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PREFACE

The Systems Group of the CODASYL (Conference on Data System Lan-
gu.ages)(l)(2) Development Committee has produced an experimental lan-
guage, DE.PAB-X,(3)(“) that is structured on decision tables, a framework
for describing a set of related decision rules.

Over the past year, the author has discussed with many Air Force
people the possibllities and advantages of using decision tables to
describe complex applications that involve numerous decision rules.
The Air Force, in turn, has indicated a strong interest in the tables
in order to apply decision rules in such areas as personnel and finan-
cial accounting. Their interest is predicated upon the improvement
in communication and documentation that decision tables offer over
previous techniques, such as flow chart and narrative form.

Decision tables offer system analysts the potential to eliminate
inconsistencies and redundancies among a set of specified decision
rules, and to insure completeness of problem statement. The tables
may make it possible to have more efficient computer programs, by re-
ducing needs for computer storage and reducing the length of computer
running time.

To realize these and other benefits, we must understand the fun-
damental characteristics of decision rules and their relationships
within a decision table. Toward this end, this Memorandum develops a
theoretical basis for analyzing the decision rules of decision tables
in general, and of a specific type of table used in DETAB-X.

This Memorandum will interest a wide reading audience -- system

analysts, military and business managers, mathematicians and computer
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programmers may find, in the theories advanced here, specific applications to
their own work. To ease the reader's task, the text has been developed
in two parts. The first (Secs. I through IV) gives background infor-
mation on decision tables, discusses the implications of the basic
theorems developed in Secs. V and VI, and provides examples to i1llus-
trate the relationships among decision rules in a table. The second
part states the basic assumptions of the theorems and then provides
proofs for each of them; those readers having a working knowledge of
decision tables can move directly to Sec. V.

The comments of Stanley Naftall and Harley Robertson, both of
Space Technology Laboratories, El Segundo, California, were extremely
useful to the author, particularly in the early stages of development

of the decision table theory.
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SUMMARY

Decision tables, a framework for describing a set of related
decision rules, can improve the communication and documentation
achievable by previous technigques such as flow charting and narrative
descriptions of data processing problems, particularly those contain-
ing many complex decision rules. In addition, decision tables offer
system analysts the potential to eliminate inconsistencies and redun-
dancies in each set of specified decision rules and to produce com-
puter programs that are efficient in the use of computer storage and
computer running time. Decision tables also enable the system analyst
to determine if he has considered all of the possible decision rules
that can be formed from a particular set of conditions.

This Memorandum develops for decision tables a theoretical struce
ture that serves as the foundation for achieving these benefits. As
background for this development, the author describes a basic structure
of decision tables in Secs. I-IV. The theorems developed in this
paper (Secs. V-VII) provide a basis for system analysts and programmers
to verify the logic of their analysis. Rules are established that
enable them to insure the following:

1. that all possible combinations of conditions for the
problem have been considered,

2. that the system does not prescribe different actions
for the same situation, and

3. that the system describes each situation and its
actions once only.

The immediate effect of achieving the above is an improvement in
computer programming by reducing the number of computer instructions,

shortening computer running time, and decreasing programming and



debugging time. In the future, we can expect computers to take over ‘
the task of checking decision tables for completness, redundancies,
and inconsistencies,using the rules developed here.

The text also presents an extension of decision table theory.
Most current decision tables consist of decision rules for which every
condition in a set of conditions must be satisfied before a series of
actions can be taken. This Memorandum provides a basis for having
additional decision rules in which a series of actions can be taken
if any one of a set of specified conditions is satisfied. This type
of decision rule can be extremely useful in editing and information
retrieval. This extension should prove valuable in many data process-

ing areas.
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I. INTRODUCTION

Throughout military and business systems, a series of actions is
taken only when a set of conditions is satisfied. The expression that
describes the conditions and actions is called a Decision Rule. For
instance, one example of such & rule is the policy governing hourly
wage earners -- if an employee works more than 40 hours in one week
armd is not salaried, then that employee shall be paid an overtime rate.

Decision rules can be written in any language and in any form as
long as they are intelligible. A popular method of expression is by
means of flov charts (illustrated in Fig. 1). The flow chart technique
has serious defects, however. First, the charts are difficult to
draw because of the symbols and spacing. Second, they are difficult
to comprehend, in that it is hard to follow the exact path of a series
of conditions and actions through the charts. Third, it is difficult
to determine whether the charts cover all possible cases. And fourth,
it 1s hard to insure the specification of the same series of actions
for a particular set of conditions. These same drawbacks apply in a
larger degree to the free-form English used to describe the decision
rules.

The need for faster and better communication and analysis has led

to the development of Decision Tables, structures for describing a set

of decision rules.- Computer languages, adapted for decisjon tables,
have been developed for describing and processing scientific and
business problems. Examples iIn the scientific area are FOR'I‘.A.B(5 ) and
STRUCTURE TABLE IANGJAGE(,é) vhile the business area has TABSOL(T)

and DMAB-X.(u)
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System analysts and programmers use decision tables to describe
the decision rules for their business data processing systems or for
their scientific problems. To assist these specialists, this Memo-
randum describes a set of rules for insuring that each decision table
is complete, and contains no redundant or contradictory rules. The
rules described here are based on a collection of decision-table
theorems formulated in the latter half of thic Memorandum. As back~
ground for the discussion, the author briefly explains the basic
structure of decision tables,* and then shows how the theorems apply

to a particular decision-table language, DETAB-X.

#For a fuller description of decision-table structure and devel-
opment, see refs. 8 and 9.
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II. BASIC STRUCTURE OF DECISION TABLES

Decision tables contain decision rules. The basic structure of
the tables is universal. Their language, however, varies depending
on the application being described. While the format of decision
tables can be of many types, one that is in general use 1s described

here and illustrated in Table 1.

Table 1

DECISION TABLE STRUCTURE

%ecision Decision|Decision |Decision|Decision |Decision
Rule 1 | Rule 2 | Rule 3 | Rule 4 | Rule 5 | Rule 6

if

‘ . ‘ sed5 |
and ﬂd:)_’g')-o“ o ?J“’Of)'

co 3‘“‘05 43330
and [ ot
and
then

‘ 4098
and f——,30% — oot

M oo peb>®

and

The vertical and horizontal double lines divide the table into
four major parts. All entries above the horizontal double line are’
conditlons; all below are actions. The boxes to the left of the ver-
tical double line are called stubs; the boxes to the right are called
entries. A condition i1s described by what is in a stub and entry
above the double horizontal line; an action is described by what is
in a"stub and entry below. Single horizontal lines separate each con-

dition and action. Single vertical lines separate each decision rule.
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We interpret Table 1 in this manner. The combination of the
contents of the condition stubs and entries specifies a condition that
must be satisfied; the combination of the contents of the action stubs
arnd entries specifies an action that must be executed. The top hori-
zontal 1s reed as "if." All other single herizontal lines are read
as "and." The horizontal double line is read as "then." The decision
rules are read down, combining each entry with its stub. The "Y" says
the condition in the stub ﬁmst be satisfied; the "N" says the condi-
tion in the stub must not be satisfied; the "I" says the condition in

the stub 18 immaterial.

Table 2
SAMPLE DECISION TABLE
| Rule: Rule 2 Rule 3
s;xmnmn-mmmz" N N Y
HOURS-WORKED > l+o" Y N I
PAY “‘ovmm-mz REGUIAR-RATE | REGULAR-SALARY

For example, Table 2 is read this way:

Decision Rule 1 states: If employee is not salaried and
worked over 4O hours, then pay his overtime rate.

Decision Rule 2 states: If employee is not salaried and
worked 40 hours or less, then pay his regular rate.

Decision Rule 3 states: If employee is salaried, regardless

of whether he worked over 40 hours or not, then pay his
regular salary.

LIMITED ENTRY VERSUS EXTENDED ENTRY

Bach horizontal line of a table must be either limited entry or

extended entry. A limited-entry condition line contains the whole

condition in the stub, a Y (yes), N (no), or I (immaterial) in each
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entry box of that line. A limited entry action line contains the whole
action in the stub, an X (execute) or "-" (don't execute) in each entry
box of that line. An extended-entry line contains part of the condi-
tion (or action) in the stub and part of the condition (or action) in
the entry bex of that line.

For example, lines 1 and 2 in Table 2 are each limited-entry
lines; line 3 is an extended-entry line. It is permissible to have
both limited-entry lines and extended-entry lines in the same table,
but any one line is either limited-entry or extended-entry. If re-
quired, limited-entry lines can be converted to extended-entry lines
and vice-versa.

For example, line 2 in Table 2 could have been written as follows:

HOURS-WORKED J >40 <40 20

or line 3 in Table 2 could have been written

PAY OVERTIME-RATE - Y - -

PAY REGULAR-RATE | - | Y | -

PAY REGULAR-SALARY - - Y

Note: The dash "-" signifies that the action
listed in the stub 1s to be ignored, i.e., the
action shall not be executed.

The remainder of this paper deals only with decision tables that
have limited-entry lines in the condition area of the table, i.e.,
limited-entry lines above the horizental double-line.*

A special class of decision tables, Dm‘AB-X(u)(n) specified by

~ the CODASYL Systems Group, is presently under test in the

#Concurrent research on extended-entry condition lines is going
on. For one effort in this area, see Ref. 10.
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data processing community. The next section deseribes the require-
ments of DETAB-X decision tables and the implications on them of the
theorems developed in the latter half of this paper. But first, we

offer some additional notation.

DECISION RULE NOTATION

The AND-FUNCTION of a decisiom rule is the ordered set of Y, N,
or I that appears in the condition entry boxes of that decision rule.
For example, in Table 2

the AND-FUNCTION of Rule 1 = NY,

the A.[D-FUNCTION of Rule 2 = NN, and

the AND-FUNCTION of Rule 3 = YI.

A decision rule is satisfied by a transaction if all the condi-
tions specified by its AND-FUNCTION are identical with the correspond-
ing conditions specified in the transaction. Again referring to
Table 2, if an employee hands in a work report on which he states
that he is not salaried and he worked 45 hours, then Rule 1 is satis-
fied by that work report. The act of comparing a transaction against
each of the rules of a decision table is called testing the decision
rules.

We now define two AND-FUNCTIONS to be dependent if there exists
at least one transaction such that both AND-FUNCTIONS are satisfied
by that transaction. Otherwise, they are independent.

For example, referring once more to Table 2, AND-FUNCTION 1 and
AND-FUNCTION 2 are independent. On & transaction of each salaried
employee, either the hours worked is greater than 40 or is not. If

they are greater than 40, Rule 1 is satisfied and Rule 2 is not; if
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they are less than 4O, Rule 2 is satisfied and Rule 1 is not. Hence
Rules 1 and 2 are independent.

We define a pure AND-FUNCTION as one that contains only Y's and/or

N's; i.e., it contains no I. A mixed AND-FUNCTION contains one or

more I's. We define a simple decision rule as one whose AND-FUNCTION

is pure; a complex decision rule is one whose AND-FUNCTION is mixed.

Rule 1 and Rule 2 in Table 2 are each simple decision rules; Rule 3

is complex.
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ITI. ANALYSIS OF DETAB-X DECISION TABLES

In this section, we use the theorems developed in Sec. V, and
the special type of decision tables specified for DETAB-X to describe
how table rules can be analyzed for completeness, redundancies, and
inconsistencies. But first, we describe two significant requirements
that the CODASYL Systems Group specified for DETAB-X decision tables.

Requirement 1l: Every decision rule must specify at least- one

action. It makes no sense to say "If employee works overtime and he
is an hourly worker," without specifying at least one action to take
if these conditions are met. It 1s perfectly reasonable, however, to
say "Give every employee an extra holiday," without specifying any
conditions.

Requirement 2: Each transaction that tests the decision rules of

a decision table must be able to satisfy one, and only one, of them.

This requirement offers advantages in two vital areas: (1) it insures
completeness of decision tables, and (2) it reduces contradictions and
redundancies among decision rules. We discuss these areas subse-
quently.

Other computer languages have alternatives to Requirement 2. For
example, FORTAB tests rules in order starting from the left and working
toward the right until one rule is satisfied; the actions of the sat-
isfied decision rule are then executed. With FORTAB then, it is pos-
sible to satisfy more than one decision rule with a single transaction,
with the leftmost satisfied rule being executed. Checking FORTAB
tables for completeness, redundancy and contradiction of decision

rules would require more complex rules than those we now describe.
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COMPLETENESS OF DECISION TABLES

As previously stated, a decision table is camplete if, and only
i, (1) every decision rule contains at least one action; and (2) each
transaction that tests the table rules satisfies one, and only one,
decision rule. This means that the tables must contain all of the
possible independent AND-FUNCTIONS that can be formed from the possi-
bilities listed in the condition stubs.

A natural question is "How does one determine that a decision
table is complete"? It is easy to satisfy Requirement 1 by verifying
that each decision rule in the table has at least one action. But
determining if Requirement 2 is satisfied (each transaction satisfies
only one rule) requires a further explanation which we shall give by
examining decision tables that contain:

l. Simple decision rules only,

2. One or more complex decision rules and no ELSE~Decision-
Rule,

3. An ELSE-Decision-Rule.

Decision Tables Containing Simple Decision Rules Only

Theorem V states that there exist exactly 2" independent AND-
FUNCTIONS in a table based on n conditions. Hence a table must
specify or imply 2“ independent decision rules in order for there to
ciist one, and only one, decision rule a transaction can satisfy. As
an example, a decision table based on 3 conditions should contain 23
(or 8) independent AND-FUNCTIONS (see Table 3).

Theorem IV states that a table based on n conditions contains

exactly 2° dlstinct pure AND-FUNCTIONS each of which is independent
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of every other. Therefore, 1f a decision table contains simple deci-
sion rules only, it must contain exactly 2n distinct pure AND-FUNCTIONS.
Table 3 contains simple decision rules only, i.e., its AND-FUNCTIONS
contain no I's. The table is based en 3 conditions; it should contain
23 = 8 decision rules. It does. Are they independent? Yes, since
Theorem I states that two AND~-FUNCTIONS are independent ir, in at

least one position, one function contains Y and the other function

Table 3
CREDIT APPROVAL DECISION TABLE
Rule
1(2]|3(4]5]|6}71{8
CREDIT K Y;)Y|Y|Y|N|N|N|N
PAY-EXPERIENCE FAVORABLE Y(Y|N|N|Y|Y|N|N
SPECIAL-CLEARANCE OBTAINED(| Y | N(Y (N |[Y [N |Y (N
TPPROVE ORDER X1 X|X|X|X|X|X|~-
RETURN ORDER TO SALES =f=1-1-1-1-1-1x]

Note: "X" says execute the action in the Stub.
"-" says do not execute the action in the Stub.

contains N. In Table 3, this occurs for every pair of AND-FUNCTIONS;
hence, they are independent.

In summary, a decision table that is based on n conditions and
contains simple decision rules only is complete if it has 2n distinct
decision rules, and each decision rule contains at least one action.

Decision Tables Centalning One or More Cemplex Decision Rules and No
ELSE-Decision-Rule

Table 3 contains several decision rules -- Rules 1 through 7 =--

vhich take the same action, regardless of whether the condition in
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one of the stubs has a Y or N associated with it. Therefore, Table 3

can be rewritten as a table which contains simple and cemplex decision
rules, 1.e., those whose AND-FUNCTIONS contain et least one I. Rules

1 through 4 of Table 3 we rewrite as complex Decision Rule 1 in Teble

4; Rules 5 and 6 we rewrite as complex Decision Rule 2.

Table L
CREDIT APPROVAL DECISION TABLE

u}?ule 1 {Rule 2| Rule 3| Rule L
CREDIT K Y N N N
PAY-EXPERIENCE FAVORABLE 1 Y N N
SPECIAL~-CLEARANCE OBTAINED jJt I I Y N
APPROVE ORDER X X X - j
'RETURN ORDER TO SALES I - - - X

Assuming Teble 4 as a starting point, it is possible to reverse
the process described above and expand it to Table 3 using Theorem

III.* Following expansion, the precedure described earlier for show-
ing thp.t Table 3 is complete could be followed thereby deducing the
completeness of Table 4. Another preferable procédﬁre‘for testing
the completeness of Table 4 exists anl 1s presented below: ‘

1. Check that each decision rule centains at least one
action.

2. Use Theorem I to show that the AND-FUNCTIONS of Table
4 are independent. Theorem I states that two AND-
FUNCTIONS are independent if in at least one position,
one function contains Y and the other function contains
N. Nete that this is true for every pair of AND-
FUNCTIONS in Table 4. Hence, the AND-FUNCTIONS are
independent.

#The reader, as an exercise, can expand Table 4 to Table 3, using
Theorem III. (See Appendix for the statement of all theorems.)



~13-

3. Then show that the 4 decision rules in Table 4 imply
(or are equivalent to) 8 decision rules. For this,
refer to Theorem VI which states that each decision
rule containing an AND-FUNCTION with I in r positions
is equivalent to 2T simple decision rules. Hence, in
Table L:

Rule 1 is equivalent to . (or 4) simple decision rules;
Rule 2 is equivalent to 21 (or 2) simple decision rules;
Rule 3 is equivalent to 1 simple decision rule; and
Rule 4 is equivalent to 1 simple decision rule.
Total 8
Since Rules 1, 2, 3, and 4 of Table 4 are equivalent to 8 simple

independent decision rules, Table 4 is complete.

Decision Tables Containing an ELSE-Decision-Rule

In decisien tables based on many conditions, and consequently
containing many decision rules, it is often highly desirable tc group
as one these decision rules that specify the same series of actions.
This decreases the amount of writing and reduces the amount of com=
puter coding, thereby reducing errors and decreasing the amount of
computer storage required for the program.

The ELSE-Decision-Rule satisfies this purpose. The AND-FUNCTION

of the EILSE-Decision-Rule is equal to the disjunction of all inde-
pendent AND-FUNCTIONS not specified or implied by the written decision
rules in the table. Assume, for example, that Table 6 1s equivalent

to Table 5. Then the ELSE-Decisien-Rule (abbreviated ELS) in Table 6
replaces Rules 4, 5, and 6 of Table 5; therefore the AND-FUNCTION of
ELS is equal to the disjunction of (is the equivalent of) ARD-FUNCTIORS

4, 5, and 6.
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Table 5

(i

Rule

1 2 L1sle
ASSET-PURCHASED Y Y YiY|Y
PROPERTY-CLASS 2 "A" Y Y N{Y (N
PROPERTY-CLASS < "Jw Y Y Y|N|N
ASSET-NEW-WHEN-PURCHASED Y N (1|1
COMPUTE DEPREC-EXPENSE BY || SUM OF DJGITS LSTRAIGHT LINE |~ |- |- |-
GO TO ASSET~LEASED-TABLE - - -1-]-
WRITE ERROR-MESSAGE - - x|x|x

Table 6
DEPRECIATION EXPENSE
!lj Rule

1 2 'ELS
ASSET~-PURCHASED Y Y -
PROPERTY-CLASS = "A" Y Y -
PROPERTY-CLASS < "J" Y Y -
ASSET-NEW-WHEN-PURCHASED Y N -
COMPUTE DEPREC-EXPENSE BY [ SUM OF DIGITS | STRAIGHT LINE -
GO TO ASSET-LEASED-TABLE - - -
WRITE ERROR-MESSAGE - - X
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In the general case, if ¢ independent AND-FUNCTIONS are speci-
fied or implied in a table based on n conditions, the ELSE-Decision-
Rule is defined as the equivalent of (2°-t) decision rules, each of .-
whose AND-FUNCTIONS are independent of each other and the t specified
or implied AND-FUNCTIONS. Expanding the specified AND-FUNCTIORS of
Table 6 results in t = 10 AND-FUNCTIONS shown below:

1
lx
2 L8],

and since n = &4, 2® & ah = 16. Therefore, (2n-t) = 16-10 = 6.

re 1 re g
iz
oy
"
-
e
2 14
B3
it e

’ ’ t4 2 2 ’ ?

The following are expressed by the ELSE AND-FUNCTION:

PRV
2 ¢ 2 e
[OYTRvv:
w2t 2t v
™)
T

These are equivalent to the AND-FUNCTIONS of Rules 4, 5, and
6 of Table 5. The above & AND-FUNCTIONS were derived by noting that
where there are 4 conditions, there are 16 AND-FUNCTIONS. Among the
16, 8 will bave Y in the first row, and 8 will have N in the first
row; the second, third and fourth rows are similar. No pair can be equal.
The original 10 AND-FUNCTIONS had 2 Y's and 8 N's in the first row.
Hence, the remaining 6 AND-FUNCTIONS must have a Y in the first row.
In the second row, the original 10 AND-FUNCTIONS had 6 Y's and 4 N's.
Hence, the remaining 6 AND-FUNCTIONS must have 2 Y's and U4 N's. Look-
ing at the lst and 2nd row only, there should be
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u"[t]" u"[y]" u"[n]" mu[n]» There ectst
Y|, N1, Y|, N .
only 2 "|Y |"and no "| Y |". Hence, 2 "| Y[" and 4 "| Y |"

Y N Y N

must exist in the 6 AND-FUNCTIONS. This process is completed until
all the rows have been filled in.

A decision table having an ELSE-Decision-Rule is camplete if
each decision rule (including ELS) contains at least one action. It
is interesting to note that the ELSE-Decilsion-Rule is automatically
satisfied wvhen all the specified or implied decision rules are not
satisfiel. Hence, of all the rules in a decision table, the ELSE-
Decision-Rule must be tested last. As to rules other than ELS, their
t.esting order is immaterial since any transaction can satisfy only
one rule. For example, entry into Table 5 with a transaction 1is the
same whether we test Rules 1, 2, 3, 4, 5, and 6 in order, or if we
test Rules 3, 2, 5, 4, 6, and 1 in that order. In Table 6, however,
Rules 1, 2, and 3 must be tested first in any order; if they all fail,
ELS is automatically satisfied. This follows because each transaction
must satisfy one and only one rule. Therefore, if Rules 1, 2, and 3
are not satisfied, and ELS represents the remaining decision rules,

the transaction must satisfy it.

CONTRADICTIONS AND REDUNDANCIES AMONG DECISION RULES

The preceding discussion on completeness of decision tables
assumes that Requirement 2 is not violated. If it is violated, the
decision table comtains redundant and/or contradictory rules. The

following discussion assumes that Requirement 1 is not violated.
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Redundant Decision Rules

If Requirement 2 1s violated, there exists at least one trans-
action that satlsfies two or more decision rules, i.e., the AND-
FUNCTIONS of two or more decision rules are dependent. For ease of
discussion consider Rules 1 and 2, both of which can be satisfied by
one transaction, i.e., their AND-FUNCTIONS are dependent. If the two
AND-FUNCTIONS are identical and the sequence of actions specified for
Rules 1 and 2 are identical, then one of them is redundant; someone
mistakenly repeated a decision rule.

It is not as apparent that redundancy exists if the two AND-
FUNCTIONS are not identical, even though they are dependent; for AND-
FUNCTION 1 and AND-FUNCTION 2 cannot both be pure AND-FUNCTIONS by
virtue of Theorem II which states that each pure AND-FUNCTION is inde-
pendent of every other pure AND-FUNCTION. There are them two possible
explanations:

Case I - One of the AND-FUNCTIONS is pure and the other is mixed:?

Case II - Both AND-FUNCTIONS are mixed.

For Case I, refer to Theorem IV, corollary 3, which states that
if a pure AND-FUNCTION and a mixed AND-FUNCTION are dependent, the
pure AND-FUNCTION is contained in the canonical form* of the mixed
AND-FUNCTION. Sinze Rules 1 and 2 have the same sequence of actions,
the decision rule that contains the pure AND-FUNCTION is redundant.

This can be illustrated by looking at Rules 1 and 2 of Table T.

*The canonical form describes a mixed AND-FUNCTION in pure terms.
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Table T
CREDIT APPROVAL

[ Rute 1| Rule 2 | Rule 3| Rule 4
CREDIT (K Y Y N N
 PAY-EXPERIENCE FAVORABLE| I Y Y N
APPROVE ORDER X X x | -
RETURN ORDER TO SALES - | - - X

Their AND-FUNCTIONS are dependent (by Theorem I). Rule 1 breaks

down as follows:

Y Y Y

I Y N
x| ™ |¥ X
(1) (2>  (3)

Note that (2) is identical to Rule 2, Table 7. Hence, Rule 2 of
Teble T is redundant. In other words, if credit is ok, approve order.
Case II, where both AND-FUNCTIONS are mixed, refer to Theorem IV,
Corollary 4, which states that if two mixed AND-~FUNCTIONS are depend-
ent there exists in their canonical form at least ene pure AND-FUNCTION
that is cemmon to both. The one or more common pure AND-FUNCTIONS
constitute the redundancy in this case and can be eliminated by re-
moving each redundant common AND-FUNCTION. For example, in Table 8,

by Theorem I, AND-FUNCTIONS 1 and 2 are dependent.

Rule 1 breaks down as follows:

' NIIHH
v el
S L
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Rule 2 breaks down as follows: [ I ] Y N
R I R R
X X X
| = L= ’ - .
The common AND=FUNCTION is [ % i
x
| -

which can be eliminated from Rules 1 and 2. Eliminating it from Rule
2 produces the redundancy-free Decision Table 9. Note that there are
5 decision rules in Table 8 (21 + 2'.L + 1 = 5) which is more than the
required 4 = 22(2 conditions). In Table 9, by eliminating a redun-
dant decision rule, the number of independent decision rules is
2t +1+1=L,

Table 8

CREDIT APPROVAL

IrRu.le 1l | Rule 2| Rule 3

| CREDIT &K Y I N
| PAY-EXPERTENCE FAVORABLE| I Y N
APPROVE ORDER X X -
RETURN ORDER TO SALES ﬂ . . X

Table 9

CREDIT APPROVAL

| Rule 1 | Rule 2 | Rule 3

CREDIT OK Y N N
| PAY-EXPERTENCE FAVORABIEH I Y N |
a

' APPROVE ORDER X X -

RETURN ORDER TO SALES ﬂ - - X
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Sumnary in Decision~Table Form of Contradiction and Redundancy

All possible contradiction and redundancy situations can be sum=
marized in decision table form by representing all pairs of decision
rules in a decision table by Rules 1 and 2 whose AND-FUNCTIONS are
AFl and AF2 respectively, and whose series of actions are Al and A2
respectively. This is shown in Table 10.

Teble 10 1s complete because each decision rule has at least
one action (passive) and the AND-FUNCTIONS of the decision rules are
independent of each other. There are 21" + 22 +1+1+1+1+ 23 = 32
decision rules. Since the table is based on five conditions, there
should be 2° = 32 indlependent decision rules. Teble 10, then, is

complete.

DECISION TABLES VIS-A-VIS FLOW CHARTS

To illustrate same advantages decision tables have over flow
charts, the decision rules diagrammed in Fig. 1 are written into Tables
114, 11B, and 11C. In the flow chart, it is difficult to recognize
each decision rule; in the tables each rule 1s clearly defined. The
reader has no way of determining whether a particular decision has
been omitted fram the chart, thus making the satisfaction by certain
transactions impossible. The first time a transaction tests a deci-
sion table and does not satisfy one of the specified decision rules,
the ELSE-Decision-Rule will reject it as an error. Any redundancies
and contradictions among the decision rules in a table can be located
using Theorem I. Tables 11A, 11B, and 1l1C contain no contradictory
or redundant decision rules; this cannot be determined from the flow

chart (see Fig. 1).
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Table 1l1B
SUBSTITUTION AND ALLOCATION PROCEDURE FOR HANDLING REQUESTS
Rule 1| Rule 2 | Rule 3
PRIORITY < 3 Y Y N
REMAINDER UNFILLED? N Y I
ISSUE AS MUCH AS POSSIELE FROM > 1 TITEM X - -
GET NEXT REQUEST - X X
GO TO TABIE A JL X X X

Table 11C
SUBSTITUTION AND ALLOCATION PROCEDURE FOR HANDLING REQUESTS

Rule

1|2|3|u]s5|6|7|8]9]Es
APPROPRIATE SUBSTTTUTE? vlw|z|y|n|{z|e|n]2|-
INTERCHANGEABLE OR REQUESTED ITeM? | N[N |n|¥{y|¥|¥|¥|¥|-
LAST ITEM? r|1|z|n|n|n|¥|Y|Y]-
LAST SUBSTITUTE? | xv|ylz|z|z|z|x|z]-
INTERCHANGEABLE? r|z|z|n|n|¥|T|2|1]-
PRIORITY = 5 1|x|z|{z|z|z|N|N|¥|-
BACKORDER & UPDATE REQUEST Tol-1-1-1-1-1-1-1x-
| GET NEXT REQUEST S-l--1-1-1-] -] %] -
GO TO TABIE alB|2|a|B|a|a|B]|A|Erro

To further compare the two, the decisions in a flow chart must
be tested in the order in which they appear; in a decision table,
except for the ELSE-Decision-Rule, the decisions can be tested in any

order. This enables programmers to consider the relative frequency



-2

with which transactions satisfy decision rules and should lea@ to more
efficient computer programs. And finally, when policy changes occur,
it is easier to correct each of the affected decision rules than it

18 to correct a series of interconnected flow-chart boxes.

SUMMARY OF PROCEDURE FOR CHECKING DECISION TABLES FOR COMPLETENESS,
REDUNDANCY AND CONTRADICTIONS

1. Be sure that each declision rule contsins at least one actionm.
Where no action is specified, either specify the action(s) or remove
the decision rule.

2. Be sure every pair of AND-FUNCTIONS is independent by veri-
fying that in at least one position of each pair there exists a ¥ in
one function and an N in the cther. TFor each pair that 1s dependent,
refer to Table 10 to determine where redundancy or contradiction
exists and take appropriate steps to correct this deficiency.

3. After all contradictions and redundancies have been deleted
and all decision rules have at least one action, check to see if the
decision table contains an ELSE-Decision~Rule. If it does, the table
is complete and contains no contradictions or redundancies.

L. 1If the decision table contains no ELSE-Decision-Rule, count
the I's in each decision rule. Suppose Rules 1, 2, =-~, m contain r
re, —— rm. Then the decision table contains
r r
N=214+22 2
independent decision rules. If the table comtains n independent con-
ditions, N should equal 2B. If N is greater than 21, all redundant
or contradictory rules have not been eliminated, and the analyst
should go back to step 2.

l,

rml r
4 wee + 2 + m

If N is less than 2“, the table has not specified all possible
allowable decision rules. This can be corrected by either

a. inserting an ELSE-Decision-Rule, or

b. checking which of the 2" independent decision rules
are missing from the table and inserting them (see
page 15 for method of finding missing AND-FUNCTIONS,
and hence, missing decision rules).
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IV. THE USE OF OR-FUNCTIONS

Many data processing areas, such as editing and information re-
trieval, need decision rules that specify a series of actions if any
one of a number of conditions is satisfied. While this can be handled '
by decision rules containing AND-FUNCTIONS, it generally requires a
great deal of writing that could be eliminated if it were possible to
connect condition requirements with an inclusive "OR" operator, in-

stead of the "AND" operator used in AND-FUNCTIONS.

STRUCTURE FOR OR=-FUNCTIONS

We can illustrate the structure and features of OR-FUNCTIONS by using
an input editing example. If a particular field is not numeric a.nd/or
has more than 7 characters, and./or a decimal point is missing, then it
is invalid and an error procedure must be executed; otherwise continue
processing. Table 12 depicts these decisions in DETAB-X form. The
decisions described in Table 12 are now shown in Table 13 with the
OR-FUNCTION to the right of the rightmost double vertical line and
above the double horizontal line. A double vertical line separates
the decision rules that have AND-FUNCTIONS from those that have OR-
FUNCTIONS, 1.e., those that have conditions connected by inclusive "OR"
operators.

Where I in the AND-FUNCTIONS says "immaterial" (having the same
effect as Y or N), ¢ in the OR-FUNCTIONS says "immaterial” (here the
effect 1s to ignore the conditions). For example, in Table 14, Rule
3 says that if field is not numeric or the number of cheracters is
greater than T, go to error procedure. This decision rule is not con-

cerned with whether or not the 5th character is a decimal point.
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Table 12
INPUT EDIT
J[Rule 1| Rule 2 |Rule 3| Rule &
FIEID IS NUMERIC N Y Y Y
NO. of CHARACTERS » T I T 4 N N
5th CHARACTER = DECIMAL PT. I I N YA
GO TO ERROR PROCEDURE X X X -
CONTINUE PROCESSING - - - X
Table 13
INPUT EDIT
Rule 1|l Rule 2
FIELD IS NUMERIC Y
NO. OF CHARACTERS > T N

5th CHARACTER = DECIMAL PT. Y

CONTINUE PROCESSING

GO TO ERROR PROCEDURE <ﬂ

The ELSE-Decision-Rule still appears as the rightmost rule, and
represents the remainder of the 28 Possible independent rules that

have not been specified or implied in the decision table (see Table 15).

ANALYSIS OF DECISION RULES CONTAINING AMD-FUNCTIONS and OR-FUNCTIONS

Decision table Requirements 1 and 2 specified earlier for AND-
FUNCTIONS continue to apply to OR-FUNCTIONS. Also, the definition
given for depenience and independence of AND-FUNCTIONS applies equally
well to OR-FUNCTIONS. However, the criteria for determining the
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dependence of a pair of OR~-FUNCTIONS or the dependence of an AND-
FUNCTION and an OR-FUNCTION are different from those previously
described. Also, the rules for counting OR-FUNCTIONS differ. Because
the completeness of decision tables in terms of AND-FUNCTIONS was de-
scribed earlier, the following sections are confined to explaining

the equivalence relation between OR-FUNCTIONS and AND-FUNCTIORS.

Table 14
INPUT EDIT
[fRule 1] Rule 2| Rule 3
FIELD IS NUMERIC Y Y N
NO. OF CHARACTERS > 7 N N Y
LSth CHARACTER = DECIMAL PT.|| Y N ¢
GO TO ERROR PROCEDURE - - X
INSERT DECIMAL POINT - X -
CONTINUE PROCESSING JLx X -

Theorem VI' states that an OR-FUNCTION that contains ¢ in r
positions 1s equivalent to (2n - 2r) pure AND-FUNCTIONS; where O < r < n.
In Table 13, for example, the OR-FUNCTION of Rule 2 has no ¢. There-
fore, r = 0, and OR-FUNCTION 2 is equivalent to (2% - 20) = (20 - 1)
pure AND-FUNCTIONS. In another example, Table 14, the OR-FUNCTION of
Rule 3 has one ¢. Therefore r = 1, and OR-FUNCTION 3 is equivalent to
(2% - 2 1) = (20 - 2) pure AND-FUNCTIONS.

In order to make checks on completeness, redundancy, and con-
tradictions described earlier for decision tables containing AND-
FUNCTIONS, it 18 necessary to state when OR-FUNCTIONS are dependent,

and vhen an OR-FUNCTION and an AND-FUNCTION are dependent.
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Theorem I' states that two OR-FUNCTIONS are dependent if, in at
least one position, both contain a Y, or both contain an N. Other-
wise, they are independent.

Theorem I'' states that an AND~FUNCTION and an OR-FUNCTION are
dependent if, in at least one position, there exists & Y in both, or
an N in both, or there exists an I in the AND-FUNCTION and a Y or N in
the OR-FUNCTION. Otherwlse they are independent. For example, in
Table 14, on lines 1 and 2, AND-FUNCTION 1 and OR-FUNCTION 3 do not
both contain a Y; nor do they both contain an N; also there is no I in
AND-FUNCTION 1. Therefore, AND-FUNCTION 1 and OR-FUNCTION 3 are inde-
rendent. Similarly, AND~-FUNCTION 2 and OR-FUNCTION 3 are independent.

Decision tables containing AND- and OR-FUNCTIONS can now be tested
according to the procedures specified in Sec. IIT of this paper. Con-
sider Table 15. Requirement 1 is satisfied; every decision rule has
at least one action. In checking all pairs of AND-FUNCTIONS and OR-
FUNCTIONS for dependence, we note that AND-FUNCTION 1 and OR-FUNCTION
5 are dependent because for the condition "Property-Class > 'J'", AND-
FUNCTION 1 has an I and OR-FUNCTION 5 has a Y. Also, AND-FUNCTION 2
and OR-FUNCTION 5 are dependent because for the condition "Property-
Class < 'A'", the former has an I, and the latter has a Y. Teble 16
corrects this dependence and shows all the AND-FUNCTIONS and OR-FUNCTIONS
as indeperdent.

Counting the number of AND-FUNCTIONS specified or implied in Table

16 we derive the number of decision rules contained therein:
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AND-FUNCTION 1 implies 2 =2
AND-FUNCTION 2 implies 2* -2
AND-FUNCTION 3 implies 2* -2
AND-FUNCTION b implies 2% =2
OR-FUNCTION 5 implies (2°-23) = 2
TOTAL 32 decision rules.

Since there are 5 conditions, the required number of decision rules
18 2° = 32. Having specified the 32 decision rules (each pair con-
taining independent AND-FUNCTION), the decision table is then complete.
Consequently, the ELSE-Decision~Rule is not necessary and Table 17
illustrates the correction.

In the next sections, we develop the theorems on dependence of
AND-FUNCTIONS and OR-FUNCTIONS as well as the theorems on number of

functions and decision rules contained within a decision table.
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V. AND-FUNCTION THEOREMS

ASSUMPTIONS
Every decision table is based upon a set of conditions, each of

which can be either true or false. We begin our development of deci-
sion-table theory by assuming there exist n conditions, Cl, 02, C3,
ceey Cn each of which can be either true or false at any poinf in
time.

Let S = (al, 82 83 «:+) ap) where a; = O or 1, represent the
status (true or false) of the n conditions. In the kP position of s,
a 1 signifies that Cx 1s true; vhile a O in the same position signi-
fies that Ck is false.

For example, if I have four conditions: C; = (w < 3), C, =
(x = 3), C3=(y>4), 0 = (z < 0) and if the condition variables
have the following values; w=2, x=5, y=3, z= -1, then § =
(1001). Note that the components of S represent the truth value of

the corresponding conditions for a given set of values of the condi-

tion variables. v(ck) denotes the truth value of ck.

Independence of Conditions

Each of the n conditions, C1s Coy +-vy Cn’ consists of two oper-
ands and a relational operator (=, <, 2, <, >, #). One operand must
be a condition variable and the other must be a condition variable or

a constant.

Examples of conditions

1. C=(xx<5)

2. C=(x>y)



3. ¢=(13=1x)
c b = (Y=12)
Conditions (:k and Ce are deperdent if both contain the same condition
variables, and if these variables have at least one set of values such
that V(Cy) = 1 and V(C,) = 1. Otherwise, conditions C, and C, are
independent.
Examples
1. IfC = (X <5)
and C, = (X < 7),
Cx and C, are dependent since for any X < 5, v(ck) =1
and v(ce) = 1.
2. ¢ =(Y<5)
and Cq = (Y 2 5),
ck and ce are independent since there exists no value of
Y such that v(ck) = 1 and v(ce) =1,
3. IfC=(X<Y)
and C, = (x = Y).
Ckamcemdepuﬂent since for X = ¥, V(ck)-la.nd
v(ce) = 1.
For the remainder of this paper, we assume that the tables are

based on n independent conditions.

Condition Requirements

For each Ci’ we can specify one of the following requirements:

1. Y:t that signifies Ci must be satisfied.

2. N1 that signifies ci mist not be satisfied



Y1=N15Y1===N1

"_"

where signifies "not."

3. Ii that signifies either Ci must or must not be satisfied.
It I1 has been specified, it is immaterial what values the
condition variables of C1 assume.

I1 = Yi + N1
where + denotes the Boolean "INCLUSIVE OR" operator.

In addition, "@®"will be the Boolean "EXCLUSIVE OR" operator; "."

will be the Boolean "AND" operator.

AND-FUNCTIONS BASED ON Cl’ 02’ ceey Cn

Let W, be a variable that represents Yi’ N:l’ or I We now de-

i
fine an AND-FUNCTION

1

(1) BJ = w]_J.wzJ.w3J.-...wn_l,d.wmj

Since each wiJ’ i=1, 2, ---, n, represents one of three reguirements,

3 = 37, We denote the set of 3" AND-FUNCTIONS as a table.

By

B

(2) T = 2
n

._ B3

— -

Let V(BJ) denote the truth value of BJ. Then V(BJ) = 1 or 0, depending

on whether or not all of the n requirements of B y are met. An AND-

FUNCTION is satisfied if its truth value is 1. To illustrate, suppose
B’* = Y10Y20N30Y!‘0N5
and S=(11 O 1 O) for a given set of values of the condition

variables. Then V(Bh) =1; S= (11010) satisfies B, - If, however,
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S = (01010) for another set of values of the condition variables,

then v(nh) = 0.

DEPENDENCY OF AND-FUNCTIONS IN A TABLE

Definition

The AND-FUNCTIONS Bk and Bt are dependent if for at least one set
of values of the condition variables, both V(Bk) = 1 and v(nt) = 1.
Otherwise, Bk and B, are independent, i.e., there exists no set of

t
values of the condition variables such that both V(Bk) = 1 and

V(Bt) = 1.

Example of Two Dependent AND-FUNCTIONS

Suppose B5 = Y]_'NQ'Y3'II; (wote: I, =Y, + M),

and B8 = Yl'N2.Y3.Nh'

Then for that set of values of the condition variables that ylelds
S = (101 0), both v(ns) = 1 and v(ns) = 1. Then, B and By are
dependent.

Exanple of Two Independent AND-FUNCT IONS

= ON . . .
Suppose B3 Yl > Y3 Yh l\I5 »
and 37 = NJ.'NQ'Y3'Y1+'NS‘

The only set of values of the condition variables for which V(B3) =1,
is the one that yields S= (1 O 1 1 0). For this set of values,
V(B'T) = 0. Therefore there exists no set of values of the condition
variables such that both v(133) = 1 and V(BT) = 1. Hence 33 and 1;7

are independent.
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Theorem I. Within a Table, two AND-FUNCTIONS are independent
if, in at least one position, one function contains Y and the other
contains N. Otherwise, they are dependent.

Proof of Theorem I. Let Br and Bs be two AND-FUNCTIONS in T,

where Br contains a Y in at least one position, say the kth position,

and Bs containg an N in that same position, i.e.,

W

B, = W W, teemt¥y cmee o

1lr 2r n-l,r'

Bs = wls.wes.---.t{k.---- n-l,s'wns'
The only possible sets of values of the condition variables that can
enable V(Br) to equal 1 are those that result in S's that have a 1 in
the kth position. With every one of those sets of values, V(Bs) = O.
O Br and Bs are independent. This proves the first part of the
theorem.

To prove the second part, suppose Bp and Bq are two AND-FUNCTIONS
in T, and in every position of each there does not exist a Y in one,
and an N in the other. We will show that BP and Bq are dependent.
Suppose Y exists in the first 4 positions, N in the next e positions,

I in the next (n-d-e) positions of Bp, i.e.,

B = Ly Yy N Ve Tarerr ™ 1
then By = I Tpemmme Ty Ty e Ty o Varerd ™™
vhere W=Y, N, or 1
O<ds<sn o<ec<n
for S = (1 1 -mee- 1 00 -ece- O Agyess Agrorz — A)
a e

=1 if W =Y
where AJ 3



and AJ-OifWJ=N,orI

J = d+e+l, d+e+2, ==, n

both V(Bp)‘ = 1 and V(Bq) = 1 for all possible values of d and e. Hence,
Bp and Bq are dependent. We can apply the same logic where Y appears
in any d positions, N appears in any e positions, and I appears in

the remaining (n-d-e) positions.

Definitions

A pure AND-FUNCTION 1s one that has exactly n terms, each of

vhich 1s either a Y or an N. In the remainder of this paper, P will
signify & pure AND-FUNCTION. For example, for n = 5,

P = 1'N2'N3'Yu’Y5 is a pure AND-FUNCTION.

A mixed AND-FUNCTION is one that is not pure. It will be signi-

fied by M in the remainder of this paper. A mixed AND-FUNCTION either.
1) contains ene or more I's, for example

M = K Y, YT NN
or 2) is expressed as a combinatien of pure AND-FUNCTIONS, all con-
nected by "EXCLUSIVE OR" operators, for exsmple

= K
M =P ©p, @P3
Theorem JI. Within a Table T, each pure AND-FUNCTION is inde-

pendent of every other pure AND-FUNCTION. ~
Proof of Theorem II. Let zim be a veriable that represents Y

1
or Ni' let
1. Pm = Zlm°zan°z3m' ----- 'zn-l,m°zmn
*We will show later how a mixed AND-FUNCTION containing ome or

more I's can be expanded into a mixed AND-FUNCTION containing & com-
bipation of pure AND-FUNCTIONS.
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Since Z represents one of two requirements, m = 2n, and there exists

a sub-table of T

vhere Pl’ Pé’ ===, P_n are the only pure AND-FUNCTIONS of T.

2

3. Consider all the pairs (P, P_) of Table E

r=1,2,---,2n;s=l,2,---,2n,'r;‘s

4. Pr and Ps differ from each other in at least one position,
say the kth position.
S. Either P contains Y , and P contains Nk or, P contains
r k 8 r
Nk’ and Ps contains Yk'
6. Then P, and Ps are independent (by Theorem I).
T. This is true for all pairs of AND-FUNCTIONS of E, and

Theorem II is proved.

Corollary to Theorem IX. Within a Table T, there exists exactly

2" pure AND-FUNCTIONS. Each of the remaining (3" - 2%) AND-FUNCTIONS
is mixed.
Theorem III. The form of a mixed AND-FUNCTION that contains I

in r positions (1 < r < n) can be expanded into a canonical form

that comsists of 2° pure AND-FUNCTIONS each connected by an exclusive

"OR" operator ((¥)).

Proof of Theorem III. ILet Z ot be a variable that represents Ym

or N ;
n
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m'r“";, 1'+2, m—-y n.
Let

1 z N

LooM = LT, =D 2,7 %2, nt

Tt 1 r-1’
20 I.Y+No

30 My = (0 W) (T + Wp)emmme (X g + 8, ) (X, + )

- .Z

Prr1,t nt
An accepted theorem in Boolean logic is
(R+ 8)T = R:T + S-T.

Applying this theorem to the 1lst term of 3,
k. Mg = [Yl’(Ya * Na)'""(yr * Nr)'zr+l,1;“"'z'nt]

+ [Nl'(Y2 + Ne)'---‘(Yr + Nr)-zﬁl’t-----znt] .
Repeating this expansion (r - 1) times, we get a tree effect
vhere an "AND" operator connects each element in a2 line to the next
and an inclusive "OR" operator éonnects each line across to the

next.
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/Y/J:/Yr.zﬁl,t.zﬁ&t'"-'Zn,t
L) r-

Y N m==el
3.,

y rlr1,t %2, t n,t

Y/

./ 2~.~N/.
/ 3T~

/

/

\

=N

/

wz
./
\/

\/

Y2, e R, e

rd
(o]
[

Y A

Zr+2,t - n,t

\'\ . .
Nr Zr+l,t
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6. Since Y s and N, appear in r positions, M consists of 2°

pure AND-FUNCTIONS comnected by "+".

M =P, +Py+ P+ --m + Y

o =" Par are all contained in T.

T. Pl’ P2, waa Par are each independent of each other. (vy

Theorem II).

where Pl, P

8. For every pair of (Pp, Pq) there exists no set of values
of the condition variables, such that both V(Pp) =1 and
WP )=1.

(2,)
Hence,

9' Mt = P1®P2®""' @Pal‘-

10. We showed this theorem to be true when I appears in the first
r positions. The logic used in this proof can be applied
for I appearing in any r positionms.

11l. The theorem is therefore proved.

Corollary 1 of Theorem III. The canonical form of a mixed AND-

FUNCTION contains an even number of pure AND-FUNCTIONS.

Corollary 2 of Theorem III. The canonical fom of a mixed AND-

FUNCTION contains at least two pure AND-FUNCTIONS.

Theorem IV. Within a Table T, every mixed AND-FUNCTION that
contains I in r positions (1 < r < n) is dependent upon each of 2F
pure AND-FUNCTIONS of T.

Proof of Theorem IV. Let M be a mixed AND-FUNCTION that contains

I in r positions; 1 s r < n. Then, we can expand M to its canonical

form.

1, M= PlGPz@Ps@---@Pzr vhere ?1, Pa, ——-, ‘Par are all
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contained in T. (by Theorem III).
2. When V(Pl) =1, V(M) =1, .. M and P, are dependent.
Wwhen v(ra) =1, V() =1, .. M and P, are dependent.

. . .
. . .

When V(Pzr) =1, V(M) =1, .". M and P_¥ are dependent.
3. M is dependent upon each of 2 pure AND-FUNCTIONS of T.

Corollary 1 of Theorem IV. Two mixed AND-FUNCTIONS are dependent

if their canonical forms each contain one or more pure AND-FUNCTIONS
that are common to both. For example, if
=P
My 2®P3®P7@P8®P9@Pl2, and
M, = Pl@P2®P5 @P6@Pu@Pl3’
then M. and M_ are dependent since P, 1is common to both.

1 3 2
Corollary 2 of Theorem IV. A mixed AND-FUNCTION is dependent

on each of the pure AND-FUNCTIONS contained in its canonical form. B

Corollary 3 of Theorem IV. If a pure AND-FUNCTION and a mixed

AND-FUNCTION are dependent, the canonical form of the mixed function

contains the pure functionm.
Corollary 4 of Theorem IV. If two mixed AND-FUNCTIONS are de-

pendent, there exists at least one pure AND-FUNCTION in their canonical

forms that 1s common to both.

Theorem V. Table T, based on n conditions, contains one, and
only one, set of 2" independent AND-FUNCTIONS.

Proof of Theorem V.

1. Within s Table T, there exists exactly 2" pure AND-FUNCTIONS

(vy corollary o Theorem II).
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2, The 2° pure AND-FUNCTIONS are independent of each other (by
Theorem II). Thus, there exists one set of 2" independent
AND-FUNCTIONS .

3. Now, to shov that this is the only set oi‘;’ 2" independent
AND-FUNCTIONS, we consider all the refmaigzing sets of 2"
AND-FUNCTIONS that can be formed from ‘l;he 3n AND-FUNCTIONS
in T. Denote their domain as R.

k. 1In each of these sets of R, let there be t mixed AND-FUNCTIONS
and (27 - t) pure AND-FUNCTIONS; 1 <t < 2°.%

5. Those sets of R containing one or more pairs of mixed AND-
FUNCTIONS that contain one or more pure AND-FUNCTIONS common
to both, cannot contain 2° independent AND-FUNCTIONS (by
Corollary 1 to Theorem IV).

6. Ve therefore look at the Domain Q of R that comprises all
those sets of R that contain no pairs of mixed AND-FUNCTIONS
whose canonical forms contain pure AND-FUNCTIONS common to
the pair.

T. In each of the sets of @, the canonical fomm of the t mixed
functions contains at least 2% aistinet pure functions (by
Corollary 2 of Theorem III).

8. 1In each set of Q, there exists at least 2° - t + 2t = 2" . ¢
pure AND-FUNCTIONS, where t = 1.

9. Since there are exactly 20 pure AND-FUNCTIONS in T, at
least one of them is repeated within each set of Q.

¥1) For each t, we form all the possible sets of 2" AND-FUNCTIONS.
2) The set of 2 pyre AND-FUNCTIONS 18 not in R, since t # O.



oy

-45-

10. If t = 2", there exists at least one pure AND-FUNCTION
common to one pair of the 2° mixed AND-FUNCTIONS in every
set of Q. This violates 6 above.

11. Q then contains all sets of t mixed and (2" - t) pure AND-
FUNCTIONS where 1 < t < 2n, i.e., there existq at least
one pure AND-FUNCTION in every set of Q.

12. In every set of Q, the pair of identical pure AND-FUNCTIONS
(see 9 above) exists as one of the functions and as part of
a mixed function.

13. Hence, in every set of Q, there exists a pair of dependent
AND-FUNCTIONS (by Corollary 2 of Theorem IV).

1k, .'. There exists no set in Q that coutains 2" independent

AND-FUNCTIONS.

DECISION TABLES

Notation and Definitions

Let us now turn our attention to decision tables. We assume
that each table 1s based upon a number of independent conditions.
The actual number aml kinds of conditions vary from table to table.
We now consider the general case of a decision table based on n inde-

pendent conditions, C 02 y C,y ====, Cn, each of which can be true

l’ 3)
or false. All notation previously described applies here.
Iet D 3 denote Decision Rule j, a 3 denote one action in D 3 and

A, denote the entire series of actions in D 5 Then

3
Ay =830 O3 O~ 08y, |

again § = 3°. The symbol " (" signifies the Boolean "AND," that
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specifies actions a a -——, a
P l.j’ 23: * By

DJ = BJ - AJ says, "If V(BJ) = 1, execute actions AJ."

A decision table is a structure for describing the expression

n
pr = b, ®0,®- @Dq,lG)Dq 3 as<3.
Hereafter, the words "decision table" will refer to both the structure

must be executed serially.

and the expression, unless otherwise stated.

Definitions
A decision rule is simple if it contains only one pure AND-
FUNCTION. For example, if

=Y + N, +N

b=y MR

3 5’

then Dl = Pl - Al is a simple decision rule. A decision rule is

complex if it contains a mixed AND-FUNCTION in non-canorfcal form.

For example, if

M1=11+N2+Y3+NM+Y5,
then Dl = Ml - Al is a complex decision rule.

Implicit Decision Rules

Decision rules can be implied in a decision table by one of
two types of decision rules, either complex decision rules or ELSE-

decision-Rules.

Complex Decision Rules

Theorem VI. A complex decision rule that contains I in r posi-
tions of its AND-FUNCTION is equivalent to 2r simple decision rules.

Proof of Theorem VI.

1. let Dk = Mk - Ak where Mk containg I in r of its positions.
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2. M =P.®OP,0O ....@Par (by Theorem in)
3. b = (P1®P2®---®Par) - A
k. o = (Pl - A.k)@)(Pz - Ak‘)G)---@(Per - Ak).

5. Hence Dk is equivalent to 2t simple decision rules.

A complex rule that conta. I in r positions of its AND-FUNCTION

implies ol simple decision rules

The ELSE-Decision-Rule (DL)

DL"ELSE-'AL

If a decision table contains s simple rules and ¢ complex rules,
actions AL are executed when a particular set of values of the condi-
tion variables yields & truth value O for each of the s simple rules
and the ¢ complex rules.

One reason for using the ELSE-Decision-Rule (ELS) 1s to avoid having
to write a set of rules that each contain the same series of actions.

For example, suppose there are two conditions cl and 02 such that if
both are satisfied we want to execute actions Al’ otherwise we want to
execute actions A_. Without the ELSE-DecisioneRule, it would be

2
written as follows:

(9]
al
< [=]
H
= HMU
<] = o
w
= ;__U

Q
]

*»
>
>l
>
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With the ELSE-Decision-Rule, the above statements would be written:

D, D%
o, | ¥ | -
o, ¥ |-

w e

A | Ay

Another possible use for the ELS 1s to enable the system design-
er to detect any omission of a condition or appropriate AND-FUNCTION.
For example, suppose for O-4O hours, an employee gets regular time;
40.1-50 hrs, 1} times the hrs. worked; 50.1-60 hrs., 13 times the hrs.
worked Althowgh it 1s inconceivable that any one in this plant will
work more than 60 hours, the system designer wants to be notified if

it happens. He therefore sets up the following:

Table 18
EMPLOYEE SALARY-HOURS

lr D1 D, D3 DL

Hrs-Worked 2 O Y Y Y -

Hrs-Worked < 40 Y N ‘ N -

Hrs-Worked < 50 I Y N -
| Hrs-Worked < 60 I I Y -
= v

Overtime-Hrs = " 0 Hrs-Worked - LO| Hrs-Worked - 4O 0

Salary-hirs = ||Hrs-Worked |40+ 1,25 OT-Hrs| 4O+ 1,5 #OT-Hrs| O

- Print Error ‘ - - - - X
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Thus, when a time card containing 65 hours-worked goes through this

decision table, Dl’ D2, and D3 will each have a truth value O, and

DL will cause "ERROR" to be printed. The system designer will then
learn that he has not taken care of the condition "HOURS-WORKED > 60"

in this decision table.

DECISION TABLE REQUIREMENTS FOR DETAB-X

For DETAB~X, we use a special set of decision tables that meet
the following requirements:
1. Every decision rule must have at least one action.
2. For any given set of values of the condition variables of
a decision table, the AND-FUNCTION of one, and only one,

decision rule in that table must assume the truth value 1.

The ELSE-Decision-Rule

A consequence of Requirement 2 is that the ELSE-Decision-Rule
must appear in those decision tables that do not contain 2n indepen~
dent pure AND-FUNCTIONS. These particular AND-FUNCTICONS can appear
as part of a simple decision rule or be implied by the AND-FUNCTION

of a coamplex decision rule. For example,

AENENEY
c,fx [v]x[x
AEREBERE
AFREAERE:

Al 22| A3 A

Rules 1 and 4 each contain one pure AND-FUNCTION; Rule 2 implies 22
= 4 pure AND-FUNCTIONS; Ruls 3 implies 21 = 2 pure AND-FUNCTIONS for a
total of 8 pure AND-FUNCTIONS.
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These 8 are also independent since each of the four rules are inde-

pendent (each pair of rules has a Y in one rule and an N in the other
in corresponding positions). This table is complete since 2" = 23 =8.
Hence, it does not require an EISE-Decision-Rule. An example requir-

ing an ELSE-Decision-Rule follows:

‘ / ELSB-Decision~Rule
D1 |P2i%
c Y |¥ (D
Cf¥ (T |-
ety |T |-
1]“‘1 Py A
AND-FUNCTION of Rule 1 = Y.N.Y
ARD-FUNCTION of Rule 2 =  NYY
®r-1-N
O).0. 5
O} BB
Then the AND-FUNCTION of D, = Y-Y-Y
®YY-N
®1-x-§

A consequence of Requirement 2 is that the AND-FUNCTION of all
decision rules other than the ELS can be tested in any order. For
example, a set of values of the condition variables can be applied
to the AND-FUNCTION of D_, then D_, apnd then D6’ etc. Or they can

5 3

be applied to D3, then Ds, then D6’ etc. In whatever order they are

tested, the same series of actions will occur if Requirements 1 and

2 are not violated.
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Since the ELSE decision-rule requires each of the other rules of

the decision table to have a truth value O, we execute it only after
we have tested all the other decision rules and found their truth

values equal O.

Techniques for Discovering the Dependence of AND~FUNCTIONS

A contradiction between two decision rules exists when their AND-
FUNCTIONS are dependent (a violation of Requirement 2) and their
series of actions are not identical. If their series of actions are
identical, redundancy exists. To find these contradictions or redun-
dancies, it 1s necessary to examine the AND-FUNCTIONS in pairs. We
suggest here two techniques for examining (in a cdmputer) all pairs
for dependence. The logical design of each camputer will detemine
which of these two should be used or in fact whether some new teche~
nigue ought to be devised for detecting the dependencies.

These two techniques are predicated on Theorem I which states
that two AND-FUNCTIONS are dependent if there exists no position of
each In which one contains Y, the other contains an N.

Technique Number l. Pair one of these AND-FUNCTIONS with each

of the other specified functions, scanning each pair for a Y in one
function amd an N in the other in a corresponding position. If no
paired Y and N 1s found, the functions are dependent. In that case,
check the pair's sequence of actions. 1If they differ, have the com-
puter reject the pair as invalid. If one pair of Y and N is found,
scan the next pair. Repeat this for each set of remaining AND-

FUNCTIONS.
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Consider the following decision table:

D, D, D, D,
¢, Y N 1 Y
c, N N N N
c I Y Y Y
c, I N N Y
mbz c b e
Go to " Table 11 | Table 15 | Table 11 | Table 23

Consider the following pairs (Bl, B2), (Bl, B3), (Bl, B4). Bl and B
are valid. They are independent; there exists a Y,N pair. Bl and B3
are dependent since there is no Y,N palr; their series of actions are
identical. | One or more redundant decision rules exist in the table,
Bl and B4 are dependent, but their actions are different. Hence,
reject Rule 1 and Rule b.

Next, consider the pairs (B2, B3), (B2, B4). B2 and B3 are de-
pendent since they have no Y,N pair. Thelr actions are different.
Reject Rule 2 and Rule 3. B2 and B4+ are valid. They are independent;
there is a paired Y,N. Finally, consider the pair (B3, B4). They
are independent; there is a paired Y,N.

Technique Number 2, Some computers may do logical arithmetic

more efficiently than scanning. Hence, we map the Y, N, and I's of
the AND-FUNCTIONS into binary Ol, 00, and 10 respectively. The

above decision table becomes:



[[ D, D, D, D,

c, o1 00 10 oL

c, J]L 00 00 00 00

Cy 10 o1 o1 01

c, 10 00 00 o1

‘m b ¢ b e
Go to (| Table 11 | Table 15 | Table 11 | Table 23|

Form the logical sums of all pairs of Boolean function denoted
-
by L(B:l’ BJ); 143, 1 L(Br, Bt) contains ore or more diads equal

to 01, then Br and B

L(Bl, 32) = 0l
L(3,, B3) = 11
L(Bl, Bh) = 00
L(Ba, 133) = 10
L(‘Ba, Bh) = 01
L(Bs, Bu) =11

Since L(Bl, 33), L(Bl, Bh), and L(Ba, 33) have no Ol diad,

t
00

00
00
00
00
00

BlandBu,andea.ndB

of actions.

3
of actions and reject those pairs that do not have identical series

1

8 8 £ E

00

are dependent. Again, check their series

10
10
11
00
o1
o1

are independent.

Otherwise, they are dependent.

1

B, and B
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VI. OR-FUNCTION THEOREMS

EXTENSION OF DETAB-X DECISION TAELES

For tables based on n conditions, a need cften exists to execute
a series of action(s) if any one of p(p < n) conditions is satisfied.
While this can be handled in DETAB-X decision tables, it requires a
great deal of writing that could be eliminated if it were possible to
connecf condition requirements with an inclusive "OR" operator.

For example, in input editing if a particular field is not
numeric (cl); and/or has more than 7 characters (02); and/or has a
decimal point missing (c3); then the field is invalid, and an error
procedure must be executed (Aa). Currently in DETAB-X, we would
require 3 decision rules:

Dy = C =4y

D, =(61- C,) = A,

D, =(Cy * T, ° C5) = Ay
The table structure would be as follows:

“D2 D3 Dk‘
e,y [v |m
T ¥ [¥]
cflr [z [y

A T;?

It should prove useful to express the above as a single decision
rule:
D, = (cl + C

p * C3) = A,

vhere we demote the expression cl + 02 + 03 as an OR-FUNCTION. To
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implement this in the decision table structure of DETAB-X, it becomes
necessary to separate the decision rules that contain AND-FUNCTIONS
(those whose conmiition requirements are separated by the "AND" opera-
tor) from the decision rules that contain OR-FUNCTIONS (those con-
nected by the inclusive "OR" operator). A double line accomplishes

this separation. For instance, the follewing decision table:

D| D, | Dyl D,
vy |¥F|N
Il NI Y |N
G| ¥|T |1 |Y

ﬁAl Aol 25 [ A2

can be expressed:

In the latter, Decision Rule 1 says
if condition 1 is not satisfied
and condition 2 is not satisfied
and condition 3 is not satisfied,
then execute actions Al.

Decision Rule 2 says

if condition 1 is satisfied
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or* condition 2 is satisfied
or condition 3 is satisfied,

then execute actioms A2.

CONVERSION OF AN OR-FUNCTION TO AN AND-FUNCTION

Define ¢; =T, = (¥, * Ni) = (N, - Y,). We denote ¢ as the null
requirement. Denote the AND-FUNCTION as

By =Wy« Woy ommm W,y " Vgl

where wi represents Yi, Ni’ or Ii; J = 3n and the OR~FUNCTION as

= + mm + U ;
By = Uy w1,3 * Ung’

vhere Uy represents Y:I.’ Ni’ or ¢,, 3 = 3%, Since all our theorems
have been postulated for AND-FUNCTIONS, we now explore the relations
between AND-FUNCTIONS and OR-FUNCTIONS.

An OR-FUNCTION can be converted to an AND-FUNCTION with the
following procedure, on the basis of the definition of the inclusive

"OR" operator.

1. Suppose
EJ = UlJ + Ua,j + === + Un-l,,j + Um; U‘1 represents Yi’ Ni’
or qsi

2. 1, 9, LTI AR NI &
If Ul:j = ¢, Bl =0

3. I£ U, F e, By=TU -vu,, I, -0 « === .1

HUQJ=¢’ Bago'

#The "OR" is inclusive.



= = Q,
Ir U3J @ B3
' i 3 e T e T . -——— ® " .
5. If U, F o B UE Ty * U, Un-l_,k Upg
= [ =0
It Um1 & Bn
Let G denote § 3 in converted form
6. Let G = .31@32@33@ ------ @Bn_l®Bn
WhereBi=01_fUiJ=¢
Bi = ﬁ-]:j- . LQJ . U3J " ee * Ui.l,'j . UiJ . Ij_+1’J ¢ moe ¢ %

1 uij 7o

Although we started with Ul 3 and continued with U2 3 then U3 5
etc., to convert E to G, we could have started with any U, and taken
awvay any of the remaining U's, etc., to convert E to G. This would
have resulted in a G that looked different from the original G. They
are, in fact, equivalent, i.e., they have the same truth table for
all possible valuazs of the condition variables. If each of the B's
that contain I's are converted to their canonical formms, the two G's
will be found to be identical. This is because both G's were derived
on the basis of the definition of the inclusive "OR" operator.

For example: Let E = Yl + N2 + N3. If we use Yl, then Na, then
N3,

6, = (¥, ' I, IO, - n, - 13)@(111 Y, 0 N)



% - LYo N 1
@Yl R & 2.
®y, - ¥, Ny 3.
®1, - X, ¥, 4
®Nl - N, Y3 5,
OLAEE A N, 6.
OLAER AR T
If we use Na then N3 then YJ‘, ‘
G, =Y, "N, Y, L,
®N, - N, ¥, 5.
@y, - N, - N 3.
@Nl N, - Ny 6.
®y, - Y, - N, 1.
OL AR A N T.
@Yl ¥, - X, 2.
Notice that Gy and G2 contain the same B's. Hence Gl = Ga.
EXAMPLE OF CONVERSION
ME=Y1+N2+¢3+¢u+Y5,
then G=(Yl'12'IB'Ih'Is)G)(Tl'N2°I3'Iu'
(¥ - §, -8, + 3, + X)),

G=(Yl.12.13.1u.Is)e(Nl.Na.I3.Ih.Is)®

R AR U SR A}
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Example 1 is equivalent to Example 2

D,| D,| Dy| D, | ELS D, || D, | ELS
G| ¥|Y|[N|N | - G livfr ] -
G |lrfjz|n|Y | - C |y v | -
C3llY|T|T|T |~ C3 Y e | -
C, || ¥|T |z |T ]| - C, || ¥ e | -
LC5 NiI|I|Y ]| - ﬁ5 Ny | -

A jBafho| B2 |4y ?Az Ay

Example 1 Example 2

AT ARV AT,

CONSEQUENCES OF CONVERSION

Every OR-FUNCTION can be converted (is equivalent) to the exclu-
sive union of one or more independent AND-FUNCTIONS. The truth table
of this converted form is the same as the original function for all
possible values of the conditicn variables.

To illustrate, consider

E=10,
that converts to

¢=50 132® 33@ ——— @Bn_l®Bn.

If one or more of the requirements, i.e., either Y or N is satis-

+ U +U_ + w==+U _+U
2 n- n

3 1l

fied, V(E) = 1. For the same values of the conditiom variables,
there exists one, and only one, B for vhich V(B) = 1. [ This is true
because each B that contains more than one U (that is either Y or K)
_ contains one origimal U and the remaining U terms are negations of
the original U's. The non-regated U is different for each B. /

Since V(B) = 1, B(G) = 1.
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V(E) = O if, and only if, the negation of every U occurs. If
the negation of every U occurs V(G) = O, since each B contains one
non-negated U (that is either Y or N) and all U (that are either Y or
N) are contained in G. Further, V(G) = 0 only if V(B) = O for every
B. This can occur only if the negation of every U occurs.

E and G, therefore, have the same truth table for all possible
values of the condition variables.

Theorem VI'.* An OR-FUNCTION that contains ¢ in r{s < r < n)
positions is equivalent to (2" - 2) distinct pure AND-FUNCTIONS.

Proof of Theorem VI'.

1. Consider an OR-FUNCTION that contains ¢ in the last r
positions, and Zi (which represents Yi or N:I.) in the first
(n-r) positions:

E=zl+ Z2+---+ Zn_r+¢

2. E can be expanied to:

G=(z "I, ---" In)@(‘z1 T2yt Iytoee- In)@...

el ¥ T Yy

®(Zl nly e e 2y ey et Ipy T In)’

3. The first tem contains (n-1) I's. It is equivalent to

e pure AND-FUNCTIONS. The second term contains (n-2)

I's. It is equivalent to 2n—2 pure AND-FUNCTIONS. The

(n-r)th term contains r I's. It is equivalent to o pure

AND-FUNCTIONS.

1l 2

4, G is equivalent to 2F + 25 4 e 2n- + 2"'1 distinct

pure AND-FUNCTIONS.

#The reader will find Theorems VI', IV' and I' presented out of
sequence so that the OR-FUNCTION discussion can parallel the AND-

FUNCTION argument.
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5. G 1s equivalent to (2" - 2¥) distinct pure AND-FUNCTIONS.

6. This same reasoning could have been used if I appeared

in any r positions. The theorem i1s therefore proved.

An AND-FUNCTION and an OR-FUNCTION are dependent if there exists
at least one set of values of the conditlen variables such that both
assume a truth value l. Otherwise, they are independent. For
example, suppose

B=Yl . N2 . N,andE=N1+Y2+Y3.
Then there exists no S such that V(B) = 1 and V(E) = 1 since

E=N + Y, + Y= (T K, - §) =5
Therefore, B and E are independent.

Theorem IV'. Every OR-FUNCTION that comtaing ¢ in r positions
(0 s r <n) is dependent on (2“ - 2r) distinct pure AND-FUNCTIORS.

Proof of Theorem IV'.

1. Let E =9, +g,+ ===+ g +U_

4+ =o= .
1 * Un

where Pl’ P2, ---, P(en - ar) are distinct pure AND-
FUNCTIONS.

3. When V(Pl) =1, (E) =1
When V(Pz) =1, W(E) = 1

When V(Pan . 2r) =1, V(E) = 1.
L. Hence E 1s dependent upon 2° - 2¥ distinct pure AND-FUNCTIONS.
5. Although ¢ was in the first r positions, the logic of

this proof applies no matter in vwhat r positions they appear.
6. The theorem is therefore proved.
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Theorem I'. Two OR-FUNCTIONS are dependent if, in at least

one position, there exists a Y in both, or an N in both. Otherwise

they are independent.

Proof of Theoren I'.

1.

2.

Assume there exists a Y in a particular position of two

OR-FUNCTIONS, Cl and 02.

A transaction that satisfies the condition in that position

of cl also satisfies the cendition of 02.

V(Cl) =1, v(cz) = 1 for a particular transaction.
Hence cl and 02 are dependent,.

The same proof holds for an N in a particular position
of two OR-FUNCTIONS. Hence cl and 02 are dependent.

Assume there exists no position of C1 and 02 such that
both contain a Y or both contain an N, i.e., each position
either contains a Yand N, a ¢ and Y, ¢ and N, or ¢ and ¢.
Any transaction that has a condition vaiue in the position
vhere the ¢ appears contributes nothing to make the truth
value O or 1. Hence those positions that contain ¢ can be
ignored.

For those cases where one OR-FUNCTION contains a Y and

the other contains an N, both functions cannot have a

truth value 1 for any transaction. Hence C, and 02 are

1
independent and the theorem is proved.

Theorem I''. An AND-FUNCTION and an OR-FUNCTION are dependent

if, in at least one position, there exists a Y in both, or an N in

both, or there exists an I in the AND-FURCTION and a Y or N in the

OR-FUNCTION. Otherwise they are independent.
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Examples:
1. B=Y1-N2-I3~Ih
E=N +Y, + N3 t o,
B and E are independent.
2. B=Y1°N2-Y3~Nu
E=N1+N2+N3+Nu
B and E are dependent.
3. B=Y1-N2-I3-1\ILF
E=N

1
B and E are dependent.

+Y2+Y3+¢l|-

Proof of Theorem I''.

or

1.

where

and

where

or

let B=Y, *W_ W -

1 2 3
B"Il‘wz'w3'---
W1=Yi, Ni, or Ii
E=Y1+U2+U3+---

Ui = Yi, Ni’ or ¢i
V(B) = Lfor s=(1 a,

V(E) = L for s = (1 ay

a3); 2, = [v(wi) = 1]

8y --=).

Then B and E are dependent.

Similarly for B = Nl

= « W . " mm-
B=1I, + W, ¥,

E

n

N1 2

v(B)

lfors=(Os2

V(E)

N

1forS=(0a29.

2 * W3

‘W
n

. - e an . w
n

+ U . +U. + ===+ T
3 n

a3); a, - [V(Wi) = 1]

377

and B and E are dependent.
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Regardless where the pair of Y's or the pair of N's or the
I in the AND-FUNCTION and the Y or N in the OR-FUNCTION
appear, an S exists with the 1 or O in the corresponding
position such that V(B) = 1. Ard for that same S, V(E) = 1.
This proves the first part of the theorem.

Suppose there exists no pair of Y's or no pair of N's

or no I in the AND-FUNCTION with a Y or N in the corresponding

position of the OR-FUNCTION in any position of B and E.

In converting E to AND-FUNCTIONS, the ¢ contributes no

AND-FUNCTION so that those positions containing ¢'s can

be disregarded.

From those positions that contain Y or N, the conversion

will yield AND-FUNCTIONS each of which either

a. Contains st least one Y in the same position in which
B contains an N, or

b. Contains at least one N in the same position in which
B contains a Y.

Hence if V(B) = 1, V(E) = O since each of the AND-FUNCTIONS

of the converted form have a truth value O. .

Therefore B and E are independent Q.E.D.
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APPENDIX

SUMMARY OF THEOREMS FOR AND-FUNCTIONS AND OR-FUNCTIONS

We now list and extend previeus theorems to include OR-FUNCTIONS
as well as the AND-FUNCTIONS. A Table T comprises all AND-FUNCTIONS
and OR-FUNCTIONS.

Theorem I. Within Table T, two AND-FUNCTIONS are independent if,
in at least one position, one function contains Y and the other func~
tion contains N. Otherwise, they are dependent.

Theorem I'. Within Table T, two OR~-FUNCTIONS are dependent 1if,
in at least one position, both functions contain a Y, or both functions
contain an N. Otherwise, they are independent.

Theorem I''. Within Table T, an AND-FUNCTION and an OR-FUNCTION
are dependent 1f, in at least one position, beth functions contain a
Y, or both functlons contain an N, or the AND-FUNCTION contains an I,
and the OR~FUNCTION contains a Y or N. Otherwise, they are independent.

Theorem II. Within Table T, each pure AND-FUNCTION is indepen-
dent of every other pure AND-FUNCTION.

Corollary of Theorem II. Within Table T, there exists exactly

2" pure AND-FUNCTIONS. Each of the remaining [2(3")-2%] functions
is elther a mixed AND-FUNCTION or an OR-FUNCTION.

Theorem III. The form of & mixed AND-FUNCTION that contains I
in r positions (1 s r < n) can be expanded into a canonical form that
consists of 2° pure AND-FUNCTIONS each comnected by an exclusive "OR"
operator.

Corollary 1 of Theorem III. The canonical form of & mixed AND-

FUNCTION contains an even number of pure AND-FUNCTIONS.
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Corollary 2 of Theorem IJI. The canonical form of a mixed AND-

FUNCTION contains at least two pure AND-FUNCTIONS.

Theorem III'. An OR-FUNCTION that contains ¢ in r positions
(O < r < n) can be converted to (is equivalent) to (2n - 2r‘) distinct
pure AND-FUNCTIONS.

Theorem IV. Within Table T, every mixed AND-FUNCTION that con-
tains I in r positions (1 < r < n) is dependent on each of oF pure
AND~FUNCTIONS of T.

Corollary 1 of Theorem IV. Two mixed AND-FUNCTIONS are dependent

on each other if their canonical fomms each contain one or more pure
AND-FUNCTIONS that are common to both.

Corollary 2 of Theorem IV. A mixed AND-FUNCTION is dependent

on each of the pure AND-FUNCTIONS contained in its canonical form.

Corollary 3 of Theorem IV. If a pure AND-FUNCTION and a mixed

AND-FUNCTION are dependent, the pure AND-FUNCTION is contained in the
canonical form of the mixed AND-FUNCTIONS.

Corollary 4 of Theorem IV. If two mixed AND-FUNCTIONS are de-

pendent there exists at least one pure AND-FUNCTION in their canonical
forms that is common to both.

Theorem IV'. Within Table T, every OR-FUNCTION that contains @
in r positions (0 < r < n) is dependent on (2" - 2r) distinct pure
AND-FUNCTIONS.

Theorem V. Table T, based on n conditions, contains one, and
only one, set of 2" independent AND-FUNCTIONS; each of these is &

pure AND-FUNCTION.
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Theorem VI. A complex decision rule (a rule that contains mixed
AND-FUNCTIONS) that contains I in r positions (1 < r < n) of its AND-
FUNCTION is equivalent to 2° simple decisien rules (rules that contain
pure AND-FUNCTIONS).

Theorem VI'. A decision rule that contains an OR-FUNCTION with
¢ in r positions (0 s r < n) is equivalent to (2" - 2°) simple deci-

sion ru;ss.
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