv278B+no

i

R
—_— 2.7 —_ -
+ 2.78B + (w w )

(o]

+ 1.39 % sec g +(n - vt} tan ¢

(n - vt) tan a - 1.39

(n -vt)tan a + 1.39
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where

3
—
]

r L=
vt+11o v?..78B

= " =
n, = vt+‘r'|o+ v2.78B

It is seen that the limits on £ are a linear function of n and t, and 7
varies symmetrically about a particular value, (vt + n;) » which is a
function of the time variable. Hence the distribution function F(§,n) is
necessarily a function of t because of the nature of the limits of integra-
tion. This result can be obtained in a more straightforward manner by

the change of variable
n = n' + vt

Substituting the conditions of Equations (48) and (55) into Equation (45)

produces

j exp [j(wot - kR):] 1‘]'2 C'Z(n K
g(t) = 5
4tBR n

F(§, n' +vt)
cy(n’)

'
1

o exp(jk sin 9{(& - §o) cos¢d +(n' - 'qé)) sin ¢}) Wlwzdgdn'

where
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wL I:g cos a - n' sin a]

sin R
W, o= ,
2 nL §cosa-n'sina]
A R
R\ )
] N = ] -1. bl
cl(n ) n' tana - 1.39 oL sec¢
R\
1 1 - ' _n
cz(n ) = n'tana +1.39 -1 sec¢
R
b=t o- (2.
1! Mo ™ kv (2.78) B
R
[ ' =
n, = M) ik (2.78) B )

It is seen that the change of variable of Equation (55) has essentially
transformed the time variable, t, into the aperture distribution func-
tion, while at the same time removing it from the remaining factors
and limits of the diffraction integral. This is in complete agreement
with the foregoing discussion; i.e., at any instant of time the output of
the filter represents the weighted aperture distribution, F(§, n' + vt),

integrated over the limits,
£ =n'tanax 1.39 i—ﬁ sec a

and

R
= n = n! =
n =1 +vt_no+vt:tkv(2.78)B
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Figure 13. Geometry of the Moving Reference Frame, (§, n', {),
and the Fixed Frame (§, n, {)

Equations (56) through (59) can be interpreted as the far field expression
for a radiating aperture referred to as a moving reference frame, i.e.,
the coordinate frame of the sampling system. In the §,n' plane, the
incremental area is a parallelogram centered at the point § = §o and
n'= "1:) as illustrated in Figure 13. Equations (42) and (43) give the
values of n(‘) and go in terms of the parameters h, Wor W Vs and a.
Hence, it follows that for fixed values of h, wo , Vv, and a, variations
in the parameter © produce a shift in the position Of. the point (§o, n;)
along the line § = n' tan a. For the case of the multichannel filterbank
discussed previously, the trace of the linear array is divided up into N
sampling increments. The output of the nth filter is in the form of
Equation (53) where the aperture distribution is now clearly a function

h
of time. The output of the nt filter can now be expressed as
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R
L
j exp E(wot - kRn)] Tt ke (2.78B)
g (1) = - dn'
4B'n'Rn Rn
I
N (2.78B)

Rnk
n' tan e + 1.39 - sec a
. dg
Rnk
n' tana - 1.39 — sec @

. exp(jk sin 6{(&- §n) cos ¢ +(n' -nr'l) sin 4{0 (g, n'+vt) WIW2

where W1 and W2 differ from Equations (57) and (58) only in that R is

replaced by Rn to denote the nth filter output.

Figure 14 illustrates the geometry of a multichannel mapping
system. It is apparent that at any instant of time, the field distribution
over the nth incremental sampling area corresponds to that portion of
the £,7n plane which lies within the boundaries of the sampling increment.
Hence it would appear that each filter output provides a continuous strip
mapping of the radiating aperture as the mapping vehicle traverses the
£,n plane. Continuing along this line of reasoning, it would follow that
after suitable correction for the weighting factors, variation in Rn , etc.,
the combined output of the multichannel filter bank would result in a
complete mapping of the aperture distribution in the £, n plane. Since
the aperture distribution is continuously averaged over the dimensions
of the parallelogram -shaped sampling increment, the accuracy of the
measured distribution would of course depend upon the attainable reso-

lution. Unfortunately other factors, which at this point are not apparent,
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Figure 14. Sampling Areas of a Multichannel Mapping System

enter into the approach outlined above which greatly restrict the posi-

tion of the sampling increment.

Equation (60) can be analyzed further on a qualitative basis
by making the following simplifications: If the aperture distribution
F(£,n) is assumed to be essentially constant over the limits of integra-

tion, the term F(§, n' + vt) WIW can be approximated at each instant

2
of time by an average value K(t) . This amounts to assuming a uniform
distribution over the sampling increments which varies uniformly in
intensity with t. Under this substitution it is possible to perform the

integration of Equation (60); however, it is recognized that the tapering
effect of the weighting functions W

1
beam and decrease the sidelobe level of the resulting diffraction pattern.

and W2 would tend to broaden the

Under the assumptions stated, Equation (60) becomes
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n
! —
n, + v (2.78B)

g,(t) = CA(t) S .

n

expEik sinf(n' - 111'1) sin ¢] dn!

n' -k—vn(z.783)

Rnx
'
n'tan ¢ +1.39 — seca
. S expEjk sin 6(§ - §n) cos ¢] d¢
R X\
n'tana - 1.39 “n sec a

where

exp Ej‘t'_wot - kRn)]

From Figure 11 the following

sin O

sin ¢

cos ¢

4BrR 2
n

relations are apparent

|2 2
gn+nn
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Under these conditions Equation (61) becomes

BRn
!
| Nt 2.78 = "1;,1
g (t) = CA(t) S exp ,:-J'kk—(n' - n;)} dn'
BRn n
' -
n, 2.78 v
R\
n'tan g + 1.39 ﬂn sec q ¢
. n
. exp [-Jk 7 (6~ §n)} dg
J R\ n
n'tana - 1.39 2 seca

wL

Performing the integration with respect to £ produces

k)
sin|§ [1.39 — sec ¢

_ - .k , 2 2 [:n( 7L )]
gn(t) = C A(t) exp _]—Rn (n + € ) 2R = kﬁn

BRn
' —=
., + 2.78 e o
. exp [—jT{n—(n;+§n tan a):l dn'
BRn n
1 -
n! -2.78 —

Integrating with respect to n' produces

»

. o - B, ]
2 s1n[§n (1.39 -, sec a)] 81n[2.78 > ('qn + §n tan a
n k§n k(n) + §n tan a)

g, (t) = 4C A(t) R .
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which can be written as

j exp Ei(wot - kRn)]

sin( .78 ,‘n’2+§2 tana)
g (1) = > Alt) Lo o
Brk \| ' 2 + §2 tan
"n n ¢

.(2.785 l 2 .2 )
sin n' +& seca
v n n
. (6.
2 2
!
'\Inn tE)

The effect of nr'1 and gn on the received signal is immediately apparent
from Equation (62). It is clear that the signal gn(t) is maximum for
n' = gn = 0 independent of angle ¢ . It is also clear that as the radial

n
distance

increases, the received signal is attenuated by the two terms

through a series of nulls and relative maximums. To illustrate this

effect, Equation (62) has been computed in the form of

£ =f-§“—Y-E)2 . 6
() (vp (

This corresponds to the following parameter values
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where

B = 16 cycles

v = 1000 feet/second
L = 41.6 feet

y = 0.056

Figure 15 is a curve of Equation (63) where the radius dis-
tance p is now measured along the 37° diagonal passing through the
point (gn, 'ql'l) and the point (0,0) in the £, n' plane. It can be concluded
from these results that the sampling increment must be limited to a
position directly under the probe. The signal from any other increment
centered outside this region will be attenuated in a manner :illustrated
by Figure 15 which would clearly make the accuracy of the processed
signal questionable and in some cases nonexistent. Under these restric-
tions, Equation (60) can be greatly simplified by performing the follow-
ing substitutions. The center frequency of the sampling filter is taken

to be the transmit frequency w . No apparent advantage is gained by
o

turning the sampling array, hence the skew angle a can be equal to zero.

3 3 1 - - | - |-
Finally, the coordinates §n and n  are now gn = go =0 and n=nl=

0. Under these substitutions, Equation (60) becomes

i exp il ¢ - ki)
g (t) = Jexpf PB::; ] si [1.39] si[1.39] A
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Figure 15. Signal Strength Versus Sampling Increment Displacement

where Si is the tabulated sine integral. Equation (64) reduces to
- . 2 .
A(t) = j2Bh expE](wot - kh)J g (1)
where K(t) is the value of the aperture distribution, F(§,n), averaged

over a rectangular sampling increment centered at the point £ =0,

n =vt. Figure 16 illustrates the geometry of this final configuration.
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Figure 16, Principal Plane Mapping by Means of a Single
Incremental Sampling Area

While the feasibility of mapping the complete aperture in one flight
transit has proven to be unrealistic, it is apparent that conventional
plane cuts can be obtained by making several passes over the radiat-
ing aperture. The signal obtained from each transit would be a con-
tinuous mapping of the strip traced out by the sampling increment. As
was stated before, the accuracy of the measured distribution depends
mainly upon the size of the rectangular sampling increment; i.e., the
finer the resolution the more nearly the function A(t) represents the
distribution function at the point (0,vt). Also, the limitations on the
position of the sampling increment have been shown to be a direct result

of the size of samgling increment.
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This last observation can be further illustrated by a simple
application of diffraction theory to the conditions of the isclated samp-
ling increment. Consider a 1000-foot circular aperture which is to be
measured by a vehicle traveling at an altitude of 1000 feet over the cen-
ter of the radiating plane. Each isolated pertion cf the aperture can be
thought of as exhibiting a diffraction pattern which is a function of the
increment size. If the mapping vehicle is contained within the half power

beamwidth of the most distant increment, it is clear that the beamwidth
-1 500

1000 -
responds tc a radiating aperture with maximum dimensions of less than

of the increment must be of the order of 2 tan 530. This cor-

a wavelength.

Several factors affect the resolving power cf the sampling
system. Increasing the altitude of the probe decreases the cff-axis angle,
but this effect is nullified by the increased area subtended by the samp-
ling antenna beamwidth. Increasing the velocity of the sampling vehicle
would produce a greater Doppler shift and hence a greater filter resolu-
tion for a given bandwidth, but this occurs in sne dimensicn only, and it

.V . . "
has been shown that the ratio 5 is subject t¢ 2 maximum critical value.
One possible approach to this problem is syrthetic aperture

type signal processing. This is analyzed in some detail in the following

section.
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B. Synthetic Aperture Processing

One possible approach to obtaining greater sampling resolu-
tion is the application of synthetic aperture type processing to the signal
received from the sampling area. In recent years this system has been
developed in connection with ground-mapping radar to such a degree that
azimuth resolutions (independent of range and wavelength) of the order
of a few feet are cbtainable. Since most of the material available on this

subject is still classified, only a brief discussion will be presented here.

In ground-mapping radar applications, the transmitting
antenna used in a typical synthetic aperture system is "side looking",
relatively narrow beam, and of physical dimensions compatible with
airborne requirements. Range resolution is obtained by conventional
pulsing techniques while azimuth resolution is obtained by recording a
series of returns from each point target and then processing the recorded
data such that the physical antenna becomes an element of a large syn-
thetic array. The number of elements in the array is equal to the num-
ber of pulses recorded from each point target. Figure 17 illustrates

the geometry of a typical airborne ground-mapping radar.

It is apparent that the number of return pulses and hence the
length of the synthetic array is a function of the pulse repetition rate and
the length of time that the~ point target at P lies within the specular area
of the antenna beam. Hence, flight velocity and beamwidth are also
factors governing the len-gth of the synthetic array. Broadly speaking,
the length of the synthetic array will be comparable to the longitudinal
dimension of the specular trace and will have the conventional resolving

power of a physical antenna of that length,
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Figure 17. Geometry of a Side-Looking Synthetic Aperture
Processing Ground-Mapping Radar

In developing a suitable processing system it can be assumed
that the coherently pulsed signal is continuous. Under this condition,
the returned signal from a particular point target is continuous with its
frequency modified by a time and range dependent Doppler effect. There-
fore each point target generates its own continuous and unique Doppler
history as it passes through the specular trace of the physical antenna.
For example, in the case of a broadside looking antenna (i.e., main
beam normal to the direction of flight), the frequency of the received
signal changes from a higher to a lower value than that of the transmitted
frequency as the target enters and leaves the specular trace. Further,
when the target is exactly at the broadside position, the transmit and
receive frequencies are the same. This configuration has been used in

connection with a coherent reference oscillator and a pulse integration
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system in which the complete return from each target is compressed
about the "zero beat" point produced by beating the time-varying return
signal against the stable local oscillator.6 The zero beat point and
hence the center of the compressed return signal serves to identify the

azimuthal position of the point target with respect to the mapping vehicle.

Processing techniques have been developed using vector
addition, cross correlation, and filtering approaches. However, in a
recent publication it has been shown that these three approaches are
equivalent,7 hence in analyzing a particular aspect of a given system,

the most applicable approach should be used.

Although grossly over-simplified, the foregoing discussion
contains sufficient information for deducing certain conclusions regard-
ing the mapping of radiating apertures via synthetic aperture processing
techniques. As in any pulsed radar, the operation of a synthetic aper-
ture system consists of periods of transmission, during which time wave
trains of finite length are launched towards the target area, followed by
periods of reception during which time the reflected portions of the trans-
mitted wave are received. Hence during the period of reception, the
target area is analogous to a two-dimensional array whose elements
consist of all the point targets which lie within the specular trace of the
physical antenna. Therefore, it would appear that the transition fror.n
ground mapping to aperture mapping is a logical and straightforward
step. However, further investigation into the nature of the quasi-point
sources on which the analyses of the two "radiating apertures" are based,
brings out complications which appear to make the two systems incom-

patible.
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Continuing the analysis of the specular trace on the basis of
a two-dimensional array, it is apparent that the energy distribution on
each element (i.e., point target) is dependent upon the reflection coef~
ficient and the position of the point target with respect to the illuminating
and receiving antenna. Hence the target area as an array is made up of
an arbitrary number of elements wit}n distributions essentially random
in both magnitude and phase. Clearly this is a necessary condition for
the cperation of synthetic aperture type processing (i.e., each target
must have a unique Doppler history during its passage through the spec-
ular trace). For example, consider a target area made up of a large
number of identical, closely-spaced point targets. Under these condi-
tions the reflected energy is no longer made up of discrete incoherent
wavelets. Instead, as the separation between targets is decreased, the
reflected wave trains from adjacent targets begin to overlap in a well-

defined manner. The result is threefold.

1. The overlapping of the returned wave trains makes pulse
ranging impossible.

2. The Doppler frequency histories cf adjacent targets begin
to "look" alike.

3. Reinforcement and cancellation resulting from the coher-
ence of the reflected wavelets produce the usual lobed
pattern associated with any aperture which is illuminated
in an orderly manner.

Any of these three effects would make the synthetic preocessing system
inapplicable. However, for an actual illuminated aperture, the third
effect as discussed in the preceding secticn is probably the most deci-
sive. Hence, it appears that the coherent nature of the quasi-point dis-
tribution of a radiating aperture is incompatible with the requirements

of synthetic aperture procecsing.
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Having established the limitations of the foregoing analysis
as regards the number and position of sampling areas, any further dis-
cussion will be restricted to the conditions of the area directly under the
probe. In general, the distribution over an isclated pcrticn of an arbi-
trarily illuminated aperture will be nonlinear and asymmetrical in both
amplitude and pkhase. The added weighting effect cf the filter function
and sampling array pattern produces an aperture distributior that is
extremely complex. Fortunately, only a qualitative analysis is needed
and this can be accomplished with a sufficient degree of accuracy from
line source considerations. As reported by R, C, Spencer,8 the diffrac-
tion field of a line source can be analyzed in terms of the line distribu-
tion moments. For an arbitrary distribution, f {x!, the normalized

diffraction integral is,

! Tax
gl{u) = § f(x) exp(j T sin 6) exp (-jpx) dx

where

Franhofer diffracticn field

i

g(u)
f(x) = amplitude distributicn
a = length of the line source

N = wavelength

#

exp (-jpx) = linear phase deviation .
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Equation (66) can be expanded into its infinite series with the result

" 4 , F3 3 Fs 5
g(u)=po-ﬂu +71_!u - e +Jb-"1u"§'.7“ +5—!u T

where

Ta
u=—):-s1n6-B
1
B, = S\ xkf(x)dx
k -1

Py is referred to as the kth moment of f(x). The power pattern P(u)
follows from the sum of the squares of the real and imaginary series of

Equation (67),

CORT B B
2 2 2 o4 173 2] 4
Plu) = p = (p B, =) u +(—Ti—--—3-—+—4—z>u -

Multiplicative constants have been deleted in Equations {66) through (68).

Several important factors are immediately apparent from
Equations (67) and (68). First, it follows from the definition of By that
even and odd distribution functions produce respectively, pure real and
pure imaginary diffraction field series, which are again respectively
even and odd functions of the variable u. In the general case, both
real and imaginary components are present, however. Equation (68)

indicates that the power pattern is still symmetric about u= 0 andis a
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principal maximum there. Thus, the only asymmetry resulting from an
arbitrary amplitude distribution is the sign reversal in the imaginary

component of the field intensity which accompanies the sign reversal of
the u variable. The effect of the linear phase distribution can be seen
from the relat:ion4

T2 sin® -p .

E):a- sin 8 = B, hence the principal maximum or direction of
the main lobe is skewed by an angle §.

For u=0,

From these results, the following assumptions can be made
regarding large apertures with arbitrary amplitude distributions and
moderate but continuous phase variations. A small isolated area cen-
tered about a point in the plane of the aperture exhibits a symmetrical
power pattern with the principal lobe axis normal to the phase front at
the point. The on-axis field intensity is proportional to the zero distri-
bution moment which is simply the aperture distribution integrated over
the incremental sampling area, and the extraction of relative phase and
amplitude from a signal of this type can be performed in a conventional

manner.
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V. ERROR ANALYSIS

The errors associated with performing pattern measurements with
the Transverse Doppler Pattern Measurement Technique fall logically
into two categories: one includes the inaccuracies which are inherent in
the technique; the other consists of those errors which arise from devia-

tions in the assumed values of system parameters.

The former are, in general, functions of the r ystem aperture re-
solution, where the resolution is dependent on the composite parameter

kva . e . . . . R
=== in the longitudinal dimension, and on the directional characteristics

2Bh

of the sampling probe in the transverse dimension. Since the resclution
increment is of finite dimension and the measuring technique involves
essentially an averaging of the response received from the increment,
the ability of the system to resolve local variaticns from the average is
limited. In the case of the line source, the response is averaged only
over the longitudinal dimension of the sampling increment. For a two-
dimensional aperture, sampled by an omnidirectional probe, the response
is averaged over the transverse dimension of the aperture as well, and

the filtered signal is weighted by both the aperture distribution in the

transverse direction and the transverse extent of the aperture.

However, if a linear array is used for the sampling antenna, the
transverse dimension over which the signal is averaged is reduced to a
length proportional to the beamwidth of the linear array. Under this
condition, the weighting effect of the aperture distribution in the trans=~
verse dimension is lessened; however, the effect of the pattern factor of

the linear array must be accounted for in the final result.
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To determine the effect of errors attributable to system limitations
in the measurement of the aperture distribution, far field patterns were
computed from the "measured" aperture distributions of a line source
500\ in length for several values of system parameters and aperture dis-
tributions. These cases are plotted and discussed on pages 41 through
57 of Scientific Report No. 1.5 In general, the patterns computed from
the measured distributions are in good agreement with the exact patterns
in the main beam region, but are optimistic compared to the exact pat-

tern outside of this region.

Errors which are the result of variations in system parameters,
e.g., height, velocity, operating frequency, etc., during the measure-
ment interval are somewhat more difficult to analyze quantitatively,
However, what qualitative effects these deviations will have are readily
deduced from a consideration of Equation (15). Basically the system
parameters which may be expected to vary appear in three places in
this expression: in the amplitude factor, in the phase factor, and in the

resolution of the sampling function.

Since the time required for taking the measurement data (or aper-
ture fly~-by time) will be of the order of two seconds, variations in the
transmitted frequency during this time will be very small, perhaps of
the order of one part in 108 at UHF.9 The frequency dependence appears
as the parameter k(Z%) in all three factors of the equation, and since
Ak = k —f£ , variations of this order in frequency have little effect on
system accuracy. Even in the phase factor a variation in k of approxi-
mately two parts in 103 are required for v radians of phase change with

h = 1500 feet. An additional condition on frequency stability has been

assumed in the filter function of Equation (10), i.e.
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Hz(w) = (1

However, since the band of frequencies about W, » is essentially contin~
uous (except near the ends of the aperture) because of the Doppler con-
tributions, a moderate change in W corresponds to sampling a strip of
the aperture which is located either slightly ahead or slightly behind the
probe vehicle rather than directly beneath it. For example, at a velocity
of 880 ft/sec, a variation in frequency of one part in 108 causes an angu-

lar shift of the sampling region of approximately one percent.

Probe height, h, appears in both the phase factor and the argu-
ment of the sampling function. In the sampling function, the effec;c of
changes in h appear as variations in the resolution of the aperture. As
can be seen from Figures 5b, 20, and 21 of Scientific Report No. 1, >
changes in the composite parameter, K = kva/2Bh, over a large range
(2 to 1) have a relatively small effect on the accuracy of the aperture
distribution measurement and the corresponding far field pattern once a
certain minimum value of the parameter K is exceeded. In view of this

fact, it appears that small changes in the values of any of the individual

factors of K will not limit the accuracy cf the measurement technique.

The height, h, appears also in the phase factor. The phase may

WNh2 + g2 - kh\'1 + (%)2 (65

be written as
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and varies essentially as kh. Since h is of the order of one to two
thousand feet, very small changes in h percentage-wise can cause the
phase to shift appreciatbly. For a linear change in h, the éffect is that
of a linear phase shift across the aperture and can cause difficulty.
Therefore, it appears that it will be necessary to limit the variation in
h to the order of a wavelength during the measurement period. How-
ever, in the event that large flight path deviations, in terms of wave-
length, are unavoidable, it is possible to detect such deviations by means
of a Doppler and/or inertial stabilization system such as those used in
conjunction with ground-mapping radars. Such a system provides con-
tinuous monitoring of pitch, roll, altitude, and velcocity; hence the out-
put signal can be used to compensate for any deviations in flight path by
electronically scanning the sampling antenna, adjusting the filter fre-
quencies, and by varying the phase of the received signal in accordance

with incremental changes in altitude.

As was pointed out in Section III, the presence of a large linear
phase distribution in the radiating aperture necessitates a modification
of the mapping technique. Fortunately the solution to this problem is
straightforward and is contained in the general expression for the Doppler

frequency shift.

Referring to the geometry of Figure 1b, the frequency of the signal

received from a point in the §,n plane by the probe at P is given by

w

w—w+°
d ™ o ¢

22
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where c is the velocity of light and the term

is the Doppler irequency shift.

It has been shown that the radial distance, r, connecting P and

the point (£, 7n) is of the form

2 2
r=,J(vt-n) +nf g% (7:
Therefore, the Doppler frequency equation is,

wov(vt -n)
w, = w_ + . (7:

d o
c;‘](vt - 11)2 +h2 + §2

It should be mentioned that the proper sign has been chosen for the rudi-
cal of Equation (72) so that the Doppler shift is positive for n > 0 and

negative for n < 0.

For constant Doppler frequencies Wy =W,
i

Equation (72) becomes

2 wj vz(vt - n)z
(wi - wo) = (7:

CZEvt - 'n)?'”;-vh2 + 52]
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which reduces to

(vt-‘l’])2 —2—————--1 -£& = h . (74

For

2 2
wO A\
> 1 R
cz(w -w )2

i o

as is the case . here, Equation (74) represents a family of hyperbolas with

foci shifted along the n axis by the linear functicn of time, vt.

As was stated earlier, the physical significance of this is that there
is associated with a bank of filters at the probe P, a grid of hyperbolic
contours in the £,7 plane which travels in the same direction and at the

same velocity as the probe.

The effect of a large linear phase deviation will now be considered.
The geometry of Figure 1.8 correspdnds to that of Figure 1b with the ex-
ception of the tilted plane W which represents a wavefront emanating
from an aperture in the £, n plane which has been electronically scanned
through an angle 6 in the {,n plane. From t‘he geometry, the slant

range r connecting the probe at P with a genéral point in W is

r = NE2 4 (n - vi? + (b - 1)
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Figure 18. Plane Wavefront of an Electronically-Scanned Aperture

where

= tan O

3|
!

Therefore

dr -v(n - vt)

dt
2
ng $4{n -vt) +(h -7 tan 6).2
Hence the frequency of the signal at P is

wov( n - vt)

w, = w + —

o s
an§2 +{n - vt)2 +(h - n tan 6)2
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Equation (75) differs from Equation (72) in that the term (h - n tan 9)2
appears under the radical instead of hz. Because of this, Equation (72)
does not represent a traveling grid of fixed contours such as was devel-
oped from Equation (72). By following the procedure used to obtain
Equation (74), it can be shown that the resulting travelinggrid is made up
of contours in the §,m plane which change shape as a function of time.
However, one important exception exists which is more readily seen if
the £,n plane is rotated into the plane of the phase front. Figure 19

illustrates the results of this rotation. The expression for r is now

r = 4&2 +(n - vt cos 6)2 +(h - vt sin 9)2

/e e 3o

Figure 19. Plane Wavefront of an Electronically-Scanned
Aperture Rotated into the §,n Plane
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wo[zn «-vtcos 0) vcos ®+(h +vt sin 8) v sin 9]

c)\lgz +(n - vt cos 9)2 + (h - vt 8in 9)2

It can be seen from Equation (76) that the frequency of the signal received
from the point directly under P is independent of t for if the §,n coor-
- dinates of P (i.e., £ = 0, n = vt cos 8) are substituted into the equation,

‘the result is

wo(h - vt sin 0) v sin 6

wd = wo+
c(h - vt sin 6)
or
W
W, =T W +—°vsin9
d o c

Hence it can be concluded that if the slant range r is at all times normal

to the wavefront, the frequency of the signal received from the incre-

mental area will be constant and will differ from the fundamental frequency

W, by an amount proportional to the component of velocity in the direction
of r. Referring to Figure 20 it can be seen that this amounts to shifting
the slant range r ahead of the vertical by an amount equal to the scan

angle ©.
An alternate approach to this analysis is the consideration of the

time rate of change of phase produced by the motion of the probe with re-

spect to a constant phase front. Referring to Figure 20, if 0 is fixed and
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r is extended to point P' on the n axis, it is clear that the length PP'
does not change as P traverses a path parallel to the n axis. Hence
the Doppler shift is zero, however; the change in phase which occurs at

the moving point P' is not zero and can be expressed as
g P P

2 R TP X :
where (—x—" n tan 9) is the linear phase distribution in radians per unit
o

length. From the geometry of Figure 20,

Figure 20. Position of Slant Range r for a Constant Doppler
' -~ Frequency Shift
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n = htan 6 + vt

Therefore

d¢ _ 2rm 4
3t )‘o tan 6 It [h tane+vt:|

_va tan 6

which in terms of frequency reduces to

tan 0 . (7

€

i

€
nj<

Equation (78) is equivalent to the last term of Equation (77), for in both
equations the frequency shift is given by the product of the component of

velocity normal to the wavefront and the factor _Cc_>_ .
Hence, it may again be concluded that the frequency of the signal

received from an ircremental area centered about the point P' is con-

stant provided that r is normal to the wavefront.
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V1. EXPERIMENTAL DEMONSTRATION

An analytic investigation of this type should be accompanied by an
experimental program designed to verify the mathematical description
of the system and to establish the practical feasibility of the approach.
Generally, this experimental program can be of two types. One is a pro-
gram carried out in the laboratory, where modeling or scaling of the
physical components is done to achieve convenient values of size, fre-
quency, etc. The other type is an actual field measurement program
with a minimum or breadboard system using ﬁonveniently available
existing facilities. Application of each of these avenues of approach to
an experimental demonstration of the Transverse Doppler Pattern Meas -
urement Technique is discussed below, with emphasis on performing an

adequate demonstration with a modest amount of time and effort.

As indicated  in the material presented above, this technique is
most readily applied to linear arrays or rectangular apertures with sep-
arable distributions. Accordingly, the experimental programs discussed
assume linear arrays as the radiating structures. Extension to rectan-

gular arrays is, of course, straightforward.

A, A Laboratory Demonstration

Since this program is concerned with the measurement of
the patterns of large antennas (large both physically and electrically),
modeling or scaling of the radiating structure and the probe vehicle is
required for work in the laboratory. Reduction of both the physical and
electrical sizes of these structures may be accomplished by scaling in

frequency. If one somewhat arbitrarily chooses 100\ as a typical aperture.
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electrical length and 10 feet as a practical length for experimentation in
the laboratory, these sizes can be obtained at a frequency of 9830 Mc.
Using Figure 3 (page 16), for ka = 628.4, a = 2, and a linear resolution
corresponding to N = 10, kv/B = 17.6. With B = 30 cps, v = 8.4 ft/sec.
From Figure 4, kh = 197, giving h = 3.14 feet. Summarizing, the sys-

tem parameters then are:

L = 100N = 10 feet
f = 9830 Mc

h = 3.14 feet

v = 8.4 ft/sec

B = 30 cps

N =10 .

A quite compact arrangement may be designed with these parameters.

The main problem is, of course, that any reasonably-sized probe vehicle
is too small to carry the required signal processing system. Therefore,
a means of transferring the signal received at the probe antenna to a sta-
tionary signal processing system must be provided. Perhaps the simp-
lest way is to transfer the signal with a coaxial transmission line of
sufficient length to allow the probe vehicle to move freely over its entire

path.

A schematic of this laboratory system and a conceptual
drawing of its layout are shown in Figures 21 and 22. In Figure 21 the
linear arrayis indicated at the left with the movable probe antenna shown

to the right of it. A portion of the transmitter signal is used as the local
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Figure 21. Schematic of Laboratory Experiment

oscillator signal and mixed with the signal received by the probe antenna
to form a homodyne (or 0 IF) receiving system. The mixer is followed
by a low-pass filter to provide the resolution on the aperture, phase, and

amplitude detector, and a dual trace recorder.

By using a portion of the transmitter power as the local
oscillator signal, good audio frequency stability can be obtained without
requiring excessive stability in the RF signal. Narrowband filtering of

the Doppler component can then be accomplished without difficulty.
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and Recorder

Transmitter

Figure 22. Conceptual Drawing of the Laboratory Experimental System

Figure 22 is an artist's conception of the experimental setup.
The antenna whose far field pattern is to be measured consists of a 100\
X-band waveguide linear array. Suspended above the array on a nylon
line is a small carriage for supporting the probe antenna. Since the aper-
ture length is 10 feet, a probe path length of approximately 20 to 30 feet
will be required to adequately simulate actual full scale measurement
conditions. A high speed synchronous electric motor with its shaft speed
reduced in a gear train supplies the motive power for the carriage. The
motor is located at one end of the probe carriage path and draws the car-
riage toward itself with a nylon cord. A second nylon cord, attached to

the opposite end of the carriage, leads to a device which provides a small
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constant tension opposing the motion of the carriage. This insures that
the probe velocity will remain essentially constant over the major por-
tion of its travel. An automatic limit switch is provided to disengage the
motor as the extremity of the carriage travel is approached. The probe
antenna is an X-band, half-wavelength dipole suspended from the car-
riage. The RF signal received by the probe antenna is fed through a
length of flexible miniature shielded coaxial transmission line to the
signal processing network, then detected and recorded. The recorded
trace is a plo* of received signal versus time and corresponds to the
aperture distribution. Both phase and amplitude detection must be per-
formed in order to determine the distribution. The far field character-

istics are then determined by integration of the aperture distribution.

Evaluation of the system's performance in measuring vari-
ous aperture distributions may be made by measuring the aperture
distributions of the antennas and comparing the far field patterns com-
puted from the measured aperture distributions with the actual patterns
measured by conventional means in the far fields of the antennas. Fab-
rication of individual slot waveguide arrays for a variety of amplitude

and phase distributions is required to obtain the test arrays.

An alternate arrangement of the experimental setup is
shown in Figure 23. Here the probe path is vertical rather than hori-
zontal and some of the difficulty in maintaining a constant distance be-

tween the probe and the aperture is alleviated.
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Figure 23. Conceptual Drawing of Alternate Laboratory Experimental
System
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B. Field Demonstration

Because of the availability of several large antennas located
throughout the country, it is possible that a full scale demonstration
might be preferable to the scaled experiment outlined above. Certainly
in the final analysis, a full scale program must be carried out; hence if
the laboratory experiment can be avoided, much time and expense will

also be avoided.

The apparent advantages of a full scale approach then are

twofold:

1. Elimination of the design and fabrication of
a transmitting antenna.

2. More realistic results.

For example, consider the long linear array located near Archer City,
Texas (part of the U.S. Navy's space surveillance system); this array
has a maximum linear dimension of one mile. At the frequency of
operation, this corresponds to a length of the order of 1000 wavelengths.

Typical parameters for an antenna of this size are:

a = 2

N = 60

V = 840 ft/sec .
B = 30 cps

h = 1190 feet

These values have been computed from the curves of Figures 3 and 4.
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Using these parameters, the experimental procedure differs

from that of the laboratory technique in essentially two ways:

1. A portion of the transmitter output can no longer
be used as a local oscillator signal,

2. Variations in probe path, both direction and
velocity, must be considered.

Of the former, no great difficulty is encountered since local oscillators
with frequency stability factors of the order of one part in 108 are well

within the state-of-the-art.

Concerning probe path variations, as has been stated in
Section IV, B, errors of this type can be detected and compensated for
by means of a suitable inertial system; however, since the fly-by time
is low, it is felt that these effects can be ignored in the initial experi-

mental investigation.

It should be noted that all data processing and recording
f equipment can be carried by the mapping vehicle, where the stable local
! oscillator frequency is determined by the desired off-set from the ground
transmitter frequency.
L 2
Since the array considered here is a discrete element array,
. the aperture distribution is available by actual element measurement.
Hence the antenna provides an accurate experimental standard., Figure
24 illustrates the mapping vehicle, the test array, and the data pro-
cessing system. The sampling probe is a single element which provides
large angular coverage. The received signal is mixed with a signal

equal in frequency to the ground-stationed transmitter, and the output
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Figure 24. Schematic of Experimental Field Demonstration

~ of the mixer is then passed through a low pass filter.

filter then contains the desired information concerning the average phase

The output of the

and amplitude of the energy radiating from the sampling strip.

It is felt that data obtained in an experiment of this type would

provide, at a nominal expense, much information on the feasibility, limits,

and accuracy of Transverse Doppler Pattern Measurements.
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Vil. SUMMARY AND CONCLUSIONS

A mathematical description of the Transverse Doppler Pattern
Measurement Technique has been derived on the basis of the scalar dif-
fraction equation. In the initial phase the effect of Doppler frequency
filtering was analyzed and the results of this analysis were applied to
specific and one- and two-dimensional apertures. The data computed
from this application have established certain limitations as to the ver-
satility of a Doppler filter sampling system. Specifically, it has been

shown that this technique provides a sampling resolution in one dimen-

8ion only and is therefore most applicable to linear arrays and rectan-

gular apertures with separable distribution.

In an attempt to develop a technique suitable for more general ap-
ertures and distributions, a second analysis was performed which included
the effect of a linear array sampling antenna. Because of the additional
resolving power of the directional sampling antenna, it was possible to
derive a sampling function which isolated, within the boundaries of an
arbitrary two-dimensional aperture, a rectangular sampling area of com-

paratively small dimensions.

In an attempt to extend this approach, the effect of multichannel
processing was examined in which the radiating aperture was broken up
into a series of incremental areas by means of a multichannel Doppler
filter bank. It was found that while this concept is mathematically feas-
ible, limitations are again encountered because of the directional depen-
dency of the signal received from each sampling increment. Since this
directional dependency is a function of sampling increment size, an at-

tempt to increase the sampling system resolution was made by utilizing
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the concept of synthetic aperture processing. Here again the coherence
of the quasi-point sources which make up the aperture distribution proved
to be detrimental and it was shown that synthetic aperture processing is

not applicable to the Transverse Doppler Pattern Measurement Technique.

It has been concluded that the technique developed, while in some
respects limited, are suitable for measuring with good accuracy a vari-
ety of large one- and two-dimensional arrays. The extent of the accu-
racy is of course dependent upon many factors and has been discussed

in some detail in the Error Analysis section of the report,

Specifically, it is felt that long linear arrays and two-dimensional
arrays with separable distributions can be mapped with a minimum of
equipment and expense. Hence, two experimental procedures have been
outlined ca this basis which are designed to prove the feasibility of the

analytic results.

However, it is emphasized that while the possibility of mapping an
entire aperture in one probe transit does not appear to be feasible, a
technique has been developed which provides for the principal plane dis-

tribution mapping of any aperture.

In the case of a one-dimensional array, the result is of course the
linear distribution. For a two-dimensional array with separable distri-
bution, sampling by means of a simple probe produces a mapping of the
aperture distribution in the direction of probe transit which is weighted
by the transverse aperture distribution. In this case, a second orthog-
onal cut is needed in order to separate the mutual weighting effects of

the distribution functions. If a linear array sampling probe is used,
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principal plane aperture distribution cuts can be obtained from any type
of radiating aperture. It has been shown that even the large phase de-
viations associated with electronically-scanned apertures present no

problem.

Hence, it is apparent that the Transverse Doppler Pattern Meas-
urement Technique is feasible and has great potential in the expanding
field of large aperture antennas. It is felt that the next logical step is
the development of an operational system. As outlined in Section VI, a
scaled laboratory experiment or a rudimental field measurement would
provide much information concerning the actual hardware needed to
detect, process, and record the sampling system data. Having accom-
plished this, it remains to refine the system resulting in a reliable and
accurate system for obtaining the radiation characteristics of large

aperture antennas from measurements in the near field.
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APPENDIX A

A formulation which appears to somewhat simplify the computa-
tional difficulties of Equation(32) may be obtained by retaining the aper-
ture coordinates in polar form. Under these conditions, the equation

corresponding to Equation (8) is

ik 27w a ‘ 0
S (t) = == ay S pF(p) dp S H(w) exp (jwt) dw
Yy 2
(27) o o =00

1/2
S‘oo exp [-jk[(vt' - p sin \IJ)Z + hz + p2 cosz \b] - jlw -wo) t}

t
172 dt

°° [(vt' - p sin 41)2 + h2 + p2 cos2 41]

ik 2n a o w-w
= J_z d¢§ pF(p) dp S H(w) exp] jlwt - 2 p sin | [dw
(27) o o -0 v

We=-Ww [
o XP [—jk[ ~ i (vt' -psiny) + r\l(vt' - psin 4;)2 + h2 + p2 cos'2 LIZB
dt'

J.

As shown in Appendix B, the t' integral may be performed to give

,\‘(vt' - p sin ¢)2 + h2 + p2 cos2 ]

N w-Ww
L oall) |k 6% + 6% cos® 4 1-( kv°)
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(1)

where H (z) is the zero order Hankel function of the first kind.
o

The integral in w may be performed also for

sin [(w - wo) %{l

H(w) = (8
@-u) =

2

fw - wo 2
with the approximation — << < 1 give

2 , T
T i |t - p sin ¢| < >
(8;
. T
0 ; |t-psiny| > >
With the substitution of Equations (80) and (82), Equation (79) becomes
-k exp (jo_t) ('2m a
- 1 2 2
S.(4) = ° ay \ pF(p BV [k'J(h + p% cos’ u»] dp (8.
y 2vT o b (4]
for | vt - p sin §| <z-21, and
S(t)y =0 8:
y (
for vt - p sin | > % . Equation (83) still contains a two-dimensional

integral, but it has somewhat different properties from Equation (15): The
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sampling function is not expressed explicitly, but appears implicitly
in the limits, and the only approximation made in the evaluations is

that

2

w-wo)
— <<< 1 . (8

This condition is met very well for typical system parameters, such

as those discussed above.

That Equation ( 83) has basically the same character as Equa-
(12

tion ( 15) may be seen by considering the asymptotic form of Ho

for large values of the argument

. ,I 2 2 2
(1) \J > > 2 >~ exp (]k h™ +p cos q;)
Ho kNh™ +p cos | —>» ,l— - —_— — . (8¢
. v ’\J NoZ + o2 con?
] kNh +p coz ¢

With this substitution, the form of the two equations is identical (p cos

= £) with the exception of the 2y sampling function and an amplitude
factor (h2 + p2 cos2 ¢ appears as the fourth root rather than the square
root). However, as mentioned above, the sampling dependence is im-=-

plicit in the limits of Equation (83).
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APPENDIX B

To evaluate the integral

Wew

Sw exp[-jk[ kvo {p sin y - vt') + ,J(p sin § - vt')2 + h2 + p2 cos2 q,]}
<0

'\j(p sin § - vt')2 + hZ + pZ cos2 Y

I - at' ,

1

the change cf variable

. . 2
p sin § - vt! + kv \ll_“(gsm\p—vt')

w-o h2+p2cosz¢

’\Ihz + p2 cos2 $

leads to a form with a more obvious solution.

k'\lh2 + p2 cos2

. Y
exp<¢ -} kv

| (kv )2
i—— -1
w-w
. O,
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and the function

. 2
w-w
2 2 2 o
kg |[(h” +p cos )|l - (—- o~ )
is designated by z, the familiar Bessel furi~tion integral is obtained

w -
Il - %S exgz(-!zz) dy
00

Ny -1

One way to solve this last integral is to separate the integral into two

integrals over different parts of the region of integration.

-1 ooexg(-jzz)d LY lexg(-jzz)d .5 ® cos zy N
TV e 2 i -1 4 1 2 4

: 0
Now using the formulas from McLa.c:hla.n1

1
§ .e_xEE.LzL). dy = nJ (z)
-1 2 °
l -y
0
25 =222 4y = -nY (2) ,
1 73 °

Ny -1

87



-t

gives the relation

L - (e i) - 2 6

(1)
o

where J (z), Y (z), and H
o o (1)
and argument z that are commonly designated by J, Y, and H ™',

(z) are the Bessel functions of zero order

Reintroducing the value of z gives

2
i (1 2 2 w-ow
A PN SRS [ )
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