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ABSTRACT

Several possible explanations of the mechanism of
the break-up of shaped charge jets are suggested. In particular,
an approach using the assumption of visco~plastic flow is pre=
sented in detail. According to this approach, a constant area
jet with linear veiocity gradient breaks first at the tip, and
then the break-up progresses bacik towards the rear. The average
length of the fragments could be adjusted to two per cent of
the original jet length if a coefficient of viscosity of 100

1b,=sec./ft.2 were used.




,I. INTRODUCTION

This is a progress report on a research project
which utilized shaped charge jets as a means to study the proper=-
ties and behaviors of metals under a very high rate of strain.

In connection with the analysis of hypervelocity impacts, Choul»2
and Riney3 have assumed that materials possess a visco-plastic‘
property. At present, the numerical values of the coefficient

of viscosity, or the stress=-strain rate relations of materials
under high rate of strain are not known. There are definite
disagreements among different investigators as to the existence
and/ér significance of viscosity. Experimental evidence

apparently is needed.

It is difficult to evaluate the importance of
viscosity from most impact experiments because compressibility
effects in the form of stress or shock waves is always present.

A one~dimensional high-strain-rate tension experiment would be
most ideal for this purpose. The jet ejected from a shaped charge
approaches this ideal model very closely and, therefore, was chosen
for this study. If the jet is assumed to behave as a visco=plastic
material and, if a separation criterion similar to the one given

in references-l and 2 is used, it is shown that the break=-up of the
jet may be predicted and the coefficient of viscosity numerically

evaluated.




However, it must be pointed out that according to
experiments performed by DiPersio, Simon and Martin4, the behavior
of the jets obeys the simple Hopkinson's scaling law. if this scaling
law is valid, then the viscous, or strain rate, effect must be unim-
portant. Therefore, it appears that the visco-plastic model probably
cannot singly describe the motion of the jet and its break=up

" mechanism,

Althodgh our original objective, i.e., the numerical
determination of the coefficient of viscosity through the use of
metal jets, appears unsuccessful, the study of the shaped charge jet
was continued in order to obtain a more definite conclusion conQerning
the applicability of the visco=plastic theory. Understanding of the
break=-up process is also important if theoretical improvement of the

penetration power of the jit is to be achieved.

A statistical approach which is based upon the assump~
tion that the tensile strength for a given material is not exactly
constant but shows a scatter characteristic may also be used to
describe the jet behavior. This approach was first proposed by

Mott in studying the fragmentation of shell cases.

In another approach it is assumed that the jet is at
a high temperature immediately after formation and that it is also
in a molten state which can be subjected to a very large elongation.

As the jet moves forward, it cools and gradually changes into a




solid state which cannot sustain a large magnitude of elongation

and thus breaks up.

The last two approaches are currently being

investigated.

II. DESCRIPTION OF THE
BREAK~-UP OF SHAPED CHARGE JETS

The basic tﬁeories of the formation of a shaped
charge jet and its penetration into targets were first presented
by Birkhoff, MacDougall, Pugh and Taylor in 19487, Since that
time, these theories have been refined by Eichelberger® and have
been verified experimentally by Eichelberger and Pugh’,8, These
theories, however, do not attempt an explanation of the break-up

mechanism of the jet,

For most jets, the metal mass is uniformly distribu-
ted along the axial direction, although, depending on the charge and
liner design, it could be variably distributed. The velocity is
maximum at the tip and varies linearly to a minimum at the rear.

The velocity gradient is constant at a given time, except possibly
in the region near the tip. There is usually a slug with a large
mass following the main jet and traveling at a low velocity.

For the present purpose, the slug will not be considered.

e



Because of the difference in velocity between the
tip and the rear, a condition of constant strain-rate exists, and the
jet elongates. For a typical jet the velocity at the tip is approxi-
matel& 8 km./sec., and at the rear 2 km./sec, This continuous jet
eventually breaks up after approximately 120 A& sec. The total
elongation may be of the order of 300 to 400% of the original length
at the time of its formation. This value of elongation is much

higher than the static ultimate elongation of the usual jet metals,

i.e., copper or steel. After the break~up, the jet changes to

" short cylindrical segments with an average length of approximately

two one-~hundredths of éhe length of the final continuous jet; in

other words, the jet breaks into approximately 50 segments. Following
the break up, the length of each segment remains unchanged although
the spacings between segments continugs to increase due to the

differen;e in velocities.

According to a scaled shaped charge experiment
performed at BRLﬁ, the Hopkinéon's scaling law may be applied to
shaped charge jets with respect to the following parameters:
velocity gradient, jet diameter, number of particles produced,
average particle length, penetration depth and standoff distance.
According to this scaling law, if two shaped charges are identical
in all but size, with a linear scale factor A:-%‘- ,

then the velocity and geometry of the second jet are identical

to those of the first one for points located at distances A times



that of the first one and occuring at a time A times that of the

first one.

The Hopkinson's scaling law was first proposed for the
study of the pressure and velocity disturbances due to explosions.
Judging from the results of numerous hypervelocity cratering
experiments, it is.believed that this scaling law is applicable to
impact problems. Concerning its application to shaped charge jets,
reference 4 appears to be the only source of experimental evidence
devoted to the investigation of this problem. It appears that addi-
tional tests are needed before a firm statement about the scaling

law in shaped charge jets can be made.

III. POSSIBLE MODELS FOR THE BREAK-UP PROCESS

In connection with practical applications, there
have been several hypotheses concerning the break-up process.
One of these assumes that the jet breaks up simultaneously at
a certain time after its formation. Another hypothesis states
that the jet breaks one segment at a time and that it occurs when
the jet element is at a certain distance from the base of the charge.
At the present time, there are not sufficient experimental evidences
to verify which of these hypotheses is valid. Furthermore, these

hypotheses do not offer any explanation of the break-up mechanism,



In the following discussion, three possible models
for the break-up process are suggested and described briefly. They
are the visco-plastic model, the failure scatter model, and the

molten phase model.

A. Visco~Plastic -Model

In this approach, the material of the jet is assumed

to follow a simple visco~plastic stress=-strain rate relation:

T = Ty +I4é

According to this relation, the stress acting between two adjaceat
elements in the jet is equal to the yield stress Q)y (a constant for
perfectly plastic material), plﬁs a viscous stress depending on the
gstrain rate é . Combining this equation with the equation of motion,
the governing equation (equation 8) may be derived. This equation,
together with the proper boundary and initial conditions, may be solved

to give the time history of the motion of the jet.

To predict the break-up, a separation criterion similar
to that proposed in reference 1 is used. It postulates that the jet
can sustain.very large strain and elongation without breaking as long
as the viscous stress is larger than a critical value. It will be

shown in the next section that by assigning proper values to the
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coefficient of viscosity, the jet may be made to break~up from the tip,
one segment after another, with an average length of two per cent of

the total jet length,

Although this approach could explain the process,
it is doubtful that it definitely represents the true phenomenon.
The objection to tﬁe visco-plastic assumption is that the Hopkinsoﬁ's
scaling law excludes any strain rate effect., In other words, if a
jet follows the Hopkipson's scaling law, the viscous effect must

be unimportant.

B. The "Failure-Scatter' Model

This approach was first suggested by N. F. Mott? ‘in
1947 for the study of fragmentation of shell cases. It is based
on the assumption that there exists a scatter in the value of the reduc=
tion in area (or valﬁe of strain) at which fracture occurs in a tensile

test.

This theory ma§ easily be applied to the shaped charge
jet, If there were no scatter (the strain at fracture was perfectly
definite), the stretching jet would break at all points simultaneously.
If scatter in strain exists, there is, in any length of the jet, a
finite probability of fracture which increases rapidly as the strains
approach the critical value., Then fracture will first occur at one

point. After fracture, the free surface can not sustain stress, and



a release stress wave will propagate inward. The unstressed (and
unstrained) regions spread with a velocity whiéh can be calculated by
either the elastic, plastic-rigid, or viéco-plastic assumptions,., This
is showm in figure A in which a fracture is assumed to have occurred
at A and the stress has been reléased in the shaded regions AB and

A'B':

FigureA

Fracture can no longer occur in the shaded regions because the
material in this region is rigid, and no stretching occurs. In the
unshaded regions, plastic flow and stretching will continue., Strain
increases and fracture becomes more likely. The average size of the
fractured segments will be determined by the rate at which the shaded
regions in figure A propagate, thereby preventing further fractures.
Segment size also depends upon the scatter property which may be
expressed as the probability, P, that the tensile test specimen breaks

before a strain, €, is reached,

p=P(€)
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This probability, which must be determined from experiments, is not

known at present.

This theory gives no explanation of the fact that the
jet can elongate to a length three or four times longer than its

original length,

C. The Molten State Model

Statically, a metal can not sustain an elongation of
more than 100%4. Two-factors may contribute to the 300 to 4007 elong-
ation of the jet; namely, strain rate and temperature. If the strain
rate effect is rejected as a possibility, the high temperature explan-

ation seems most reasonable.

Immediately after formation, the temperature of the
slug is estimated to be above 1000°C in the center and comewhat
cooler near the surfacel®. The tenperature in the jet is also
believed to be very high. An estimation by Pugh* indicates that the
slug temperature is just below the melting point of the metal., At
these high temperatures, the metal can easily elongate to four or five
times its original length without breaking. As the jet moves forward,
it cools due to radiation and air convection. As the temperature
decreases, the metal changes into the solid state and can no longer

sustain large elongation.

*Private Communication
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The true mechansim of the break-up process is
probably more involved than that indicated by any one of these
simplified models, At the present time, the heat transfer prop=-
erty of the jet is under investigation and, it is hoped, the
validity of the molten state model can be detefmined approximately.
The results of thé visco-plastic flow analysis are presented in the

next section for future reference.,

IV. EQUATIONS, CRITERIA, AND
SOLUTIONS OF THE VISCO-PILASTIC MODEL

A. The Governing Equations

The equations in this section are derived for a jet
with variable cross=section area. The analysis for the constant
area jet will be treated as a particular case of Ehe'férméf. Further,
LaGrange coordinates are to be assumed for the determina;ion of these

equations.
The continuity equation for the jet is:

RAdx = pAdX W

or,

3
> >
I
o

x:[-I-G @
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The stress=strain relation is assumed to be visco=-

plastic, which for simple tenéion‘has the following form:
T =Ty +p € 3)
Referring to figure B, the equation of motion may be shown to be:
pAdx v ~qdA gz -A 29 4 @
at dx 6X
Ad
SJAdRQ.lf * 3%
at

’““""'—Q T+ L dx

T 4

Figure B

Introducing equations 1 and 2 in equation 4 yields:

P A oV _qgdA _ A U _ )
¢ V& Ao

Substituting equation 3 into equation 5 yields: ¥

9v _ w % _ 1 dAs. u 3v_ 1 dAe

ont—

) =() ©)
¢ Po Ix? A, dx L. Ox A adX Fo 0
Introducing the following dimensionless quantities:

N U VA - Y% B ol @
XEF VTR RPN

% In the second term of the left hand side, a factor %%- has been neglected.
o
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Equation 6 becomes:

. ) : ) } . ‘
R -y _dh o' pdh .o w
ot’  Ix2 A.dx' ox Adx' — 7

This is the governing differenti_al’equai:idn for the velocity v' inm which
t' and x' represent the independént vagiables. If the boundary condition
and initial condi..tidns are simple, this equation may be solved by
LaPlace transform techniques, sepération of variables or other standard
methods. For complicated initial and boundéry conditions, a finite

difference wethod must be used.

B. The Constant Area Jet

In the problem of a constant area shaped charge jet
the goverhing differential equation of motion will be a particular

' . d
case of equation 8 obtained by substituting ’a‘;’,”O , thus:

Rav — 2% _ o )
ot’ ox’'s

Since this analysis is directed to the determination .of
the difference in velocities, the jet Vis assumed to have zero velocity
at the tail end, maximum init_ial velocity V, at the tip and linear
velocity variation at all intermediate points. At the tip and thg tail,

stress-free end conditions are assumed. From equation 3, the end

4 4 . -
conditions are _aa_l!,. =-Ss at { X =0 . For the present

s X' =/
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problem which involves very high strain-rate, .g;!. is small
compared with the_éverage strain rate, and it will 't'here_fore be

neglected. The initial and boundary conditions are:

:= / ’ ) ‘I'= . / . o
v= X at "6 .O ,Q<x{l (10)
V'-o ot t'7053X=0;x'=
. axl

Solution of the constant area jet as defined by

equations 9 and 10 is obtained by the use of LaPlace transformations,

as shown in Appendix A.

. 4
The velocity, v', strain € and strain-rate _glj
X
are given by equations A-9, A-~10, and A=-11 respectively in terms of

t' dnd x'.
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- c. Gonstant Area Jet (Finite Difference Method)

In order to establish the accuraéy of the finitg
difference method, it was first applied to the constant area jet
as defined by equations 9 and 10. Details of the solution are shown
in Appendix B. Table 1 and figure 1 show the comparison between the
fin~l results obtained from the finite difference method and the
LaPlace transformation. The general agreement betweénvthese two methods

seems satisfactory.

D. Separation Criterion

To determine when break-up or separation occurs
a criterion is hypothesized as follows: for jets under a high rate
of strain, separation occurs when the following two conditions
are simultaneously satisfied:
1. The strain-rate is lower then a critical value; and,
2. The strain is higher than a critical value.

Thus, separation occurs when:

M g-i-fj' £c%; €>¢ 1)

where C; and Cj are constants, (J, the static ultimate stress,
The constant C2 is assumed to be the static ultimate strain of the

material.
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E. ggmgglggl_gglgglgtions Using Separation Criterion

' | Thé.values of the vér;ous constants must. be known
béfpre numerical -calculations can be performed. -Uﬁfbrtunateiy,
thc‘valués<of the’majdrity of these constants are not_known; To
demonstrate the appligability of theAtheory,_all unknown va1ﬁes were -

estimated,

The constitutive equation 3 contains two constants,
the yield stress in pure tension (J}, and the coefficient of
viscosity in pure tension fi . It can be shown that if the gen-
eral visco-plastic relﬁtioﬁ as proposed by Hohenemser and fragerll
is used, these constants for simple tension may be related to those

in pure shear, or
T = (T:} + M €
=37k +3Iu$HEARé

where k is the yield stress in shear and f"shear the coefficient

of viscosity in shear.

In reference 1, a value of 100 1b.-sec./ft.2 is
used for }*shear' Hence a/‘( of 300 1b.-sec./ft.2 was adopted for
the numerical calculation. From experimental data, the relative

velocity between the tip and tail is approximately 6 km./sec.,
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thép‘efore, the V, was chosen lto be 20,000 ft./sec. and the rear

end was assumed to be stationary; Further, rebresentfabl'e basic vaii.nes
for the various physical properties were assumed to be those of
copper. The quantities assigned to Q; ,C‘,Q;,*were 30,000_psi,

0.20, and 30,000 psi respectively.

Since all values have been stipulated, the separation
Y’
criterion states that for a strain=rate 3-;, lower than .7 and é
greater than .2, separation occurs, The strain and strain-rate curves
for various values of t' are plotted and are shown in figures 2 and
3 respectively. Also shown, as horizontal lines, on these figures is
the respective separation criterion for each phase. The interséction
of the 6mline and the strain curves yields three points, and these
points are plotted in figure 4 as t' versus x' for ECR =2
Similarly, the strain=-rate curves have five points of intersection with
4
the -a3£, ) line, and these are plotted in figure 4 as t' versus
9x’ /crR

x' for (g_’kl‘lggo', The intersection of the critical strain and

x
critical strain-rate curves then determines the t' and x' of separation
for the particular physical properties previously outlined. These

/ L
values are tCR=.23 or tecm = /.5 sac, and Xep = -02

or Xem T.02 4.

The fact that x., = 0.02 ft. agrees with the

experimental results that the jet breaks into fifty segments. Due

*This value should be approximately 15,000 psi, however, this does
‘not effect the final calculations. ‘
The original jet length L is assumed to be one foot.
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to-its symmetry,.the behavior of the jet at the rear end is identical
to tﬁat at -the tip; therefore, a segment of length 0.02 ft. will

éimuiﬁaneously break off from the rear.

F. Constant Area Jet after Break-up (Finite Difference Method)

From the previous section, it was found that the
jet breaks at a distance x' = ,02 from the tip according to the
' separation criterion. After the break=-up of the tip, the remainder
of the jet would behave in a manner similar to the first part, and
the second break-up would take place at x' = .04. The differential
equation, initial and boundary conditions and solution for the

second break-up are given in Appendix C and Table 3.

In a similar manner, other break-ups would take place

at x' = .06, .08, .10, . . . . « . ., etc.

The break=up of the first part can be explained by

the above hypothesized "separation criterion". But the break-up of

the second part cannot be explained using the same-criterion, since

the true strain in this case always remains above the critical value
(see figure 5). However, if the strain is referred to the length after
each break-up and not to the original length, then the same criterion
will yield the desired results. Hence, this criterion can explain the
progress of all the break-ups provided relative lengths are used in

the analysis,
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» It is shown in the preceding section, that for a
lconst:am: area jet the break-up initially occurs at the tip and rear.
ends.  If the area of the jet is not constant, i.e., it has a slight
fluctgation along the axial dit_'ect:ion, then the jet could break at .

a position which is close to the minimum area section.

For simplicity, the area distribution between x' = 0

and x' = .024 is assumed to be

A-X
A‘ N
AKX
=q AN = (12)
o = AA
and for x'»,024, A; constant 2 aa 8'024)‘ The area

distribution, the initial condition and the motion of the jet are
assumed to be symmetrical with respect to x' = 0. The end condition
is then v' = 0 at x' = 0. The governing equation, equation 6, be-

comes, for t' 0 and x' 0

o

22 17 _ !
)\M +BA = R Y, 13)
Ax" o]
The corresponding initial and boundary conditions are:
v'izx' att'z0 andx' 2 0

v'Z0 atx'z0 andt'Y 0 ' (14)

This. problem is solved by the finite difference method, and its

‘solution is shown in Appendix D. The results are also presented in

v’

figures 6 and 7 l'in the form of v ’A vs x' and 5—)—(— , V8 x' curves
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resPectivelyg It can- be seen from figure 6 that in a small neighbor-

v’
o X
" to time, Since the strain g?iﬁ; increases monotonously, according to
. ’ ‘ ’
" the separation criterion, when Eiﬁu: decreases to a critical value,

X
break-up could occur at a position adjacent to the wminimum area

~ hood adjacent to x' = 0, the ﬂtrdin-rate ; decreases with respect

section.

V. CONCLUDING REMARKS

The detailed solution of the visco-plastic model
is presented in this report, although, it may not describe exactly
the mechanism of the jet break-up. The other two models are dis-
cuséed only briefly, and they are currently under investigation. It
is quite possible that a combination of these simple models could

eventually give the exact description of the jet break=-up.
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OH

14

2H

3H

4H

5H

by LaPlace
Transformation
Method

.0163

.0170

.0188

.0220

.0261 |

.0308

V‘

by Finite=-
Difference
Method

.0166

.0172

.0191

.0222

.0261

~.0308

TABLE 1 - COMPARISON OF SOLUTIONS

OF EQUATION 9 BY LaPLACE TRANSFORMATION
A
BY FINITE-DIFFERENCE METHOD AT t' = .2
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VIII. NOTATIONS

original area at x' = 0

original area =

Oy L

Bingham Number =
B H VA

Constant
Interval length in x' direction
Original length of jet
Interval length (time direction)
Reynold's Number
Titﬂe
Dimensionless time = _t‘;'?\é
Dimensionless displacement

OX
Velocity = 31':- .
Dimensionless velocity = V.-
Initial jet tip velocity

Original abscissa, measured from the end of string in
LaGrange coordinates :

Axial fixed coordinate

_duw | OR
Normal Strain <= -a'T = 57- |

Arbitrary constant of area variation
Coefficient of viscosity in tension

Force
Engineering normal stress = Original Area
Static ultimate Strength in Tension
Yield Strength in Tension
Density (Mass/Volume)
Original Density

Dimensionless Strain-raté
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IX. APPENDIX A

A, Solutions for the Constant Area Jet
Applying the LaPlace transforms to equation 9 yields

TR
= © _pt |
F = L{v’}z/epdf

The transformed differential equation 9 becomes:
d v

2

dxX

and the transformed boundary conditions are:

— F:? FJ i;; = "'|:2 X a (A=2)

dY =0 ot t>0 ow X=0,x'=1 ®I
d X

The complementary solution of equation A=2 is:

_ /Rp X’ ~rRp X’
v, = C ¢ i + C,€ P7 e

and the particular solution is: /

hence, the general solution of the transformed governing equation

A=2 is:

®
-+.
N
®
13

- )(,
v=2 +C
P



Using the boundary conditions, equation A-3, the

constants are:

(e*'f’l DI (e i)

therefore, the solution of equation A-2 after rearranging is:

FeLix'+ i@(xf>€rnp(x-o“"—ﬁ;(’(ﬂ)"e—ﬁ?x a-1)
P Re (1 - e~2TRp) o

Applying the binomial expansion to the denominator

C,=

in equation A-7 and realizing that:
o0
| ~ Z e(-ZJRP)m.
l — e"'er—;‘

equation A-7 becomes, upon simplification:

-Re'(2m+2-X")y  -fR3 (2m+1-X)
Z e

v s gll e

mro
ﬁ;‘(2m+|+:<') ( Zrg+x’) } (A-8)
FeTEY 2 e ]

Finding the inverse transform of each term in equation A-8 the

solution for the velocity, strain and strain-rate are:

F= X +Zf—‘{z ierfc (EmiZ2- x)

=0
w

Z cer/‘c(f%_':'_xia Z cer/‘c 2m +I+x )+ -9
'O
§ l}er/'c. Zmt x' ]

ms=0 2 '("
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€= {I+4[Z; Lerfc(z {f_x)mz:cer/}:(—z—mfi-ri)-l-

+ Zo er/'C( £h ”‘) Z erfe {T)?z"+:' ]

L

(A-10)

- I—Zer}‘c(z 2nmt2-x' )+Zerf‘c(2m“ X )__

mvo (A-11)
2m4'I+
'm-o ;
B. Constant Area Jet '1n1te Difference Mathod

The differential equation of motion is:

’ 2.0
R%‘%'—%-;?{:O 9)

and the initial and boundary conditions are
w=x' at t'=o ; 0<£X'&I
(10)

2V =0 at t'>0 3 X'=0 ,X'=|

Cover the region of interest in the (x', t') plane

with the mesh defined by

v (=0,1,2 -
X, = t, =KL : (8-1)
[4 LH ) K K’O,',Z' . .

Function values at mesh points will be characterized

by appropriate subscripts; thus v' 1.k will denote the value of the
H]

approximate solution v' (x', t') at the mesh point x = x, and t = te-

i

< ’
Replacing =) V by the central difference quotient and _@___1?'
T at

by the forward difference quotient in eguation 9 yields

WVeri K —2V0. R + Vi-1,6__ sV k1~
L = RIS 0o



ulfe

The mesh width L in the time direction can be chosen so that the

following stability criterion 12 4, satisfied,

= HZR .
L > (B-3)

By taking L & .02, H becomes 2 .00589. Substitating B=3 in B=2

gives

’UZ,K-H =z"'(7f¢'+l,K + 7}{_,’.3) (B~4)

‘ '
v 1, kel is formed by taking the arithmetic mean of Vv 141,k and

[ ]
Viia1,k"

1o

v

(

¢ >0

can be handled in many different way;a.l3 The following method was

’
The boundary condition = :(—J-; =0 at (X =0

found to give best results.

U
Replace g-u: Ly &1 central difference
X
quotient. In setting up the centrai diitcrence quotient, functional
’

values at exterior mesh points are newid. 9 - =0 is
replaced by 'U:hK - Vi,x sy » Whilch glves V. = .

2 H - LK hss

Table 2 shows the values c¢iieniared by this method,
While calculating this Table, the iniria’ value of v' corresponding to
x' 2 0 and t' 2 0 is changed from 0 t» .. This change wss made with
a view of obtaining an improvement i» agrcement with the boundary

condition ot t'=o amol x=o-
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C. tant Area Jet = After Break=U ite erence l{od

The governing differential equation of motion is

_ 2*v' _
Q atl axlz - O

]
and the initial condition is: v' at t' 2 0 and .02 < X < |
equal to v' at t' = .24 and O2<£ X €| £rom Appendix A,

Boundary condition:

g’:’ =0 of X =.02 ad t'>0

Proceeding in the same manner as in Appendix B,
the partial differential equation is replaced by the following

finite difference equation:

’

Vd I'd
vi,"“l = ?.L(V(.'-H,K -+ 'UZ'-a,K) (c-1)

Values of v! at t' 20 and 02 SX é | are obinined from

equation A-9

’ i
The boundary sondition _a.ﬂz; =0 at X =.02
X t >0
is handled in the same manner as in Appendix B,

S ———

“NNM"‘”Mglacement 12! for any x' and t' is calculated from

P

the relation u' = / Vv dt by Simps ude,  Strain
- 'au o o §
€ 3 1s determined from the central difference formula,
x'
Uiri,x —HU oty K for numerical differentiation.
2

D. Varigble Araa Jet (Finite Difference Method)

The governing differential equati.on is equation 14,

ox'z
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'where R* S 1606 B = .72, A =2
The initial and boundary conditions are:
’ ' /
=X ot t=0 X
l -
=0 at X'=0 . ¢t

/

>0
‘20 (13

Using the same notation as for constant area jet, and transforming

the partial differential equation 14 into finite difference form, i.e.

. 2 / /
replacing -a—_?! and Qv by the central
x'% Ax'
7
difference quotients and Qv by the forward difference
ot’

quotient, the following is obtained

(U’::M,K -2 'v';,u-rzr,;.,,x)_,_ )\ (v’.:u..,-vz-..,n) +
H = Z2H (@-1)

BA = R Vs 0,k = VU,
L

"y RH?
To satisfy the stability cxiicgion nur L= 2

Taking H = .004 and L = 8 x 10", equation D-1 becomes

V= 502 Vi, +.498 V., o+ 11.52X10 02

K+

* The value R used previously is 1153. The presen
of R = 1000 is used as a matter of convenience and to
study the results qualitatively. However, R = 1153 will
be used in the exact. analysis.
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Equation D-2 is obtained for the variable area jet.
If it is assumed that the area of cross-section of the jet increases
in a certain region of x' and then remains constant, two finite
difference equations for the problem are applicable, one for the
region of variable area and one for the region of constant area.
Equation D-2 is valid for the case of variable area. For the case

of constant area NA=0 , therefore D-1 yields.

/
U, ket = (7’24.:,“ + v’é—o,K) ®-3)
2

Table 4 shows values calculated from formulas D-2
and D-3, It is assumed that the area of the jet increases from:

X=0 to X’=.OZ4 ; and is constant for X'>.024

Displacement u'for any x' and t' are calculated

! t
from the relation (4 = / 27t by Simpson's rule. Strain

I} (-]
6- = %‘Lﬁo is calculated by using the central difference
15324 !’ '
formula, (U~ CHi, R~ 1L 0“h’<) for numerical

2H ' '
differentigticn. The values of g__l’: and QU are
X X'
plotted vs. x' in figures 6 and 7.
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