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ABSTRACT

A cold cloud is defined as one that radiates infrared energy at a
low temperature (about 200°K). The problems that present infrared
horizon sensors on space vehicles are experiencing from cold clouds are
discussed. Efforts to design new sensors to overcome these problems are
also mentioned. Conditions favorable for cold clouds are descrited as
the high, cold tropopause of a tropical air mass and a weather disturbance
in this tropical air capable of generating dense cirriform clouds near
the cold tropopause and associated lower opaque clouds to shut off
radiation from lower levels. These weather disturbances may be in the
form of an active Intertropical Convergence Zone, tropical cyclones,
monsoons and extratropical cyclones. Distributions of these conditions
favorable for cold clouds over the earth are discussed and illustrated
with photographs. Particular emphasis is placed on the possibilities
for cold clouds associated with an extratropical cyclone. Specific
examples of this type of storm are studied, including one that was viewed
by the infrared sensors of Tiros II. A model is formulated showing the
location of an area favorable for cold clouds in an occluding extra-
tropical cyclone. The association of a poleward-moving jet stream
with a poleward-extending area favorable for cold clouds in an extra-
tropical cyclone is noted. Therefore, a longitudinal frequency
distribution of such areas is implied in a longitudinal frequency

distribution of poleward-moving jet streams.
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I INTRODUCTION

Several U.S. satellites and space vehicles--such as. Mercuwy, .
Discoverer, and Nimbus--derive their attitude control from infrared
sensors that detect the infrared radiation boundary between cold space
and the relatively warm earth. Recently there has been much concern ;
over the ability of these sensors to detect the earth~space boundary
accurately. This concern has been mainly due to the inability of current
infrared horizon sensor designs to distinguish clearly between a transition
from warm earth to cold space and a transition from warm earth to a sheet
of high cold clouds near the horizon. In other words, the sensors cannot
reliably distinguish between the infrared radiation return from cold
space and the infrared return from these high cold clouds. As a result,
the sensors may erroneously interpret a cold cloud boundary that may
occur near the horizon as the true earth-space interface. A cold cloud
may be defined as one that radiates infrared energy at a low temperature
{about 200°K). 1Its infrared radiation characteristics are quite similar

to those of space.

Designers are attempting to solve the cold cloud problem by incorpora-
ting into their designs infrared sensors sensitive to radiation that is
strongly absorbed by the atmosphere. The basis for this approach is that
currently operational sensors are mainly sensitive to infrared radiation
emitted by the earth in the 8-13 micron "window' region. (Infrared
radiation in this bandwidth is transmitted with little absorption through
the atmosbhere.) As can be seen in Fig. 1, this type of sensor experiences
a sharp drop in energy level when sighting on a cold cloud rather than
the earth, The sensor interprets this drop in energy in the same way as
passage across the space-earth interface and may temporarily adjust
vehicle attitude as much as several degrees in error, depending on the
extent of the cold clouds. Therefore, present recommendations for future
horizon sensor designs indicate they should be sensitive to longer wave-
lengths, such as the 14-16 micron band (See Hanel, Bandeen and Conrath,

1962). In this band, atmospheric CO, strongly absorbs infrared radiation

1
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emitted from the earth (See Fig. 1). Therefore, & sensor responsive to
these wavelengths would detect relatively little difference in energy
level between attenuated earth radiation and that of extremely cold,
high-altitude clouds, and probably would be less likely fooled by these

clouds as are earlier sensor designs.

These advanced sensors may solve the cold cloud problem, but at this
point, there are still some uncertainties in their design and development.
If these new sensors are not completely successful, a study such as this
of the nature of cold clouds and their distributions over the earth could
prove useful in operational programming of satellites to attempt to cope

with this adverse effect.

In this study, the nature of cold clouds is discussed first;
geometrical considerations pertinent to viewing these clouds near the
horizon from a satellite are then presented; and finally, the distribution

of these clouds over the earth is discussed.



II THE NATURE OF COLD CLOUDS

A cold cloud is generally defined as a cloud surface that acts as
a low-energy infrared radiator at a temperature of about 200°K. As one
might suspect, in order for a cloud to have a temperature as low as
200°K, it must be located at considerable altitude. In looking at
representative temperature soundings for various types of air masses
(Fig. 2), it is seen that the coldest temperature in each air mass type
is generally found at the tropopause and that, significantly, the
coldest tropopause temperature of all air mass types is in a tropical
air mass. Temperatures on the order of 200°K or less are indicated near
the tropical tropopause, so it is apparent that any clouds located in
this region meet the temperature criteria of cold clouds. Clouds of
the cirriform type do occur near the tropical tropopause and are generally
associated with weather disturbances such as an active Intertropical
Convergence Zone, monsoons, tropical storms, and extratropical cyclones

in the middle latitudes.

In order for cirriform clouds to present extremely cold infrared
temperatures to a satellite, little or no infrared radiation must
filter through from the ground. Dense cirriform clouds near the cold
tropical tropopause, associated with lower opaque clouds that effectively
shut off radiation from low levels, should thus appear really cold to a
satellite infrared sensor. Although cirriform clouds may occasionally
be found in arcétic: and polar:air, or in tropical air not associated
with lower opaque clouds, it is not believed that the radiation returns
of these cirriform clouds would really classify them as cold clouds.
This is because the tropopauses of polar or arctic air are relatively
warm (See Fig. 2) and because cirriform clouds by themselves are some-
what transparent to warmer radiation from below. Therefore, it has
been assumed in this study that cold clouds are synonymous with dense
cirriform clouds in tropical air that are associated with lower opaque

clouds and are produced by weather disturbances.
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III GEOMETRICAL CONSIDERATIONS

The geometry of a satellite horizon sensor viewing toward the
horizon is important in any consideration of cold clouds. Figure 3
illustrates this geometry. As can be seen, a cloud area existing
directly above the horizon point does not obstruct the sensor line-of-
sight to the horizon, but must be somewhat closer to the satellite
along the line-of-sight. An effect apparent in the geometry is that
the first degree or two below the horizon, as observed from a satellite,
encompasses a considerably wider area on the earth than the same angular
increment several degrees below the horizon. The magnitudes of these
areas viewed over long distances by a satellite indicate that extended
cloud systems associated with meso- or synoptic~scale weather disturbances,
rather! than'individual: cloud elements, are most likely to affect the
horizon sensors significantly. Also, the minimum width of a band of
cold clouds corresponding to a particular angular error in horizon
location increases as the orbital altitude of the satellite increases.
These effects are indicated in Fig. 4 by curves based on the following
assumptions:

(1) Cold clouds at an altitude of 10 nautical miles

(approx. 60,000 feet),

(2) A perfectly spherical earth,

(3) No atmospheric refraction, and

(4) An effective infrared earth-space interface at

about 20,000 feet altitude.
The last assumption takes into account infrared radiation from the
atmosphere itself and is an estimate based on curves presented by Hanel,
Bandeen and Conrath (1962) for the 8-12 micron atmospheric window region.
As far as the other assumptions are concerned, cold clouds may occur a
few thousand feet below an altitude of 10 nautical miles (See Fig. 2),
but it is believed that this variation plus those due to a non-spherical
earth and atmospheric refraction, would produce only minor changes in

the results shown. As an example of the relationships indicated in

6
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Fig. 4, a band of cold clouds about 200 nautical miles wide could cause

an angular error in horizon location of about 2° in a satellite orbiting
at an altitude of 100 nautical miles; whereas it would require a band of
cold coulds about twice as wide to cause a similar angular error in a

satellite orbiting at 500 nautical miles altitude.

Another important geometrical aspect of the cold cloud problem
is the variation of that portion of earth visible from a satellite.
Figure 5 indicates the portion of the earth visible from a satellite
at various orbital altitudes. The visible portion is represented by
the distance from the sub-point (point directly below satellite) to the
horizog, measured both linearly and angularly. An increase in visible
portion is noted as orbital altitude of the satellite increases. For
example, a satellite orbiting at 100 nautical miles altitude can view
almost 15° of earth surface in any direction; while a satellite'orbiting
at 500 nautical miles altitude can view almost 30° of earth surface in
any direction. The significance of these data is that not only may a
satellite orbiting at 100 nautical miles altitude observe, at one instant,
cold clouds near the horizon that are related to systems in the middle
latitudes and tropics of one hemisphere, but also the higher orbiting
satellites may, at one instant, observe cold clouds near the horizon
associated with systems in the middle latitudes of the northern
hemisphere as well as cold clouds associated with systems in the middle

latitudes of the southern hemisphere.
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IV DISTRIBUTION OF CONDITIONS FAVORABLE FOR COLD CLOUDS

A. GENERAL

Cold clouds are found near the cold tropopause of tropical air
masses and are associated with other opaque clouds and weather disturbances.
Therefore, a distribution of clouds of this type over the earth must be
related to the horizontal distribution of tropical air over the world
as well as weather disturbances associated with this tropical air.
Accordingly, the distribution of such meteorological features has been
investigated. 1In the following discussion of these features, examples
of observed cloud distributions are shown, when appropriate, and areas

delineated where conditions are favorable for cold clouds.
B. COLD TROPOPAUSE DISTRIBUTION

Figure 6 shows the average distribution of temperatures at the
tropopause over most of the world for the four mid-months of each season
(Goldie, Moore and Austin, 1958). The tropical tropopause is shown over-
lapping the polar tropopause in that region where the frequency of
occurrence of both is greater' than 10%. The overlapping regions are
in those latitude belts where frequent extratropical cyclones traverse.
Quite often, tropical air advection (i.e., transport) occurs considerably
farther poleward than indicated in these average distributions. Such
advection is usually concomitant with development of a blocking anticyclone
into high latitudes. As an illustration of this situation from the
reference cited, Fig. 7 is a sounding made at Cold Bay, Alaska (55°N,
163°W), at 0000 GMT, 21 May 1960 (Serebreny, Wiegmen and Hadfield, 1962).
Note the cold tropopause of this sounding similar to that typifying a

tropical air mass in Fig. 2.

Returning to the maps of average distribution of tropopause
temperatures (Fig. 6), one can see that temperatures of 200°K or less
occur continuously over the region 20°5~20°N latitude, with some poleward

drift during the summer season. On the average, tropopause temperatures

10
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increase slowly poleward but can still be as low as 210°K as far north
and south as 40° latitude. The upper limit of cold cloud temperatures
that can still cause trouble with satellite infrared horizon sensors
has not been established, but is assumed to be somewhere near 210-215°K

in this study.
C. INTERTROPICAL CONVERGENCE ZONE

In addition to a favorable temperature structure, cold cloud
formation also requires the presence of a weather disturbance of some
kind in the tropical air mass. As mentioned earlier, this disturbance
may be in the form of an active Intertropical Convergence Zone (ITCZ).
The ITCZ is that region in the tropics where the trade winds from the
northern and southern hemispheres meet. This boundary migrates seasonally,
on the average, about 15° north and south of the equator in some places,
reaching its northernmost point in September and southernmost in March,
corresponding to the seasons of highest temperatures in the oceans
(See Fig. 8). Migration of the zone is in the form of a progression of
surges and hesitations dependent on the relative strengths of the
opposing trades. During these surges, the juxtaposition of relatively
cooler and warmer air produces frontal activity with associated weather,
thunderstorms, and multiple cloud layers, including cirriform clouds
reaching the vicinity of the tropical tropopause. This band of weather
activity may extend up to several hundred nautical miles in width, as

indicated by the extensive bright cloud areas in a sequence of TIROS III

satellite photographs (Fig. 9), so generously provided by Col. James C. Sadler °

of the International Indian Ocean Expedition. However, at times between
surges, the zone becomes so weak that it can hardly be located and little
or no weather or cloudiness can be found along it. Figure 10 shows a
sequence of TIROS I satellite photos taken on 12 April 1960 as the
satellite was passing southeasterly across the ITCZ just off the north-
east coast of South America. The ITCZ is represented by the bright band
stretching from left to right in the photos. The bright patches indicate
heavy clouds and precipitation which are believed associated with dense
cirriform clouds near the tropical tropopause. Figure 11 shows a map

of the area photographed in Fig. 10, with closest available surface
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FIG.9 ACTIVE INTER-TROPICAL CONVERGENCE ZONE
AS PHOTOGRAPHED FROM TIROS IlI
(Orbit 542, 0500 GMT, 19 Aug. 1961) (After Sadler)
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FIG. 10 TIROS 1 PHOTOGRAPHIC SEQUENCE ACROSS ITCZ ENTERING NORTHEASTERN
SOUTH AMERICA (Orbit 162, 1400 GMT, 12 April 60)

15



DY S =
\ 60%
A | | T

/ 30
15
MB

s
N
/
=M ‘ N
)

150 K 15°

\\
200 N ’
300 ﬁ ‘
\‘ 30°
500 N !
700
900 - — 45°
190 210 230 250 270 290 310°K SURFACE OBSERVATIONS
SAN. ANDRES (1200 GMT, 12 APRIL 1960)
(1200 GMT, 12 APRIL 1960) ]
<

FIG. 11 CLOUD OBSERVATIONS AND TEMPERATURE SOUNDING IN VICINITY
ABOUT PHOTOGRAPHIC TIME OF FIG. 10

16




observations and radiosonde information plotted. Note the tropical
nature of the sounding and surface reports of cirriform clouds associated
with other opaque clouds such as towering cumulus, cumulonimbus,
altostratus and altocumulus. (Explanations of cloud and weather codes

appear in Appendix A.)
D. MONSOONS

Monsoon winds also produce significant areas of dense cirriform
clouds associated with lower opaque clouds in tropical air. These
winds result from oceanic air flowing into a weak low-pressure area
developed over a land mass during the hot summer months. The moist
air warms and rises over the land mass and generates heavy rains,
thunderstorms and multilayer clouds building up to the vicinity of the
tropopause. Figure 8 indicates that major monsoon regions are located
in Central Africa, India, Southeast Asia, Australia and Northeast South
America and are related to the seasons and migration of the Intertropical

Convergence Zone.
E. TROPICAL CYCLONES

Tropical cyclones are another important source of areas of dense
cirriform and associated lower opaque clouds in tropical air. These
storms originate in the tropics, but their life cycles and tracks may
take them eventually into higher latitudes. They may vary in intensity
from weak low-pressure areas of discontinuously squally weather with
winds of 20 to 30 mph up to well-developed systems of heavy clouds and
torrential rain with surface winds of 100 mph or more, better known as
hurricanes or typhoons. The size of these storms can also vary from
about 100 miles to about 1000 miles in diameter. The principal areas
of formation and paths of tropical cyclones (Dunn and Miller, 1960) are
indicated in Fig. 12. Conspicuously absent are tropical cyclones in
the South Atlantic Ocean and Eastern South Pacific. This appears to
be due to low ocean-surface temperatures and the negligible migration
of the ITCZ south of the equator in those regions. Both high ocean-
surface temperatures and appreciable migration of the ITCZ from the

equator toward the source region seem to be prerequisites of tropical
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cyclone formation. Figure 13 shows average monthly frequencies of
tropical cyclones (Dunn and Miller, 1960) forming in the source regions
indicated in Fig. 12. Note that far more tropical cyclones form in the
West Central Pacific Ocean off the coast of Southeast Asia than in the
other source regions. Not only are there more there, but they are quite

often larger in size and more violent than elsewhere.

Figure 14 is a mosaic of photographs taken at 1815 GMT on 5 October
1954 from a rocket 100 miles above White Sands, New Mexico, and looking
southeast toward a tropical storm (spiral cloud pattern in photograph)
located near Del Rio, Texas (Hubert and Berg, 1955). The storm had
moved westward from western Cuba on 2 October with surface winds up
to 30 knots, then had continued across the Gulf of Mexico with little
change, never developing into a hurricane. On 4 October, the center
of the storm crossed the Texas coast about 40 miles ncrth of Brownsville,
During passage of this system, Brownsville recorded 3;09 inches of
rain in 45 minutes and over 6 inches in 3 hours. During the day the
photographs were made, the rainfall pattern associated with the storm
decreased in intensity, then increased again when the storm moved over
the Big Bend region of Texas and the southwestern corner of New Mexico,
causing floods in the area of Roswell, New Mexico. The upper air
sounding taken at 1545 GMT, 5 October 1954,vat Del Rio, Texas, and
surface observations taken in the vicinity about the time of the rocket
photographs are indicated in Fig. 15. Once again, observe the high
cold tropopause of tropical air in the sounding and several surface
observations of cirriform clouds accompanied by other lower opaque

types. '
F. EXTRATROPICAL CYCLONES
1. General

The boundary zone between cold air from the polar regions and
tropical air equatorward is also an important source of cold clouds in
the middle latitudes. Extratropical cyclones, which are wave disturbances

on this boundary or polar front, result in frequent poleward invasions
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FIG. 14 MOSAIC OF ROCKET PHOTOGRAPHS OF TROPICAL
STORM LOCATED NEAR DEL RIO, TEXAS
(1815 GMT, 5 October 1954) (From Hubert and Berg, 1955)
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of tropical air to high latitudes. As noted in Fig. 6, a tropical
tropopause may, on the average, extend as far north and south as 40-45°
latitude over 10% of the time. This is primarily due to the periodic
passage of extratropical cyclones through the middle latitude belts,
Frequently, tropical air advection occurs to even higher latitudes in
well-developed extratropical cyclones. Figure 16 shows where tropical
air is transported poleward with respect to extratropical cyclones.

The figure is based on a three-dimensional model (Bergeron, 1951) of
successive extratropical cyclones moving eastward in the North Atlantic.
Poleward advection of tropical air is indicated in the form of a tongue
that rides up over the wave on the polar front associated with the
cyclone. In the case of a young cyclone, i.e., before and during early
occlusion, note that the tongue extends poleward mainly over the warm
front portion. However, as the cyclone matures and becomes more occluded,
the tongue not only extends poleward over the warm front but also circles
cyclonicly back over the occluded portion. Note also that the jet stream
is along the boundary between the tropical and polar air near the
tropopause and that a poleward-moving jet stream is along the left
boundary of the poleward-extending tongue of tropical air with its cold
tropopause. Cloudiness is usually found in this tongue of tropical air,
due to either ascent over the lower polar air or ascent caused by
instability and low-level convergence before frontal upgliding. Near

the cold tropopause, this cloudiness is generally of the dense cirriform

type.

2. Extratropical Cyclone Photographed by TIROS I over North Pacific

To illustrate these characteristics, four examples of extratropical
cyclones were studied. The first was centered at 48°N, 175°W in the
North Pacific at the time the TIROS I satellite photographed it during
Orbit 720 on 21 May 1960. This storm has been studied in detail elsewhere
(Serebreny, Wiegman and Hadfield, 1962). Figure 17 shows the satellite
photographs of the storm during Orbit 720. The 300-mb jet stream axis is
superimposed on the satellite photographs and is further defined on the
accompanying 300-mb map (Fig. 18). Figures 19 and 21 are the surface and

tropopause temperature maps of the area, respectively. Figure 20 is an

.21
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overlay of the surface frontal positions, 300-mb jet stream axis,
distribution of tropopause temperatures of 215%°K or less, and surface
observations of clouds from these maps. It may be noted that the overlay
(Fig. 20) shows information from Fig. 21; however, the overlay appears
first to allow easy comparison of the overlay data with the complete

tropopause temperature distribution (Fig. 21).

At the tropopause level, a tongue of tropical air at cold cloud
temperatures is seen extending north to Alaska on the right of the
poleward-moving jet stream axis, To the west of this cold tongue,
warmer tropopause temperatures typical of polar air are noted. Cirriform
clouds are reported by only a few surface observers under the tongue
of cold tropopause temperatures; however, this seems due to the scarcity
of observations and extensive lower clouds obscuring any higher clouds
from view. These lower clouds are necessary, though, in our definition
of cold clouds. There is also significant probability of dense, cold
cirriform clouds along and somewhat to the rear of the surface cold front
where it trails out south and west from the tongue of cold tropopause
temperatures and where it lies under the cold tropopause (1ower left
portion of Figw 20). This is substantiated by surface observations of
cirriform clcuds, lower opaque clouds and showers reported in the area,

3. Extratropical Cyclone Photographed by TIROS I over Central
United States

Figure 22 represents TIROS I satellite photographs of another
extratropical cyclone which was extensively studied previously (Timchalk
and Hubert, 1961) and which was centered in the central United States.
These photographs were taken just a few hours before those just discussed
depicting the extratropical cyclone in the Pacific. The jet stream axis
over the cyclone is revealed on the accompanying 300-mb map (Fig. 23).
Figures 24 and 26 are the surface and tropopause temperature maps of the
area, respectively. Figure 25 is an overlay of the same type as shown in
the previous example., Again, a tongue of cold tropopause temperatures is
noted extending northward on the right of a poleward-moving jet stream
to the vicinity of Hudson Bay. Warmer tropopause temperatures of polar

air are again observed immediately west of the cold tongue. Note several
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surface observations of cirriform clouds, lower opaque clouds and
precipitation within the cold tropopause tongue. Another interesting
feature associated with this cyclone is a pre-frontal squall line.
Thunderstorms along it show up as bright cloud areas in the satellite
pictures (Fig. 22). The squall line is a very common occurrence in the
central and eastern United States and often forms a nearly continuous
band'stretching for hundreds of miles in an alignment roughly parallel

to and ahead ofithe surface cold front. Note that the squall line with

its line of thunderstorms is within the area of cold tropopause temperatures,
and that there are also showers, thunderstorm activity, and cirriform clouds
along the trailing cold front where it lies under the cold tropopause.

4. Extratropical Cyclone over Central United States
with Associated Squall Line Photographed by U-2

Some impressive pictures of thunderstorm clouds along a squall line
were taken from a high-flying U-2 aircraft on 28 May 1962. A sequence
of these pictures, shown in Fig. 27 was taken as the U-2 was approaching
the line from the west. The squall line was located ahead of a surface
cold front associated with another extratropical cyclone in the central
United States. (See surface map, Fig. 28). The U.S. Weather Bureau
analysis did not indicate the squall line extending into Texas in this
map of about two hours later than the photographs. However, thunderstorm
clouds were still reported there at the time. Figures 29 and 31 are
the associated 300-mb and tropopause temperature maps, respectively.
Figure 30 is an overlay of the same type as shown in the two previous
examples. A tongue of cold tropopause temperatures again is observed
extending northward to the right of a poleward-moving jet stream. Warm
tropopause temperatures of polar air are again noted to the west of the
cold tongue. The squall line activity as well as several other surface
observations of cirriform clouds, lower clouds and precipitation are again
indicated within the cold tropopause tongue. Showers, thunderstorm
activity and cirriform clouds are also noted along the trailing cold

front where it lies below the cold tropopause.
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5, Extratropical Cyclone Viewed by TIROS II Infrared
Sensors Over Great Lakes

The fourth extratropical cyclone studied was centered over the
Great Lakes when infrared sensors on the TIROS II satellite scanned
over it at 1100 GMT, 29 November 1860. Figures 32, 33, and 35 represent
the 300-mb, surface and tropopause temperature maps, respectively, over
the area on 1200 GMT, 29 November 1960. Figure 34 is an overlay similar
to those of the previous examples, except that isopleths of equivalent
blackbody radiating temperatures (°K) in the 8-12 micron atmosp.eric window
region (See Fig. 1).have also been added. It may be recalled that(most
currently operational infrared horizon sensors are sensitive in this
wavelength region and that cold clouds are a significant problem to these

sSensors.

A tongue of éold tropopause temperatures is again observed extending
northward to the right of a poleward-moving jet stream, with a projection
of these cold tropopause temperatures westward over the occluded portion
of the cyclone. Warm tropopause temperatures of polar air are noted
again to the west of the cold tongue, and several observations of cirri-
form clouds, lower opaque clouds and occasional precipitation are also
indicated within the cold tongue, where conditions appear favorable for
cold cloud occurrence. This last statement is supported by the infrared
data on the overlay (Fig. 34), which indicates the areas of lowest
radiating temperatures are within the cold tropopause tongue. However,
the lowest radiating temperatures measured by the satellite are about
20°K warmer than the indicated tropopause temperatures. This discrepancy
is probably due to the highest clouds occurring a few thousand feet
below the tropopause or the satellite infrared sensors viewing non-
uniformly dense layers of cirriform and lower clouds. In the latter
case,'warmer infrared radiation from lower levels would be mixed in with
the cirriform cloud return.

6. General Model of Area Favorable for Cold Clouds Associated
with An Occluding Extratropical Cyclone

Certain similarities are noted in the examples just studied. A

jet stream moving poleward is associated with an active extratropical
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cyclone and occurs along the left boundary (in the northern hemisphere)
of a poleward-moving tongue of tropical air with its cold tropopause.
This tongue of cold tropopause temperatures outlines an area where
conditions are favorable for occurrence of cold clouds. Also, conditions
are favorable for cold clouds to occur with pre-frontal weather activity
such as squall lines farther equatorward in the warm sector of the cyclone
between the cold and warm fronts. Cold clouds are also probable along
and somewhat to the rear of the trailing surface cold front where it lies
under the cold tropopause. Figure 36 reflects these statements in a
general model of the area favorable for cold clouds associated with an
occluding extratropical cyclone. The length and width of the poleward-
extending cold tropopause tongue may be as much as 20-30° latitude and
longitude, respectively, with any variation mainly influenced by the
degree of meridional flow and the steepness of the slopes of the polar
air mass along the cyclonic wave.

7. Longitudinal Frequencies of Poleward-Extending Areas
Favorable for Cold Clouds Associated with Extratropical Cyclones

Since a poleward-moving jet stream associated with an extratropical
cyclone in the middle latitudes is indicative of a tongue of tropical
air favorable for cold clouds extending poleward, a study of the frequency
distribution of such jet streams in the northern hemisphere should provide
a measure of the frequency distribution of areas favorable for cold
clouds being projected poleward in the middle latitudes of the northern
hemisphere. The results of such a study are shown in Fig. 37 in the
form of average monthly frequency distributions of poleward-moving jet
streams as a function of longitude for the northern hemisphere. The
data sources for the study were five-year compilations, over a ten-year
period, of monthly and seasonal jet-stream occurrences at and north of
50° latitude at the 500-mb level for the northern hemisphere (Serebreny,
Wiegman and Hadfield, 1957, 1958). Noteworthy in these distributions
are the consistent relatively greater frequencies, particularly in the
fall, winter and spring months, in the 0-60°W and 120°W-160°E longitude
regions. These zones correspond to the two major regions of stagnation

of extratropical cyclones in the northern hemisphere. Figure 38 illustrates
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these regions. In the southern hemisphere, the pressure distribution
in the middle latitudes is not well known, but it appears that a more
or less continuous belt of general low pressure exists south of 40°
latitude (See Fig. 38). Such a pressure pattern should result in a
more uniform distribution of poleward-moving jet streams and associated
poleward projections of tropical air favorable for cold clouds as a
function of longitude than indicated in Fig. 37 for the northern

hemisphere.

48



V SUMMARY AND CONCLUSIONS

Currently operational infrared horizon sensors are having difficulty
with cold clouds hecause they are sensitive to earth radiation in those
wavelengths that are transmitted through the atmosphere with little or
no aksorption. Thus a sensor of this type detects a sharp change in
radiation intensity similar to that at the earth-space boundary when its
field-of-view passes across the boundary between warm, cloud-free earth
and a cold cloud. Future sensors are being designed to be sensitive to
longer wavelength radiation, which is greatly absorbed by the atmosphere.
Such a sensor will experience very little change in radiation intensity
as its field-of-view sweeps across the boundary between cloud-free earth
and a cold cloud. The new sensors may solve the cold cloud problem, but
at this point, there are still some uncertainties in their design and
development. In case the new sensors are not successful and the earlier
designs have to be relied upon, the results of a study such as this would
prove useful in operational programming of satellites, to help cope with

the problem.

louds that affect horizon sensors are dense cirriform clouds
occurring near the tropopause of a tropical air mass where the temperature
is on the order of 200°K. To appear really cold to an infrared sensor,

these cirriform clouds must be associated with lower opaque clouds.

Investigation of horizon sensor geometry shows that the first degree
or two below the horizon encompasses a considerably wider area on the
earth than the same angular field-of-view several degrees below the
horizon. Also the minimum width of a band of cold clouds corresponding
to e particular anguler error in horizon location increases as the orbital
altitude of the satellite increases. The portion of the earth visible

from a satellite also increases as the orbital altitude increases.

The magnitudes of these areas viewed over long distances by a
satellite indicate that extended cloud systems associated with meso-

or synoptic-scale weather disturbances, rather than individual cloud
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elements, are most likely to affect the sensors significantly. These
disturbances may be in the form of an active Intertropical Convergence
Zone (ITCZ), monsoons, tropical cyclones, and extratropical cyclones in
the middle latitudes of both the northern and southern hemispheres. The
distribution of these various weather disturbances over the earth provides

a measure of distribution of areas favorable for cold cloud occurrence.

The ITCZ, which is along the boundary near the equator between the
trade winds of the northern and southern hemisphere, has only intermittent
veather disturbances along it. The zone migrates, on the average, about
15° north and south of the equator in some places as it follows the

summer season.

Major monsoon regions are located in Central Africa, India,
Southeast Asia, Northeast South America, and Australia.. They are active

in the summer months of these areas.

Tropical cyclones are associated with preferred source regions,
seasons and paths. They originate in the tropics but may eventually
reach the middle latitudes. Their source regions are located in the
Central Atlantic and Caribbean area, the Central Pacific area off
Southeast Asia, the Central Pacific area off the west coast of Mexico,
the South Pacific area east of Australia and New Zealand, the North
Indian Ocean in the Bay of Bengal, the North Indian Ocean in the
Arabian Sea, the South Indian Ocean to the east of Madagascar and
the South Indian Ocean off the northwest coast of Australia. The
preferred seasons are the summer and fall months in the various source
regions. The size of tropical cyclones can vary from about 100-1000 nm.

in diameter.

Extratropical cyclones result in frequent poleward invasions of
tropical air to high latitudes. As the jet stream, which is a region
of strong winds along the boundary between the tropical and polar air
near the tropopause, moves poleward over the surface position of an
extratropical cyclone, a tongue of tropical air with its cold tropopause
is transported poleward on the right side of the jet stream. In the

case of a young cyclone, the tongue extends poleward mainly over the
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warm front portion, Later, as the cyclone matures and becomes occluded,
the tongue not only extends poleward over the warm front, but also circles
cyclonically back over the occluded portion. The length and width of

the poleward-extending area favorable for cold clouds may be as much as

20-30° of latitude and longitude, respectively.

Since poleward-moving jet streams are indicative of poleward trans-
port of tropical air favorable for cold cloud occurrence, a study was
made of the monthly frequency distribution of poleward-moving jet streams
in the northern hemisphere. The results of this study indicate that
tongues of tropical air favorable for cold clouds project poleward more
frequently in the 0-60°W and 120°W-160°E longitude regions in the high
northern latitudes. These zones correspond to the two major regions of
stagnation of extratropical cyclones in the northern hemisphere. In the
southern hemisphere, a more uniform longitudinal distribution of poleward-
moving jet streams and associated poleward projections of areas favorable
for cold clouds is due to a more or less continuous belt of low pressure

in the middle latitudes.

Based on the distributions of areas favorable for cold clouds
revealed in this study, errors in infrared horizon sensing due to cold
clouds should be temporary, but recurring, for most satellite orbits.
This is due to the worldwide preferred locations of cold clouds and the

generally high ground speed of satellites.

For example, a satellite might be in a 500 nm polar orbit and have
forward- and rearward-looking horizon sensors. As it passed over the
north pole its forward-looking sensor might detect the poleward edge of
an area of cold clouds near 60° latitude associated with an extratropical
cyclone. The rearward-looking sensor probably would not be troubled with
cold clouds, as its view would be moving poleward over polar and arctic

air above 60° latitude.

As the satellite progressed equatorward, the cold cloud area could
continue advancing toward the satellite so that the forward-looking
sensor would believe the earth-space interface was at an increasing

angular distance below the actual earth-space boundary. The erroneous
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signal from the forward sensor would upset the satellite vertical
alignment even though the rearward sensor might be viewing the actual
earth-space boundary near the pole. In the extreme case, this misalign-
ment could continue until a cold cloud area some 20°-30° latitude in
length had passed across the view of the sensor. For a satellite at

500 nm orbital altitude, it is estimated that the sensor might view such
an area for 5-10 minutes. During this time, any photographs taken would
be off-centered. After the view of the forward-looking sensor had passed
beyond this cold cloud area, the satellite vertical alignment could be
corrected as both forward and rearward sensors viewed the true earth-
space boundary. At that time the satellite should be passing over
approximately 60° latitude. As it continued on equatorward, the forward
sensor could start detecting cold clouds associated with the ITCZ and
start upsetting the vertical alignment again when the satellite was
passing over about 45° latitude. Shortly thereafter, the rearward-
looking sensor might also start viewing the cold clouds associated with
the extratropical cyclone previously passed over by the satellite. The
band of cold clouds and weather along the ITCZ can be up to several
hundred miles wide, so the forward-looking sensor could be affected by
it for a minute or two., However, the rearward-looking sensor might be
affected by the cold clouds of the extratropical cyclone to the north
until about the time the satellite passed over the equator. Shortly
thereafter, the forward-looking sensor could start detecting cold clouds

associated with an extratropical cyclone in the southern hemisphere.

And so on around the earth, the satellite could be ‘temporarily
misaligned and corrected in a recurring manner as its position in orbit
brought into view the various distributions of cold clouds over the
earth. Such a situation is not conducive to accurate photographic work;
however, either the new sensor designs may solve the cold cloud problem
or the programming of picture-taking may be geared to a knowledge of
the location of the satellite at any time with respect to the location

of areas of high probability of cold clouds.
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STANFORD
RESEARCH | cadromi
INSTITUTE

Regional Offices and Laboratories

Southern California Laboratories
820 Mission Street .
South Pasadena, California

Washington Office
808 17th Street, N.W.
Washington 6, D.C.

New York Office
270 Park Avenue, Room 1770
New York 17, New York

Detroit Office
1025 East Maple Road
Birmingham, Michigan

European Office
Pelikanstrasse 37
Zurich 1, Switzerland

Japan Office
911 lino Building
22, 2-chome, Uchisaiwai-cho, Chiyoda-ku
Tokyo, Japan

Representatives

Honolulu, Hawaii
1125 Ala Moana Blvd.
Honolulu, Hawaii

London, England
19, Upper Brook Street
London, W. 1, England

Milan, Italy
Via Macedonio Melloni, 49
Milano, Italy

Toronto, Ontario, Canada
Room 710, 67 Yonge St.
Toronto, Ontario, Canada




