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PIFACE

The Systems Group of the CODASYL (Conference on Data System Lan-

guages)(1)(2) Development Committee has produced an experimental lan-

(3)(4I)guage, DETAB-X, ( that is structured on decision tables, a framework

for describing a set of related decision rules.

Over the past year, the author has discussed with many Air Force

people the possibilities and advantages of using decision tables to

describe complex applications that involve numerous decision rules.

The Air Force, in turn, has indicated a strong interest in the tables

in order to apply decision rules in such areas as personnel and finan-

cial accounting. Their interest is predicated upon the improvement

in communication and documentation that decision tables offer over

previous techniques, such as flow chart and narrative foxm.

Decision tables offer system analysts the potential to eliminate

inconsistencies and redundancies among a set of specified decision

rules, and to insure completeness of problem statement. The tables

may make it possible to have more efficient computer programs, by re-

ducing needs for computer storage and reducing the length of computer

running time.

To realize these and other benefits, we must understand the fun-

damental characteristics of decision rules and their relationships

within a decision table. Toward this end, this Memorandum develops a

theoretical basis for analyzing the decision rules of decision tables

in general, and of a specific type of table used in DNTAB-X.

This Memorandum will interest a wide reading audience -- system

analysts, military and business managers, mthua~ticians and computer
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programmers may find, in the theories advanced here, specific applications to

their own work. To ease the reader's task, the text has been developed

in two parts. The first (Secs. I through IV) gives background infor-

mation on decision tables, discusses the implications of the basic

theorems developed in Secs. V and VI, and provides examples to illus-

trate the relationships among decision rules in a table. The second

part states the basic assumptions of the theorems and then provides

proofs for each of them; those readers having a working knowledge of

decision tables can move directly to Sec. V.

The comments of Stanley Naftali and Harley Robertson, both of

Space Technology Laboratories, El Segundo, California, were extremely

useful to the author, particularly in the early stages of development

of the decision table theory.
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Decision tables, a framework for describing a set of related

decision rules, can improve the communication and documentation

achievable by previous techniques such as flow charting and narrative

descriptions of data processing problems, particularly those contain-

ing many complex decision rules. In addition, decision tables offer

system analysts the potential to eliminate inconsistencies and redun-

dancies in each set of specified decision rules and to produce com-

puter programs that are efficient in the use of computer storage and

computer running time. Decision tables also enable the system analyst

to determine if he has considered all of the possible decision rules

that can be formed from a particular set of conditions.

This Memorandum develops for decision tables a theoretical struc-

ture that serves as the foundation for achieving these benefits. As

background for this development, the author describes a basic structure

of decision tables in Secs. I-IV. The theorems developed in this

paper (Secs. V-VII) provide a basis for system analysts and programmers

to verify the logic of their analysis. Rules are established that

enable them to insure the following:

1. that all possible combinations of conditions for the
problem have been considered,

2. that the system does not prescribe different actions
for the same situation, and

3. that the system describes each situation and its
actions once only.

The immediate effect of achieving the above is an improvement in

computer programing by reducing the number of computer instructions,

shortening computer running time, and decreasing programaing and
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debugging time. In the future, we can expect computers to take over

the task of checking decision tables for completness, redundancies,

and inconsistencies1 using the rules developed here.

The text also presents an extension of decision table theory.

Most current decision tables consist of decision rules for which every

condition in a set of conditions must be satisfied before a series of

actions can be taken. This Memorandum provides a basis for having

additional decision rules in which a series of actions can be taken

if any one of a set of specified conditions is satisfied. This type

of decision rule can be extremely useful in editing and information

retrieval. This extension should prove valuable in many data process-

ing areas.
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I. INTRODUCTION

Throughout military and business systems, a series of actions is

taken only when a set of conditions is satisfied. The expression that

describes the conditions and actions is called a Decision Rule. For

instance, one example of such a rule is the policy governing hourly

wage earners -- if an employee works more than 40 hours in one week

and is not salaried, then that employee shall be paid an overtime rate.

Decision rules can be written in any language and in any form as

long as they are intelligible. A popular method of expression is by

means of flow charts (illustrated in Fig. 1). The flow chart technique

has serious defects, however. First, the charts are difficult to

draw because of the symbols and spacing. Second, they are difficult

to comprehend, in that it is hard to follow the exact path of a series

of conditions and actions through the charts. Third, it is difficult

to determine whether the charts cover all possible cases. And fourth,

it is hard to insure the specification of the same series of actions

for a particular set of conditions. These same drawbacks apply in a

larger degree to the free-form English used to describe the decision

rules.

The need for faster and better communication and analysis has led

to the development of Decision Tables, structures for describing a set

of decision rules. Computer languages, adapted for decision tables,

have been developed for describing and processing scientific and

business problems. Exmples in the scientific area are FORTAB(5) and

STRUCTURE TABLE wANGUAGE(,6) while the business area has TABSOL(T)

andA
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System analysts and programmers use decision tables to describe

the decision rules for their business data processing systems or for

their scientific problems. To assist these specialists, this Memo-

randum describes a set of rules for insuring that each decision table

is complete, and contains no redundant or contradictory rules. The

rules described here are based on a collection of decision-table

theorems formulated in the latter half of this Memorandum. As back-

ground for the discussion, the author briefly explains the basic

structure of decision tables,* and then shows how the theorems apply

to a particular decision-table language, DETAB-X.

*For a fuller description of decision-table structure and devel-
opment, see refs. 8 and 9.



II. BASIC STRUCTURE OF DECISICW TABLES

Decision tables contain decision rules. The basic structure of

the tables is universal. Their language, however, varies depending

on the application being described. While the format of decision

tables can be of maney types, one that is in general use is described

here and illustrated in Table 1.

Table 1

DECISION TABLE STRUCTURE

Decision Decision Decision Decision Decision Decision
Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6

if

and -0%o °

and

and - _ _ _ _ _ _

then

and - o- - -

and

The vertical and horizontal double lines divide the table into

four major parts. All entries above the horizontal double line are

conditions; all below are actions. The boxes to the left of the ver-

tical double line are called stubs; the boxes to the right are called

entries. A condition is described by what is in a stub amd entry

above the double horizontal line; an action is described by what is

in a stub and entry below. Single horizontal lines separate each con-

dition and action. Single vertical lines separate each decision rle.
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We interpret Table 1 in this manner. The combination of the

contents of the condition stubs and entries specifies a condition that

must be satisfied; the combination of the contents of the action stubs

and entries specifies an action that must be executed. The top hori-

zontal is read as "if." All other single horizontal lines are read

as "and." The horizontal double line is read as "then." The decision

rules are reed down, combining each entry with its stub. The "Y" says

the condition in the stub must be satisfied; the "N" says the condi-

tion in the stub must not be satisfied; the "I" says the condition in

the stub is imaterial.

Table 2

SAMLE DECISION TABLE

Rule 1 Rule 2 Rule 3

SAIARIED-EWLOYEE N N Y

HEWS-WOCED > 40 Y N I

PAY OVERTIME-RATE EGULAR-RATE REGUlAR-USALAR

For example, Table 2 is read this way:

Decision Rule 1 states: If employee is not salaried and
worked over 40 hours, then pay his overtime rate.

Decision Rule 2 states: If employe% is not salaried and
worked 40 hours or less, then pay his regular rate.

Decision Rule 3 states: If employee is salaried, regardless
of whether he worked over 40 hours or not, then pay his
regular salary.

LIMITED ENTI• VERSUS E.EWDED ElVTI•

Each horizontal line of a table must be either limited entry sr

extended entry. A limited-entry condition line contains the whole

condition in the stub, a Y (yes), N (no), or I (immaterial) in each
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entry box of that line. A limited entry action line contains the whole

action in the stub, an X (execute) or "-" (don't execute) in each entry

box of that line. An extended-entry line contains part of the condi-

tion (or action) in the stub and pert of the condition (or action) in

the entry box of that line.

For example, lines 1 and 2 in Table 2 are each limited-entry

lines; line 3 is an extended-entry line. It is permissible to have

both limited-entry lines and extended-entry lines in the same table,

but any one line is either limited-entry or extended-entry. If re-

quired, limited-entry lines can be converted to extended-entry lines

and vice-versa.

For example, line 2 in Table 2 could have been written as follows:

HOURS-WORKED >40 < 40 -20 0

or line 3 in Table 2 could have been written

PAY OVERTIME-RATE Y - -

PAY REmULAR-RATE - Y--

PAY REGULAR-SALARY - - Y

Note: The dash "-" signifies that the action
listed in the stub is to be ignored, i.e., the
action shall not be executed.

The remainder of this paper deals only with decision tables that

have limited-entry lines in the condition area of the table, i.e.,

limited-entry lines above the horizontal double-line.*

A apecial class of decision tables, DIAB-X(4)(11) specified by

the CODASIL Systems Group, is presently under test in the

UConcurrent research on extended-entry condition lines is going
en. For one effort in this area, see Ref. 10.
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data processing cmmunity. The next section describes the require-

ments of DETAB-X decision tables and the implications on them of the

theorems developed in the latter half of this paper. But first, we

offer some additional notation.

DECISION RULE NOTATION

The AND-FUNCTION of a decision rule is the ordered set of Y, N,

or I that appears in the condition entry boxes of that decision rule.

For example, in Table 2

the AMD-FUNCTION of Rule 1 = WY,

the A•.-FUNCTION of Rule 2 = NN, and

the AND-FUNCTION of Rule 3 = YI.

A decision rule is satisfied by a transaction if all the condi-

tions specified by its AND-FUNCTION are identical with the correspond-

ing conditions specified in the transaction. Again referring to

Table 2, if an employee hands in a work report on which he states

that he is not salaried and he worked 45 hours, then Rule 1 is satis-

fied by that work report. The act of coiparing a transaction against

each of the rules of a decision table is called testing the decision

rules.

We now define two AND-FUNCTIONS to be dependent if there exists

at least one transaction such that both AND-FUNCTIONS are satisfied

by that transaction. Otherwise, they are independent.

For example, referring once more to Table 2, AND-FUNCTION 1 and

AND-FUNCTION 2 are independent. On a transaction of each salaried

employee, either the hours worked is greater than 40 or is not. If

they are greater than 40, Rule 1 is satisfied and Rule 2 is not; if



they are less than 40, Rule 2 is satisfied and Rule 1 is not. Hence

Rules 1 and 2 are independent.

We define a pure AND-FUNCTION as one that contains only Y's and/or

N's; i.e., it contains no I. A mixed AND-FJNCTION contains one or

more I's. We define a simple decision rule as one whose AND-FU!ECTION

is pure; a complex decision rule is one whose AND-FUNCTION is mixed.

Rule 1 and Rule 2 in Table 2 are each simple decision rules; Rule 3

is complex.
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III. ANALYSIS OF DETAB-X DECISION TABLES

In this section, we use the theorems developed in Sec. V, and

the special type of decision tables specified for DETAB-X to describe

how table rules can be analyzed for completeness, redundancies, and

inconsistencies. But first, we describe two significant requirements

that the CODASYL Systems Group specified for DETAB-X decision tables.

Requirement 1: Every decision rule must specify at least- one

action. It makes no sense to say "If employee works overtime and he

is an hourly worker," without specifying at least one action to take

if these conditions are met. It is perfectly reasonable, however, to

say "Give every employee an extra holiday," without specifying any

conditions.

Requirement 2: Each transaction that tests the decision rules of

a decision table must be able to satisfy one, and only one, of them.

This requirement offers advantages in two vital areas: (1) it insures

completeness of decision tables, and (2) it reduces contradictions and

redundancies among decision rules. We discuss these areas subse-

quently.

Other computer languages have alternatives to Requirement 2. For

example, FOM!AB tests rules in order starting from the left and working

toward the right until one rule is satisfied; the actions of the sat-

isfied decision rule are then executed. With FORTAB then, it is pos-

sible to satisfy more than one decision rule with a single transaction,

with the leftmost satisfied rule being executed. Checking FORAB

tables for completeness, redundancy and contradiction of decision

rules would require more complex rules than those we now describe.
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CCMPWLITINES OF DECISION TABLES

As previously stated, a decision table is complete if, and only

if, (1) every decision rule contains at least one action; and (2) each

transaction that tests the table rules satisfies one, and only one,

decision rule. This means that the table must contain all of the

possible independent AND-FUNCTIONS that can be formed from the possi-

bilities listed in the condition stubs.

A natural question is "How does one determine that a decision

table is complete"? It is easy to satisfy Requirement 1 by verifying

that each decision rule in the table has at least one action. But

determining if Requirement 2 is satisfied (each transaction satisfies

only one rule) requires a further explanation which we shall give by

examining decision tables that contain:

1. Simple decision rules only,

2. One or more complex decision rules and no ELSE-Decision-
Rule,

3. An ELSE-Decision-Rale.

Decision Tables Containing Simple Decision Rules Only

Theorem V states that there exist exactly 2n independent AMD-

MUNCTIONS in a table based on n conditions. Hence a table must

specify or Imply 2n independent decision rules in order for there to

exist one, and only one, decision rule a transaction can satisfy. As

an example, a decision table based on 3 conditions should contain 23

(or 8) independent AND-FUNCTIONS (see Table 3).

Theorem IV states that a table based on n conditions contains

exaetly 2n distinct pure A)-I•J TXIONS each of which In Independent
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of every other. Therefore, if a decision table contains simple deci-

sion rules only, it must contain exactly 2n distinct pure AND-FUNCTIONS.

Table 3 contains simple decision rules only, i.e., its AND-FUNCTIONS

contain no I's. The table is based en 3 conditions; it should contain

23 = 8 decision rules. It does. Are they independent? Yes, since

Theorem I states that two AND-FUNCTIONS are independent if, in at

least one position, one function contains Y and the other function

Table 3

CREDIT APPROVAL DECISION TABLE

Rule
1 2 3 4 5 6 7 8

CRED3T KC Y Y Y Y N N N N

PAY-EXPJERIECE FAVORABIE Y Y N N Y Y N N

SPECIAL-CLEARANCE OBTAINED Y N Y N Y N Y N

APPROVE ORDER XXX X X X -

RETURN ORDER TO SALES- ............ X

Note: "X" says execute the action in the Stub.
it -t says do not execute the action in the Stub.

contains N. In Table 3, this occurs for every pair of AND-FUNCTIONS;

hence, they are independent.

In summary, a decision table that is based on n conditions and

contains simple decision rules only is complete if it has 2n distinct

decision rules, and each decision rule contains at least one action.

Decision Tables Containing One or More Complex Decision Rules and No

ELSE-Decision-Rule

Table 3 contains several decision rules -- Rules 1 through 7 --

which take the sam action, regardless of whether the condition in
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one of the stubs has a Y or N associated with it. Therefore, Table 3

can be rewritten as a table which contains simple and complex decision

rules, i.e., those whose AMD-FUNCTIONS contain at least one I. Rules

1 through 4 of Table 3 we rewrite as complex Decision Rule 1 in Table

4; Rules 5 and 6 we rewrite as complex Decision Rule 2.

Table 4

CREDIT APPROVAL DECISION TABLE

Rule 1 Rule 2 Rule 3 Rule 4

CREDIT OK Y N N N

PAY-EXPERIENCE FAVORABLE I Y N N

SPECIAL-CLEARANCE OBTAINED I I Y N

APPROVE ORDER X X X -

RETURN ORDER TO SALES - - - X

Assuming Table 4 as a starting point, it is possible to reverse

the process described above and expand it to Table 3 using Theorem

III. Following expansion, the procedure described earlier for show-

ing that Table 3 is complete could be followed thereby deducing the

completeness of Table 4. Another preferable procedure' for testing

the completeness of Table 4 exists and is presented below:

1. Check that each decision rule contains at least one
action.

2. Use Theorem I to show that the AND-FJNCTIONS of Table
4 are independent. Theorem I states that two AND-
FUNCTIONS are independent if in at least one position,
one function contains Y and the other function contains
N. Note that this is true for every pair of AND-
FUNCTIONS in Table 4. Hence, the AND-FUNCTIONS are
independent.

*The reader, as an exercise, can expand Table 4 to Table 3, using
Theorem IlI. (See Appendix for the statement of all theorems.)
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3. Then show that the 4 decision rules in Table 4 imply
(or are equivalent to) 8 decision rules. For this,
refer to Theorem VI which states that each decision
rule containing an AND-FUNCTION with I in r positions
is equivalent to 2r simple decision rules. Hence, in
Table 4:

Rule 1 is equivalent to 22 (or 4) simple decision rules;
Rule 2 is equivalent to 21 (or 2) simple decision rules;

Rule 3 is equivalent to ( simple decision rule; and

Rule 4 is equivalent to 1 simple decision rule.

Total 8

Since Rules 1, 2, 3, and 4 of Table 4 are equivalent to 8 simple

independent decision rules, Table 4 is complete.

Decision Tables Containing an ELSE-Decision-Rule

In decision tables based on many conditions, and consequently

containing many decision rules, it is often highly desirable to group

as one these decision rules that specify the same series of actions.

This decreases the amount of writing and reduces the amount of com-

puter coding, thereby reducing errors and decreasing the anount of

computer storage required for the program.

The ELSE-Decision-Rule satisfies this purpose. The AND-IUNCITION

of the ELSE-Decision-Rule is equal to the disjunction of all inde-

pendent AMD-FUNCTIONS not specified or implied by the written decision

rules in the table. Assume, for example, that Table 6 is equivalent

to Table 5. Then the ELSE-Decisien-Rule (abbreviated ELS) in Table 6

replaces Rules 4, 5, and 6 of Table 5; therefore the AND-FUN=?ION of

ELS is equal to the disjunction of (is the equivalent of) AD-IUNMCTIOM

4, 5, and 6.
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Table 5

DEPRECIATION EXPENSE

Rule

1 2 3 4 5 6

ASSET-PURCHASED T T N T T Y

PROPERTY-CLASS 2! "A" Y Y I N Y N

PROPERTY-CLASS 5 "J" T Y I Y N N

ASSET-NEW-WHEN-PURCHASED Y N I I I I

COMPUTE DEPREC-EXPENSE BY SUM OF D•GIT•$TRAIGHT LINE .....

GO TO ASSET-LEASED-TABLE - - X ....

WRITE ERROR-MESSAGE - -X XX

Table 6

DEPRECIATION EXPENSE

Rule

1 2 3 ELS

ASSET-PURCHASED Y Y N -

PROPERTY-CLASS -> "A" Y Y I -

PROPERTY-CLASS < "J" Y T I -

ASSET-NEW-WHEN-PURCHASED Y N I -

COMPUTE DEPREC-EXPENSE BY SUM OF DIGITS STRAIGHT LINE - -

GO TO ASSET-LEASED-TABLE - - X -

WRITE ERROR-MESSAGE - - X
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In the general case, if t independent AID-FUNCTIONS are speci-

fied or implied in a table based on n conditions, the ZLSE-Decision-

Rule is defined as the equivalent of ( 2 1-t) decision rules, each of

whose AD-FUNCTIONS are independent of each other and the t specified

or implied ,AD-FUNCTIONS. Expanding the specified AND-FUNCTIONS of

Table 6 results in t = 10 AND-FUNCTIONS shown below-.Y! Y ! N ! N N ] [ N .[ J , [ 11]
and since n = 4, 2n = 2ý - 16. Therefore, (2 n-t) - 16-10 - 6.

The following are expressed by the ELSE AND-FUNCTION:

These are equivalent to the AND-FUNCTIONS of Rules 4, 5, and

6 of Table 5. The above 6 AND-FUNCTIONS were derived by noting that

where there are 4 conditions, there are 16 AMD-FUNCTIORB. Among the

16, 8 will have Y in the first row, and 8 will have N in the first

row; the second, third and fourth rows are similar. No pair can be equal.

The original 10 AND-FUNCTIONS had 2 Y's and 8 N's in the first row.

Hence, the r.maining 6 AND-FUNCTIONS must have a Y in the first row.

In the second row, the original 10 AND-FUNCTIONS had 6 Y's and 4 N's.

Hence, the remaining 6 AID-FUNCTIONS must have 2 Y's and 4 N's. Look-

ing at the ist and 2nd row only, there should be
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44 "[Y]~ 44 *j1[t NJ and ~4 [N There exisut

only 2 f'Y-and. no"Y" Hence, 2 and[y

must exist in the 6 AND-FuMCTIONS. This process is completed until

all the rows have been filled in.

A decision table having an ELSE-Decision-Rule is complete if

each decision rule (including EM•) contains at least one action. It

is interesting to note that the ELSE-Decision-Rule is automatically

satisfied when all the specified or implied decision rules are not

satisfied. Hence, of all the rules in a decision table, the ElSE-

Decision-Rule must be tested last. As to rules other than EIW, their

testing order is immaterial since awy transaction can satisfy only

one rule. For example, entry into Table 5 with a transaction is the

same whether we test Rules 1, 2, 3, 4, 5, and 6 in order, or if we

test Rules 3, 2, 5, 4, 6, and 1 in that order. In Table 6, however,

Rules 1, 2, and 3 must be tested first in any order; if they all fail,

E11 is automatically satisfied. This follows because each transaction

must satisfy one and only one rule. Therefore, if Rules 1, 2, and 3

are not satisfied, and 1W8 represents the remaining decision rules,

the transaction must satisfy it.

CONTRADICTIONS AND REZJlDANCIES AMONG DECISION MMLE

The preceding discussion on completeness of decision tables

assumes that Requirement 2 is not violated. If it is violated, the

decision table contains redundant and/or contradictory rules. The

following discussion assumes that Requirement 1 is not violated.
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Redundant Decision Rules

If Requirement 2 is violated, there exists at least one trans-

action that satisfies two or rzre decision rules, i.e., the AMD-

FUNCTIONS of two or more decision rules are dependent. For ease of

discussion consider Rules 1 and 2, both of which can be satisfied by

one transaction, i.e., their AND-FUNCTIONS are dependent. If the two

AND-F•JNCTIONS are identical and the sequence of actions specified for

Rules 1 and 2 are identical, then one of them is redundant; someone

mistakenly repeated a decision rule.

It is not as apparent that redundancy exists if the two AND-

FUNCTIONS are not identical, even though they are dependent; for AND-

FUNCTION 1 and AND-FUNCTION 2 cannot both be pure AND-FUNCTIONS by

virtue of Theorem II which states that each pure AND-FJNCTION is inde-

pendent of every other pure AND-FUNCTION. There are then two possible

explanations:

Case I - One of the AND-FUNCTIONS is pure and the other is mixed:

Case II - Both AND-FUNCTIO0S are mixed.

For Case I, refer to Theorem IV, corollary 3, which states that

if a pure AND-FUNCTION and a mixed AND-FUNCTION are dependent, the

pure AND-FUNCTION is contained in the canonical form* of the mixed

AND-FUNCTION. Since Rules 1 and 2 have the same sequence of actions,

the decision rule that contains the pure AND-FUNCTION is redundant.

This can be illustrated by looking at Rules 1 and 2 of Table 7.

"*The canonical form describes a mixed AND-FUNCTION in pure terms.
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Table 7

CREDIT APPROVAL

Rule 1 Rule 2 Rule 3 Rule 4

CREDIT OK Y Y N N

PAY-EXPERIENCE FAVORABLE I Y Y N

APPROVE ORDER X X X -

REFTJRN ORDER TO SALES - - - X

Their AND-FUNCTIONS are dependent (by Theorem I). Rule 1 breaks

down as follows:

X T

(1) (2) (3)

Note that (2) is identical to Rule 2, Table 7. Hence, Rule 2 of

Table 7 is redundant. In other words, if credit is ok, approve order.

Case II, where both AND-FUNLTIONS are mixed, refer to Theorem IV,

Corollary 4, which states that if two mixed AND-FUNCTIONS are depend-

ent there exists in their canonical form at least one pure AND-F•/NCTION

that is common to both. The one or more common pure AD-FUNCTIONS

constitute the redundancy in this case and can be eliminated by re-

moving each redundant comon AND-FUNCTION. For example, in Table 8,

by Theorem I, AND-FUNCTIONS 1 and 2 are dependent.

Rule 1 breaks down as follows: Y4 [Y] Y]
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Rule 2 breaks down as follows: [I] - [Y N]

The common AND-AJNCTION is [_]

which can be eliminated from Rules 1 anM 2. Eliminating it from Rule

2 produces the redundancy-free Decision Table 9. Note that there are

5 decision rules in Table 8 (21+ 21+ 1 = 5) which is more than the

required 4 = 2 2(2 conditions). In Table 9, by eliminating a redun-

dant decision rule, the number of independent decision rules is

21+ 1+1 4.

Table 8

CREDIT APPROVAL

Rule 1 Rule 2 Rule 3

CREDIT CK Y I N

PAY-EXPERIENCE FAVORABLE I Y N

APPROVE ORDER X X -

RETURN ORDER TO SALES - - X

Table 9

CREDIT APPROVAL

FRule 1 Rule 2 Rule 3

CREDIT QCK Y N N

PAY-EJCERIENCE FAVORABLE I Y N

APPROVE ORDER X X -

RETRN ORDER TO SALES - - X
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Sumary in Decision-Table Form of Contradiction and Redundancy

All possible contradiction and redundancy situations can be sa=-

marized in decision table form by representing all pairs of decision

rules In a decision table by Rules 1 and 2 whose AND-FUNCTIONS are

AFI and AF2 respectively, and whose series of actions are Al and A2

respectively. This is shown in Table 10.

Table 10 is complete because each decision rule has at least

one action (passive) and the AND-FUNCTIONS of the decision rules are

independent of each other. There are 24 + 22 + 1 + 1 + 1 + 1 + 23 = 32

decision rules. Since the table is based on five conditions, there

should be 25 = 32 independent decision rules. Table 10, then, is

complete.

DECISION TABLES VIS-A-VIS FLOW CHARTS

To illustrate some advantages decision tables have over flow

charts, the decision rules diagrammed in Fig. 1 are written into Tables

11A, 11Bi, and 11C. In the flow chart, it is difficult to recognize

each decision rule; in the tables each rule is clearly defined. The

reader has no way of determining whether a particular decision has

been omitted from the chart, thus making the satisfaction by certain

transactions impossible. The first time a transaction tests a deci-

sion table and does not satisfy one of the specified decision rules,

the ELSE-Decision-Rule will reject it as an error. Any redundancies

and contradictions among the decision rules in a table can be located

using Theorem I. Tables 11A, l1B, and IIC contain no contradictory

or redundant decision rules; this cannot be determined from the flow

chart (see Fig. 1).
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Table 11B

SUBSTITUTION AND ALLOCATION PROCEDURE FOR HANDLING REQUESTS

Rule 1 Rule 2 Rule 3

PRIORITY < 3 Y Y N

ROINDER UNFILLEDT ? N Y I

ISSUE AS MUCH AS POSSIELE FROI > 1 IM X - -

GET NEXr REQUEST - x X

GO TO TABLE A X X X

Table 11C

SUBSTITUTION AMD ALLOCATION PROCEDURE FOR HANDLIN3 REQUESTS

Rule

1 2 3 4 5 6 7 8 9 ELS

APPROPRIATE SUBSTITUTE? Y N I Y N I Y N I -

INTERCHANGEABLE OR REQUESTED ITEM? N N N Y Y Y Y Y Y -

IAST ITEM? I I I N N N Y Y Y-

LAST SUBSTITUTE? N N Y I I I I I I -

INTERCHANGEABLE? I I I N N Y I I I -

PRIORITY = 5 II I I I I N N Y -

BACKORDER & UPDATE REEST -------- -X -

GET N REQUEST X -

GO TO TABIE A BBA B A A B A Erro

To further compare the two, the decisions in a flow chart must

be tested in the order in which they appear; in a decision table,

except for the ELSE-Decision-Rule, the decisions can be tested in any

order. This enables prograuers to consider the relative frequency
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with which transactions satisfy decision rules and should lead to more

efficient computer programs. And finally, when policy changes occur,

it is easier to correct each of the affected decision rules than it

is to correct a series of interconnected flow-chart boxes.

SUMMARY OF PROCEDURE FOR CHECKING DECISION TABLES FOR CQWLE8TEIRESS,
REDUNDANCY AND CONTRADICTIONS

1. Be sure that each decision rule contains at least one action.
Where no action is specified, either specify the action(s) or remove
the decision rule.

2. Be sure every pair of AND-FUNCTIONS is independent by veri-
fying that in at least one position of each pair there exists a Y in
one function and an N in the other. For each pair that is dependent,
refer to Table 10 to determine where redundancy or contradiction
exists and take appropriate steps to correct this deficiency.

3. After all contradictions and redundancies have been deleted
and all decision rules have at least one action, check to see if the
decision table contains an ELSE-Decision-Rule. If it does, the table
is complete and contains no contradictions or redundancies.

4. If the decision table contains no ELSE-Decision-Rule, count
the I's in each decision rule. Suppose Rules 1, 2, --- , m contain rl
r 2 , --- , r . Then the decision table contains

=2 r+2 +--- + 2rM +2 m

independent decision rules. If the table contains n independent con-
ditions, N should equal 2 n. If N is greater than 2n, all redundant
or contradictory rules have not been eliminated, and the analyst
should go back to step 2.

If N is less than 2n, the table has not specified all possible

allowable decision rules. This can be corrected by either

a. inserting an ELSE-Decision-Rule, or

b. checking which of the 2 n independent decision rules
are missing from the table and inserting them (see
page 15 for method of finding missing AND-FUNCTIONS,
and hence, missing decision rules).
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IV. THE USE OF OR-FUNCTIONS

Many data processing areas, such as editing and information re-

trieval, need decision rules that specify a series of actions if any

one of a number of conditions is satisfied. While this can be handled

by decision rules containing AND-FUNCTIONS, it generally requires a

great deal of writing that could be eliminated if it were possible to

connect condition requirements with an inclusive "OR" operator, in-

stead of the "AND" operator used in AND-FUNCTIONS.

STRUCTURE FOR OR-FUNCTIONS

We can illustrate the structure and features of OR-FUNCTIONS by using

an input editing example. If a particular field is not numeric and/or

has more than 7 characters, and/or a decimal point is missing, then it

is invalid and an error procedure must be executed; otherwise continue

processing. Table 12 depicts these decisions in DETAB-X form. The

decisions described in Table 12 are now shown in Table 13 with the

OR-FUNCTION to the right of the rightmost double vertical line and

above the double horizontal line. A double vertical line separates

the decision rules that have AND-FUNTIONS from those that have OR-

FUNCTIONS, i.e., those that have conditions connected by inclusive "OR"

operators.

Where I in the AND-FUNCTIONS says "immaterial" (having the same

effect as Y or N), 0 in the OR-FUNCTIONS says "immaterial" (here the

effect is to ignore the conditions). For example, in Table 14, Rule

3 says that if field is not numeric or the number of chwracters is

greater than 7, go to error procedure. This decision rule is not con-

cerned with whether or not the 5th character is a decimal point.



-26-

Table 12

INPUT EDIT

Rule 1 iRule 2 Rule 3 Rule 4

FIELD IS NUMiERIC N Y Y Y

NO. of CHARACTERS > 7 I Y N N

5th CHARACTER = DECIMAL PT. I I N Y

GO TO ERROR PROCEDURE X X X -

CONTINUE PROCESSING - - - X

Table 13

INPUT EDIT

Rule 1 Rule 2

FIELD IS M14ERIC Y N

NO. CP CHARACTERS > 7 N Y

5th CHARACTER = DECIMAL PT. Y N

GO TO ERROR PROCEDURE - X

CONTINUE PROCESSING X -

The ELSE-Decision-Rule still appears as the rightmost rule, and

represents the remainder of the 2n possible independent rules that

have not been specified or implied in the decision table (see Table 15).

ANALYSIS OF DECISICO RULES COyIAIIN3 AtID-FUNCTIONS and OR-FUNCTIONS

Decision table Requirements 1 and 2 specified earlier for AND-

FUNCTIONS continue to apply to OR-FUNCTIONS. Also, the definition

given for dependence and independence of AND-FUNCTIONS applies equally

well to OR-FUNCTIONS. However, the criteria for determining the
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dependence of a pair of OR-FUNCTIONS or the dependence of an AND-

FUNCTION and an OR-FUNCTION are different from those previously

described. Also, the rules for counting OR-FUNCTIONS differ. Because

the completeness of decision tables in terms of AND-FUNCTIONS was de-

scribed earlier, the following sections are confined to explaining

the equivalence relation between OR-FUNCTIONS and AND-FUNCTIONS.

Table 14

IMT EDIT

Rule 1 Rule 2 Rule 3

FIED IS NUMERIC Y Y N

NO. OF CHARACTERS > 7 N N Y

5th CHARACTER = DECD4AL PT. Y N 0

GO TO ERROR PROCEDURE - - X

INSERT DECD4AL POINT - X -

CONTINUE PROCESSING X X -

Theorem VI' states that an OR-FUNCTION that contains 0 in r

positions is equivalent to ( 2 n - 2 r) pure AND-FUNCTIONS; where 0 ! r < n.

In Table 13, for example, the OR-FUNCTION of Rule 2 has no 0. There-

fore, r = 0, and OR-FUNCTION 2 is equivalent to ( 2 n - 20) = ( 2 n - 1)

pure AND-FUNCTIONS. In another example, Table 14, the OR-FUNCTION of

Rule 3 has one 0. Therefore r - 1, and OR-FUNCTION 3 is equivalent to

(2n - 2 1) = (2n- 2) pure AND-FUCriONs.

In order to make checks on completeness, redundancy, and con-

tradictions described earlier for decision tables containing AND-

FUNCTIONS, it is necessary to state when OR-FUNCTIONS are dependent,

and when an OR-FUNCTION and an AND-FUNCTION are dependent.
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Theorem I' states that two OR-FUNCTIONS are dependent if, in at

least one position, both contain a Y, or both contain an N. Other-

wise, they are independent.

Theorem I" states that an AND-FUNCTION and an OR-FUNCTION are

dependent if, in at least one position, there exists a Y in both, or

an N in both, or there exists an I in the AND-FUNCTION and a Y or N in

the OR-FUNCTION. Otherwise they are independent. For example, in

Table 14, on lines 1 and 2, AND-FUNCTION 1 and OR-FUNCTION 3 do not

both contain a Y; nor do they both contain an N; also there is no I in

AND-FUNCTION 1. Therefore, AND-FUNCTION 1 and OR-FUNCTION 3 are inde-

pendent. Similarly, AND-FLIMTION 2 and OR-FUNCTION 3 are independent.

Decision tables containing AND- and OR-FUNCTIONS can now be tested

according to the procedures specified in Sec. III of this paper. Con-

sider Table 15. Requirement 1 is satisfied; every decision rule has

at least one action. In checking all pairs of AND-FUNCTIONS and OR-

FUNCTIONS for dependence, we note that AND-FUNCTION 1 and OR-FUNCTION

5 are dependent because for the condition "Property-Class > 'J"', AND-

FUNCTION 1 has an I and OR-FUNCTION 5 has a Y. Also, AND-FUNCTION 2

and OR-FUNCTION 5 are dependent because for the condition "Property-

Class < 'A"', the former has an I, and the latter has a Y. Table 16

corrects this dependence and shows all the AND-FUNCTIONS and OR-FUNCTIONS

as independent.

Counting the number of AND-FUNCTIONS specified or implied in Table

16 we derive the nunber of decision rules contained therein



-29-

0

co

GL >-S 4 ý4 S I 6 N I

1-~~ E-1 d

H ~ 0

P04

30

ORid

ti 0 a 0

1 9t'

v.um A4



-30-

C\

E4)

Z Z H

E -4

4)



-31-

AWD-FJNCTION 1 implies 2 = 2

AMD-FUNCTION 2 implies 21 = 2

AND-EUNCTION 3 implies 21 = 2

AND-FUNCTION 4 Implies 21 = 2

OR-FUNCTION 5 implies (25-23) = 24

TOPAL 32 decision rules.

Since there are 5 conditions, the required number of decision rules

is 25 = 32. Having specified the 32 decision rules (each pair con-

taining independent AND-FUNCTION), the decision table is then complete.

Consequently, the ELSE-Decision-Rule is not necessary and Table 17

illustrates the correction.

In the next sections, we develop the theorems on dependence of

AND-FUNCTIONS and OR-FUNCTIONS as well as the theorems on number of

functions and decision rules contained within a decision table.
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V. AMD-FUNCTION THEOMW4S

ASSUMPTIONS

Every decision table is based upon a set of conditions, each of

which can be either true or false. We begin our development of deci-

sion-table theory by assuming there exist n conditions, C1 , C2 , CY,

S.., Cn each of which can be either true or false at any point in

time.

Let S = (al, a 2 , a3, ... , an) where a= 0 or 1, represent the

status (true or false) of the n conditions. In the kth position of S,

a 1 signifies that Ck is true; while a 0 in the same position algni-

fies that Ck is false.

For example, if I have four conditions: C1 = (w < 3), C2 =

(x = 3), C3 = (y > 4), c4 = (z ! 0) and if the condition variables

have the following values: w = 2, x = 5, Y = 3, z = -1, then S=

(1001). Note that the components of S represent the truth value of

the corresponding conditions for a given set of values of the condi-

tion variables. V(C k) denotes the truth value of Ck

Independence of Conditions

Each of the n conditions, C1 , C2 , ... , Cn, consists of two oper-

ands and a relational operator (=, !, z, <, >, J). One operand must

be a condition variable and the other must be a condition variable or

a constant.

Examples of conditions

1. c (x 5)

2. C (x >y)



3. c= (13=x)

"4. . c=(Y=12)

Conditions Ck and C. are dependent if both contain the same condition

variables, and if these variables have at least one set of values such

that V(Ck) = 1 and V(Ce) - 1. Otherwise, conditions Ck and Ce are

independent.

Examples

1. IfCk=(X<5)

and Ce = (X < 7),

Ck and C. are dependent since for any X < 5, V(Ck) - 1

and V(Ce) - 1.

2. IfCk=(Y<5)

and Ce = k 5),

Ck and Ce are independent since there exists no value of

Y such that V(Ck) - 1 and V(Ce) - 1.

3. If Ck = (X z Y)

andC. (x - Y)..

ck and Ce are dependent since for X - Y, V(Ck) - 1 and

V(Ce) - 1.

For the remainder of this paper, we assume that the tables are

based on n independent conditions.

Condition Requirements

For each Ci, we can specify one of the following requirements:

1. Yi that signifies Ci must be satisfied.

2. Ni that signifies CI must not be satisfied
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where "-" signifies "not."

3. 1i that signifies either Ci must or must not be satisfied.

If Ii has been specified, it is immaterial what values the

condition variables of Ci assume.

i M Yi + Ni

where + denotes the Boolean "INCLUSIVE OR" operator.

In addition, "0"will be the Boolean "EXCLUSIVE OR" operator; "."

will be the Boolean "AND" operator.

AND-FURNCTIOS BASED ON Cl, C2 , .. ,Cn

Let W be a variable that represents Y,, Ni, or I. We now de-

fine an AND-FUNCTION

(1) Bj W-W 2j*w3 j .-.. Wn.ij -Wnj

Since each Wi, i = 1, 2, --- , n, represents one of three requirements,

J = 3n. We denote the set of 3 AND-FUNCTIONS as a table.

(2) T

Let V(Bj) denote the truth value of Bj. Then V(Bj) = 1 or 0, depending

on whether or not all of the n requirements of Bj are met. An AND-

FJUNCTION is satisfied if its truth value is 1. To illustrate, suppose
B M Y .• . N3.Y .N5

and S = (1 1 0 1 0) for a given set of values of the condition

variables. Then V(B4) - 1; S - (1 1 0 1 0) satisfies B),. If, however,
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S = (0 1 0 1 0) for another set of values of the condition variables,

then V(%) = 0.

DEPENDENCE OF AND-FJNCTIONS IN A TABLE

Definition

The AND-FUNCTIONS Bk and Bt are dependent if for at least one set

of values of the condition variables, both V(Bk) = 1 and V(Bt) = 1.

Otherwise, Bk and Bt are independent, i.e., there exists no set of

values of the condition variables such that both V(Bk) - 1 and

V(Bt) = 1.

Example of Two Dependent AND-FUNCTIONS

Suppose B = YI'N2" 3" 4 (Note: 14 = Y4 + NO4 )'

and B8 - YN.YN

Then for that set of values of the condition variables that yields
S - (1 0 1 0), both V(B5) - 1 Bnd v(B8) - 1. aer, Be5 a 8 ae

dependent.

Example of Two Independent AND-FUNCTIONS

Suppose B3 = Y1 .N.y 3-•Y 5

and 7 *N2 Y3*Y4 N 5

The only set of values of the condition variables for which V(B 3 ) = 1,

is the one that yields S = (1 0 1 1 0). For this set of values,

V(B7 ) a 0. Therefore there exists no set of values of the condition

variables such that both V(B 3 ) 1 ad V(B 7 ) 7 1. Hence B3 and

are independent.
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Theorem I. Within a Table, two AND-FUNCTIONS are independent

if, in at least one position, one function contains Y and the other

contains N. Otherwise, they are dependent.

Proof of Theorem I. Let B and B be two AMD-FUNCTIONS in T,r s
where B contains a Y in at least one position, say the kth position,

and B contains an N in that same position, i.e.,

Br rW r k ... n-lrnr

Bs is W 2s --- ..... Wn- ,s.Wns

The only possible sets of values of the condition variables that can

enable V(Br) to equal 1 are those that result in S's that have a 1 in

the kth position. With every one of those sets of values, V(B) =0.

Br and B are independent. This proves the first part of the

theorem.

To prove the second part, suppose B and B are two AND-FUNCTIONSp q

in T, and in every position of each there does not exist a Y in one,

and an N in the other. We will show that B and B are dependent.P q

Suppose Y exists in the first d positions, N in the next e positions,

I in the next (n-d-e) positions of Bp, i.e.,

Bp =1 YI2 d 'Nd+l d+e Id+e+l n

then Bq I'I2....---. I'Id+1 .--.. +eIWd+&+l .W

where W= Y, N, or I

0 !d n o!e_5n

for S - (i 1 ----- 1 0 0 0 Ad+e+l Ad+e+2 A- )

d•

Where A J = 1 if W Y
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and Ai - 0 if Wj = N, or I

S= d+e+l, d+e+2, -- , n

both V(B) 1 and V(B) q 1 for all possible values of d and e. Hence,

B and B are dependent. We can apply the same logic where Y appearsP q

in any d positions, N appeanr in any e positions, and I appears in

the remaining (n-d-e) positions.

Definitions

A pure AND-FUNflION is one that has exactly n terms, each of

which is either a Y or an N. In the remainder of this paper, P will

signify a pure AND-FUNCTION. For example, for n - 5,

P - YI'N2"N3NY4"Y5 is a pure ABD-FUNCTION.

A mixed AND-FUJCTION is one that is not pure. It will be signi-

fied by M in the remainder of this paper. A mixed AND-FUNClTION either.

1) contains ene or more I's, for example

M -N*-Y -Y - N-
12 3 I 4 N5 6

or 2) is expressed as a combination of pure AID-FUNCTIONS, all con-

nected by "EXCLUSIVE OR" operators, for eample

"X W P ®P 2 G0P 3 "*

Theorem II. Within a Table T, each pure A=I-FUNCTION is inde-

pendent of every other pure AhD-FUNCTICU.

Proof of Theorem II. Let Z be a variable that represents Yi

or N. Let

1.P - z *mz 2nz 3*---- z nlmi Pm = a Zl'Za'~ ..... n-l,m'Znm

*We will show later how a mixed AMD-FUNCTION containing om or
more I's can be expanded into a mixed AND-1WL'ION containing a com-
bination of pure ARD-FUNCTIONS.



Since Z represents one of two requiranents, m - 2n, and there exists

a sub-table of T

2n]

P 1

SP2

2. EB

where P1 ' P2 ' --- ' P2 n are the only pure AND-FUNCTIORS of T.

3. Consider all the pairs (Pr' Ps) of Table E

r i , 2, --- , 2n; s = 1, 2, -- , 2n; r j s

4. p and P differ from each other in at least one position,r s

say the kth position.

5. Either Pr contains Yk , and Ps contains k or, Pr contains

7k, and P contains Yk.

6. Then P and P are independent (by Theorem I).

7. This is true for all pairs of AIM-FUNCTIONS of 3, and

Theorem II is proved.

Corollary to Theorem II. Within a Table T, there exists exactly

2n pure AND-FUNCTIONS. Each of the remaining (3n - 2 n) AND-FUNCTIONS

is mixed.

Theorem III. The form of a mixed AND-FUNCTION that contains I

in r positions (1 r r < n) can be expanded into a canonical form

that consists of 2r pure AND-FUNCTIONS each connected by an exclusive

"OR" operator Q®).

Proof of Theorem III. Let ZMt be a variable that represents Ym

or N;
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m= r + 1, r + 2,---n

Let

1. Mt 1 i'12 r-l.Ir. r r+,t' Zr+2,t . nt

2. I-Y+N.

3. Mt -= (Yi + N1 )'(Y 2 + N 2 ) .---. (Yr- 1 + Nr-l)'(Yr + Nr)

• r+lt .... nt

An accepted theorem in Boolean logic is

(R + S)'T = R.T + S'T.

Applying this theorem to the 1st term of 3,

4. Mt= [Y1 Y2+ N2 ).-(Yr + Nr).zr lt*.--.t

+ [Nj1 (Y2 + N2) CT.(Y + N r)*Zr~lt*--Znt]

Repeating this expansion (r - 1) times, we get a tree effect

where an "AND" operator connects each element in a line to the next

and an inclusive "OR" operator connects each line across to the

next.



y - r*Zr4-,t*Zr+2,t* -*n,t
/ - N Z z .-.

y3, r r+i,t r+2,,t n't

Yi

.~2-..~. N

/ 3-.-... o

\ IN , . e

N2  
-,,I*

3
5.., r = -+l +2t * ~

tr 
l .% Zr l t-zr 2 t - - '
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6. Since Yi and Ni appear in r positions, Mt consists of Pr

pure AND-FUNCTIONS connected by "

Mt = P1 + P2 + P3 + "'" + P2r

where Pip P2 ' ""-' P2 r are all contained in T.

7. P1' P2 ---I P2r are each independent of each other. (by

Theorem II).

8. For every pair of (p , P q) there exists no set of values

of the condition variables, such that both V(Pr) = 1 and
v(r ) = 1.

APq

Hence,

9. Mt = -Pl P2 ®--- ®P 2r.

10. We showed this theorem to be true when I appears in the first

r positions. The logic used in this proof can be applied

for I appearing in any r positions.

U. The theorem is therefore proved.

Corollary 1 of Theorem III. The canonical form of a mixed AN)-

FUNCTION contains an even number of pure AND-FUNCTIONS.

Corollary 2 of Theorem III. The canonical forn of a mixed AND-

FUNCTION contains at least two pure AND-FUNCTIONS.

Theorem IV. Within a Table T, every mixed AND-FUNCTION that

contains I in r positions (i i r < n) is dependent upon each of 2r

pure AND-FUNCTIONS of T.

Proof of Theorem IV. Let M be a mixed AND-FUNCTION that contains

I in r positions; 1 ! r ! n. Then, we can expand M to its canonical

form.

1. M - P+1) P 2 ®P 3 ®--- )P2r vhere P1 ' P2' ""' P2r are all
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contained in T. (by Theorem III).

2. When AP1 ) = 1, V(M) = 1, .. M andP1 are dependent.

When = I, •M) = 1, .. M and P2 are dependent.

When V(P2 r) = 1, V(M) = 1, .%. M and P2 r are dependent.

3. M is dependent upon each of 2r pure AND-FUNCTIONS of T.

Corollary 1 of Theorem IV. Two mixed AND-FUNCTIONS are dependent

if their canonical forms each contain one or more pure AND-FUNCTIONS

that are common to both. For example, if

S= P2EaP3nDPd •P8(ZP9(DPI2,

M3 = PI 1P20P5 OP6®Pll 0P13,

then M1 and M3 are dependent since P2 is common to both.

Corollary 2 of Theorem IV. A mixed AND-FUNCTION is dependent

on each of the pure AND-FUNCTIONS contained in its canonical form.

Corollary 3 of Theorem IV. If a pure AND-FUNCTION and a mixed

AID-FUNCION are dependent, the canonical form of the mixed function

contains the pure function.

Corollary 4 of Theorem IV. If two mixed AND-FUNCTIONB are de-

pendent, there exists at least one pure AND-FUNCTION in their canonical

forms that is common to both.

Theorem V. Table T, based on n conditions, contains one, and

only one, set of 2n independent AND-FUNCTIONS.

Proof of Theorem V.

1. Within a Table T, there exists exactly 2n pure AID-FUNCTIONS

(by corollary to Theorem II).
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2. The 2n pure AND-FUNCTIONS are independent of each other (by

Theorem II). Thus, there exists one set of 2n independent

AND-FUNCTIONS.

3. Now, to show that this is the only set of 2 n independent
i 2n

AND-FUNCTIONS, we consider all the remaining sets of 2
n

AND-FUNCTIONS that can be formed from the 3 AND-FUNCTIONS

in T. Denote their domain as R.

4. In each of these sets of R, let there be t mixed AND-FUNCTIONS

and ( 2 n - t) pure AND-FUNCTIONS; 1 ! t ! 2 n.*

5. Those sets of R containing one or more pairs of mixed AND-

FUNCTIONS that contain one or more pure AND-FUNCTIONS common

to both, cannot contain 2 n independent AND-FUNCTIONS (by

Corollary 1 to Theorem IV).

6. We therefore look at the Domain Q of R that comprises all

those sets of R that contain no pairs of mixed AND-FUNCTIONS

whose canonical forms contain pure AND-FUNCTIONS common to

the pair.

T. In each of the sets of Q, the canonical form of the t mixed

functions contains at least 2t distinct pure functions (by

Corollary 2 of Theorem III).

8. In each set of Q, there exists at least 2n t + 2t= 2n t

pure AND-FJNCTIONS, where t > 1.

9. Since there are exactly 2n pure AND-FUNCTIONS in T, at

least one of them is repeated within each set of Q.

*1) For each t, we form all the possible sets of 2n AND-FUNCTIONS.
2) The set of 2 n pure AND-FUNCTIONS Is not in R, since t 1 0.



-45-

10. If t = 2n, there exists at least one pure AND-FUNCTION

comnon to one pair of the 2n mixed AND-FUNCTIONS in every

set of Q. This violates 6 above.

11. Q then contains all sets of t mixed and ( 2 n - t) pure AND-

FUNCTIONS where 1 ! t < 2n, i.e., there exists at least

one pure AND-FUNCTION in every set of Q.

12. In every set of Q, the pair of identical pure AND-FUNCTIONS

(see 9 above) exists as one of the functions and as part of

a mixed function.

13. Hence, in every set of Q, there exists a pair of dependent

AND-FUNCTIONS (by Corollary 2 of Theorem IV).

14. .*. There exists no set in Q that contains 2n independent

AND-FUNCTIOI.

DECISION TABLES

Notation and Definitions

Let us now turn our attention to decision tables. We assume

that each table is based upon a number of independent conditions.

The actual number ans kinds of conditions vary from table to table.

We now consider the general case of a decision table based on n inde-

pendent conditions, C1 , C2, C3 , 1 , Cn, each of which can be true

or false. All notation previously described applies here.

Let D3 denote Decision Rule J, a3 denote one action in D,, and

A denote the entire series of actions in D . Then

A -a a2j Ca3J ( ;

again J - 3n. The symbol "C)" signifies the Boolean "AND," that
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specifies actions a l, a2j) --- , at, must be executed serially.

D j Bi - A says, "If V(B) = 1, execute actions A J"

A decision table is a structure for describing the expression

DT = D()D 2 ®--- (Dq.- 1 ®Dq q !3

Hereafter, the words "decision table" will refer to both the structure

and the expression, unless otherwise stated.

Definitions

A decision rule is simple if it contains only one pure AND-

FUNCTION. For example, if

PI = 1 + N2 + N3 + Y4 + N5'

then D, = P 1 A is a simple decision rule. A decision rule is

complex if it contains a mixed AND-FUNCTION in non-cano" 4 ^-al form.

For example, if

M1 1 1 + N2 + Y3 + N4 + Y5 '

then D1 = MH1 A1 is a complex decision rule.

Implicit Decision Rules

Decision rules can be implied in a decision table by one of

two types of decision rules, either complex decision rules or ELSE-

decision-Rules.

Complex Decision Rules

Theorem VI. A comlex decision rule that contains I in r posi-

tions of its AND-FUNCTION is equivalent to 2r simple decision rules.

Proof of Theorem VI.

1. Let Dk = - Ak where Mk contains I in r of its positions.
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2. •k -Pl®EP2 ® .... ®P 2r (by Theorem 111)

3. Dk 1 (P ®2E--- P2 r) - Ak.

4. D k (P 1  Ak) (P 2 -Ak)E-"®(P2 r A A)"

5. Hence Dk is equivalent to 2r simple decision rules.

A complex rule that conta. I in r positions of its AND-yUNCTION

implies 2 r simple decision ruleL

The ELSE-Decision-Rule (DL)

DL = EWE AL

If a decision table contains s simple rules and c complex rules,

actions AL are executed when a particular set of values of the condi-

tion variables yields a truth value 0 for each of the s simple rules

and the c complex rules.

One reason for using the ELSE-Decision-Rule (ELS) is to avoid having

to write a set of rules that each contain the same series of actions.

For example, suppose there are two conditions CI and C2 such that if

both are satisfied we want to execute actions A,, otherwise we want to

execute actions A Without the ELSE-Decision-Rule, it would be

written as follows:

D D D D
12 3 4

C 1I Y IY N N

C2Y N Y N

A A A A
1 2T22



With the ELSE-Decision-Rule, the above statements would be written:

D1 DLC1 Y -

y -

A1 A21 2

Another possible use for the EIA is to enable the system design-

er to detect any omission of a condition or appropriate AND-FUNCTION.

For example, suppose for 0-40 hours, an employee gets regular time;

40.1-50 hrs, 14 times the hrs. worked; 50.1-60 hrs., 11 times the hrs.

worked Although it is inconceivable that any one in this plant will

work more than 60 hours, the system designer wants to be notified if

it happens. He therefore sets up the following:

Table 18

EMPLOM SALARY-HOURS

F D D2 D3 DL

Hrs-Worked >_ 0 Y y Y -

Hrs-Worked _< 40 Y N N -

Hrs-Worked _< 50 I Y N -

Hrs-Worked _< 60 I I Y -

Overtime-Hrs = 0 Hrs-Worked - 40 Hrs-Worked - 40 0

Salary-Hrs = Hrs-Worked 40 + 1. 25 * OT-Hrs 40 + 1. 5 * OT-FIrs 0

Print Error - - X



Thus, when a time card containing 65 hours-worked goes through this

decision table, D1 , D2 , and D3 will each have a truth value 0, and

DL will cause "ERROR" to be printed. The system designer will then

learn that he has not taken carm of the condition "HOUR(S-W1OID > 60"

in this decision table.

DWISICK TABLE REQUIRC(E• FOR DE1AB-X

For DETAB-X, we use a special set of decision tables that meet

the following requirements:

1. Every decision rule must have at least one action.

2. For any given set of values of the condition variables of

a decision table, the ARD-FUNCTION of one, and only one,

decision rule in that table must assume the truth value 1.

The ELSE-Decision-Rule

A consequence of Requirement 2 is that the ELSE-Decision-Rule

must appear in those decision tables that do not contain 2n indepen-

dent pure AI•-FUNWTIONS. These particular AND-FUNCTIOWS can appear

as part of a simple decision rule or be implied by the AND-FUNCTION

of a complex decision rule. For example,

D D D D

cc Y I Y YC2 N I I Y

C Y I I Y

A A2 A322

Rules 1 and 4 each contain one pure AND-FUNCTION; Rule 2 implies 2

1
- 4 pure AND-FUNCTIONS; Rule 3 implies 2 - 2 pure AMD-FUNCTIONS for a

total of 8 pure AND-FUNCIONS.
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These 8 are also independent since each of the four rules are inde-

pendent (each pair of rules has a Y in one rule and an N in the other

in corresponding positions). This table is conplete since 2n= 23 =8.

Hence, it does not require an EISE-Decision-Rule. An example requir-

ing an ELSE-Decision-Rule follows:
ELSE-Decision-Rule

C, Y N D)

C 2 N I -

C3Y I -

A, A2 A A3

AD-FUNCTION of Rule 1 = Y.N.Y

ANID-UINCTION of Rule 2 = N.Y-Y

(DN.N-Y

(EN.N.N

Then the AND-FUNCTION of DL = Y.Y.Y

®Y.Y.N

A consequence of Requirement 2 is that the ARD-FU!NTION of all

decision rules other than the EIW can be tested in any order. For

example, a set of values of the condition variables can be applied

to the AND-FUNCTION of D5, then D3 , and then D6 , etc. Or they can

be applied to D3, then D , then D6 , etc. In vhatever order they are

tested, the same series of actions will occur if Requirements 1 and

2 are not violated.
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Since the ELSE decision-rule requires each of the other rules of

the decision table to have a truth value 0, we execute it only after

we have tested all the other decision rules and found their truth

values equal 0.

Techniques for Discovering the Dependence of AND-FUNCTIONS

A contradiction between two decision rules exists when their AND-

FUNCTIONS are dependent (a violation of Requirement 2) and their

series of actions are not identical. If their series of actions are

identical, redundancy exists. To find these contradictions or redun-

dancies, it is necessary to examine the AND-FUNCTIONS in pairs. We

suggest here two techniques for examining (in a computer) all pairs

for dependence. The logical design of each computer will determine

which of these two should be used or in fact whether some new tech-

nique ought to be devised for detecting the dependencies.

These two techniques are predicated on Theorem I which states

that two AND-FJNCTIONS are dependent if there exists no position of

each in which one contains Y, the other contains an N.

Technique Number 1. Pair one of these AND-FUNCTIONS with each

of the other specified functions, scanning each pair for a Y in one

function and an N in the other in a corresponding position. If no

paired Y and N is found, the functions are dependent. In that case,

check the pair's sequence of actions. If they differ, have the com-

puter reject the pair as invalid. If one pair of Y and N is found,

scan the next pair. Repeat this for each set of remaining AND-

FUNCTIONS.



-52-

Consider the following decision table:

D1 D2 D3 D4

C1  Y N I Y

C2  N N N N

C3  I Y Y Y

C4  I N N Y

Add a to b c b e

Go to Table 13 Table 15 Table 11 Table 23

Consider the following pairs (3l, B2), (3l, B3), (Bi, B4). B3 and B2

are valid. They are independent; there exists a Y,N pair. 31 and B3

are dependent since there is no Y,N pair; their series of actions are

identical. One or more redundant decision rules exist in the table.

Bl and B4 are dependent, but their actions are different. Hence,

reject Rule 1 and Rule 4.

Next, consider the pairs (B2, B3), (B2, B4). B2 and B3 are de-

pendent since they have no Y,N pair. Their actions are different.

Reject Rule 2 and Rule 3. B2 and B4 are valid. They are independent;

there is a paired Y,N. Finally, consider the pair (B3, B4). They

are independent; there is a paired Y,N.

Technique Number 2. Some computers may do logical arithmetic

more efficiently than scanning. Hence, we map the Y# N, and I's of

the AND-FUNCTIONS into binary 01, 00, and 10 respectively. The

above decision table becomes:
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D1 D2 D3  D_4

C1 01 00 10 01

C2 00 00 00 00

C3 10 01 01 01

C4 10 00 00 01

Addta to b c b e

Go to Table U Table 15 Table 11 Table 23

Form the logical suns of all pairs of Boolean function denoted

by L(Bi, B3); i J J. If L(B, Bt) contains one or more diads equal

to 01, then Br and Bt are independent. Otherwise, they are depeMdent.

L.(Bm 1 ) =o oo 11 1o
L(B1 , B3) 11 00 11 10

L(BI,B) UO0O0 U 10
L(B1, B 4) = 00 00 U1 U1

L(B 2 , B3 ) = 10 00 00 00

L(B 2, B4) - 01 00 00 01

L(B3, B 4) = U 00 00 01
Since L(BI, B 3), L(B, B), and L(B2, B3) have no 01 diad, B1 and B3

B1 and B, and B2 and B3 are dependent. Again, check their series

of actions and reject those pairs that do not have identical series

of actions.



VI. OR-FUNCTION THEORM4S

EJ0ENSION OF DETAB-X DECISION TAkNM

For tables based on n conditions, a need often exists to execute

a series of action(s) if any one of p(p ! n) conditions is satisfied.

While this can be handled in DETAB-X decision tables, it requires a

great deal of writing that could be eliminated if it were possible to

connect condition requirements with an inclusive "OR" operator.

For example, in input editing if a particular field is not

numeric (C1 ); and/or has more than 7 characters (C2 ); and/or has a

decimal point missing (C3); then the field is invalid, and an error

procedure must be executed (A2 ). Currently in DETAB-X, we would

require 3 decision rules:

D2 = C1 - A2

D3 =( C2 ) " A2

The table structure would be as follows:

D[ D D
23

C1 Y N N

C2 I Y N

CII Y

A2 IA2 IA2

It should prove useful to express the above as a single decision

rule:

D2 = (C 1 + C2 + C3) -A 2

where we dezote the expression C1 + C2 + C3 as an OR-FUNCTION. To
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implement this in the decision table structure of DETAB-X, it becomes

necessary to separate the decision rules that contain AND-FUNCTIONS

(those whose cordition requirements are separated by the "AND" opera-

tor) from the decision rules that contain OR-FUNCTIONS (those con-

nected by the inclusive "OR" operator). A double line acccnplishes

this separation. For instance, the following decision table:

D1 D D3 D4

C I N Y N N

02 N I Y N

03 N I I Y

A1 A2  2 A2

can be expressed:

D1D2

C1  N Y

C2 N Y

C3  N Y

A1A2

In the latter, Decision Rule 1 says

if condition 1 is not satisfied

and condition 2 is not satisfied

and condition 3 is not satisfied,

then execute actions AI.

Decision Rule 2 says

if condition 1 is satisfied
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or* condition 2 is satisfied

or condition 3 is satisfied,

then execute actions A2

CONVERSION OF AN OR-FUNCTION TO AN AND-FUNCTION

Define i= i (Y + Ni) =(Ni " Yi)" We denote • as the null

requirement. Denote the AND-FUNCTION as

3i a 3 W * '2 j - _ * n -l ,3 'nj

where Wi represents Yi, Ni, or Ii; J =3n and the OR-FUNCTION as

Ej 1 i- Un-l,j + Unj

whee U i represents Yi, Ni, or 0,, j = 3n. Since all our theorems

have been postulated for AND-FUNCTIONS, we now explore the relations

between AND-FUNCTIONS and OR-FUNCTIONS.

An OR-FUNCTION can be converted to an AND-FUNCTION with the

following procedure, on the basis of the definition of the inclusive

"OR" operator.

1. Suppose

E = UIj + U2J + --- + Un-1,j + Unj; Ui represents Yi, Ni,

or i

2. If UIj 0, BI = U • 1 12 -3 .

If Uj 0,B = 0
3. If U2J 1, B2 = • U2J 13 14 In

If U2j 0, B2 = 0.

*The "OR" is inclusive.
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" IfU3J ' 0 3  * UM3 . 114 15 -. 1

If U33 = 0, B3 " 0.

If U 0, B = 0

Let G denote :B in converted form

6. LetG = B 1- 2 B 3 ( .----- nl Bn

Where BI =0 if UIj 0
Bi .. In

Although we started with U, and continued with U then U
I3 2j 3V

etc., to convert E to G, we could have started with ary U, and taken

away any of the rasaining U's, etc., to convert E to G. This would

have resulted in a G that looked different from the original G. They

are, in fact, equivalent, i.e., they have the same truth table for

all possible valuox of the condition variables. If each of the B's

that contain I's are converted to their canonical forms, the two G's

will be found to be identical. This is because both G's were derived

on the basis of the definition of the inclusive "OR" operator.

For exmple: Let E = Y1 + N2 + N3. If we use YI, then N2 , then

N3,
3'

G~~ 3 Y 1 *2*3) (N N2 13)DN 1 72 -N3)
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GN = YI" Y2 1.3 1.

*DY" Y2 Y3 2.

(Dy N2 N33( 1Y, N2 "3 4

(D1" N2 Y3 5.

ON,.N 2  N3  6.

(N 1 Y2  N3 7.

If we use N2 then N3 then Y.'

G2 = YI N2 " Y3 4.

ON, N2"Y3 5.

®*yN N2 • % 3.

*"EN2" 6.

. .E*N3 1.

i" Y2 "N 7.

EGyj "2 " Y3 2.

Notice that G1 and G2 contain the same B's. Hence G1 G 2

EXAMPLE OF CONVERSION
Let E = Y + N2 + ¢3 + ¢4 + Y 5

then G = (YI * '2 I 3 * I 4 "I) ( 5 N2 " 13 I4 1 E5)0
(y " R2 "3 " 4 " Y5)'

G-= (Y * 12 13 • 14 * i5 )0(Nl 72 * 13 *14 Y)

(N1 • Y2 13• 14 . y5).
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Example 1 is equivalent to Example 2

D1 D2 D3 D4 ED D1 D2 EI2

C1  N Y N N - C1 NY -

C2 Y I N Y - C2 Y N -

C3 Y I I I - C3 Y ¢ -

C4 N I I I - C4  N ¢ -

o N I I Y - N Y -

A1 A2 A A2 A 1 A2 A3

Example 1 Example 2

CONSEWb"E OF CM'ERSION

Every OR-FUNCTION can be converted (is equivalent) to the exclu-

sive union of one or more independent AND-FUNCTIONS. The truth table

of this converted form is the same as the original function for all

possible values of the condition variables.

To illustrate, consider

E =U1 +U 2 +U3 + --- + U 1  n

that converts to

G =B 1 B2(B 3E--- .B1 ®Bn.

If one or more of the requirements, i.e., either Y or N is satis-

fied, V(E) - 1. For the same values of the condition variables,

there exists one, and only one, B for which V(B) = 1. E-This is true

because each B that contains more than one U (that is either Y or N)

contains one original U and the remaning U terms are negations of

the original U's. The non-negated U is different for each B.7

Since V(B) - 1, B(G) - 1.
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V(E) = 0 if, and only if, the negation of every U occurs. If

the negation of every U occurs V(G) = 0, since each B contains one

non-negated U (that is either Y or N) and all U (that are either Y or

N) are contained in G. Further, V(G) = 0 only if V(B) = 0 for every

B. This can occur only if the negation of every U occurs.

E and G, therefore, have the same truth table for all possible

values of the condition variables.

Theorem VI' .* An OR-FUNCTION that contains ( in r(o c r < n)

positions is equivalent to (2 n - 2 r) distinct pure AND-FUNCTIONS.

Proof of Theorem VI'.

1. Consider an OR-FUNCTION that contains 0 in the last r

positions, and Zi (which represents Y or Ni) in the first

(n-r) positions:

E Z1 + Z2 + - + Z + n-r+l +n

2. E can be expanded to:

G = (z 1 * 12 I)(( • 13 ..... 3n

(2 " (1 * 2 2 "" " Zn-r-I " n-r I n-r+l . n

3. The first tern contains (n-1) I's. It is equivalent to

2n-l pure AND-FUNCTIONS. The second term contains (n-2)

I's. It is equivalent to 2n-2 pure AND-FUNCTIONS. The

(n-r)th term contains r I's. It is equivalent to 2r pure

AND-FUNCTIONS.
4. G is equivalent to 2r + 2r-l + --- + 2n-2 + 2nl distinct

pure AD-FUNCTIONS.

*The reader will find Theorems VI', IV' and I' presented out of
sequence so that the OR-FUNCTION discussion can parallel the AND-
FUNCTION argument.
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5. G is equivalent to ( 2fn - 2 r) distinct pure AND-FUNCTIONS.

6. This same reasoning could have been used if I appeared

in any r positions. The theorem is therefore proved.

An AND-FUNCTION and an OR-FUNCTION are dependent if there exists

at least one set of values of the condition variables such that both

assume a truth value 1. Otherwise, they are independent. For

example, suppose

B = Y1 N2 " N 3 . + Y2 + Y3"

Then there exists no S such that V(B) 1 and V(E) = 1 since

E- =N 1 + Y2 + Y3 = (Y " N2 " )3 m.

Therefore, B and E are independent.

Theorem IV'. Every OR-FUfCTION that contains 0 in r positions

(0 5 r < n) is dependent on (2n - 2 r) distinct pure AND-FUNCTIONS.

Proof of Theorem IV'.

1. Let E = 1 + 2 + "'" + r + U r+l + "'" + U n

2. E = PlOP 2 0---OP( 2 n " 2 r)

where P1 ' P2 ' "'-, P(2n - 2 r) are distinct pure AND-

FUNCTIONS.

3- When V(Pl ) = 1, V(E) = 1

When V(P2) = 1, V(E) - 1

When V(P2 n _ 2 r) - 1, V(u) - 1.

I. Hence E is dependent upon 2n- 2 r distinct pure AID-FUNCTIONS.

5. Although 0 was in the first r positions, the logic of

this proof applies no matter in what r positions they appear.

6. The theorem in therefore proved.
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Theorem I'. Two OR-FUNCTIONS are dependent if, in at leant

one position, there exists a Y in both, or an N in both. Otherwise

they are independent.

Proof of Theorea I'.

1. Assume there exists a Y in a particuaar position of two

OR-FUNCTIO(S, C1 and C2.

2. A transaction that satisfies the condition in that position

of C also satisfies the condition of C2.

3. V(CI) = 1, vc 2 ) = 1 for a particular transaction.

4. Hence C1 and C2 are dependent.

5. The same proof holds for an N in a particular position

of tvo OR-FUNCTIONS. Hence C1 and C2 are dependent.

6. Assume there exists no position of C1 and C2 such that

both contain a Y or both contain an N, i.e., each position

either contains a Y and N, a 0 and Y, 0 and N, or 0 and 0.

7. Any transaction that has a condition value in the position

where the 0 appears contributes nothing to make the truth

value 0 or 1. Hence those positions that contain 0 can be

ignored.

8. For those cases where one OR-FUNCTION contains a Y and

the other contains an N, both functions cannot have a

truth value 1 for any transaction. Hence C1 and C2 are

independent and the theorem is proved.

Theorem I". An AMD-FUNCTION and an OR-FUNCTION are dependent

if, in at least one position, there exists a Y in both, or an N in

both, or there exists an I in the AND-FUNCTION and a Y or N in the

OR-FUNCTION. Otherwise they are independent.
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Examples:

1. B=Y1 " N. 2 Y3 * I4

E = N1 + Y2 + N3 + 04

B and E are independent.

2. B Y *2 * Y3

E- N 1+ N2 + N3+ N4

B and E are dependent.

3. B = Y N2 " 13 N4

E = N1 + Y2 + Y3 + 04

B and E are dependent.

Proof of Theorem I''.

1. Let B Y W W 2...3 W

or B = I W2  W3  Wn

where W, = Yi, N,, or I,

and E = Y1 + U2 + U3 + + Un

where U, = Yi, N,, or ¢I

V(B) = 1 for S = (1 a 2 a 3 ); a, - [V(Wi) 1]

V(E) = 1 for S = (1 a2 a3 ---).

Then B and E are dependent.

2. Similarly forB NB = W2 " W 3 .*W

or B = I i W2 • W3 ..... Wn

and E = NI + U2 + U3 + --- + Un

V(B) = 1 for S = (0 a2 a3 ); ai [v(Wi) =

V(E) = 1 for S = (a 2 a3-

and B and E are dependent.



3. Regardless where the pair of Y's or the pair of N's or the

I in the AND-FUNCTION and the Y or N in the OR-FUNCTION

appear, an S exists with the 1 or 0 in the corresponding

position such that V(B) = 1. Arid for that same S, V(E) = 1.

This proves the first part of the theorem.

4. Suppose there exists no pair of Y's or no pair of N's

or no I in the AND-FUNCTION with a Y or N in the corresponding

position of the OR-FUNCTION in any position of B and E.

5. In converting E to AND-FUNCTIONS, the ¢ contributes no

AND-F¶JNCTION so that those positicns containing O's can

be disregarded.

6. From those positions that contain Y or N, the conversion

will yield AND-FUNCTIONS each of which either

a. Contains at least one Y in the same position in which

B contains an N, or

b. Contains at least one N in the same position in which

B contains a Y.

7. Hence if V(B) = 1, V(E) = 0 since each of the AND-FUNCTIONS

of the converted form have a truth value 0.

8. Therefore B and E are independent Q.E.D.
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APPENDIX

SUMMaRY OF THEOREMS FOR AND-FUNCTIONS AND OR-FUNCTIONS

We now list and extend previous theorems to include OR-FUNCTIONS

as well as the AND-FUNCTIC5S. A Table T comprises all AND-FUNCTIONS

and OR-FUNCTIONS.

Theorem I. Within Table T, two AND-FUNCTIONS are independent if,

in at least one position, one function contains Y and the other func-

tion contains N. Otherwise, they are dependent.

Theorem I'. Within Table T, two OR-FUNCTIONS are dependent if,

in at least one position, both functions contain a Y, or both functions

contain an N. Otherwise, ther are independent.

Theorem I''. Within Table T, an AND-FUNCTION and an OR-FUNCTION

are dependent if, in at least one position, both functions contain a

Y, or both functions contain an N, or the AND-FUNCTION contains an I,

and the OR-FUNCTION contains a Y or N. Otherwise, they are independent.

Theorem II. Within Table T, each pure AND-FUNCTICt is indepen-

dent of every other pure AND-FUNCTION.

Corollary of Theorem II. Within Table T, there exists exactly

2n pure AND-FUNCTIONS. Each of the remaining [2(3n)-2n] functions

is either a mixed AND-FUNCTION or an OR-FUNCTION.

Theorem III. The form of a mixed AND-FUNCTION that contains I

in r positions (1 r r < n) can be expanded into a canonical form that

consists of 2r pure AND-FUNCTIONS each connected by an exclusive "OR"

operator.

Corollary 1 of Theorem III. The canonical form of a mixed AND-

FUNCTION contains an even number of pure AND-FUNCTIONS.
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Corollary 2 of Theorem III. The canonical form of a mixed AND-

FUNCTION contains at least two pure AMD-FUNCTIONS.

Theorem III'. An OR-FUNCTION that contains 0 in r positions

(0 ! r < n) can be converted to (is equivalent) to (2n - 2 r) distinct

pure AND-FUNCTIONS.

Theorem IV. Within Table T, every mixed AND-FUNCTION that con-

tains I in r positions (1 < r < n) is dependent on each of 2r pure

AND-FUNCTIONS of T.

Corollary 1 of Theorem IV. Two mixed AND-FUNCTIONS are dependent

on each other if their canonical forms each contain one or more pure

AND-FUNCTIONS that are coanon to both.

Corollary 2 of Theorem IV. A mixed AND-FUNCTION is dependent

on each of the pure AND-FUNCTIONS contained in its canonical form.

Corollary 3 of Theorem IV. If a pure AND-FUNCTION and a mixed

AiD-1FUNCTION are dependent, the pure AND-FUNCTION is contained in the

canonical form of the mixed AND-FUNCTIONS.

Corollary 4 of Theorem IV. If two mixed AND-FUNCTIONS are de-

pendent there exists at least one pure AND-FUNCTION in their canonical

forms that is common to both.

Theorem IV'. Within Table T, every OR-FUNCTION that containso

in r positions (0 c r < n) is dependent on ( 2 n - 2 r) distinct pure

AND-FUNCTIONS.

Theorem V. Table T, based on n conditions, contains one, and

only one, set of 2n independent ANID-FUNCTIONS; each of these is a

pure AND-FUNCTION.
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Theorem VI. A complex decision rule (a rule that contains mixed

AND-FUN1rIONS) that contains I in r positions (1 ! r < n) of its AND-

FUNCTION is equivalent to 2 r simple decision rules (rules that contain

pure AND-Y'UNCTIONS).

Theorem VI'. A decision rule that contains an OR-FUNCTION with

0 in r positions (0 • r < n) is equivalent to ( 2 n - 2 r) simple deci-

sion rules.
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