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ABSTRACT

The Griffith-Irwin (or linear-elastic) fracture concept was used to investigate

the feasibility of the application of fracture mechanics to orthotropic plates. The

problem of an infinite plate containing a single crack orientated in the direction of one

of the planes of elastic symmetry of the plate subjected to arbitrary plane loading was

examined. Two analytical crack tip stress analyses for this case were presented,

and unlike the isotropic case, the stress distributions were observed to be dependent

on the material constants. However, as in the isotropic case the crack tip stress

singularity was observed to be r-1/2 and stress intensity factors kI = a-a and k2 =tT,/-
for loading symmetric and skew-symmetnrical to the crack respectively could be used.
Further, the existence of a functional relation between k and k2 was proposed.

Results of the experimental investigation using balsa wood plates indicated that

the critical stress intensity factors k1c and k were constants for tension and pure

shear. Moreover, under combined tension and shear, k c and k2c were found to be
k 1 2 k 2

related by the function + 2=1 which satisfied the physical considerations.
1c 2c
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I.. PRELIMINARY REMARKS

In many engineering applications, flaws and minute cracks are observed to extend,

leading to fracture at nominal stress levels below that of the yield strength of the struc-

tures. The study of the mechanics of fracture and attempts to predict the combination

of crack length and stress which would lead to failure by spontaneous crack extension

have been undertaken by many investigators. Fracture mechanics thus developed in the

past 20 years has achieved remarkable success in applications to isotropic materials.

Since many engineering materials are anisotropic, it is logical to analyze the parameters

involved and examine whether fracture mechanics can be applied to anisotropic materials

as well.

A special but important group of anisotropic materials, the orthotropic material,

was chosen for analysis. This investigation is applicable to single as well as composite

materials of two or more components which are grossly homogeneous, but which possess

orthotropic properties. Some important examples are wood, oriented glass fiber rein-

forced plastics and high strength wire reinforced metals and plastics.

The investigation consists of two parts. In the first part, a theoretical analysis

of the stress distribution in the vicinity of the tip of a crack in an orthotropic plate is

presented. In the second part, an experimental program is designed to verify the

analytical findings. This study of orthotropic materials was undertaken in an attempt

to shed light upon the application of fracture mechanics to general composite materials

made of metals as well as non-metals.
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II. ANALYSIS

A. Introduction to Analysis

The quasi-static stability criterion of a crack in a linear isotropic material

was formulated by Griffith [I] * and later extended by Irwin [2]. In its simplest form

the linear-elastic (or Griffith-Irwin) fracture theory states that the critical energy dissi-

pation rate per unit area associated with an unstable crack extension is a constant for a

given material. In the formulation of this theory, the following assumptions are made:

1) the material is macroscopically isotropic and homogeneous, 2) the material is ideally

elastic, 3) infinitesimal linear elasticity is applicable for stress analysis in the vicinity

of the tip of the crack. Irwin, upon defining three kinematically possible modes of

crack extension, was able to compute the strain energy release rates, •1' 2 and f 3'

associated with each mode.

Further, in examining the elastic stress analysis, it was observed that the stress

intensity factors kl,k2 and k3 for each of the three modes are directly related to the re-

spective strain energy release rates • 1' 1 2 and /3o Consequently, the magnitude

of the critical stress intensity factors was also associated with unstable crack propa-

gation. Based on the linear-elastic fracture theory, many problems in brittle fracture

of isotropic materials have been described with a useful degree of engineering accuracy

when similitude was maintained between the model and the actual crack extension prob-

lems.

Obviously, the Griffith-Irwin fracture concept is not limited to isotropic mate -

rials. In order to gain insight to the feasibility of application of fracture mechanics to

anisotropic materials, the simplest case of anisotropy - the orthotropic material-is con-

sidered.

A material is said to be orthotropic when it possesses three orthogonal planes of

elastic symmetry. The majority of the orthotropic engineering materials, such as ply-

wood and some fiberglass reinforced plastics, possess such properties. However, if

the analysis is limited to materials which possess only two orthogonal planes of elastic

symmetry, the complexity of the mathematical formulation of their constitutive equations

is considerably reduced. Limiting the analysis to such a material corresponds to the

study of only one layer of the plywood, or only one layer of the reinforced plastic with

glass fibers orientated all in one direction. Nevertheless, in order that the fracture

mechanics aspects of the problem shall not be subdued by the algebric complexity of the

* Numbers in brackets designate References listed.
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more general problem, the use of a simplified model has to be tolerated.

An orthotropic plate which possesses two elastic symmetries containing a single

crack subjected to arbitrary plane tractions with bending absent, as shown in Fig. I b,

will be considered. The imposed conditions are:

1) the material is linearly elastic

2) the plate is thin and extends infinitely in all directions from a crack

3) the crack is straight and "sharp" i. e., a straight line of discontinuity

in the plate

4) the crack is parallel to one of the principle planes of elastic symmetry

5) the influence of environment is neglected

Although the above conditions are necessary for the mathematical analysis which follows

they do not significantly restrict its applications. If a crack is small in the actual

structure compared to its surrounding dimensions, a sufficient similitude exists between

the mathematical model and the actual crack.

B. Analysis

When a body containing a crack is subjected to external tractions, the sole

influence of the external conditions on the crack (the influence of environment is neg-

lected) is the state of stress around the crack. If the crack is to extend, the state of

stress or other parameters associated with the state of stress at the tips of the crack

must reach a critical value for the given material of which the body is composed. Then,

to analyze the crack stability in an orthotropic plate, an examination of the state of

stress in the vicinity of the tips of the crack is in order.

For the plane problem of a linear elastically orthotropic material, the general-

ized Hooke's law may be written:

Ex a=11a •x + a12 ay + a16 xy

Ey =a 1 2 crx + a 2 2 Uy + a2 6  (1)

2 EX=a a +a a +a T
xy 16 x 26 y 66 xy,

The compatibility equation for plane deformation is

E2 x E•2 E XY

2 + -j = 2 (2)
ay x ax~y
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In order to simplify the constitutive equations, the x and y axes can be oriented in such

a way that they coincide with the principle planes of elastic symmetry. For this orien-

tation of axes,

a16 =a 2 6 =0. (3)

Substitution of Eqs. (2) and (3) into Eq. (1) gives

2 a 2a a22 2 2x x )
all + 12 ( '-x + + 22 •02 -66 x=xy 0 4

ay ax ay ax Oxay

When body forces are neglected the equations of equilibrium and compatibility are

satisfied by Airy's stress function U, and the stresses can be expressed as

vO-,U a = x and = U (5)
X -2- y xy (x5y

Also, the material constants aij can be expressed in terms of the usual engineering

notations, i.e.

1 1 VV
a,, E , a 2 2  R- , a12= -T=-= - TLand a66 1 G (6)

x y x y xy

Using the relationships given by Eqs. (5) and (6), Eq. (4) becomes

a U 2 (2O •y - vy) ax2.UO + aY_) U = 0. (7)4 EG UEy 2 -L
Ox Xy ax ay x Dy

The problem therefore reduces to the solution of the above 4th order homogeneous

partial differential equation whose auxiliary equation is

-42( -y Vy) + (E-Y-) =0. (8)xy x

It can be shown that Eq. (8) has no real roots [3] . Further since the coefficients are

real constants (the elastic constants are real),the roots must be in conjugate pairs, i.e.,

they ares1, s 2' s, 12 [42

If s 1 =(a +iP)

then s2 = (-a + iP), (9)

and S9 = (a - iP)

= - (" + i ).
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Substitution of Eqs. (9) into (8) gives

E 1/2 E2 =--e + (-G "x)
y xy

E 1/2 Ex
2ce = ( -•) x _S(2Gx Vx)

Y X

Then, the general solution of Eq. () is

U =Z 1 (C1 ) + Z 2 (E1) + Z 3 (t 2) + Z4 (T2) (11)

where
t :x+ sly, 1 =x + S-ly , 2 =x+s 2Y and T2 =x +s 2y"

In order to obtain the function U which satisfies the boundary conditions for the plate con-
taining a crack, two solutions will be outlined. First, a technique employing a Wester-

gaard type of stress function will be discussed. Following this a brief outline of a stress
function type of procedure developed primarily by S. G. Lekhnitskii* will be given.

1. Solution by Westergaard Type of Stress Function:

From physical consideration, it is known that U must be real. Therefore

Eq. (11) can be written in the following form:**

U =ARe [ZA(l,)] + B Im LZB(CI1] + CRe LZc( 2)] + DIm [ZD(t2)] (12)

where
t1 =x+sly=x+(a +ip3)y=x 1 +iy 1 , (13)

2 =x+s 2y=x+(-ce +if)y=x2 +iy 2 .

The arbitrary external tractions are treated in two separated parts. 1) Loading sym-

metric with respect to the crack and, 2) loading skew-symmetric with respect to the
crack. The following notations are adopted:

The complex functions Ziin Eq. (11) for symmetric loading are

Z(1) = Zil, ZI(C2 ) = Z1 2 .

* A third method of solution employing integral equations by D. D. Ang and M. L.
Williams is also available [5] .**This can be 'seen by eXpanding the arbitrary functions Z. from Eq. (11) in power

series. 1



6.

And for the skew-symmetric loading, they are

Z2 (1) = Z2 1 ' Z2 (ý2) = Z22'

In general

z ijZi (z.U

The first subscript refers to the nature of the traction, "1" for symmetric, "2" for

skew-symmetric. The second subscript "1" or "2" refers to the complex variable

and t2 respectively.

Westergaard [6] observed that the stress around a mathematical crack on the
axis y = 0 can be solved by a single stress function in isotropic materials. Irwin [7]

later pointed out that in specially orthotropic material (a16 = a2 6 = 0) the counterparts of
a Westergaard type of stress functions are as follows*:

a) Symmetric loading

U1 =-- Re [Z (t) + 21(C2)] + - Imm[l(t 1) - 1 (C2 )] and (14)

b) Skew symmetric loading

U =-- Re [Z Z2 (g2)] (15)U2 - 2a- 2(1)"

where **
dZ.. dZ.. dZ..

1]t j ==Z. and 1 -z i=1,2 (16)
3 ij' d. ij d. 1) j= 1,2

and
Zij = i(ýj)

From the Cauchy-Riemann relationships the following relations can be observed:
Re Z..- 1 _ 13

Re Zyj 1x3' i = 1, 2

8ImZ.. 8Rel.. = 1, 2 (17)

ij ax 8y.

* Irwin was instrumental in adopting Westergaard-type of stress functions to ortho-
tropic materials [7] . Hence the notation used by Westergaard and Irwin was
adopted in this analysis.

** Note, the summation convention is not used here.
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Upon noting that

ax = ay =O 0 a l a ax a
"•-1TiI ax 1 = . -' - -

ax _ i ay =0, ay =1 ax a

Sax2  ' y2  Y2

and from Eq. (13) and using the rules of differentiation to operate on Eq. (17),. the

following relations are obtained;

a ReZ il

ax 1Re 'ill

a n im

i =1,2 (18)

a Re. 2
=a Re Z Im Zil,

8y

ax ImZ•il

=M In Z. +P Re 

(19)
ay 1

and

8 Re2 i2
89 = Re Zi 2 ,

aIm i2ax -Im. Zi2,
i =1,2 (19)

ay Re Re Z2 -•Im Zil,

a IM Z i2 I P R

ay i2 + Rei2

With these equations, the stress distribution for the case where loading is symmetric

to the crack and the case where loading is skew-symmetric to the crack can be computed.

a. Case i: Symmetric Loading

Returning to Eq. (14) and adopting the notation which was described

following Eq. (13), the Westergaard-Irwin stress function can be written as

U1 -- Re 2 +2 +- Im Z 2 (20)
1 2 11 12 2a 11 12
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Using the results of Eq. (18) and (19) for i = 1, substitution of Eq. (20) into Eq. (5)

gives

ax - 2 Re(Z + Z12) m (Zl - Z 12 )

ay = - Re (ZI 2)+ 2 Im (Z1 1  Z12), (21)

y 2 ( 1 1  1)+Z 2

xy 1 Re (ZI - Z

For an infinite plane containing a single crack extending from x = a to x = - a, Wester-

gaard [6] showed that the function Z (L) = satisfied the boundary conditions
~ a

and produced a branch cut on - a < x < + a. Since no consideration of the material

properties of the plate entered into the choice of this function, it would be applicable to

orthotropic as well as isotropic materials. Thus the complex functions Z for the

Eq. (21) is

Z 3j = f---) j 1,2 (22)
t

For a crack with traction free surfaces, the boundary conditions are

¶, = 0,xY for x <aandy=0. (23)

a = 0,Y

From Eq. (13), note that on y = 0

91 = t2 = x.

And from Eq. (22)

zi1= z1 2 ony = 0.

Therefore the first condition of Eq. (23) is automatically satisfied from Eq. (21):

axy 0 = (a2 +2) Re (Z1 1 ),

a1 = = Re (Z)11 = Re (Z 12) = Re (Z1).
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In order that the second condition of Eq. (23) be satisfied,

f (c.)
ayIy = =Re(Z.) = Re Irrxy = 0,ý0 (24)ay y=Oy-O

Ixi < a [d< a

where H(x) is real. Equation (24) demands that

Imf1 (•) = 0. j =1, 2 (25)

[xl <a

It should also be noted that f1 (c.) is prescribed by the external loads far away

from the crack. For the case of a pure tensile traction a applied at infinity,

f1 (9j) = Y (26)

It can be seen that the conditions specified by Eq. (25) are satisfied by Eq. (26). Sub-

stitution of Eq. (26) and (22) into Eq. (21) gives the stress distribution at any point in

the plate.

However,if examination of the stress intensity is limited to the neighborhood of

the tips of the crack, certain simplification is possible. Due to symmetry, only the

stress intensity around one crack tip need be examined.

For the stress near the vicinity of the tip of the crack, the location of the geo-
ie

metrical points around the tip of the crack can be expressed as a + re where

0< 101< 7r. Recall from Eq. (13) that

Ci = x + slY,

C2 = x + s22y

t , t2 can be considered as complex variables of two non-orthogonal coordinates with

non-normalized base vectors s, and s2. They can be defined in the following manner:*

= x+ sly = a + r (cos0 +s, sin 0), (27)

2 = x+ s2y = a + r (cos 0 + s2 sine).

Note that g and t2 are not the geometrical points at which the state of stress is under
consideration. On the other hand, in the special case of isotropy, a = 0 and 3 = 1 lead to

s= 2 = i, or g = a + r(cose + i sine) = a + rei0, i.e. C and the geometrical points co-

incide.
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For the points in the vicinity of the tip of the crack,

r <<a. (28)

Eq. (28) implies that

fl (1j) • f1 (a) (29)

Substitution of Eqs. (27) and (29) into Eq. (22) leads to

z 1j• a 1 2(0
V 2r (cos e + s. sine) J1,2 (30)J

In the sequel, the approximation notation is dropped for convenience but it should be
kept in mind that the expressions are applicable only in the vicinity of the crack tip.

Substitution of Eq. (30) into Eq. (21) gives the stress distribution around the tip
of a crack in an infinite plane under tensile traction applied at infinity (Fig. 2a) as:

ax (a [+ R) Re(. 1 + 1
Lx Vcos + s sine cosO+s2 SE

1 21

Vcose+s sin e cos0+s 7 s2 Fin 5

1T ( 1 1

'y 77r L2sin c [cose I s2 sine (31)

b. Case 2: Skew-Symmetric Loading
For external loading skew-symmetric to the crack, the Westergaard-

Irwin stress function can be written as *

U 1 Re L '2T-22] (32)

• Rewriting Eq. (15) using the notation described following Eq. 13.
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Substitution of Eq. (32) into Eq. (5), using Eq. (18) and (19) for i = 2 yields

a = 1 2 2) Re (Z - Z - 2a, Im(Z+zx - [a L'21 -22) '2 Z1 + 22dj
1

ay = --- Re (Z 2 1 - Z2 2), (33)

" "xy = 1 21 +Z 2 2 ) -3m (Z 2 1 -Z 2 2 )].

For a single crack, the complex functions Z2j are

f (9 j)
z2j N 42 2_2 j 1, 2 (34)

3

The boundary conditions are

o =0,y
for 1xl1a andy =0. (35)

- =0,xy

Considerations similar to those in the symmetric case can be used. Equation (34)

automaticdlly satisfies the first condition of Eq. (35), and for the second condition to hold

Imf2(ti y  = 0 j = 1, 2 (36)

Ix) <_ a

For a plate subjected to pure shearing traction at infinity

f 2 (tj t •j" (37)

Thus the approximate expressions for the complex functions defined by Eq. (34) in the

vicinity of the crack tip are

Z - -,r-a j = 1, 2 (38)
2j = - 4cos 8+s. sine

3
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Substitution of Eq. (38) into Eq. (33) gives the stress distribution around the tip of a

crack in an infinite plane under shearing traction at infinity (Fig. 2b) as:

_ Fx V- [ 2 R2) 1 i- 1
ax 2aL 21Re(icose + ss1 n N/cos 0 +s 2 si

+"' Im 1 + 1
-2 /cose +s sine /cos+s 2sin e

y V'r2 2 a L cos 0 + s sin co +s sin 8 e

Since Eq. (31) and (39) describe the stress distribution around the tip of the crack in

ax kF6 R 1 +e 1M +

a =cr~-a L [ Re 1 1 1 + ]r
Y VF 2 VCs +ssinG COs 0 + s sine 'cos + 1U Vcs si+ne'I*

1y 2R - 1(0

plates of identical geometry (in each case, a single crack is present), the two solutions

can be superimposed to describe any arbitrary place traction. Then for the loading

condition as shown in Fig. 2c, the crack tip stress distribution obtained by the Wester-

gaard-Irwin method is

ax • 2a 4"cos B +s sin -/Cos 0 + s 2 sin 0cosp-slsm 1cos6+s 2 sln

" 2_2) Re - 1 - 1 .2( 1 + 1
Lyr' 2 a (cosa+slsin0 C-0s+ s2 sin0 ecos6+s 1 sinO icose+s 2 sin8
la 1 srsn1)1 1 1_____

+ -Ia i Re ( I -. -- + 1  Im (4cos0+ ssine 8 e+s 2 sinej

4-" i 2 Re 1 1 (40)v F 2 a L (4cos 8+ SlSin6 lcose8+ s 2 sinoJ

(a2 2j~ F 1 ])

XYF 2a LRe( (cose8+ slsine lcosB+ s2 sine .cje+ ~i
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2. Solution by Lekhnitskii's Method [4]('91 *

Returning to Eq. (11)

U = Z1 (t1) + Z2 (1) + Z3 ( +)+ Z4 (2) (11)

where t1, t2 are defined by Eq. (13).

Corresponding to the stress function U = Re De (o) - 3((9]in the isotropic case, the

stress function for Eq. (11) is

U = 2 Re [zI (91) + z2 (ý2)]" (41)

The following additional notations are introduced:

dZd

dZ1 i(t1 1

(42)
dZ 2  dZ 2

t--2 2"2 -at = 1 2

Substitution of (41) into (5) using (42) gives

ax = 2 Re [1 1 ( )+ s2 T2 (C2 ('

= -2 Re (si
Cry 1( 1 '(t) + ,2 (43

Lekhnitskii gives the stress functions 11(Y' (12(Y2)' 13(t3) for an anistropic space

containing an elliptical cylindrical cavity under arbitrary external tractions. The

stress functions can be modified for a plane containing an elliptical hole. Performing

the necessary operations, the stress functions for the plane Problem are:

•11a1) =A, In r71 + s1 E m -m 2 a-m) 71m
1 2 m=1(44)

1 2 (2) = A2 n 2 - 1 sI - s - M ) r12

13(t3) = 0.

In the following brief summary of Lekhnitskii's method, most of the notations of the

original author are retained. However, some of the notations are changed in order to re -
late the corresponding terms which appeared previously in the analysis obtained by the
Westergaard -Irwin type of solution.
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where V 2 2 - 22
tk+ =k - a sk b k = 1, 2 (45)

ka - is kk, (45

and a is the major axis and b is the minor axis of the ellipse.

For a crack of length 2a instead of an elliptical hole, the 1k in the stress functions

and 12 take on the special values for b = 0, i.e.

•k + •k2 -a2
tk a k = 1, 2 (46)

Using the notations defined by Eq. (42)and letting b = 0, Eq. (44) becomes

1 1 O -m
Ui A- - m(n - s2 am)fl

-1 2a s 2  m=1 m

(47)

2V2 2 A 2+ s -E ( m( -s -m22 •si - 2 m=1osl 2 - -

For the loading condition as shown in Fig. 2a Lekhnitskii* indicated that the constants in

Eq. (47) are

a 1 =- --T,

1 2b =E O,

a m 1 0 m_> 2,

A1 =A 2 = 0.

For the loading condition as shown in Fig. 2b, the constants are

a =0,

aT

a = =0 ,for m> 2,

1 2A 1 A 2 =0.

This is obtained by reducing the results of Ref. [9] pp. 129-131 to a plane problem
and taking the special case of a degenerate ellipse (i.e. the minor axis b = 0). Similar
results can be obtained from Savin's work Ref. [4] pp. 157-162.
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For the loading condition as shown in Fig. 2c, superimposing the two results gives the

constants in Eq. (47):

-- aoaa1 = -T

aT'

a =E =0 form>2,mT m

A1 =A2= 0.

Substitution of Eqs. (47) and (48) into Eq. (43) gives the stress distribution in the plate

under the loading conditions as indicated in Fig. 2c:

Re a 1 2_(, _+s 2) + s2 (.V + s_)-

s •-2) 7 L V12 - a2 12N/22 _ a2

-( asr + s- 2 .](- +s aFYRe - + (49)

a= Re-J a -L2(+S t )]Ja

xy -Re (s- s2)L 2 +2 2 + 2

To consider the stress intensity at the vicinity of the tip of the crack where r << a, the

same simplifications as discussed in section II B 1 can be made. Using Eq. (27)

71 = 72 = 1 when r << a.

Then the crack tip stress distribution obtained by Lekhnitskii's method is *

2 2"
1 - 2-~ (T+ s a) s 22 (r + s 1 a) ]ýa - Re 1 sin2 + sn

_ _x T ( s2)s+s

a -(,r +~~ L )(- 1 2a)

a Re- 1+ ( 50+s2 )) + o(T+Slu) -Y V2Fr (ýs1 -_s2) I N/cos 0+Ts s-ine -9 cos 0+s sin 2

'r Re ~ 1 s I(r + s 2 a s 2 (-V+ slc)
xy ~ L(Sls 2 ) LVcosE+slsinW o ss+s 2 sinelj

G. C. Sih and P. C. Paris [0] discussed a similar problem solved by Lekhnitskii. How-
ever the result given by Sih and Paris is contradictory to that given here in the respect
that the roles of a and T are reversed in addition to some sign discrepancies.
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3. Comparison of the Two Solutions

It should be noted that both Eq. (40) and Eq. (50) describe the stress dis-

tribution around the tip of a crack in an infinite orthotropic plate. From physical con-

sideration, the stresses in Eq. (40) and Eq. (50) are necessarily real. This indeed is
the case since the real and imaginary parts of the complex variables in the expressions

are real quantities.

Further, both of the expressions are simplified by neglecting r terms of order
-1/2higher than r/. Therefore from the uniqueness theorem in the theory of elasticity,

Eq. (40) and Eq. (50) should be identical. Although little similarity can be noted in

their present forms, they can be compared by expressing the real and imaginary parts

differently as follows:
1 1

Vcos 6 T+s1sin 0 (cos e +ce s'in 0) + i T sin

1 1 (cos -2 s(in5
(cos e +a sine)+ (03 sine)

where
sin1 sin0

(cose +a sin e) + ( sin e) (52)

cos &+a sin 0cos, 1 =V 2 7-2"
(cos E +a sin e) + (Q sin 0),

similarly 1 1 sin 02

1 2 (Cos 2- i •
1 cos + +s2 sine *cose -a sine) )+(3 sine) (53)

where
P sin0sin 0 2 = 2 2

(cos E -a sin0 ) +(( sine)
(54)

cosO-a sine

cOs•2 V (cosO -a sine) +2(+ sine0)2
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Using Eqs. (51) to (54), it can be shown that Eq. (40) and Eq. (50) are identical and they

can both be expressed as

a = " ( 2 +_± _2) + P c3 s i 2 -a + . . . . . .

x V'7T 2 a N/.2 7 1 .2 2
2 (cose4. a sine) +(Osine) (cose -a sine) +(P sine)]

(a 2-1P3 )cos 01- 01(sn-- (a 2_ ) Cos 0i -+ 
2 a(3sin 02

LcosE+a sine). + .sin) .(co -a -sine 2) +sino)

'1 'K1 2 + 2

crý a a cos - 2 --- 3 sin- 2 - + cos -T-+Psin 2

•Y-r2r L 2c V(cosO+a sine) 2+(Q sine) (cosE-a sin) 2+(PsinG)

Co' Cos' 1(55)

F72"2a 2 2OS 2- /i 2 2r '(cose-+ a sine) +( f3 sine)2 (cose -a sine) +(O3sine)

v_6/ 'K '1 2'
__( 2 a 2 2 .2.2

"[xy • 20• (coOe+a sine)2+ (0 sine)2 (cosG -a sine)2+(P sine)

Co 0 P in0 acosT -2 sinT |2

SL¢~-(co-se +-e sine )--+(P sine0)2 (coO-a-"- s ine)2+Q (s i-n e)2

where 0 1 and '12 are defined by Eq. (52) and (54)°

In general, arbitrary external plane tractions can be resolved in terms of or,

a2 and T as shown in Fig. lb. However, it can be shown [4] that the stress distribution

in an anisotropic plate is not influenced by a straight crack in the direction of the tensile

stress. In other words, the component of tensile traction in the direction of a crack

does not contribute to the stress singularity at the crack tiA and its effect on the stability

of the crack is small and can be neglected. Consequently Fig. 2 c, in fact, represents

the general case of plane loading in the absence of bending and twisting. For a thin ortho-

tropic plate containing a single crack in the direction of one of its two axes of elastic

symmetry under an arbitrary external tractions, Eqs. (55) gives the stress distribution

around the tip of the crack.
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C. Comparison of the Crack Tip Stress Distribution in an Orthotropic Plate to

that in an Isotropic Plate.

For an isotropic plate containing a single crack under the loading condition

as shown in Fig. 2c, and after neglecting r terms of order high than r1 2 , the crack tip

stress distribution can be expressed as

_ crý _a- es (1- sin 0 sin 30
x / os 2 2 )

_a-in e (2+ cos -tecos 3-
77 2 2 2

-= V sin 0-- •cs-•)

S- cos ( 1 + sin - sin 30

Y V- 2 2 2
(56)

V-- 2 2 2

0 8 30

+y rrSin -2 cos -2 cos --2'

ST - sin- cOs - cosxy 2r 2 2 2

Ta- 8, 8i si .( 38•
+ -cos 5-( -i s

where the stress intensity factors are

k = a•Va (symmetric) ,

k2 = -rya (skew-symmetric).

Comparison of Eq. (55) to Eq. (56), leads to the following observations. The

most obvious difference between the state of stress in the vicinity of the tip of a crack in

an orthotropic plate and that in an isotropic plate is that the former is dependent on the

elastic constants of the material* while the latter is not. However, there are also

several similarities. First, the stress singularity at the tips of the crack (r approach-

ing zero) for both cases is of the order r Second, a parameter characterizing

the effect of the size of the crack and the magnitude of the external stress for the ortho-

The quantities a, i, i are functions of Ex, Ey, Vx, Vy and Gxy.



19.

tropic plate can be defined in a manner similar to the isotropic case, namely,

k I = "a
1i (57)

k =tV

The stress intensity factors, k1 and k2 therefore can be used as parameters to measure

the strength of a cracked orthotropic plate. The crack extension force, and 2

obtained from energy considerations by Irwin [2] are generally considered to be more

fundamental parameters related to crack extension. However, in order to obtain ý 1

and ý 2 ) a knowledge of the direction of the crack growth is necessary. In an iso-

tropic material a generally accepted hypothesis which postulates that crack growth is

perpendicular to the direction of greatest tension has been verified experimentally.

However, no such hypothesis is possible for orthotropic materials; since the direction of

crack growth depends on the strength of the material as well as the state of stress. Due

to this difficulty, the crack instability of orthotropic plates will be examined using the

stress intensity factors as criteria.
Defining k and k2c as the critical magnitude of the stress intensity factors for

unstable crack extension under simple tension and under pure shear respectively, the

combined influence of stress -intensity factors can be expressed in the following form:

k+ Gk-- = (58)

ic 2c

Obviously, in order to express kicand k2cin a functional relationship, a fracture criterion

relating the influence of symmetric and skew-symmetric loading for orthotropic material

is required. At present, not only is a fracture criterion of this type unavailable for

orthotropic materials, but a workable criterion has yet to be formulated and validified for

homogeneous isotropic materials. Consequently the exponents m and n in Eq. (58) must

be determined experimentally. From the experimental results, a suitable fracture

criterion for orthotropic material may become evident.
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III. EXPERIMENTAL PROGRAM

A. Introduction to the Experimental Investigation

1. Purpose of the Experimental Program

An experimental program was designed to determine the validity of the

hypothesis formulated from the analytical results. There are two main objectives to

the experimental program for orthotropic plates: (a) To investigate the feasibility of

using stress intensity factors k1 and k2 as criteria for unstable crack extension, and (b)

To investigate if a functional relation between k and k2 exists and, if it does exist,

whether it can be expressed in the form of Eq. (58).

The material chosen for the experimental investigation was balsa wood. This

choice was based on two factors: first because it was essentially orthotropic, and second

because it was readily available and suitable specimens could be easily prepared and

tested. However, due to the non-uniformity of the wood* only a qualitative demornstra-

tion of the fracture mechanics to orthotropic plates should be expected.

2. Experimental Set-up

In these experiments, the desired loading can be classified into three types:

(a) Pure tension perpendicular to the crack, (b) Pure shear and (c) Combined tension and

shear. Two methods of testing were used to achieve these loading conditions.

In the first method of testing, the tension test as shown in Fig. 3a, loading from

pure tension perpendicular to the crack to combined tension and shear can be obtained by

varying the relative angle y between the applied tension and the line of the crack **.

The speci -ten was gripped at opposite ends; one end being pinned to a table and allowed

to rotate. The tension load was transferred to the other grip through a long cable to

minimize any bending moment induced by the deformation of the specimen. However,

pure shear could not be obtained by this method. Consequently a second loading method

was used.

A dead-weight testing machine shown in Fig. 5 was constructed to load the speci-

men in pure shear as well as in combined tension and shear. Its essential components

are shown in the schematic drawing in Fig. 6. A square balsa wood specimen was

gripped on all four sides. Grip No. 1 was pinned to the machine base so that rotation

in the plane of the plate was possible. Cables connected to the remaining three grips

* This will be discussed in a later section.
** Since it has been noted in section II B 3 that tension in the direction of the crack has
no effect on the stress singularity at the crack tip, a in Fig.3a need not be considered
and the loading condition can be considered to be idenytical to that represented in Fig. 2c.
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were arranged as shown in Fig. 6; the three cables were then connected together in a

manner such that the load on a single center pan was distributed equally to each of the

three cables. These loads combined with the reaction force from the pin applied a pure

shear to the specimen. The load transferring cables were of sufficient length so that

the pure shear condition remained unaffected when the specimen deformed under load.

For tension, another cable was attached to grip No. 2 (in Fig. 6) and loaded by a sepa-

rate weight. The detailed manner in which the cables were connected to the grips is

shown in Fig. 7. Note that the pin (A) was located in the center of the gripping area so

that no moment was produced. The construction of the grips is also shown in Fig. 7.

Each grip was assembled from two aluminum pieces. The gripping surfaces were made

of pads of rubber which has an elastic modulus close to that of the balsa wood thus mini-

mizing the constraint of the grips. By means of a torque wrench, a minimum tightening

force required to prevent the grips from slipping under load was determined and main-

tained uniformly from specimen to specimen,

To prevent buckling in shear, the grips were constrained in a plane by two plates

of glass. Plexiglass plates were affixed to the glass plates to further constrain the

specimen from buckling. A cross -sectional view indicating their relative position is

shown in Fig. 8. The clearance between the plexiglass plates and the specimens was

approximately 0. 005 in. The friction between the aluminum grips and the glass plates

was very small and the displacement of the grips was not significantly restricted.

Observation of the crack was facilitated by placing a light below the specimen.

The crack length was measured using a traveling microscope of 20X power to which a

vernier scale was attached thus providing length measurements accurate to 0.01 inch,

Fig. 5 and 8.

B. Testing Procedure

The stress analysis presented in Part I is applicable to a single crack parallel

to one of the principle planes of elastic symmetry of a large plate. In these experi-

ments, only the case of a crack parallel to the grain of the balsa wood was investigated

since it is the most frequently observed mode of cracking in orthotropic plates.

Four different combinations of load were employed. Referring to Fig. 9, path

No. 1 represents tension perpendicular to the crack. Path No. 2 represents a crack

orientated at an angle / to the line of tension. Path No. 3 represents a specimen loaded

first to a pure tension stress, a0 , and then loaded to fracture by increasing the shear

stress. Path No. 4 represents pure shear loading. As stated in the previous section,

two types of testing methods were used: first a tension test with the crack orientated at
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various angles with respect to the line of tension and second a pure shear test or com-

bined tension and shear test using four grips to apply the desired loads. Since different

procedures for the two types of testing are used, they will be discussed separately.

1. Tension Tests (Path No. 1 and 2)

Five groups of specimens were tested in tension. The dimensions and

the values of the angle y for each group are listed in the table below.

Group y-deg Thickness Width Length

in in in

1 900 1/16 6 6

2 650 1/16 4-1/2 6

3 500 1/16 4-1/2 6

4 350 1/16 4-1/2 8-1/2

5 200 1/16 4 14

The variations in dimensions of the specimens were dictated by two considerations: (a)

The longer lengths were provided for small values of y so as to prevent crack propa-

gation into the grips, (b) The narrower widths of the specimens were necessitated by

the size of the balsa wood plate available.

An initial crack was put in the center of the specimen which was clamped in the

grips and loaded in tension by dead-weights. The crack length was measured using the

microscope, and the load increments at which crack length measurements were made

were large at low loads and reduced accordingly when the crack length was observed to

increase. This procedure was continued until fracture occurred. After the specimen

was fractured, it was observed that the crack usually did not propagate at the original

angle 'y, but at a slightly different angle. The actual angle of fracture of the region

near the center of the specimen was measured. From this angle, the component of

tension stress a perpendicular to the crack and the shear stress component t were

computed. Typical results of the experiments are shown in Fig. 10 and 11 where the

observed crack lengths 2a are plotted as abscissa corresponding to the value of a or t,

shown as ordinates. These results will be discussed later.

2. Combined Tension and Shear and Pure Shear Tests (Path No. 3 and 4)

In the second series of tests, all of the specimens had dimensions of 6" x

6" x 1/16". From the construction of the testing machine, it was clear that the side

grips, No. 3 and 4 in Fig. 6, must be in place in order to apply shear load. However,

if tension load was applied after the side grips were in place, these side grips

would constrain the elongation of the specimen. Consequently in the combined tension
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and shear tests which follow path No. 3 a different procedure was used. For each

group of specimens, the tension stress was increased to the desired level with the side-

grips absent. Then the side grips, No. 3 and 4, were put in place and shear load was

increased while the crack length was measured at increments up to fracture. Four

such groups of specimens were tested for constant tension stress of 25, 48.6, 62 and

71 psi respectively. The typical relations of t vs 2a observed at constant a are shown

in Fig. 12.

In the pure shear test, a crack was located in the center of the specimen parallel

to the wood grain and its length was measured at appropriate load increments. A

typical diagram of r vs 2a is presented in Fig. 13.

C. Interpretation of Data and Results

In the experimental investigation, it was observed that in almost all cases., some

stable crack extension took place prior to the sudden fracture of a specimen. The

amount of stable crack extension, the load level at which the crack began to extend, and

the rate of extension all vary from specimen to specimen. Slight variations in the

properties of the wood are believed to be the cause of these differences. Cracks in the

majority of the specimens tend to start extending at approximately 85% of the load level

at which rapid fracture occurs. Typical data for specimens No. 52, 110 and 44 are

shown in Fig. 10, 11 and 13 respectively. Other frequently observed crack extension

patterns are described below.

A crack which was located in a low density region of the wood normally extended

much more than one located in a higher density region. Examples of each type of be-

havior are specimens No. 105 and 41 shown in Fig. 11 and 13. Sometimes, a defect in

the wood was located near the tip of the crack. In this case, the crack began to extend

at a low load level, but stopped after it had propagated. through the defective region.

This crack remained at a constant length until the fracture load was approached when it

again resumed the normal extension pattern to fracture. Specimen No. 14 in Fig. 12 is

a typical example of this pattern of crack extension. Another irregularity observed

was an obstacle which appeared in the microscope as a dark spot located in the path of

the crack. An extraordinarily high stress level was required for the crack to over-

come the obstacle. On the other hand, a very low fracture stress resulted when the

crack extended into a large weak region such as a long weak grain. However, the

worst irregularities were avoided by judicious placement of the crack in a grossly

homogeneous region by examining the specimen in front of a strong light source.

Since the purpose of the experiments was to investigate the unstable crack propa-
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gation phenomena, the desired information was the stress level and crack length at

which the crack propagated rapidly to fracture. Because various crack extension

patterns were observed, a suitable convention was required so that the critical stress

level and the critical crack length could be defined. The stress at fracture was defined

as the critical stress level. On diagrams of a; vs 2a or -r vs 2a,a straight line was

drawn tangent to the last measured stable crack length and its intercept with the critical

stress level was defined as the critical crack length. In effect, this definition of

critical crack length assumed that the stable crack extension rate was unchanged from

the last measurement up to the point of fracture. This assumption was reasonable be-

cause the last incremental increase of load was usually very small as can be observed

from the graphs.

As stated earlier the fracture angles in the tension tests often differed slightly

from the original crack orientation angle. This variation was observed in each group

of tests. To account for this, the arithmetic mean of the final fracture angles of all.

specimens tested in each group was computed and denoted by y mean' The results of

each group of specimens are shown on diagrams of log a vs log a or log T vs log a.

Referring to the loading paths in Fig. 9, the results of tests which follow path No. 1 is

presented in Fig. 14, and the results of the tests which follow path No. 4 is presented

in Fig. 15. The results of path No. 2 at ymean equal to 64°, 500, 35.5° and 220 are

presented in Fig. 16a and b, 17a and b, 18a and b, 19a and b, respectively. Finally,

the results of path No. 3 at constant tension stress a 0 equal to 25, 48.6, 62, and 71

psi are presented in Fig. 20, 21, 22,and 23 respectively.

D. Discussion of Results

In the analysis of stress in the vicinity of the tips of a crack, it was suggested

that the stress intensity factors k 1 and k2 could be used as parameters to measure the

strength of an orthotropic plate containing a crack. If this is feasible (as it is in the

isotropic case) the critical stress intensity factors k1c and k2c could be constants for

one orthotropic material. Equation (57) can be written in the following form:
log klc =log a + 1 log a,

(59)

log k2c = log -r + I log a.

If klc and k2c are constants, then Eq. (59) suggests a linear relation between log a and

log a or log -r and log a with slope equal to -0. 5 on log-log plots.

In order to examine the hypothesis that the experimental results represent a
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straight line of slope equal to -0. 50, the data obtained from the tests which follow path
No. 1 are presented in Fig. 14. The amean and amean of all of the experimental data

were computed and are indicated in Fig. 14 by a cross (x). Next the mean of the data

in the region a < amean and similarly the mean of the data in the region a > amean

(indicated by two solid dots) were located. If a straight line passes through the three

points, it is reasonable to conclude that these data may be represented by a straight

line. In Fig. 14 it can be seen that the three points fall on a straight line the slope of

which was determined graphically to be -0.47. However, since a slope of -0. 5 was

predicted by the analysis, a line of this slope was drawn through the mean. A band

of + 10 per cent about this line included almost all of the experimental data. Within

the realm of experimental scatter, the critical stress intensity factor k = a 4"a =

constant provided a good description of the data for orthotropic plates tested under

loading symmetrical to a crack.

In the same manner, the results of the pure shear experiments which are pre-

sented in Fig. 15 were analyzed, and these data also were well represented by a

straight line with a slope equal to -0.48. Again a band of + 10 per cent about the line

of -0. 5 slope through the mean included most of the data. Consequently, it was con-

cluded that the critical stress intensity factor k2c = rva = constant is likewise applic-

able to orthotropic plates tested under loading skew symmetrical to a crack.

In the tests which followed path No. 2 where a tension load was applied at an

angle y to the crack, the tension component a perpendicular to the crack and the shear

component x were calculated from the actual fracture angle of each specimen. If the

fracture angles of the specimens in each group were the same then the ratio of aft

would have been constant. But, since these fracture angles varied slightly from speci-

men to specimen in the same group, it is evident from Mohr's circle that the ratio of

aft is not constant and the data would be distributed differently in the graphs of log a vs

log a than the data represented in the graphs log 'r vs log a. Thus it is necessary that

the data be represented in both of these graphs,and they are presented in Figs. 16 to 19.

The measured mean fracture angles, the number of specimens and the slopes of straight

lines estimated from these data are summarized in the following table.
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Original Angle Mean Angle No. of Specimens k =:(a)ha k
of Fracture Tested 2 = (a)

y nean N h

65° 64 8 -. 65 -. 57

500 500 7 -. 40 -. 43
350 35.50 12 -. 55 -. 53

200 220 10 -. 40 -. 46

Because of the increased scatter and the relatively few data points, the straight lines

that were estimated from the data exhibited slopes h and 2 which differed measurably

from -0. 50. However further examination of the data revealed that the slopes of those

lines which were determined from the larger number of data points were closer to -0. 50.

Furthermore, the average values of h and 2 of the four groups of tests were both very

nearly equal to -0. 50. Therefore it appeared that as the number of data points were

increased, the slope of the straight line determined by these data would closely approach

-0. 50. Within the realm of the accuracy of the experiments, straight lines of slope

equal to -0. 50 were drawn through the point determined by amean and amean (indicated

by a cross) in each figure. A band enclosing a region + 10 per cent about the mean

line included a majority of the data. Thus these data provide additional evidence that

a straight line of slope -0. 50 was a good description of the relation between log a and

log a and between log c and log a as suggested by Eq. (59). From these data, two im-

portant conclusions emerge regarding an orthotropic plate which contains a crack and is

tested under combined tension a and shear 'r. First, the stress intensity factors

kI = a-•a and k2 =' rv provide a good description of the relation between a and a, and

"r and a for rapid crack extension. Second, various combinations of kI and k2 may be

considered as critical combinations which produce unstable crack extension to fracture.

Thus these data suggest that a function f(ki, k2 ) = fcritical exists, which describes the

conditions for unstable fracture.

The results of the combined tension and shear experiments which followed path

No. 3 are presented in Fig. 20 to 23. For combined tension and shear, the critical

stress intensity factor klc = a-/-a for rapid crack extension had been shown to be a con-

stant. Thus for experiments described by path No. 3, if a is constant, then kI cannot

be constant. Therefore the data of the tests which followed path No. 3 representing

log r as a function of log a do not produce a straight line, but rather, a curve repre-

senting f (k1 , k2 ) = fcritical.

To examine the function f (ki, k2 ) = fcritical' that is the interaction between k,

and k2 under combined loadings, the values of kI and k2 are needed. Since the relations
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kI = u'I a nd/or k2 = r; a were applicable for all loading conditions, tension, pure

shear and combinations of tension and shear, the values of k1 and k2 for all of the ex-

perimental data were computed. These values are shown in Fig. 24 where k is the

ordinate and k2 is the abscissa. The data in Fig. 24 define the functional relationship

between k and k2 corresponding to unstable crack extension. A curve is drawn

through the points to represent the function f(k1 , k2 ) = fc' with end points for tension

f(kI, 0) = kic and for pure shear f(0, k2 ) =k2 c. A band which represents the maximum

deviation from the mean curve resulting simultaneously from k, + 10 per cent and

k2 + 10 per cent is also indicated. For the purpose of illustration this average curve

and the deviation band are replotted in Fig. 20 to 23.

To obtain the function f(kl, k2 ) = fc' a dimensionless representation was used.

Using the curve in Fig. 24 which represents the average of the experimental data, a

graph of kl/kic vs k2 /k 2 c is plotted in Fig. 25. The curve relating k1 and k2 was

assumed in the form of Eq. (58):

k m k n

1 2 ( 2

1c 2c

The exponents m and n were determined by choosing two points on the curve in Fig. 25.

Substituting these into Eq. (62) led to two simultaneous equations from which m and n

were obtained. This procedure was repeated several times using different pairs of

points on this curve until an average value of m and n was obtained. The values of in

and n which were found to fit the experimental data were

m = 1.03,

n = 1.88.

The important features of this function with the above values of m and n are that the
exponents m and n are not equal,and the function is defined only in the domain kI _> 0

and k2 Ž 0 since m and n are not integers. Referring to Fig. 26, it can be seen that

f(k1 , k2 ) = fc is necessarily even in k2 , i.e. fc(kl, - k2 ) = fc (k1 , k2 ) because the

direction of shear is arbitrary. Furthermore under combined compression and shear,

the curve f(kI, k2 ) = fc is likely to extend along the broken line shown in Fig. 26. To

meet these physical requirements, the exponents m = 1, n = 2 were chosen. This

gave a function that is even in k2 and defined for k > 0 as well as k1 < 0. Then Eq. (58)

becomes

1 + 2
1c--)+(.k--.-)' (60)
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Equation (60), which is shown by the broken curves in Fig. 24 and 25 defines a curve

that is not significantly different from the average experimental curve. This equation

fits the data excellently and satisfies the above mentioned physical considerations.

Consequently, Eq. (60) was used to represent the function f(k1 , k2 ) = fc for the balsa

wood sheets tested.

E. Discussion of Experimental Accuracy

The major sources of error in the experimental investigation were; 1. The non-

uniformity of the balsa wood used for specimens. 2. The accuracy of the crack mea-

surements. 3. The constraint introduced, by the side grips in the combined tension and

shear tests. 4. Buckling of the specimen under shear. 5. Absolute similitude was not

maintained between the theoretical model in the analysis and the model used for experi-

mental investigation. These sources of error will be considered separately.

1. The non-uniformity of the balsa wood used for specimens. The non-

uniformity of wood can be classified into two types, first, localized non-homogeneity

of wood which probably caused the different crack extension patterns described in

section III C and second, discrete macroscopic regions of different densities within a

specimen as shown by the light and dark bands in the picture of a typical specimen in

Fig. 4a.

It was found that by examining the specimen in front of a strong light source,

the non-homogeneous regions could be observed and the density of the Wood could be

compared. Using this technique, balsa wood sheets which showed approximately the

same uniform density in the prospective crack regio-rs were chosen for testing. This

method of choosing specimens eliminated the major variations in wood. An investi-

gation was designed to determine the influence of the specific gravity on the fracture

strength of the balsa wood specimens.

Since discrete regions of different densities exist within a specimen, it is the

specific gravity in the immediate vicinity of the crack rather than the average specific

gravity of the entire specimen that should be examined. After a specimen had been

tested, strips of wood approximately 1/4" wide on each side of the fracture surfaces

were cut out and the specific gravity of these two strips were measured. This method

of specific gravity measurement was applied to specimens which were tested in tension

perpendicular to the crack and those tested in pure shear. The deviation from the

mean specific gravity was denoted by AS. G. The deviation of the critical stress in-

tensity factor of each specimen from the respective means are denoted by Akc. A

plot of AkcVes AS. G. is shown in Fig. 27 where the solid points and open points represent
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data obtained from the tension test and pure shear test respectively. In this figure the

trend indicates that the variation in the critical stress intensity factors was directly re-

lated to the specific gravity. This trend is well defined indicating that the variation

in specific gravities was a major factor which contributed to the scatter of critical

stress intensity factors. However, no attempt was made to correct the experimental

data because the scatter in Fig. 27 makes clear that any feasible method of measuring

specific gravity would introduce an average value over a finite volume of wood. This

would improve the appearance of the data but it also would introduce another variable,

namely the volume of the strip used in specific gravity measurements. Since the

specific gravity at the crack tip could not be measured, the data was used without an

arbitrary correction. In its present form, the data showed the amount of scatter that

must be expected in balsa wood. Had a more uniform orthotropic material been chosen

for testing, scatter of the type shown in Fig. 24 undoubtedly would be reduced.

2. The 'accuracy of the crack measurements. The measurements are

made through a single microscope. The location of one tip of the crack was first deter-

mined and the microscope was then moved to locate the other tip so that the crack length

could be measured. This method was quite accurate when the crack was stable at low

load levels. But as the fracture load was approached, the tip of the crack whose location

was first determined did not necessarily remain stable while the microscope was moved

to locate the other tip. Furthermore, in some cases, the tips of the crack were not

well defined and precise measurement was difficult. However, since the "critical"

crack length for each specimen was determined from the crack extension rate which was

averaged from several crack measurements, the uncertainty of the crack measurements

attributable to the two aforementioned difficulties was considerably reduced.

3. Constraint introduced by the side grips in the combined tension and

shear tests. In the tests which followed path No. 3, side grips were required. The

constraint of the side grips on the specimen was minimized as much as possible by the

methods outlined in sections III A2 and III B, however it could not be eliminated during

the crack extension process.

It can be seen that in the combined tension and shear tests which followed path

No. 2 no side grips were required. The effect of the constraint of the grips on fracture

strengths of the specimens can be examined by comparing the results of tests which

follow path, No. 3 to those which follow path No. 2. In Fig. 24, the data which are pre-

sented as open points were obtained from tests where side grips were used, and the data

presented in solid points were obtained from tests where no side gkips were present.
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In the middle region, where both types of experiments were performed it can be seen

that the data overlap about evenly. Thus it can be concluded that the constraint of the

side grips was properly minimized, and its effect on fracture strength cannot be de-

tected from the experimental results.

4. Buckling of the specimen under shear. Buckling occurred only when

shear load was applied to the specimen with side grips in place. When buckling

occurred, the fracture strength was greatly reduced, but when shear was induced by

tests which followed path No. 2, no buckling was present. Once again, the data in

Fig. 24 indicated that there was no significant difference between the data obtained by

these two testing methods, and it can be concluded that buckling was successfully

eliminated by the constraint system employed in the experiments* when shear load was

applied through the side grips.

5. Absolute similitude was not maintained between the theoretical model

in the analysis and the model used for experimental investigation. The imposed

conditions** which were necessary for the mathematical analysis of the crack tip stress

distribution will be compared one by one with the actual conditions of the experiments.

First, the material was assumed to be linearly elastic. The specific gravity of the

specimens varies from 0. 126 to 0. 220. The ultimate tensile strength and proportional

limit perpendicular to the grain for balsa wood whose average specific gravity is . 176

ranges from 118 to 170 psi and 100 to 144 psi respectively ***. No data on the

proportional limit for pure shear was available, however the range of shearing

strengths is from 298 to 360 psi. In the experiments, the highest nominal stresses

observed were 112 psi in tension and 258 psi in pure shear. Since the range of the

strength properties is relatively large, it was not possible to examine the validity of

the assumption of linear elasticity for every specimen, but it is clear that in a small

region around the crack tips the stresses exceeded the limits of elastic behavior.

Nevertheless, from the range of the values given above, it appeared that the nominal

stress did not exceed the elastic limit with the exception of perhaps a few specimens

containing very short cracks. In those cases, some plasticity correction was needed.

However, since the data did not significantly deviate from a straight line of'slope equal

to -1/2 in the log a vs log a and log t vs log a diagrams as predicted by the elastic

analysis, no plasticity correction was attempted.

** This is described in section III A 2 and shown in Fig. 8.
* These conditions are stated in section II A.

These properties are taken from the data published by the Balsa Ecuador Lumber
Corporation, 500 Fifth Avenue, New York 36, New York. The proportional limits
are obtained from compression tests.
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Second, the plate was assumed to be thin and to extend to infinity in all directions

from the crack. The ratio of the smallest dimension in the plane of the plane (the width

D = 4") to the thickness of the plate t was D-= 64 which indicated that plane elasticity
t

was applicable. Furthermore, the smallest ratio of the plate width W ( at the line of

the crack) to the crack length 2a, was 2a - 3. 6. From experience with isotropic2a
plates, it was known that edge effects of the plate on crack extension -cannot. be meas -

ured for W > 3. It is therefore reasonable to conclude that the edge effect was negli-2a
gible in these experiments.

Third, the crack was assumed to be straight and "sharp". A straight crack

was cut into the specimen by a surgical knife blade approximately 0. 02" thick. A knife

blade whose width was smaller than the length of the crack was inserted in the center and

flexed slightly to make the crack tip propagate a small distance. In this way a sharp

natural crack was introduced in the specimen which corresponds closely to the theoreti-

cal assumption.

Fourth, the crack is assumed to be parallel to one of the principle planes of

elastic symmetry. In the experimental program, only the case of the crack parallel to

the grain of the wood was considered. It was very difficult to define the grain of the

balsa wood precisely and consequently some error was introduced. But the variations

in crack orientation were within + 2 from the average plane of elastic symmetry and no

provision was made to account for errors thus introduced.

Fifth, the influence of environment is neglected. If the environmental conditions

were constant for all of the experiments, its effects could have been neglected. How-

ever, due to the fact that there was no means of controlling the environment in the

laboratory in which these experiments were carried out, the effects of temperature and

humidity on fracture strength were not accounted for.

Although absolute similitude could not be obtained between the analytical and

experimental model without unnecessarily complicating the experiments it is believed

that the degree of similitude achieved was sufficient to warrant the conclusions.
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IV. SUMMARY AND RECOMMENDATIONS FOR FURTHER INVESTIGATION

From the theoretical analysis of the stress in the vicinity of the tip of a crack in

an orthotropic plate it was found that the stress distribution was dependent on the mate-

rial constants and that stress singularity was of the order r-1/2 Also the theoretical

analysis indicated that stress intensity factors kI = coý-a and k2 = Tv"T similar to those

used for isotropic materials could be used as parameters to measure the strength of an

orthotropic plate containing a crack. Furthermore, the existence of a functional rela-

tion between k1 and k2 was proposed.

In the experimental investigation on balsa wood plates, the stress intensity factor

k1c and k2 c were found to be constants for critical combinations of crack length and

loads in the symmetrical and skew-symmetrical cases respectively. Moreover, the

stress intensity factors were not only found to be applicable for combined symmetrical

and skew-symmetrical loads, but they were related by the function:

"1 2k-1c) 1 ( --k2) 2 1 (60)

kic +'2c)

From the experimental results, a three dimensional representation of the relationship

among the variables o, - and 2a is given in Fig. 28. In this figure, the surface re-

lating a, Tr and 2a can be considered as a fracture surface. If the state of a cracked

orthotropic plate is inside the tunnel shaped surface, unstable fracture is not probable

but if the state is outside of this surface then fracture is likely. Thus, it can be seen

that fracture mechanics can be applied to orthotropic materials.

Since the analysis deals with orthotropic plates of only one layer, the analysis

should be extended to the more realistic case of multilayer orthotropic plates.

The experimental program was designed as a pilot test to see if fracture mechan-

ics could be applied to orthotropic plates as suggested by the theoretical analysis and to

explore any experimental problems. It was found that some refinements of the experi-

mental set up were desirable. A tension-torsion filament wound tube specimen appears

attractive for future work. Experimental investigation of multilayer specimens should

be considered as a logical extension of this work in the future.
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(a) Crack Tip Shown at lOX (b) Plate Containing Single Crack Subjected to

Symmetric and Skew-symmetric Traction

Fig. 1
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Fig. 2 Superposition of Symmetric Traction on Skew-symmetric Traction
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(a) Components of Stress Around (b) Typical Broken Tension Specimen

Crack Under Tension

Fig. 3

(a) Photograph Illustrating Irregularities (b)Typical Broken Shear Specimen

of Balsa Wood Specimen

Fig. 4



Fig. 5 Testing Machine



(a) Top View

(b) Bottom View

Fig. 6 Schematic Diagram of Essential Components

of Testing Machine
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Fig. 7 Construction of Grips
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Fig. 8 Schematic Diagram of Cross Sectional View of Experimental Apparatus
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