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FOREWORD

This report summarizes research carried out under
contract AF 49(638)-544k at the Graduate School of Aerospace
Engineering, Cornell University, Ithaca, New York. This contract
has been monitored by the Mechanics Division of the Office of
8cientific Research, UBAF.

The work reported here was begun before the extended
visit of Professor D. A. Spence in 1959-60, was pursued under
his direction during that academic year and more recently has been
continuéd in his absence. As the reader will discover, the conclusions {
reached are in some degree critical of the solutions provided by
Prof. Spence for the integro-differential equations set up by the

author, John C. Erickson, Jr. 8ince Prof. Spence's return to

England, where he is employed at the Royal Alrcraft Establishment,
he has continued his interest in the investigation and sincere
thanke must go to him for his many comments.

This is the last Technical Note to be prepared under

the above-mentioned contract, which has now been replaced by a

grant.




ABSTRACT

A linearized model for the incampressible, inviscid,
irrotational, and unsteady flow about a thin airfoil with jet-flap
is formulated. The unsteady problelgs casidered are the transient
and oscillatory deflection of the Jet, plunging and pitching of
the airfoil, deflection of a "blown-flap," and also the penetration
of a sharp-edged gust. Justification is given for representation
of the Jjet, in the limit of high speed, small thickness, and constant
momentum-£lux strength, by a vortex sheet, across which there is a
pressure difference proportional to the momentum-flux strength and
inversely proportionel to the local radius of curvature of the Jet.
The dynemic and kinematic interaction of the main stream with the
vortex sheets representing the airfoil and Jet are shown to be
described by a coupled set of equations consisting of a third-~order
partial differential equation and a singuler integral equation,
along with appropriate boundary conditions. The properties of these
equations and their relationship to classical unsteady thin-airfoil
theory and steady Jjet-flap theory are discussed.

For small momentum-flux strength, and for either small-time
after initiation of transient mofion or high frequency of
oscillation, a transformation is made which leads to a simplified
form of the governing equations. Ali types of airfoll motion are
reduced in this approximation to a single set of equations, whose

solution is found in terms of the solution for jet deflection.

iv



Spence (1961B) attempted, by making & further approximation,
a solution for ssall-time after instantaneous jet deflection. This
solution is found to be incorrect, and it is shown that no solution
can be found in the sense of this further approximation. Spence's
related solution for high-frequency oscillatory Jet deflection is
also found to be incorrect, and a tentative, corrected solution is

proposed and discussed.



TAELE OF CONTENTS

INTRODUCTION

CHAPTER 1: DYNAMIC INTERACTION OF THE JET AND MAIN
STREAM

Assumptions

Pressure Difference across the Jet

Velocity Difference across the Jet in the Main
Stream

Velocity Induced in the Main Stream by the Jet
Limiting Case of Thin, High-8Speed Jet

- e
wmE W=

CHAPTER 2: DERIVATION OF THE BASIC EQUATIONS OF THE
LINEARIZED UNSTEADY PROBLEM

Linearization of the Problem

Rature of the Motion and its Time Dependence
Downwash Conditions on the Airfoll and Jet
Identification of the Airfoll-Quasi-~Steady Terms
Boundary Conditions at the Trailing Edge

Proof of Constancy of Circulation _
Complete Equations for the System: Some Properties
of Them

PEEPPD P
o FWwh =

CHAPTER 3: CALCULATION OF THE LIFT AND PITCHING-MCMENT
COEFFICIENTS

3.1 Calculation of the Iift Coefficient
3.2 Calculation of the Pitching-Mament Coefficient

CHAPTER 4: EQUATIONS FOR PARTICULAR PROBLEMS

k.1 Jet-Deflection Problem

4.2 Problem of Airfoil in Plunging Motion

4.3 Problem of Alrfoll in Pitching Motion

L.} Problem of Blown Flap in Unsteady Motion
k.5 Problem of Airfoil Entering Sharp-Edged Gust

CHAPTER 5: LIMITING THEORIES OF THE UNSTEADY JET-FLAP
THEORY

5.1 Reduction of the Equations to the Classical

Unsteady-Airfoil Theory

5.2 Properties of the Classical Transient Solutions

5.3 Propertlies of the Classical 8S8olutions for Steady-

gState Oscillations

5.4 Reduction of the Equations to the Steady Jet-
Flap Theory

13
|
17

76
81

8k
89

95

107
113



CHAPTER 6: “BOUMDARY LAYER" NATURE OF THE PROBLIM:
TRANSFORMATION OF THE EQUATIONS TO
“BOUNDARY-LAYER" COORDINATES. :

CHAPTER T: CRITIQUE OF ATTEMPTED SCLUTIONS IN
"BOUNDARY~LAYER" COORDINATES

T.1 Critique of Spence's Solution of the Jet-
Deflection Problem for Small Time

7.2 PFurther Critique of Small-Time Approach:
Jet=Deflection and Airfoil Motion Problems

T.3 High-Frequency Steady-state Osecillations:
Jet=-Deflection and Airfoll Motion Problems

CHAPTER 8: CONCLUSIONS
REFERENCES
APPENDIX A: EVALUATION OF CERTAIN INTEGRALS

120

143
160

173
184

187
191



INTRODUCTION

The jet-flap principle has been extensively studied, both
experimentally and theoretically, in recent years since the pioneer-
ing work of Davidson (1956), Stratford (1956), Malavard, Poisson-
Quinton and Jousserandot (i956), and Helmbold (1955). The principle
1s briefly this: a thin, high-speed jet of air is ejected at or
near the trailing edge of an airfoil. Besides the direct-reaction
1ift, which acts upon the internal Jet ducting, additional 1ift is
obtained due to the effect of the curved Jet on the airfoil external
pressure distribution. Furthermore, this modified extei'nal pressure
distribution accounts for recovery of very nearly the total thrust
of the Jjet, independent of Jet deflection angle, the so-called
“thrust hypothesis," cf. Yen (1960). In the jet-flap, then,
has been found a prdnising means oi‘ iniegrating the 1ift and
- propulsion of an airfoil. A thorough review of the Jjet-flap
literature has been given recently by Korbacher and Sridhar (1960).

This integration has genera.téd interest for application
not only to airplane wings for STOL performance, but also to alrfoil
applications, e.g., helicopter-rbtbr blades, cf. Richards and Jones
(1956) and Dorand (1959), Jjet-engine campressor blading, cf. Clark
and Oraway (1959), Brocher (1961) and Paulon (1959), and very
recently to hydrofoils, cf., Ho (1961).

In view of the proposed appiications of the Jet-flap,

1t would seem desirable to extend the analysis to unsteady problems.



For if the jet-flap is used as a controlling device, e.g., for
cyclic control of helicopter-rotor blades, or for aircraft in slow
flight, the 1lift response to time-dependent jet deflections is of
great importance. In flutter stability calculations, the lift and
pitching moments of an oscillating Jet-flapped airfoil are required.
The motivation for the study of unsteady Jet-flapped airfoil theory
therefore arises from the same considerations which motivated the
classical theory of unsteady airfoil motion.

To study the steady-state lifting properties of jet-flapped
airfoils, a model has besn formulated independently by Malavard (1957),
Helmbold (1955) and Spence (1956) - which will be referred to
subsequently as I. In this model, the non-homogeneous flow of the
Jet embedded in the main-stream is treated by representing the Jet
by a vortex sheet, across which there is a pressure difference
proportional to the jet momentum flux and inversely proportional
to the Jjet radius of curvature. This model has been shown by Spence
in I to be a good arproximation when the Jet velocity is very much
greater than the free-siream velocity, and when the Jet is sufficlently
thin. With this as the model for the jet, the problem cen be linearized
in typical thin-airfoil fashion. The linearized, two-dimensional
problem has been solved in & rheoelectric analogy by Malavard (1957),
numerically by Spence in I and Spence (1958), and finally
analytically by Spence (1961A) - to be referred to as II. The
corresponding problem for supercavitating hydrofoils has been
solved numerically, following I, by Ho (1961). Three-dimensional
theories have also béen put forth, but are beyond the scope of this

present research.
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In the present research, the unsteady two-dimensional
lifting problem of a Jet-flapped thin ﬁﬁdl in incompressible
flow is formulated as an extension of the Malavard-Helmbold-Spence
model. The problems considered are those where (i) the airfoil
is performing some time-dependent motion normel to a mean, steady
position, or ii) the jet-deflection angle is time-dependent.

%

The jet momentum flux at its exit from the airfoil is assumed |,
constant, independent of time. Furthermore, the Jet is assumed
to be fully developed in length prior to the onset of the unstéady
motion, i.e., the time-dependent motion is superimposed upon a
fully developed steady-state configuration.

In Chapter | the non-hamogeneous flow problem of a Jjet
and mainstream of different total pressures is treated to find
a model for the dynamical interaction of the jet and mainstream.
The 1imit of a very thin, very high speed, constant-momentum-flux jet
is taken, and the consequent representatiocn of the jet by a vortex
sheet is Justified. This vortex sheet is characterized, exactly
as in the steady problem, by its support of a pressure difference
proportional to the jet momentum flux and inversely proportional
to the instantaneous local radius of curvature of the jet.

The resultant flow problem is linearized by the
assumptions of classical thin-airfoii theory in Chapter 2, the
airfoll aiso being represented by a vortex sheet with the appropriate
dcwnwash boundary condition. Consideration of the pressure
difference across the vortex sheet representing the Jet leads
to a third-order partial differential equation relating the jet
vortex strength and the Jet ordinate, or alternately, the same-



order equation relating the jet vortex strength and the downwash

on the Jet. The integral equation for the downwash on the airfoil
and Jjet, calculated by the Biot-8avart Law, or alternately considered,
the mixed bcundary—va.lué problem in the main-stream velocity
perturbations, is solved, resulting in a singular integral
equation relating the jet vortex strength and the downwash on the
Jet. Boundary conditions on the jet ordinate and slope at the
trailing edge are specified. A proof due to Spence (1961B) - to
be referred to as III - is given that the potential difference
across the Jet, at a given instant of time after initiation of the
unsfeady motion, vanishes if & point sufficiently far downstream
is considered. This condition is shown to be stated alternately
in the form of the Wagner integral condition of the classical
theory of unsteady thin airfoils without Jets. With this conditioh
the formulation is completed and some properties of the equations
of the problem are discussed.

Expressions for the lift and pitching-moment coefficients
are derived in Chapter 3 by relating the pressure distribution on
the airfoll to the vortex distribution representing the Jjet. These
expressions are compared to their counterparts in the classical
unsteady thin-airfoil theory.

Detailed equations for the application of this model to
five fundamental problems of flat-plate airfoils are given in
Chapter 4, and are applicable for time-dependence of both transient
and steady-state oscillatory nature. These problems are:

i) An airfoil aligned with the free-stream direction and
having & time-dependent Jet deflection angle at the trailing edge,

the "jet-deflection" or Bingular-blowing" problem.




ii) An airfoll performing a purely plunging motion sbout
a mean position aligned with the free stream, the jet always re-
maining tangential to the trailing edge.

iii) An airfoil performing a pitching motion about socme
axis in its plane, the Jet being always tangential to the trailing
edge.

iv) An airfoil having time-dependent deflection of a
mechanical flap, over which a jet is blown from the hinge point and
leaves tangentially at the trailing edge, the so-called
“blown flap" or "jet-augmented flap" problem. |

v) Entrance of the airfoll, previously aligned with the
free stream, into a sharp-edged gust of constant upwash amplitude.
The Jjet remsins tangential at the trailing edge, and the relative
speed between the airfoil and gust is arbitrary, but constant.
These problems, being linear, may be superimposed in any desired
fashion.

The reduction of the equations of Chapters 3 and 4 to the
case of airfoils without Jets is discussed in Chapter 5. The
classical unsteady theory of thin-airfoils is then outiined,
bringing out certain features of the flow pattern, e.g., the
downwash distribution behind the airfoil, which have particular
impqrtaﬁce in understanding the extension of this theory to the
Jet-flap case. The steady limit of the equations is also found,
and Spence's steady-state solutions of I, (1958), and II discussed.

In Chapter 6, the “boundary-layer" nature of the equations
for small values of the jet momentum and small times after -
initiation of transient motion or high-frequency steady-state

oscillations are investigated and the equations are given in terms



of new "boundary-leyer" coordinates. All the alrfoil motion
problems - ii) to v) above - are shown to reduce to the same
equationsfor a first approximation in these coordinates. The
relation of the first approximation solution of this airfoil
motion problem to that of the jet-deflection problem is shown.

The further small-time, or high-frequency, approximation
of neglecting %- derivatives with respect to + - derivatives
is then examined closely in Cheapter 7. Errors made in IJI in the
solution of the Jet-deflection problem in terms of the Jet ordinate
and Jet vortex distribution for small times are poiuted out.
Attempts to correct these errors by considering the downwash on the
Jet and the Jet vortex distribution as unknowns and a similar
approach to the problem of airfoil motion demonstrate the fallure
of this approxdmation to give valid solutions. However, for
high-frequency steady-state oscillations, tentative solutions are
proposed for both the jet-deflection and airfoil-motion problems
to replace the erroneous ones given in III.

Chapter 8 briefly gives same conclusions of this research
and points out some areas of, and epproaches to, the problem of the
unsteady motion of jet-flapped airfolils where further work is |

necessary. These are felt worthy of further research.



CHAPTER | - DYNAMIC INTERACTION OF THE JET AND MAIN STREAM

1.1 _Assumptions

For the purposes of this section, no assumptions
about the airfoil need be made, except that it has a jet emerging
at the tralling edge, and that it has some means of causing
unsteady motion of the jet. This means m:*Lght be its own motion
or the motion of the jet ducting within the airfoil.

The Jet is assumed to be fully developed in length,

i.e., it extends infinitely far downstream at any instant its
motion is being considered. The momentum flux of the Jet at the
airfoil trailing edge is taken constant in time. The flow in the
Jet is assumed inviscid, incompressible and irrotational.

It is also assumed that the local velocity, “V° , of
the jJet is very much greater than the local velocity, W , of
the main stream in the vicinity of the jet. This velocity, W ,
is camposed of the undisturbed free-stream velocity at infinity
upstrean, Uo » plus perturbations due to the interaction between
the two flows, including the velocity of downward translation of
the jet boundaries. For the practical jet-flap applications which
have been proposed, v >> Ue , 80 the perturbations,
in particular those normal to Vo > 1.e., due to the downward
translétion of the Jjet boundaries, must be very small compared
to Y . For AU >2 W , it follows that the instantaneous

streamlines of the flow in the Jet at the boundaries between the Jet



and main stream are substantially parallel to the instantaneous
shape of these boundaries. . That is, with reference to Figure 1,
the jet velocities, A and %Wa , at the boundaries are assumed
to be parallel to the boundaries. Furthermore, if the Jjet is
assumed thin, significant mean properties of the flow variables

at any position along the Jjet may be defined, and the streamlines
of the jet flow, in addition to being parallel to the boundaries

at the boundaries, will be all ba.rallel to each other, hence
concentric at any position along the jet. This property leads to
a great simplification in the :quations goverpning the problem, as
will be seen in the next section. To clarify this point, comsider
the excluded case, W =0(n) , due, say, to large downward
velocities of the jet boundaries. The instantaneous streamline
pattern, even for a thin Jet, would intersect the jJet boundaries at

an appreciable angle, as shown below. Such a geometry must be
excluded in order to formulate \Q
a tractable model.

The restriction, U >> WU , will be assumed
to be met in all types of airfoil and jet motions to be considered
in Section 2.2. 1In order to actually attempt solutions of these
problems in Chapter 7, discontinuous motions of the airfoil and
Jet, as represented by the unit-step-function (equations 2-17),
will be considered. These motions will always be treated in the

sense that they are mathematical idealizations of continuous

motions with Aar>> W
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The main-stream flow is also assumed inviscid, incompressidble,
and irrotational. The total pressure in the jet is, for V" >> W,
greater than that in the main stream. This ‘a.nd. the continuity of
static pressure i.cross each boundary between the flows require,
in the absence ¢f viscous mixing (since both flows are assumed
inviscid), a vortex sheet at each boundary to satisfy the velocity
discontinuity there.

In the main stream, the integrated form of Euler's equation

is the so-called "unsteady Bernoulli equation,"” which is, here,
2 2
T ad _
p+ =+ poSg = ot f2f,
(1-1)

where b s <b , and W  are the local static pressure,
velocity potential and velocity, respectively; (’o is the (constant)
density. Po and U, are the static pressure and velocity,
evaluated at the undisturbed conditions at infinity, hence
independent of time.

In the jJet, similarly,

P e o3l = b BE,

(i-2)
where P , ¢;- , and A~ are as above; e;- is the (constant)
density, in general different from P. . ’:o and Vo are the
static pressure and velocity evaluated at the undisturbed conditions

at infinity downstream,* also independent of time. The total

# See Section 2.6 for remarks about this assumption of undisturbed
conditions in the Jet at infinity downstream.



1B
pressures in the two flows, i.e., the right-hand sides of (1-1)
and (1-2), are in general different.
‘The condition of irrotationality in the jet can be
written
(1-3)
wvhere Jy  is the radius of curvature of the streamlines. This

immediately integrates to

Yo = constant,

1.2 Pressure Difference Across the Jet

Consider an incremental element of jet as in Figure 1,
described by its position, § » downstream from the trailing
edge at an instant of time; ¢ . The subséripta ) and 2
refer to the upper and lower boundaries, respectively, of the Jet.
Having assumed concentric streamlines within the Jet, as discussed
in the preceding sectlion, the element may be described further by
a radius of curvature, R(Syt) , to the centerline of the jJet, a
thickness, S(S,*) , such that Ris,t) ¥ 3‘—(§'ﬂ are the
upper and lower boundaries, respectively, and an incremental angle,

AB(s, L) , (positive counter-clockwise) subtended by the

jet element. The pressure difference across the Jet is, from (1-2),
- At k) -5 64 4 &4
b= fuie) = -y ACBABI o 20 Syt
= -Py %ﬂ%ﬁﬁ.ﬂ [witst) - vaisi)]

—ps 1 [duts6)- dnisl],
(1-5)
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By the arguments of Section 1.1, the radii of curvature
are normal to the streamlines inside the Jet, so they are equi-

potentials of the Jet flow. Therefore,

Py ls4) ~ P ls$) = 0,
(1-6)
The mean velocity of the jet may be defined as
Vise) = 2 IS.é)2+ nby
(-7

The irrotational condition within the Jet;, (1-4), becomes

i (s, &) [R[s,e)- §§£4_=) = 'U;ls,e)[Rls,e) + §_’§él_],

(1-8)
and with (1-7), solving (1-8) for the velocity difference,
M5t - Vals ¢) , glves
W lsa) - valse) = YEALSEH
T (s, 2 RS .
(1-9)

Substituﬁng (1-6), (1-7), and (1-9) into (1-5) gives

the pressure difference across the jet as

_ gv‘ls',e) §is,¢)
Ris,¢)

= . _Jist)
'R(S,ﬁ) )

pr (s,6) - pols, ) =

(1-10)
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vhere the Jjet momentum flux, Jis :é) » 18 defined as

Jis,& = p3Vis) §is,t)
(1-11)

Therefore it has been found that the pressure difference
across the Jet is, as in Spence's steady formulatiou of I, proportional
to the Jjet momentum flux and inversely proportional to the radius
of curvature of the Jjet. BHBere the pressure difference is a function
of iime as well as position along the jet. The essential simplification
cf the vanishing of the velocity potential difference across the Jet
has resulted from the assumption of Section 1.1 that N S>> WU

1.3 Veloclity D.tffeience Across the Jet in the Main Stream.

By treating the flow in the main stream and relating
it to that in the Jet by the condition of constant static pressure
across the boundaries, the mainwstreem velocity difference across
the jet can he found. This velocity difference is required to
ac;etemine the strength of the vortex distribution necessary to
represent the effects of the jet on the main stream.

Considering again the jet element of Figure 1, equation

(1-1) evaluated in the main stream across the jet is

plst) - pelst) = - Leb-lh4) -f.{gg,ésﬁ) i} a%,ls.e)}

= - ?o u-‘___q_“’_)_zi’!l_“.ﬂ [U.ols.ﬂ "Uuls:a]
-t Z[ds0- bty

(1-12)



1
The mean velocity of the main stream across the jet

may be defined as

Uls,d) = Wisd) +Uaist)
2

(1-13)
Substituting (1-13) into (1-12) and solving for
the velocity difference, (L(Sd)- La(Sd) , glves

i < _ plsitd-hatsd)
Uilsd)- alst) = = Lootmn B2 - ey Be [dsi)- At

(1-14)
S8ince the static pressure is continuous across the
boundaries between the flows, the pressure difference found
considering the jet alone, (1-10),may be substituted into (1-14),
giving
e%i:e)) RED) - T 3t [0 - dusal]

(1-15)

W is)- Uylst) =

This result differs significantly from the steady case
of I by the time derivative of the velocity-potential difference.

1.4  Velocity Induced in the Main Stream by the Jet

By considering the elemental vortices comprising the jet
boundaries, the velocity induced in the main stream by the jet
can be calculated using the Biot-Savart Law. The strength of these
vartkes is related to the main-stream velocity at the jet boundaries.
For convenience, the complex velocity at a field point, 3 ’
in the complex plane, due to the element of jet at § will

be treated. The coordinates are as follows:
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AV{},{ iS)
ANGL)

¢ ¥

§/2

%AB (s,¢)

The velocity induced by the pair of elemental vortices, d[\(st)
and  dliist) , 18

n Rt
dvigt;s)= zw{(sé-'s')'lgzé}ﬂ) tf%ﬁ‘%?}

Assuming 3 >>§ , since the jet is thin,

dwiz i) = m{ ;lssé [| n% + o‘q_ﬂ,)]
dl lsé\[ -3 _1%4,0(‘;_”)]}

z[dr'lsehs dfllse)] _[dnes -dnsalsss | of 5 J
2w (§-s) Fwiz-5) G=»|

(1-16)

(1-17)
This may be recognized as the increment of velocity induced

by a vortex of strength

dris )= dlfs ) +dRLis8)

(1-18)

and a doublet, directed dowstream, of strength
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_[aneso- dise)]
' 2

dpisd) = YO

(1-19)
both of which lie on the Jet center line, plus higher-order

singularities vhose strergths are higher-order in §/5.¢) .

Define a vortex strength per urﬁt length along the
center line,  Xz(s,¢) ,. and a doublet strength per unit length
along the center line, /U-s is,&) » by

dPise) = ¥alsb) Risk) ABIs,)
d /13,&): /uals,t)kls,f) Abs,¢) ,

(1-20)
The strengths of the elemental vortices d[i(s.¢)
and dliist) may be written in terms of the velocity they
induce in the main stream at the boundaries, namely,
dnise) = Wi [Ris) = Q/é_ﬁ)]“’“&)
dRLls )= - Uals ) [REs.6) + B8] Bois )
(1-21)

Rewriting (1-18) and (1-19) using (1-20) and (1-21) gives

¥ (5.0) RIsV8605.0 = WisefRis - E58 a6 4) - uyss o[RS + 64 possy)

and

Jalsi) Risg) A0sH) = -{u.:s.a[w,e-&,:_.“’]amﬂ - u;(s.e)ﬁw,a +§f¥’]me}£§£)’

or
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$,¢)
i) =[5k - taise)] - [Lulsltuaisd)] S15E)

and
£ . §'6s4)
Jatsts - [&ug&&]sa,a + [Wis &) -t ls.8) 2Te)
(1-22)
Bubstituting (1-13) and (1-15) into (1-22) gives
Jist) ] - o
Y0585 S - Um Selb -t - WBEe )
and p

2 2
potstr= -Usasist) + SEORSE - Him Bl 8-954]

(1-23)
The influence of the jet on the main stream can thus

be calculated by replacing the Jjet by vortex and doublet distributions
along the jet center line, their strengths being given by (1-23).
In‘ order to make precise the neglect of the higher-order singularities
in (1-17), and to simplify the strengths of the singularities in
(1-23), the limiting case of a thin, high-speed jet will be treated
in the next section.

1.5 Limiting Case of Thin, High-Speed Jet
By order of magnitude considerations, the limiting case

‘ of a thin, high-speed jet of constant momentum flux, Jo y will
be deduced.
The (constant) mass flux of the incompressible jet is
defined as
m = Py Visd) Sis;t) ,

(1-24)



18
80 the jet momentum flux may be written using (1-11) and (1-24) as

Jist) = mVist) |

(1-25)
Writing the subscript { ), to refer to conditions at
infinity downstream where all the quantities are essumed constant
in time, (1-25) may be written between same jet position, § ’
and infinity as

3'1350 s+ Vist) -V%

A Vist)
| + Ve ,

(1-26)

vhere  AVist) = Vist) -V, , and similarly AUIs4) = UIS4) -V,
are the perturbations of UISt) and V/(S,t) from the conditions
at infinity. It is important to note here that these perturbations
are not necessaril; small for the following analysis. They are
written this way for convenience.

Equations (1-1) and (1-2) may be written, between an
arbitrary field point in or near the Jjet and the quiescent conditions

_‘at infinity, as
ptst) = po +.Q-[v‘1s,¢)..\/.’f, + Ps Es‘fg. = C

bisg)=pe + G [Ue01- U] + po 3%

o

(1-27)
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For an order-ot-mgnitu& analysis it is sufficient to
consider the pressure,  p(s,¢) , in each of these equations
as the same, say an average pressure in the neighborhood of the
Jet. Hliminating  p/s,b\ - /a. from this peir of equations
and solving for A V/(s.t) , glves

) 4]
20, +Avise)] AULs;¢) ﬁ: - #
Bviss) = '%; 2Ve +XVES,E1 +z$-, 2V tEVAD 2 ot EVad) .

| (1-28)
To esiimate the order of the time derivatives of the
velocity potentials, write

IPisy A Bdse
? “RA€ s

and

¥t 'Le .

In the main stream, a characteristic time-dependent A Pis.t)
would be the product of the characteristic perturbation speed A U(S¢)
and a characteristic length, say the chord;, & . Likewise a
characteristic time, A& , would be the chord, C , divided by

the free-stream speed, Ue . Thus,

58 ¢ QUGsH) A
(1-29)

In the jet, a similar analysis would use the Jet speeds,
AVist) and  VIS4) , and the characteristic Jet dimensionm,
Sist) . Thus, |
-g_%_‘_@a = SEAMBE _y, Fvis,t)

(1-30)



Substituting (1-29) and (1-30) into (1-28) gives

Bvis. = f Ueulsd [i+o(3)+ 0(%'\.')]
3y ot ofR] - WBYER ol

(1-31)
Assuning that fe/p; 18 O(l) , and that the terms
in brackets are of most O(]) , (1-31) becomes

AVist) ~ !5. AUlst)
9

or
Evisd ., (VoY BUsH)
VO (79-) o .

Since in the mainstream AUt isor O { Uo) ,*

AVist =0 __U_o_"
ve (v,\) ’ (1-32)

* In the case of a jet or airfoil deflection having a unit-step-

‘function time dependence, aﬁgg’—@ , and consequently Auis,+t) s

would have in the first instant the infinity of a Dirac delta function,

in clear violation of the assumption AU (S#)= O( V). However, as

discussed in Section 1-1, unit-step runctiona' are considered because

of their mathematical convenience, and may be considered as the generali-

zation of a physically realistic deflection of finite rate, where
Auls,H = OfU,) . This 1s the same consideration made in

" classical linearized unsteady airfoil theory, where the infinities

introduced by the derivatives of the step function clearly violate

the émall-pe'fturbation assumption, unless understood in the above sense.
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Substituting (1-32) into (1-26) gives, finally,

258 < 1+ ofs]

(1.33)
In most practical Jet-flap applications, the jet speed,
Vo , 18 very much greater than the free-gtream speed, Ue or
Vo
o =o(1),
Consider now the limit as Sist) vanishes, such that the
jet momentum flux remains finite. In this limit  V(S,&) must

become infinite although the flow is still considered incompressible.

In detail, from (1-33),

Tist)e To = constaut =7

(1.34)
and as §(5,&) vanishes,
Vis.e) ~ [srsei] ™
and y
m ~[Sts0)]
(1.35)

The important relations from the earlier analysis may be
written in terms of this approximation, treating §/s, &)
as the small parameter tending to zero. Equaticns (1-10), (1-15),

and (1-23) become
J
P, ls.t) - b;./s,'&) T o= W) R
(1-36)
Wilst)-Uslst) = e-‘g‘—m;,,m) - U",;;) g;[ﬂ IS,t)-¢.l-f‘,é):] R

(1-37)



- 3 |
Yy (s:4) = Q.UB.*\”‘"‘) e ua,&\%‘DcB,é\— ‘[g'é)] +°(:),
(1-38)

/l‘-:ls',&) = O(S),

(1-39)

The jet vortex strength is zeroeth order in the jet thickness,

§(s,t) , and becames, to this order, equal to the main-stream
velocity difference across the jet. The doublet strength is of first
order in Jet thickness and will thus be:neglected in the 1lifting
problem. Therefore the lifting problem is independent of thickness
in this approximation. Furthermore, the neglect of the higher-order
singularities in (1-17)>15 Justified by this limiting analysis, as
they are higher-order in the jet thickness.

Therefore, the non-hamogeneous flow problem of a thin,
high-speed jet embedded in the main stream has been approximated,
representing the Jet by a vortex distribution slong the jet center
line. This vortex distribution, whose strengtia is given by
(1-38), interacts dynamically with the main stream in the same
manner as the jet, in the limit of a vanishingly thin, constant-

momentum-flux Jjet.



CHAPTER 2 - DERIVATION OF THE BASIC EQUATIONS OF THE LINEARIZED UNSTEADY
PROBLEM :

2.1 Linearization of the Problem

No treatment of the airfo:;l was required in Chapter 1,
except indica.tiom that it was the source of the jet and the cause
of its unsteady motion. In principle, then, a theory with no
restrictions on the airfoll o!r its motion could be developed using
the model of Chapter 1 as a representation of a thin, high-speed Jet-
flap; 80 long as none of the assumptions of Section 1.1 were viclated.
Practically, it is desirable to make the thin-airfoil assumptions
and linearize the problem.

Assume that the airfoil is thin and symmetrical about
a mean camber line, and has chord, C . Choose %~ and g'
coordinates, so that 4« is the free~-stream direction and 8 is
positive downwards, for convenience. If  Y/%,¢) is the ordinate
of the mean camber line for oL X< C » and is the
ordinate of the jet center line for C< X koo , andif $/z,¢) ,

o0cr<ce , 18 the thickness of the airfoil (the jet having

been assumed of zero thickness in Chapter 1), the problem may be

Y t) o8 (e t) DY/ t)
5% ' oK% B v

and 3—%{%—&) to be small quantities with respect to unity. The

velocities induced due to these quantities are then small compared

linearized by assuming
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to the free-stream velocity at infinity, U, ,* and the squares
of these quantities may be neglected. c«:nlistent'with this, the

alrfoll
U.. T —— (-
© \lY\ﬂvﬁ) / /‘\?
b \
%/ N
wr b &)
4

and jet are considered to lie along the X - axis, regardless
of their actual shape, and the unsteady kinematic boundary condition
that they be instantaneously streamlipes 1s to be satisfied on the
X- axis, too.
As is well nown for linearized flow, ¢f.. Robinson and
Laurmann (1956), pps. 129 and 170, the thickness and lifting problems
decouple and may be considered separately. For the lifting
problem, the airfoil may be represented by a vortex distribution, as
the jet has been. The above kinematic boundary condition that the
airfoll and je surfaces be streamlines is satisfied if tbe downwash,
W, +) » 1s given by the linearized convective derivative of the
airfoll or jet ordinate,

wing) = LD +0, YD » %ﬂ , 0cr<m,

(2-1)
s given in Robinscn and Lsurmenn (1956), ». 3.

#* Here, as in Section 1.2, infinities implied by the step-functionm
time variation must be considered as the limit of finite-rate
processes which 4o not vioclate the mmall-perturbetion approximation.
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Copsistent with the linearization, the local mean main-stream
speed scross the Jet, (IS#t) , glven by (1-13), may be taken to
ve Uo everyvhere. The %4~ and 3, - components of the
local stream velocity may be written as Up + Wix,é) and
wHix, &) respectively, where (WL,  are to denote
the velocity perturbations for the remainder of this report. Ro
coxﬁusion with the:[.r previous usage éhoixld. oceur.
Define A of a quantity to mean the difference in
its value Just below the %~ axis from its value Just above, i.e.,
ACYSC =0 L= Myen=( )3...- e
The coordinate & , denoting distance along the jet fram the
trailing edge linearizes to 7 ~-C .
The curvature of the jet is given geametrically by

Rtsa [’*(“;TB) :;*Wu,\ , CEr<o,

vhich is, linearized,

| Y
RED " T Tk s CEX=@,

(2-3)

If the jet-momentum-flux coefficient is defined as

P
T ® Tauc,
(2-h)
the pressure difference across the Jet, (1-36), and the jet vortex

strength, (1-38), may be written in linearized form as



Aplrt) = = $PUICG .)Y;“ Cexe0o,

(2-5)

Yl d) = -4 UGy ?—%&) ! DMI”’S , (Lxco,

(2-6)
vhere the subscript, ( \;- on the vortex strength has been
omitted for simplieity.
From the definition of the velocity potential, and the
strength of the vortex distribution in terms of the free-stream

velocity perturbation,

2 Wir, 04 &) = ¥/1b) = ?—%‘2,;-_'-"}-‘ , 0L¥co,

(2-7)
The Jjet vortex strength, (2-6), written using (2-7), gives an

equation in the potential difference across the jet, namely
DM/"Q = 2 trt) +Uo Qﬂﬂ:ﬂ 7/1—.6') cax-coo

(2-8)
Teking the linearized convective derivative of this and using (2-1)

glves

“AblLt) . ) > 1 S*ADILD rer D Wit
L%}'l—t—%#+2%#}¥+% s L LD

Cexedo,

(2-9)



Differentiating (2-8) vith respect to %  and using (2-7)
gives

)
DY/l 3&'/19_,.”,1!51%) e-dUica -3-5!’-{}9 ,CL%20,

(2-10)
Fram (2-9) or (2-10), it also follows that

___"b.-b"g;k LD 4 20, BHD 4 07 Bhhap < - Lt Ty |
: Cep<oo,
(2-11)
The unsteady Bernoulli equation, (1-1), evaluated across
the 4 - axis is, with (2-T),

aAglw + Up 24420) _ _ Ae‘lx.-k) , oaxcm,

(2-12)
it Aplr s given by the analysis of the jet,(2-5), is
substituted 'curecuy into (2-12), (2-8) seems to follow immediately,

Just fram the linearization of the problem. The analysis of Sections
1.3 to'1.5 18 necessary, however, to justify the representation»or the
Jet by a vortex sheet as being a valid approximation to the jet flow,
i.e., that the jet thickness is really a higher-order effect for thin,
high-speed Jets. '

2.2 Nature of the Motion and its Time Dependence

The unsteady motions to be treated are of the following
types: '
i) The airfoil is fixed and the jet deflection angle,
T(t) , relative to the slope of the airfodl st the tralling



edge varies time-dependently. This motion is given by
TiL)= T, Flt) .
(2-13)
vhere T, is the emall amplitude of the deflection. Each
point on the jet boundary moves normally to the K- axis only.
ii) The eirfoil is performing some small-smplitude
time~dependent motion sbout a mean position, e.g., plunging,
pitching, or rotation of & mechanical flap with the Jjet deflection
angle at the trailing edge fixed relative to the airfeil. Such

motion can be characterized by

Y = Yi¥) Frd ,0ercc,

(2-14)
Each point on the airfoil and jet boundary moves normally to the
A~ axis.
ii1) The airfoil and jet deflection angle at the trailing
edge remain fixed and a sharp-edged gust pssses over the airfoil
and jet fram the leading edge. Such a gust can be represented by the

downwash distribution

Wi = Welx) F(t- ),

(2-15)
vhere  Wylx) is the emall amplitude and VUs/)\  is the
speed relative to the uirfoll. Again the jet boundary moves normally
to fne - axis only. Despite the vortex sheet required at the
edge of the gust, this problem has been treated in classical unstesdy-
airfoil theory as if it were a potentisl flow with an imposed, WIx¢t) ,
cf. von Kirmén and Sears (1938) and Miles (1956).
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me YV , Wyly) , ana F(t-4E) functions
are assumed to be of a form such that in any case the dovnwash on
the airfoil may be represented by & power series in % . Such
& power series is equivalent to the familiar Glauert Series for
the downwash on the airfoil, Glauert (1943), hence there is little
loss of generality in the choice of functions which can be considered.
Two types of time dependence, Fit) , are of
particular interest. First are the transient problems where

Fle = £l0 1),

(2-16) 4
The function £ld is any non-dimensional function of time,
and 48 is the unit-step function, defined by

460 { Lo
(2-17)

The fundamental transient problem is that of response to the unit-
step function, i.e., &£M4)=| , since the respanse to all
other §£(6) may be found from it by Duhamel superposition. Second

are the cases of steady-state oscillations, where

Fi) = e"‘“ , Mg o,
(2-18)
The motion is assumed to have begun at tz-00 , with Riw)
being the circular frequency of the oscillations, and Q(w) being
the damping factor. For Q(w) <0 , the oscillations diverge
exponentially with time, but began with zero amplitude at ¢t=-e |
and are thus meaningful for + <% ., The Slwi>o , i.e.,



exponentially damped, oscillations must be excluded simce they
arise from the physically unrealistic initial conditiom of
infinite amplitude at £ =-o0 . Exponentially damped
oscillations beginning at finite smplitude at t+*0 could be
treated as a transient problem, with §(¢)+ etw' Y(w) >0
For a consideration of these damping considerations in classical
unsteady-airfoll theory, see the paper by Luke and Dengler
(1951) and the subsequent notes by Van de Vooren (1952), Laitone
(1952), W. P. Jones (1952) and Dengler, Goland and Luke (1952)
2. 3 Downwash Conditions on the Airfoil and Jet

The downwash due to the vortex distributions representing
both the airfoll and Jet may be found by using the Biot-Savart Law
for the velocity induced by an incremental vortex element, and

integrating over the distributions, giving

winps Y . L {1:,93 JMW oexce,

[}

(2-19)
This is, in fact, two equations, one for [ N XY S vhere the
first integral exists in the sease of Cauchy's Principal Value, the
second for (<X <00 vhere the second integral exists in the
same sense. Whereae (2-8) to (2-11) express the dynamic interaction
of the jet and main stream, (2-19) expresses a kinematic interaction.

The two equations (2-19) and equation (2-11) are three

equations in the four functions ~MJ’I‘IA:) sy O < xrec ;
w i, ) , Cexeom ; Xl ,t) )
ocncce ; SIL, ¢) ’ Cexcoo .

Alternately, combinations of Yir,t) and Yiad) , wiyt)
and Adlrd) oo Y¢) and  Ad/x+t)  mignt



31
be considered, also giving three equations in four unknown functioms.
In the cases of preactical interest, the airfoil shape, YIZ,E) ,o&uc
and from (2-1) then, the downwesh, W/xt), ocxec , 18 prescribed,
and along with the boundary conditions to be discussed in Sections
2.5 and 2.6, the equations (2-19) and (2-11) are then three equations
in the remaining three unknown functions.

The downwash equatiors (2-19) may be inverted, using the
prescribed airfoil shape, y{'l-,é\ ,04rec , in a way to
uathematically decouple the airfoll vortex distributiem, Yir,8) ,

OLxeccC » from the functions describing the jet. That is,
a form of the equations may be found where the jet ordinate or
downwesh and vortex distribution or potential difference may be
solved for independently of the airfoil vortex distribution. Upon
solving for the former, the latter may then be eva;uated.

There are several alternate methods of inverting (2-19),
all of which have a similar mathematical basis, although the
individual techniques are different. Spence used a "null-transform"
technique ((cf. Section D12 of Heaslet and Lomax (195%) ) in I.

In II he used a generalization of a result first given by Carleman
(1922) tor the inversion of & certain singular integral equation.
For the present rz » the technique put forth by Cheng and Rott
(1954) is used. This is based on the solution of the equivalent
mixed boundary-value problem in the velocity perturbations.

The downwash equations (2-19) will not be considered
directly, but the corresponding mixed boundary-value problem in the
complex velocity functiom, VI(§4)=U(gt) +iW/E.t), 15 treated.

In this form, boundary values are given in terms of W (%,0+,¢)
and  W/n,o+t) o the‘ alternate segments of the



A - axis corresponding to the airfoil, Jjet and the region
upstream of the leading edge. From the strength of the vortex
distribution representing the jet, (2-7), and fram the downwash

required on the airfoil, the boundary-velue problem here is as follows:

Wrott)mo  wiuonts Jgkt) Uin.oeb)e SR

o c i
Wir,ort) = O , ~w<x<Lo
wiros &) = DY ,0<xecC
Wiz, 04%) = % ¥lx,t), Coxeno ,

(2-20)
vhere Wiy.b)= P%’E@,oav.cc is known, but ¥lv,&) , CLYLOO
is still unknown and leads to another integral equation after
inversion.

To solve this problem, the corresponding homogeneous
solution in the complex velocity is found, i.e., for the problem
where
Unlr,ort) = 0 , ~®0 cxc0
WK lrort)= 0, ©&r<sc
Un [Lohé) =0, C&rcw
(2-21)

This homogeneous solution, H.la,k) s BRY, is

constructed by considering the behavior required of the inhomogeneous
solution at the edge points, i.e., the leading and trailing edges,

A=0 and ALel . Here the usual ﬂ-"/"
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singularity is permitted at the leading edge 72L=O  , while
at *r=aC an ('r—-c}"" singularity is not permitted
since the jet emerges her:, preventing flow around the trailing
edge.
In the cln.ssiclul non~Jjet-flap case, flow around the
trailing edge is excluded by the Kutta condition. With the jet-flap
a stronger condition is imposed, since the angle of deflection of
the Jjet relative to the slop_e of the airfoll at the trailing edge,
TlL) » may also be prescribed. Anticipating l‘n.ter’ results, it
is necessary to remark that exclusirn of the 1/square-root singularity
does not prevent a logarithmic singularity at the trailing edge.
Such a singularity is veaker and represents not £low completely
around the tralling edge, but on]y deflection of the flow by same
sngle. This corresponds to & discon@inuity in the downwash at the
trailing edge. In a similar fashion, logarithmic singularities on
the airfoil surface are permitted and will, in fact, result from
prescribed discontinuities in the downwash. The classical exsmple
of such & singularity is that at the kink of a bent flat plate,
first pointed out by Glauert (1927).- cf. also Spence (1958) -
in his representation of an airfoil with flap.
To make tﬁe condition at the tralling edge more precise,
write .
Yim | 'r_-olhulz,of,th i&g c"lrf—’*'&l‘he) =-z" Jin lp-c/™ 2080 ,
wee we ¥ (2-22)
Since no singularities stronger than 1/square root are permitted
in the velocity on the airfoil, the circulation around the airfoil,
1.e., l#‘ AdIL,4) , 18 regular, and since its time
derivative mst be also,




% 3A¢I$ ]‘ c;n“f.,

Y-

(2-23)
Prom (2-22) and (2-23), therefore,
- éw Kt dadint)|
&‘hcl {—3{— tUs =5 } o,
(2-24)
and using (2-8), therefore
,&'u ”L—cll/‘ M" =0
r>C >t y
(2-25)
The hamogeneous solution is, then, from Cheng and
Rott (1954),
. [x-c\k
Holz,t) * z(}__C)
7.
(2-26)

The complex velocity function, F [},é) , say, which is
the quotient of the inhamogeneous and hamogeneous solutions,

iz, &)

Fl&"") = 'I-T.%,_t)
(2-27)

has the property that its :unslhn.rx part, i.e., its downwash, is
known everywhere along the %~ axis. Thus the problem of
finding F [J,é\ is the so-called direct, or thickness problem
of thin-airfoil theory, whose solution can be written down immediately
by coasidering the velocity induced by & source distributicn whose
strength is twice the dovnwash. This technique will become clearer

upon working through the problem.
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For reference, write out the camplex velocity
camponents of the three functions,

Flz,4) = pryd) +igirg8) 7
Vv (g, t)= U-l‘l,s.*) +iwir, y,t)

4

Holg,6)> Un Lyt +i wnlt,z,e)

(2-28)
In order to remain on the same brench of the function o 16,.1,) ;
it is necessary to restrict O£ aAaé <.
For -0 4)XL0 , &=o+ , and o.ha,lg'clz‘n’, dlalglsrr,

from (2-26), ,
'g_l /2-
>

Ho(2,04, %) = 2 l%— -mexco,
(2-29)
From (2-20), (2-27), (2-28), and (2-29)
Flro+t) = Pl;.,o-l-,ﬁ)i-i//p,oq,‘{;) = :w; /:l-:t,f) -wcxeo,
="
(2-30)
and so the imaginary part of F['L,o-r,é) is
Z/z.,oh Y=o, ~vexco,
(2-31)
In a similar fashion, for QO4x < - , 8=o+ N
and a«al}-o! =T |, a‘ﬂ’f' = O , from (2-19),
IRAL
Hol2,04,¢) = - (_‘Y-—) g 96%<cC,
(2~32)

From (2-20), (2-27), (2-28), and (2-32),
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)
. Wixo+ &) +i
Flz,0tt) = pir,or.6) +ig/r,006)= — e — , 04KeC
P ; -LC_-‘;) ) )
(2-33)
and s0 the imaginary pert of Flr,or &) is
g
51‘1,0*,'&): -(Z%) _D;_,Eia, ocxice,
(2-34)
Finally, for (&y«e, 8:04. , and “‘3’5“' =0,
wa,ls«l =0 » from (2"19),
Helr,086)= 1 E;W“, Cexce,
‘ (2-35)

Fram (2-20), (2-27), (2-28), and (2-35),

) o
Flr,0n8)= pls.ost) +1gln,08) = 250 i wtronyl CLyanm,

XA

(2-36)
and so the imaginary part of Fly,ot,¢) is
5/7-,0*.(:) =-4 (%C '/" Y, b)), cercoo,
(2-37)

From the three expressions (2-31), (2-34), and (2-37), it
18 seen that the imaginary part of F[%,0+ &) , i.e., ;/ﬁ.o*,é)
for —®<&YL<0o is knowmn. By equation (1) of Cheng and Rott
(1954), which is Just the velocity induced by a source distribution
of strength 2.;/'&,0*:5) ’

g - [ St
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or using the definition of FI(E. &), (227),

W (54) = o Holg i) JF /1?34,\/: .
-

(2-38)
wth (2-1), (2-19), (2-26), (2-2‘4), (2-27), (2-31), snd (2-37),

o/ '/& a
.vzg,é) = '%- ;{ IZ - urm)dg j(t' Xffg‘l’}

(2-39)
This gives the complex velocity, A/ 3 ), everywhere in the
field.

To get the desired inversion results, in addition to

recovering the boundary values, the limit 6—*0+ of equation (2-32)

must be taken on each segment of the A~ axis. The results are

BRI
+‘L.[(!{¢) is \s} —wexco,

(2-ko)

9 a wlmds

—€-x
0
J:' f nal! DY)
(= (2 24)

oL &‘C

N (x,0+,t) = UL, 0 tt) +Hiwl e d) 4

e - (e [
| oaffe ] o

(2-42)




The boundary values, (2-20) are apparent in (2-40)-(2-42), and by
using (2-7) and (2-1), the desired inversion results are

] A= &y LT

(2-43)
[
1Y7] e\ (18 \& uye
whe) = eﬂ"’ilr('i) ﬂ(z_-, W’_*:‘d! ﬁf’ mud!
o
L YN&00,
(2-44)

The integral equatioms, (2-19), for the downwash have been
inverted and the equations (2-43) and (2-44) are the resw ;. The
airfoil vortex distribution §(r+) , O0&xec , does not
a.ppea.f in what are now the two governing equations of the problem.
The problem, now, is to solve (2-11) and (2-44) for the downwash on
the jet, Wlv,4) , and the jet vortex distribution, &/%,&) ,
both & veo0 ,using the boundary conditions to be discussed
in Sections 2.5 and 2.6. Alternately VY/%,¢) and §lr,t)

uriz,s) and AL , or Yé) ad  AMy4)  may
be considered to be the unknown functions. The airfoll vortex
distribution, ¥/1,&) s ocyree » may then be evaluated
from (2-43), as could the donwash upstream of the leading edge from
(2-40).

For future reference, equation (2-43) may be integrated
with respect to 4, giving, by (2-7), the potential difference
across the airfoil. 8ince there are no i~ velocity perturbations

on the - axis upstresm of the airfoil leading edge, (2-20),
Adlo,t)=0 ,
(2-45)
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80

x .
Adly b =f31!.4)d§ ,0€xee

ol ferfer

Ocrcc.
(2-46)

To simplify this expression, interchange the order of integration.
This is permissible according to Section DI2 of Heaslet and Lomax
(1954), since the behavior of iy, &) at the trailing edge,
(2-22), and the assumption that (rix,4) on the airfoil can be
represented by a power series in % eliminate any residual

singularities of the integration This gives

Adir \=-zy— w‘wif(“f' S 49 J;- yis )l J( ")’ “’Js

o<ex<c,
(2-47)

Using the results of Appendix A, (A-48) and (A-49), the potential

(ST,
IR

2 i '[[%ﬂjz‘?:‘ Sistds - % J;lg‘.e) a{_”ﬂc_‘:_‘.")"@:)”‘] d8 ,

Ocrecl,

(2-18)
In particular, if 4 =c-, (2-48) becomes the circulation around

difference across the a:lrfoil is

potn ) = sl Lurisads +_z.fama P

the alrfoll,

Able- usr'ze)-zf ) wrisads J?(’:,j m dg .

(2-49)



2.4 Identification of the Airfoll-Quasi-Stesdy Terms

The first term on the right-hand sides of (2-43), (2-kk),
(2-49), and the first two terms on the right-hand side of (2-48) will
now be identified. A quasi-steady quantity is for the present purposes
defined as me dependent only on the instantaneous unsteady motiom,
independent of the previous time history of the flow. Since the
terms in question are funciions only of the airfoil motion, snd are
independent of the jet, they will be referred to here as the airfoil-
quasi-gteady terms. They are calculated such that the instantaneous
time-dependent boundary condition that the alrfoll surface be a stream-
line is satisfied, but neglecting any effects due to shed vorticity
gor the jJet. These terms are results of the classical steady-state
solution for a thin airfoil with time-dependent downwash on the airfoll,
i.e., the mixed boundary-value probliem treated in Sectiomn 2.3, with

Ulrot,t)=0 Cerecam , or

’

Uiz ort)=0 , ~PLRLO

WI‘!r,of,t):;Q.-Dz%‘ﬁ, o0<cx<&ce

w(r,o0tt)= 0 y C&xcoo -
(2-50)
Since the same requirements are made on this solution at the

leading and trailing edges (although thetlassical Kutte condition is
invoked at the trailing edge instead of the argument of pege 33),
solution follows the procedure of Section 2.3 directly. Equations (2-43)
and(2-44) with ¥/ ,¢) =0 , C&x<cow are
then the airfoll-quasi-steady values.



The airfoil-quasi-stesdy vortex distribution is,
from (2-43),

Ll = Z( """’)fc_, -"—ré';%d-g, ocx<c,

(2-51)
Froa (2-48), the airfoll-quasi-steady potential difference across
the airfoll is

3

ey a-f
Ab, (1) = ism[(%*]f( wig4)ds + 2 wlml« {._.);i‘(_?[ ocncc,

(2-52)
and the airfodl-quasi-stesdy circulation is them
C
A
Lth= ade =2[&f wisnis
(]
(2-53)
The airfoll-quasi-steady downwash behind the airfoil
is, from (2"“"):
w'{z,t):—— 'x-c)J‘ url!é\di, Cencwm
(2-5%)

Since the sirfoil end gust shapes were assumed in Section 2.2 to give
power-series representations of the downwesh on the airfoil, it can

be shown that this downwash is continuous at the trailing edge with

the airfoil-quasi-steady downwash bekind the airfoil. The power series
may be written '

wirt) = é Gn2' | ocxcc,

(2-55)
vhere Gn(t) is the spprepriste functicam of time. Evaluating
(2-54) with this, using (A-33), gives



Wiz t) = :20 G.li-){%" - é—.(zi:" ) 3k Ry C’%‘)’i caxen,
(2-56)

Therefore

Wi (et ) = goé..u-)c“ = wie-d),

(2-57)
Since problems with the sirfcil shepe,  Y/1,4) ocvccs
prescribed are to be considered, these airfoil-quasi-steady quantities
may be calculated immediately in a given case.

2.5 Boundary Conditions at the Trwiling Bige
There are' two boundary conditions on the jet ordinate at

the trelling edge of the airfoil. RFMrst, the Jet must be continmuous
with the airfodl there; i.e.,

Yt t) = Y b) ,

(2-58)
Secondly, as mentioned in Sections 2.1 and 2.3, the angle of deflection
of the Jet relative to the slope of the airfcil at thet railing edge
may be prescribed, giving, using (2-13),
Vs t) | dVled) 4 . Fr.
Y2 F} 3
(2-59)
In terms of the dowawash, (2-58) and (2-59) may be )
cambined, using (2-1) to give the single condition
W (cht) = wic-t) + U To FI4),
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and from (2-57),

wicHt) = W, (et t) +UeTo FLY) ,

(2-60)
Finally, these conditions can be expressed in temms of an
integral over the jet vortex distribution or potential aifference.
From (2-44), (2-5'&) and (2-60),

“‘i’?‘ "” *’“ -2UT. Fl4),
-x.-»u

or, using (2-7),

[m} (’Eé)"f(f:‘)k 3%9{% =2 Ts Flt).
(2-62)

In the steady jet-flap analysis of I and II, the boundary condition

(2-61)

at the trailing edge cen be expressed in exactly the form of (2-61)
and (2-62), less the time dependence. Spence has shown in I that this
condition- can be satisfied if there is a logarithmic singularity in
the vortex distridution at the trailing edge, and his analytic
solution of 1I confirms this. These singularities have been discussed
in Section 2.3. If there is no jet deflection, <T,=0 ,
(2-61) implies that the vortex distributicn 1s regular at the trailing
edge.”

2.6 Proof of Constancy of Circulation

Since the problem is linear, solutions for various boundary
conditions may be superimposed. Therefore a transient problem,
e.g., one described by (2-13), (2-14), or (2-15) and (2-16), may be



considered independently of any otler steady or unsteady configurstion
the system of airfoil plus jet might have, provided the assumption

of a Jjet fully established in length before initiation of the transient
motion is met. The airfoil and jet may then be assumed to consist of
a flat plate with an infinitely long Jet tangent at the tralling

edge, both aligned with the free stream before initiation of the
motion. Then the cireplation around the following simply connected
contour is initially zero:

. :x
(o c o duo

In the classical unsteady theory of alrfoils without Jets,
the flow about the airfoil is doubly connected. Therefore the circulatioa-
about & contour drawn around the airfoil is zero before initiation of
the transient motion and must remain zero for all times after the
motion has begun. This is a direct conclusion from Kelvin's Theorem,
cf. Sears (1954). In the jet-flap case, the simple connectivity
of the flow el:l.ﬁ:ina.ies this argument. Instead, a proof of the
constancy of circulation in the jet-flap case given by Spence in III
will be reproduced.
This proof is based on the physical property that sufficiently
far downstream at a given instant of time mér initiation of the
motion, the Jet must return to its initial undisturbed positiom.

Moreover, its slope and curvature will also vanish; i.e.,



5

b Yir.) = fin, -}’;'-l lﬂé’

4 ﬁ;u‘ t Pm& (2-63)

This property may be visualized in the following way. If the
velocity, Ve , of the flow in the jet is much greater than the
velocity of the jet boundaries, as expressed by the downwash velocity,
wivb) , the jJet will be continuous fram the trailing edge
to infinity downstream. If the reverse inequality held, the Jet
might ceese to be a continuous flow and break in some fashion. For
the continuous Jet, the assumption of inviscid flow implies that the
Jet is impermeable; hence a particie <;f alr above (or below) the
Jet initially must always remain above (or below). If, then,
the jet were displaced from its initial position at infinity downstream,
an infinite amount of work would have been done in a finite time
to move the infinite amount of alr above and below the jet. The
condition that Vo >> Wiy, t) is no restriction,
since in Section 1.5 the assumption of Vo >> Vs has been
made, and in Section 2.1 the small-perturbation assumption of
Uo >> wix, t) has been made. Again, as in Sections 1.5
and 2.1, it must be mentioned that although unit-step functions and
their derivatives may be treated, they are considered as the limiting
cases of flows in which Yo >> win,t)
To £ind the circulation in the system at any time, i.e.,
the potential difference Adlr,t) as Y- , the
unsteady Bernoulll equation, (2-12), is solved for Adlx,¢&) .

This solution is



F
'F'")o Ap(2,6+5E)dS + Fla-ut) , xcuet

Adlr,t) = %
- FLV‘]A“"“ 2948 + Flr-ut), x>Uet |
2-lUot

(2-64)

where the motion is assumed to have been initiated at t=0 ,
and where there is no pressure difference across the 7%x- axis
upstream of tlr leading edge. F(2-Ugt) is an
arbitrary function of the integration, but since (2-64) must be valid
for all positive and negative % and + , the vanishing of

Adix.b) for %<0 and &40 require F/r-Vot)
to be zero, identically.

An alternate integration of (2-12), which is related to

(2-64) vy the transformation '7 =&+ %:”— is, since
Fl&-‘UcH =0 I ' ’
r~ he’
-—%; Ab('y.woy-v.é,?))ly , x e Ut
Adivti= o “-:/u, |
- —{;fAkhcw.'y-Uoiﬁ)d’] , x>ut.

(2-65)
For %-Ust >C , with the pressure difference across '
the jet, (2-5), (2-64) becomes

. .. . %
2 X
Adlr¢) = ~-}U-ccaj %*;_‘i)ds , 1>ceUt,

1»00‘



L g
Now, if

*Vg &+ 532

34° ' for 2-stcgsx

Kirt) = may l

then

|adns)] < Luee (Uet) Kz,
and for a fixed € , by (2-63),

Jim | stir) = 0,
fived
(2-66)
Therefore the circulstion in the system is zero. Note that the
limit is non-uniform with respect to & , since for longer times
it 1s necessary to go farther downstream to take the limit.
For a jet-flapped alrfoil in unsteady motion, then, it is
no longer Jjust a case of shedding vorticity into the wake at the
trailling edge in equal and opposite amounts to the changes in circu-
lation around the airfoil, as in the classical unsteady-airfoil
theory. Rather, equal and opposite amounts of vorticity must be
shed from all points of the' airfoll and jet, in such & way that the
total circulation in the system vanishes. Birnbaum's concept of
bound and shed vortices, cf. Cicala (1941), is a good physical way
of considering the problem. The alrfoll and jet are thought of as
bein'g represented by bound vortex distributions whose strengths at a
p.od.nt are equal to A &“) . Each of these bound vortices
gheds, as its sﬁrength varies, the mmount of vorticity necessary
to satisfy (2-12). This shed vorticity is comvected dowmstream at
the free-stream speed, U, .



An alternate equation expressing the comstancy of circulatior
may be found by considering (2-&9) along with (2-7) and (2-53), giving

adle-4)= [L1e) +fﬁ:¢) gis, HJ; - Adie.t) +A¢lc*t)

(2-67)
With (2-66), then, since the potential difference must be continuous
at the trailing edge,

J‘ (.f_q:‘)‘hx“.ﬂds s~ n A

(2-68)
expresses the constancy of circulation. This is recognized as the
Hagﬁer (1925) integral condition of classical unsteady-airfoil theory.
The form is identical, but 3’(1,,&) here contains the effects
of the Jet, in addition to the vorticity shed from the airfoil due to
its motion.

The above proof and results are readily extended to cover
divergent steady-state oscillations, J/w)<o . At t=-w
these started with zero amplitude, so the jet must return to its
initial position at infinity downstream. For pure oscillatioms,

Oiw) =0 , care must be exercised, since the oscillations
begen at finite amplitude at L= - . The same difficulty
arises in the classical unsteady-alrfoil theory and will be discussed
in 8ection 5.3.

2.7 Camplete Equations for the System: Same Properties of Them

The complete set of equations required to state the problem
have now been derived and will be collected here for convenience. 8Since

the equations can be written in a variety of forms, depending on which
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functions are taken as the primary unknowns, several alternatives
will be given.
The dynamic equation cwpling the jet to the main stream
is, from (2-8) to (2-11), either

DAYIE) _ _ 12 Yl t)
_'_D—rJ = zuocc: laly'z{t , CLANLOo ’
(2-69)
or
2 A a
D %é"‘a = -4 UG _.3__4_3 “’,’.’fel , Cexem,
(2-70)
or
P-b%%ﬁ) = -4 Uteey __Yﬁ"é\ , €<xcoo,
(2-71)
or
2
D‘%"Iv.{" = -gUocty L;’g:f) , Cexew ,

(2-72)
The kinematic equation giving the downwash required to “
make the jet be & streamline at each instant of time is, using (2-L44),
(2-5&) and (2-7), elther ‘

wirt) = DW"'*) s Welrt) - zw %‘Y XI“)“ , cexso

(2-73)

or



or
wirt) = DVt = Welx ) - ja%ﬁ T L CEKe”s
(2-7h)
vhere
Wilrt)= -3 (‘%}hl(‘.g) _1‘8_._1;4? , Cex<m,

(2-7%)
The boundary conditions at the tralling edge of the airfoil 4
are from (2-58) to (2-62), either

Yics,t) = Yie-, &)

(2~76)
and .
AYlert) . Ve b
Y = ¥ + ro Fl'e) 3
(2-77)
or )
Wi+ t)s Wifer4) +UeToFIB
(2-78)

or

b TS <z

(2-79)



51

';..c, Cké)lfl-(j‘;;g k) ‘“ s =20 T Flt) ,

(2-80)
The conservation of circulation in the system is
expressed, using (2-66) to (2-68), by either
ﬂ'm Apia) =0
t al‘d (2 -8T)
insuring that AQIy,¢) is continuous at the trailing edge, or
o0
‘e »
f(;% yisdg == 1 (4) |
[
(2-82)
or '
[ ]
3 . PYXIR
(‘i-'c L ERHON
&

(2-83)
By explicit use of the Wagner integral condition (2-82) )
or (2-83), the dowmwash equations (2-73) or (2-T4) can be cast in a
form useful in exhibiting certain properties of the solution of these
equations. Using the identity

| (9-¢) !

1-% T (vaif-®) _ ¥ ,

(2-84)
equations (2-73) and (2-75) may be written o



¢

(st g wands "
w’l‘)ﬁ.l,) H‘ﬁ(‘l" “ :).:P],G + W\Fél’) U’l’.")dg
$%-c1* yis0dS
+ —WY"J(-‘")*‘,’HJ’ - Wf -2 ,
&)L A,

From (2-53) and the Wegner integral condition, (2-82) , the second
and thrid :Lntegrall cancel, leaving either

s(s-c) m L

tevsom,
'xlv-c) —t-x

Wind) = by’*"’ e Wi lrd) - L

(2-85)

or

+
um.e)- DYh,t) wl!--é) [—,;%:C-)) 3¢ ;“.‘, Ceypeoo |

(2-86)
vhere ‘
(c-s) wzmdf
+1I
u‘;“'l e‘ =1 Cepeds,
)
| W - s

(2-87)

Finally, although decoupled by the imversion of "
8ection 2.3 from the equations now required to solve the problem,
the vortex distribution on the airfoil is, from (2-43) and (2-51),
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Slvt) = ilpd + %(%)‘J?}’:‘Y %’é;—d-‘! ocxcc,

and can be evaluated once the jet vortex distribution is found.

(2-88)

It is of interest to notice that the effect of the Jet
a.ppeé.rs explicitly, i.e., by appearance of Csr in the equations,
only in (2-69) to (2-72). These are dynamic equations involving the
pressure difference across the jet, which is proportional to Cy .
The fundamental downwash equations (2-19), and the results obtained
therefrom by inversion do not explicitly contain Cy , although
the effect of Cy is implicit. Furthemmore, the boundary
conditions at the trailing edge are kinematic, and although a
dynamic argument was used to prove the constancy of circulation,
it may be expressed by (2-81) to (2-83), which arec found from the
kinematical equations. ' - -

In the case of the functions [z +) and AQIvE)
single equations may be found by eliminating W /%t from the
fundamental pair of equations. For the vortex distribution,
dirrere;xtiate (2-73) three times with respect to % uand

eliminate 2;.”319 ‘between this and (2-72?, glving
D"W'l&) Vet /e b‘l!,{vlo‘f _LU“'- cx > Wt t)
o¥ gn :y.’{t%) ( ¥
L& YLdO
(2-89)
Using the transformation g= C+ /x—c)? in the integral,

the three derivatives may be taken, giving the complete result



Sk
2 2 <
D Xltz:g.é): *’g n_CE { %%_ ﬁu)”'m,&) de 4:"‘[{' ) tlzéldl
vsc%—g fmum 3¢ f(t_—g gggg de %_/%)f [!!.f'

+ 26 J’g_v)_” 254 4g fc%cf" s J,}

)y cJ > Welrt)

}T , (L )sbo,

(2-90)
The alternate form of this equation, explicitly incorporating the
lmgner integral condition, is, from (2-72) and (2-85),

o0

Dyt . Uicts A :—c‘
Dt‘ SN t{ J yisrds + 4,",_‘[—!-— Yist\d4

l-¢) ) [8- e ( Mg
G tf;,; s - 2gefodam

g 3
- Pg_(i_C_; LJX;A:’% ) , Cercw,
(2-91)
BEither of these equations can then be solved, using the conditions 4
(2-79) ana (2-82).
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Following the same procedure, (2-70) and (2-74) yield
for the potential difference across the jet

D*AdAY _ Udc %
vl 1_«?’1.{ f L)) 24480 Js - ud) a2 1))y

- 4

' ] 3 )
sfif s st oppe]

kS 2
- Yl w.q,_g) ,

LYs
2 3% (2% 20 I

(2-92)
or, in the form explicitly incorporating the Wagner integral conditionm,

00
%
Vo . e f s [ufontus - atelfeg s

. Cf Phosiey 1o gg_";/_gf_)_"‘ ;34«14)43}

21

U_:%T 2 Wiipt 3’)‘-{‘ é)) ceyeoo ,
(2-93)
Either of these may be solved, using the conditions (2-80) and ‘
(2-81) or (2-83). -
- dhese-equutions in the Jet vortex distribution and potential
difference are unwieldy. However, upon approximation for small
values of C3  in Chapter 6, they simplify greatly and are useful



forms. 8ingle equations in the jet ordinate or downwash on the jet
cannot be found, since the jet vortex distribution appearing in the
integral term cannot be eliminated campletely.

By considering scme special limits of the equations of the
problem, important asymptotic properties of the solution near

L = 00 may be found.

First, if the downwash equation, (2-73), is multiplied

by X , and the limit as L~ 0o 18 taken for finite fixed

£ , the result is
e ®

L’L'.\ rwhd)= %L% 'urls,e-\‘ds 5 ({;)l‘ yisds
00 A 3

(2-94)
Using (2-53), the Wagner integral condition (2-82) makes the right-hand
side of (2-94) vanish. Therefore ‘ )

ji.. Lwir€) =0,

rro
(2-97"
or, asymptotically in % ,
wigt) ~ "
(2-96)
where n>i , but as yet undetermined. Equation (2-72) for

the jet then implies that

DX¥int) ., 13
e~ %

(2-9m)



or
Jlp ) ~» £,
(2-98)
These latter conditions may also be shown to follow fram (2-90) '
by miltiplying 1t by %% , teking the limit as %+ |,
and integrating by parts the integrals containing ¥/$,¢) , thus
reducing them to & form w]::l.ch vanishes by the Wagner integral
condition.
M treat the downwash equation in its fom, (2-85),
which incorporstes the Wagner integral condition. Multiplying it
by " and taking the limit as X~ gives

Jim 20tr ) e 5L {aj'g"-/c-;)"’ur/s.é)ds -fr"/t-c)" m,t)ds}
° (2 ’

Yre

2-99)
the integral over (8.4 existing because of (2-98). The '
right-bhand side of this equation 18 in general not zéro, and will
be shown in Chapter 3 to be related to the 1ift on the airfoil. The
downwash, then, behaves asymptotically in %  like |

wirg) ~ 2%

(2-100)
i.e., like the dowmwmsh of a doublet, vhich follows since the circu-
lation in the system is comserved. 8ince Ne2 in (2-96),

(2-97) and (2-98) give



E{%’:Q ~ 5
(2-101)

e~ ¥,
(2-102)
These latter results may also be shown directly from (2-91), where ‘
miltiplication by % , taldng the limit of K=o ,
and several integrations by parts ylelds

r+ L

(
»2‘3',"' E%%‘:" .- “”‘“"{ zjg”l fe-s)*wise)ds -ﬁ”‘lﬁc)* g 4 !}

(2-103)
Similar considerations of the potential difference equations,
(2-92) and (2-93), show that

. L" ¥Vl ALY - 3 Ui ,Cr (r { zfg'/ﬁ (¢ s)'li we.t) 4 ..J‘S“/ 3-‘" & !,HJ !}
° (2

Lo P ’

(2-104)
indicating that asymptotically in % , - “

Adla~ ¥,

(2-105)



CHAPTER 3 - CALCULATION OF THE LIFT AND PITCHING-MOMENT COEFFICIENTS

3.1 Calculation of the Lift Coefficient

The total 1ift on the airfolil is the integral of the pressure
difference across the airfoil plus the vertical component of the jet
momentum flux. This jet-momentum~flux resction acts upon the internal
ducting of the airfod.l and is not an external pressure force. The 1lift,
positive upvards, is written in the linearized approximstion, using

(2-1), as

: (3

L) = -fAbf'h‘W +J Wl
’ (3-1)
Defining the usual non-dimensional lift coefficient, using the unsteady
Bernowlli equation (2-12), and using the definition of the jet-

momentum-flux coefficient (2-4), (3-1) may be rewritten

¢
Clt) s _-é—‘-(:-:—z = ‘%f[_ﬁ_3°‘“'9+ Us }-%9]# +G 3_\’_;‘_*;‘9.
* (3-2)
von KArmén and Bears (1938) argue that since the total -
circulation in the system of an airfoll without jet vanishes, the
vortices occur in equal and opposite pairs. The 1ift may then be
found by taking the negative of the time derivative of the impulse
of the flow. Despite the fact that part of the 1ift in the jet-flap
case is given by the internal jet-reaction force, the total lift is
again given by this result. To show this, consider the following
integral, using (2-8),

59



o »
h'lé - 3 ) .\
e[ 02081 < - 204 °——~;’:“L
c

Ylcr t)

T—l—

(3-3)
vhere the upper limit vanishes by (2-63). Therefure, although the '
Jet-mamentum-flux reaction acts upén thé internal ducting, this force
18 represented by the integral of the pressure difference across the
Jet. Bubstituting (3-3) into (3-2) gives

=%, f 3“’1"“+ Ve }Mlg,a] m

(3-4)
The total 1ift of the system, then, is given by the integral of the
pressure difference across both the airfoll and the Jet. Integrating
the AP /5y  term immediately, and taking the time
derivative ocutside the integral,

Ca.“‘) = 001.‘ #YM?IL&) M + M/x.:&)]

=& %| A4>11-.€W4L
(3-4)
the second term vanishing at both limits by (2-45) and (2-105).
Intefrating the remaining integral by parts and using (é-7) ylelds

Cld)= % { ¢A¢lm)] I;m.ada}
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where the first term vanishes, sgain by (2-45) and (2-105). Therefore,
(4

(W=-5& %—5 28intide.
(-]

(3-6)
The 1ift is also given in this case by the negative of the time
derivative of the impulse of the flow.
To get the 1lift coe:t"ﬁci'ent in forms useful for calculation, it

is more convenient to treat (3-2). Integrating the 36“#“/3\‘:

term by parts,

"
zfommoyy . 2 (20t s fm» 24 4y

c -
= % 24 d)
u:cf["”) "5'5& dr,
[ ]
(3-7)
the first term vanishing at both limits of integration by (2-22)

and (2-45). BSubstituting (3-7) and (2-7) into (3-2) and taking the
time derivative outside the :l.ntegral gives

Yl t)
C =% iz a;f(c Wyndy + -— me)da G =5

(3-8)
a8 general expression ror the lift coefficient in terms of the airfoll

vortex distribution alone.



To get the 1ift coefficient in terms of the vortex
distribution representing the jet, substitute (2-43) and (2-51)
into (3-8), glving

=% uﬁmau +,,—,,}-¢§I("‘)*/¢ 2|

+ JXJﬁﬁ\h +mf(<;_¥)*g ) M“U!,k +Cy 3‘/(:#-&) .

(3-9)
The order of integration may be interchanged in (3-9), using

the arguments following (2-46), and the resulting integrals over %«
evaluated by (A-51) and (A- 53}. Using these results and the classical

lift temms diécuuéd beléw, tﬁe 1ift coefficient becames

= G O +C, ) + 5 th L gj[(s EARS

+u.cr L) - n] risdg + ¢ 2o 3

(4

(3-10)
This is a completely general result for the unsteady lift coefficient.
The constancy of circulation in the system is not incorporated in
this result.
The integrals over the airfoil-quasi-steady vortex distributionm,
olx,t) , have been identified as the same terms which arise
in the classical unsteady-airfoil theory. These have been investigated
by von Karman and Sears (1938), whose notation ana definitions are to
be used here. The urrod.l-quiai-atudy 1ift is that circulatory force
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due to the airfoll shape and motion alone, neglecting any wake or jet
contributions as discussed in Section 2.4. Its coefficient is denoted
by C (&) and is, using (2-53).

<
C., W= U—%f?.lu\h =Z - if,_ ,) wige)d$

(3-11)
The airfoil appareni-mass lift is the force of non-circulatory
origin and depends on the airfoil shape andi motion only. Its coefficient
is denoted by L, (4) and is defined by

C, (D3 - .C déf[“’ s)a'./uw

(3-12)
To get CL.[Q in terms of the downwash on the airfodl, substitute

(2-51) into (3"12): giving
,‘\é!
C:. ({) = _U_Q.i_c .(‘(,’__ )7_(__!"'§Lgs)‘ W‘f-,‘ AM

Inversion of the order of integration using the arguments following
(2-46), and evaluation of the resulting integrals over %« by
(A-50) and (A-sa) glves

C )=

oc 4 4 Ig"‘(c g)"‘w'(r 149 .
(3-13)
Since the potential difference must vanish at infinity » .
downstream as discussed in Bection 2.6, (2-66), this result, (3-10),
can be simplified. Identification of cemin‘of the integral tem;
in (3-10) by the Wegner integral condition, (2-82), and by the

definition of the airfoll-quasi-steady 1ift coefficieant, (3-11),



substitution of aAﬂ"‘a/?)L for  ¥X/iv,¢) , and
substitution of (3-3) for (3 :_:’%L‘.’\ give, upon

cancellation of terms ' .
V3
C.W=C - %ﬁ[ﬂ*ﬂﬂ Hsdgs & ﬁj}g.c) aﬁm,u 4g
e

49
+ %"c ﬁ.[Mu,&\ ds. (3-14)
Integrating the second integral of (3-14) by parts ylelds
(-]
[

’ - (J
z ps-c)lgi’g&*’ df = % ﬁﬂn)ww} -& %fam,uds

o
2 d
= -5 Glapaydy,
<
the contributions at the limits of integration vanishing by (2-22)
and (2-105). The integral remaining cancels the last integral
in (3-14), giving the campact form for the 1ift coefficient

®
Cthr= Gt - & g-‘,; f g5 118,048

(3-15)
In this expression, all the lift of & circulatory nature is :I.ncludéd ‘
in the integral.

The 1ift coefficient can be found in terms of the limiting
behavior of the downwash, vortex distribution and potential difference
at infinity downstream, as pramised in Section 2.7. Examination of
(3-13) and (3-15), in conjunction with (2-99), (2-103) and (2-104)

gives
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C. )= - 3L éﬁx&*.ofwlx,é),

Ve
(3-16)
L5 D

b - T ﬁé«:‘w L

(3-17)
and
. A o 4* DAL

Celt) 3T ﬁ %»} _B?lih) .

(3-18)

For the sake of completeness, an expression for the 1lift
coefficient can be found which is of the form of the von KArmén and
Sears (1938) result. To show this, add and subtract Cio (8)
from (3-15) using tbe Wagner integral condition, (2-82), take the
time derivative inside the integral in (3-15), and substitute (2-10) -
tor  2¥mb/5¢ ineide the integrel, giving

Clt) = (ot +Ce ) + | ) vishds
(<3
¢ )
e o 20 s e 210,
[4

(3-19)
Integrating the integral over 3"'{"*%3 by parts gives )

- & .
O%ﬁ"‘lt-of‘l NM!F)J! = oz':c[ﬂf-cf‘&u,él- “?‘:‘«g;!‘) si1e4)dg + &'-[ISI":): )!
[ 0 .
Y ad
s - ‘ﬁ[@) a'll,e)dg +D‘;j glf,:\"? ’



since the contribution at the limits of integration vanish by (2-22)
and (2-102). Substituting this into (3-19) simplifies it to

Cottr = Cold) +G 10 +Gy () + Cr| S0 a;m ) ss,

(3-20)
vhere
. e
C, tHa i T_-%g .
" (3-21)
In the classical case, Cuy () is the wake-effect term but

here includes the jet effects as does the last texm. This tem
vanishes with Cy » leaving the von Kirmén and Sears (1938)

result.

3:2 Calculation of the Pitching-Moment Coefficient

The total pitching mament, positive nose downward about
same reference axis, i1s the integral of the mmments of the individual
lifting elements of the airfoil about this axis, plus the mt of
the Jjet-momentum-flux reaction about this axis. To determine this
direct- jet-reaction moment, consider the following arbitrary airfoll
at some instant of its motion.

D

ac A
vef, anig




By the linearized approximation, AB & AD since
coa[ WLk ] o1 +0 (L) . Gecmetrically,

5 = ?.Y;__?ﬁ‘(n-a)c - Y+, &) + be

The moment due to this force is
MmY=J [(l-a\c Q.Zs‘_‘y‘_@- Y+, t) +ch .

The totgl moment is, then,
M) = ~|(-a0) apit) dy + T[N-00e ii\g%*)-ym,g +Lc]‘

(3-22)
Defining the non-dimensional pitching-moment coefficient, and usi.ng~ )
the unsteady Bernoulli equation, (2-12), and the definition of the

momentum-flux coefficient, (2-4), (3-22) becomes

s
Cmld) = -éf-’é,f-‘c = ﬁ‘({x-m[&%h-"*’ +0, 28804 4y

o [l Ut - Yoo 4]
(3-23)
As for the 1ift, this equation may be shown to reduce to &
form analogous to that which von KArmén and Sears (1938) derived
considering the time derivative of the moment -o:t' ﬁpulsé. To show
how this differs in this case due to the mament of the internal Jet-
reaction force, consider the following Jntegral, using (2-8),

fxd) - _G | 32y
g;z,ﬁmc) L;ig; w.z%aﬁ]# = = Z|(r-ac) ’-}%*’M,
(4

4



e

vhich upon integration by pu'to

- -l beattf] - 1304

A further integration and use of (2-63) in evaluating the limits of
the integrals gives, therefore, - )

frac )[‘ 3D Ly, awm e C‘:{(' W Yo _ Ve +)}.

\c‘l C

(3-24)
Substituting (3-24) into (3-23) yields ' )
()= 5 (t—ac)[w“" Uo%“—“’;"i’]h +Crh.

(3-25)
Integrating (3-25) by parts, and uaim (2_7), .
Cnit1> e flolt-eer o] - u,[ww + lrge o] [“ sy

+Cy b
The 1imits of the first and third terms vanish by (2-45) and (2-105),

80 the moment expression becomes

(- -4
Cmlt)=- (-,%:z, ﬁf}x—ac)‘ﬂ‘kﬂda - g—.—-c, Adirtlde + Cyb,

(3-26)
This corresponds to the von K&rmén and Sears (1938) expression except
for the term C3yb . Tis term is the moment of the momentum
flux at infinity downstream times the distance of the reference axis
below the undisturbed position of the Jjet at infinity downstream. It
is not surprising that this additional term appears, since the moment
due directly to the jet reaction acts on the internal ducting of the
airfoil, not as a pressure force on the airfoil surface.



To get the moment coefficient in forms useful for
calculation, similar treatment to that made in the lift-coefficient
case will be made. Integrating the AdLE /5y term
in (3-23) by parts gives

¢ - . .
D%:J}%Ac) L‘;‘lu)h = —al.?[[c-‘l)(#ezu) Yy !]. '+'l'}.‘? {(."ll—u)mcu-x.‘]&a?)[,
. (]
¢ ‘
U‘c‘ [¢t1-2a) +2ac2 - 7,] 28t de

the integral vanishing at both limits of integration by (2-22) and (2-h5)
Substituting this result and (2-7) into (3-23) and taking the time
derivative outside the 1ntegro.1 gives e genera.l expression for the
pitching-moment coefficient in terms of the airfoil vortex aistribution

alone,

(4
Cpid = 6'}2'* Jtﬁ:c'[l-u) +zacx.-xJ2m Ody *u. = (r-ac) ¥\

G- D Ve ]

(3-27)
The pitching-moment coefficient also can be expressed in

terms of the vortex distribution representing the jet. Substitute
(2-43) and (2-51) into (3-27), giving



¢ (4
Cmlt) = u—..rc'\. ﬁ[[c’h-u.)naw-zﬂ?./g,ﬂh &l e i M
+1‘:L}'Z‘ &f(ﬂ)".[é (-20) +ucy.-¢_] (.'2_‘)"‘ &l!.fldi A

[X» )r_cY'tCQ J?J/x +Cs [tl‘ﬂ Al W.ﬂi,b].

17 Uot

(3-28)
The order of integration again may be interchanged by the argument
following (2-46) and the resulting integrals over <L  evaluated by
(A-51), (A-53) and (A-55). Using this and the classical terms

discussed beldw, the pitéhing-mment coefficient reduces to

Cm @) =Cmgl) + Cn, () + L 0-20) Gy 18) + L (120)C, () + EE (- gs,)da )

- U:t a éﬁ[zﬁ £(+40)% - 2,‘." [i- !;)]({:‘)*- [f'-zac f—c‘(l-zag\'l{.ﬂdi

+ f—}“} [s- §(:mﬂ(£x-l$-aci} vehds +cali-a) Rt _ v +b] '

(3-29)
This is a general result, the constancy of circulation not having
been used.
The integrals over the airfoll-quasi-steady vortex
distribution in (3-29) have been identified in terms of the airfoll-
quasi-steady and apparent-mass lift coefficients defined in (3-11) to



7
(3-13), and the analogous pitching-moment coefficients discussed

by von KArmin and Sears (1938). The airfoll-quasi-steady pitching moment
1s that mament of circulatory origin due to the airfoll shape and motion
alone, neglecting wake and jet contributions. Denoted by (a, (+)

its coefficient is

Cmy (&) = u%cflx- St dr .

(3-30)
By the same argument leading from (3-12) to (3-13), this can be written,

using (A-50) and (A-52), as

<
s
el = = £, | ¢80 wiseds
Ve

° (3-31)
By convention, this is a moment about midchord - (o= "z" . The
airfoil apparent-mass pitching mament, also about midchord, is of non-
circulatory origin and depends on the airfoil shape and motion only.
Denoted by Cm,(£) , its coefficient is defined by

(4
Cm,lt)= "'6‘5‘ %\f{qf—ct + -‘;) Yol ) dy .

(3-32)
By the argument leeding from (3-12) to (3-13), this also can be
written, using (A-90), (A-52), and (A-54), as
, . _
Catti= - % J‘l{!”'a-ﬂ“‘l S-Q)wisiidg,

(3-23)
By use of the condition that the potential difference at )
infinity downstream vanishes, (2-66), this result, (3-29), can be
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simplified. Tdentification of certain of the integral texms in
(3-29) using the Wegner integral comdition, (2-82), and the definition
of the airfoil-quasi-steady 1ift coefficient, (3-11), substitutiocn
of 389N 8Ay ror X(14) by (2-7) vhere needed, and substitution
of (3-24) for C3[li-0) é_lf_,_;ﬂ - )’(aT.t)] ' give, upon cancellation

of terms,

Cm(L) = Cmolt) +Cu(4) + 4 1-2) (L, (9

o |
-k ﬁ[[z‘- slnaa1s - &gl s s+ ﬁﬁ:‘-ms -0 2B dg

+‘£'-c;\[f"tf-¢)* Xl’;(—)d! + Ffi? ﬁ ($-ac)DPist)ids + Cy b,

(3-34)
Integrating the second integral in this expression by parts yielda‘ )

[ ©
F':? ﬁj[g’.z&gg-;‘[[—zn)] i‘%‘gﬁ d§ = (T'f(} d—{t Pf‘t)h‘t'ud AM.*)]‘

- & ﬁ ($-4c) AdisH)dS

z - 6%'5‘ ﬁ‘[zg.ac)mmﬂds ,

the contributions at the limits of integration vanishing by (2-22)
and (2-105). The remaining integral cancels the last integral in
(3-34), which, upon factoring of the first integral beccmes
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[ -]
Culb)= Cunll) + Cartii+ 41300616 - L) é f o r-* y11.4) 9
&

-‘Tl.th ﬁfﬁ[f—dﬁ&ﬂ.ﬂd! + ﬁ‘féﬂ/"‘)ﬁ *”,‘)J; +Cy L .

(3-35)
To calculate the r!tching-moment coefficient by (3-35), only one

more integral over the jet vortex distribution need be calculated
besides the integral required for the lift coefficient in (3-15).
An expression for the pitching-moment coefficient of the form of
the von Kémfn and Sears (1938) expression is found from (3-35) by
adding and subtracting 4 (1-26) CLo(8)  froam (3-35) using the
Wagner integral condition, (2-82), talking the time derivative inside
the integral and substituting (2-10) for S¥/%t) /5L
This gives ‘ »

Camlt)= Cmolh) +Cul4) +L01-20) &, (1) +4(1-28) Co, &)

P IEAY
+! u?rﬂ[(’ _‘) Yis0\ds +
[-3

v

-3 j ghys-ci* HgP s

0 ‘ -l
+ i‘%f ghfa-ch 2 W00 4g L 2| gbrsctt bntdS + Cob,

(3-36)



T

Integrating the o¥(54)/>4 terms by parts gives
30- ’ﬁ i Di'li.*)d f&”.‘)’/‘? 158 dg «
2 Jrg"ls o) s+ 1¢ 24188)dg

(2

3039 [eincfmma] + Lo )] -%) g%ﬂ'g.{ 2-%) j AR

2UeC

N j}"m—a*uwd: s (H)" yisds

gad¢  _ (- % (¢-}
y f ¥ _ Lﬁ)_[s (6-F* Y1804

“§B/s-c)h

00 or
s
2l - |etisc)
- LUT'E?—?) His.1dg - 5 | e S,

vhere the contributions at the limits of integration vanish by (2-22)
and (2-102). Substituting this into (3-36) and cancelling terms @lyés

Co 1012 G [0 +Cm,0) +4030)[Co () +Ct] + =22 G 10)

II- fgd./'_c)"' YY) g 4 L c{;”t{f N ___YL;)J $ +Gib,

(3-37M
This form corresponds to the result of von KArmin and Sears (1938).
In sddition to their tems, there are two additional integrels,
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proportional to Cy , and also the Csb tem discussed above.
It (320 , the classical results are recovered, and the
noment contains only the same terms which were evaluated to find
the 11ft coefficient, (3-20). ‘

There are no_expréuions for the pitching-moment coefficient
in terms of the behavior of the Jet at iufinity dowmstream as were
found for the 1lift coefficient.

The pair of equations (3-15) and (3-35) are the simplest
to use for the calculation of the 111'% and i)itching-nment cozfficients,
since only two integrals over the Jet vortex distribution need de

calculated. For conveniencé they are written here,

Cltr= G 1) - & | sMs-Puspde,
5-3)

and

Cmib)= Cmoll) +Cmlt) +4(-20) (1, 1) - %é) jl;[s*/f.c)"'m,ﬂh

o
- ﬁ. ﬁiﬁhc)“m,ﬂd! + U—o’i,fg”*/g-c)* yis)ds +GCrb,

(3-39)



CHAPTER 4 - EQUATIONS FOR PARTICULAR PROBLEMS

4,1 Jet-Deflection Problem

The fundamental Jjet~flap problem, both in the steady and
unsteady cases is that of "“jet deflection," i.e., the emergence
of the jJjet fram the trailing edge at a prescribed angle with
respect to the slope of the airfoil ordinate there. This problem
has been called by Malavard (1957) the “singular-blowing" problea in
recognition of the logarithmic singularity in the vortex aistribution
at the trailing edge required to satisfy (2-61). Practically, Jjet
deflection might be achieved by & very small flap at the trailing
edge, or by internal ducting, and is assumed to be adequately
represented by the present model. The importance of the problem
resides in its being unique to the jet-flap, for if Cr=o0 ,
specification of the jet deflection angle can no Z!.onger be made and
the problem is trivial.

As & model for the jet-deflection case, a flat-plate airfoil
aligned with the free-stream direction is chosen, the jet having

the time-dependent angle of deflection, (2-13),

Tt = To F(é)_

(4-1)
For transient inputs this problem is of comsiderable :
practical importance, since the jet-flap has been proposed as a control

mechanism and the response of the airfoil to such inputs is basic to
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the full understanding of such usags. Oscillating inputs are also
important, since use of the Jot flap for cyclic piteh control of
helicopter rotor blades has been suggested by Dorand (1959).

8ince the airfoil is aligned with the free streanm,

_Us 0 c T T~

W__/

Yzt =0, o<cx<c,

-2

(4-2)

and hence from (2-1), '
whtl\=o0, ocxec

(4-3)
All the airfoil-quasi-steady and sirfoil spparent-mass terms are
identically zero.

The basic equations are, in terms of  ¥/(%,¢) and
wl ) - the others are omitted here and in the remainder

of this chapter for simplicity - from (2-69) to (2-87),

(b-4)

and either

wirt) = - ;_,;‘,- (’J-,‘)'hﬂ-f-‘j" mﬂﬁ“, Ceress,

(4

(4-5)



or
«©

e
#
Wb = -i%rf 1——-—,,,’;:’)] P | conce,
[

(4-6)
with either
Wictt) = UsTo FI4),
(&-7)
or
N o
. (Suds _ _
é:ﬁ@%‘)‘f(fc) SIS - - v Fee),
c (4-8)
and
00 'L
(;,3-‘) ¥iatldg = O
(4
(k-9)

Once this set has been solved, the other properties of
interest, e.g., the 1lift and pitching-moment coefficients, may be

found from the appropriate results of earlier sections.

4.2 Problem of Airfoil in Plunging Motion

The problem of a flat-plate airfoil moving in a purely

plunging motion with a jJet emerging tangentially from the trailing
edge may be described by

—_— ¢ P -
Ue Jhec F1) -
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Yird) = hot FIt)  0crec ,
(4-10)

vhere ), is the non-dimensional amplitude of the plunging
motion, and is a small paremeter ccnsistent with linearization of
the problem. This problem does not have much application in transient
motion, but in oscillating motion its results are important for
determining the coupled binary bend:l.né-torsion and tertiary bending-
torsion, control-surface-rotation flutter stability criteria.

Fram (2-1) and (4-10), the downwash on the airfoil is

uriz ) = hoc FlY) | osncc,
(4=11)
with (4-11), the important airfoil-quasi-steady terms in the basic
equations are from (2-51), (2-53), (2-54) and (2-87), using (A-9),

(A-38), and (A-39)

&l é) =2Lo4(5-:f')'h Ft) , ocrec,

(4-12)
Wolx.t) =h.c’[l- [!g‘)" Fit), cer e,
(4-13)
[Le) = mhe FUE)

(b=1k)

i) s hoc[1- (S~ S ], ccrce,

(4-15)



The basic equations are, then, from (2-69) to (2-87),

)) X Wiyt
P . . e e T30 conce,

(4-16)
and either
whi)s -4 (%) f f W”‘ +hoe[1- (EY]F1H, conce,
(4-17)
or . .
[ /] ¢ <
s ud:
wl‘;,-&):-;%,f[%(%)')] ¥ + ho c[l z%‘—a,‘]l-"[{)l Cerem,
¢ (4-18)
with either
wic+t) = hoC FII4),
(4-19)
or :
1Y 4L Y iraMdy _
1 u ( ) é‘[{' S ’
(k-20)
and -
f 5'1;’ dg = -TMhe P F'I),

(k-21)
Upon solution, the other properties may be found. The ' )
airfoil-quasi-steady and airfoil apparent-mess coefficients afre,
given by (3-11), (3-13), (3-31) and (3-33), using (A-18) and (A-21),
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CL,(‘L\’ 2v%h, ‘-'—5:‘-9 ,

(4-22)
G- T B

(4-23)
The CFY)
Grolt) = -Te P

(4-24)

i o

(n)= 0,

(4-25)

4.3 Problem of Airfoil in Pitching Motion
A flat-plate airfoil moving in a pitching motion about an
axis a distance é&cC behind the leading edge may be described

by

U° 'c /_\ vg
L ]

Y, >~ _

Yixt)= oo [1-€O)F(¢), O<x4C,
(4-26)
vhere O,  4is the amplitude of the incidence angle and is

small consistent with the linearization. The Jet emerges from the air-
foil tangentially at the trailing edge. Like the plunging case, the



results of this problem for oscillatory motions are important in
the bdinary and tertiary flutter analyses.
The downwash on the airfoil is, by (2-1) and (4-26),

Wiy, £) = Uetle FI£) +do [1-€Q) Fil4), 02xec ,

(4-27)
The important airfoil-quasi-steady quantities in the basic equations

are, fram (2-51), (2-53), (2-54) and (2-87), using (A-9), (A-11),
(A-38), (A-39), (A-b2) and (A-H3), :
Ll k) > zv.d.(%)h{ﬁﬂ + [1— +[i~¢\é] i:}[é)} , o<x<c,
(4-28)

Wele )= Udo FIEI[I- (1Y + o F14) {[z-ec) -[x+(d-e)](Ef } ,

COXED funzg)

M) = TUskoC FIE) + Tdec*(3-e) Fitt),

(4-30)

w;lrt) = Vodls FLE) [’ - @%Y' - z')%'ﬂi-?:)“'-]

+o¢-F'l+)[(z~ec)-[1+l+¢)c](‘¥)‘ - %}J ¢4 xégo,

(4-31)



The basic equations are, again from (2-69) to (2-87),

ngizia = -U}c Cy w cexem,

(4-32)
and edther

wivd= - —&‘Yﬂ""”‘*“" + Vot 1~ (%814 FE8)

+ doffi- ec)- [+ th-e)c] (%)'“} File), cerew,

(4-33)

or

wtrd) = - ,,,f Eda) ”f‘,’;’ f s ot [1- (8% Smgu] P

+du{/pec)-[x~t [{-Q)CJL?&‘)”‘- f’[%;i) L} FRY,

CLredd
> (4-34)
with either ' ‘
WicH£) = Dodls F(£) +do(I-€) CF4E),

(4-35)

or V ‘

ad
1 [y ‘f(’:‘)d? _
iy 4 R1PEES G4 - o

(4-36)
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%
r?"_‘) Ja\dg = -Tr UstleC FlE) - 'ﬂdoC‘[}-g) Fi(e),
¢

(4-37)
The airfoil-quasi-steady and airfoil apparent-mass 1ift ‘
and pitching-moment coefficients are, by (3-11), (3-13), (3-31)
and (3-33), using (A-18), (A-21) and (A-23), '
= 0 e\ CF'd)
Ciolb) = 2meo FIE) +awoko (§-e) STEEN
(4-38)
Cutd)= T O | Mo (] o) SR
' (4-39)
Culd) = - T Fi) - Tha ({-e) <6

(4k-40)

. and

. el CFA
Cmihr= T SES

(babi1)

L.} Problem of Blown Flap in Unsteady Motion

Another practical jet-flap system which has been considered
is the so-called "blown flap,” or "jet-augmented flap." In this
configuration the airfoll has an ordinary trailing-edge flap, the Jet
emerging at the hinge point, following the flap, and leaving tangentially
at the trailing edge. This has been represented in the thin-airfoil
model as & bent flat plate with a jet emerging at the trailing edge.

Spence (1958) has discussed the physical considerations of such a
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model. Here the problem concerns the time-dependent motion of
the flap about its hinge point, which is located a distance EC
ahead of the trailing edge, i.e.,

85

U ° 0.‘)‘ c /——\_ x

Yireyz{ 0 , o<xr<(-ac
@.[m-(l-t)d Flt) , U~-B)cex<c,

(4-42)
Both the transient and oscillatory responses are of importance for )
this problem, the fomer because of the control use of the flap, the
latter because of its importance in the tertiary bending-torsion,

control-surface-rotation flutter characteristics.

Defining an angle y\ by
E= s},
(4-43)
the downwash on the airfoil is, from (2-1) and (4-42), ) i
whtiz) O , o<« ¢cc.4‘§.
Uspo F(6) +B.[2-caod ] FUE) | Canf 2 n<c,

(l=bk)
The airfoil-quasi-steady quantities in the basic equations are, - '

fram (2-51), (2-53), (2-54) and (2-87), using (A-36), (A-37), (A-40), (A-W1),

(a-8), and (a-10),



toi = 2hfx e+ Alﬁ{-’j%:ﬂ FeY

T I .,
tei5 F(G\,

ocxec,
(4-45)

‘%-{ [exaox ~c sinn - 1\"'—]@)""4‘[‘““}“ - "‘Mn

o e = etk [ o] - x 599 Fa

+ffair-carPlu [E b ] +[gren- g en-re)ruy

Ceyeom,

(4-48)

[o08) = Uspuc(x +5in X) FLH) + Bt [ fcon +smufa-an)]F14),

(4-47)
and

Wi (1d) = .U%r&{zuo[u.\i\(%)'h]-\(%}"- %} Fie)

+ 802 [2-cot §Jtui [l (23] - [k~ § (romnc o] (55

- %_'_~|\a-umo+8iu\lz-m\ﬂ} Fi(4) , CéXxceoo,
o ly-c) , ’

(4-48)



The basic equations are, from (2-69) to (2-87):
2
D ;L%ﬁ) — Q_%:ch ax&é’ C<xcoo

(k-49)
and either - .

wird)= -;',-,(“)"f( ﬂ&.“f + %{;ﬁ:&&@‘]-x@ﬁ"}ﬂ&)

(&

to 2 lr-co Wan [l (¥ M -[er - £ resox-sn)] (397} F10)

Cerco,
(k-50)
or - -

h
s - 4§ ] B ST gt

-2 SRR« ofarn- et it Tand(2Y]

i - § xemon- )] (1) & Dt s few) },_.,m ,

CeYdi0 ’

(4-51)



with either

urlee,t) = UsBe FIE) + foc st 3 F'H),

(4-52)

or

Cu> §(& m.ﬂd!
z-rc* ’

(4-53)

and

J‘(,-L) yist)ds = - Vo €33 53x) FH) - &z‘.[\a-am\)
+ sink (2-c00x) ] FUU4) (4-54)
Airfoil-quasi-steady and airfoil apparent-mass 1ift -

and pitching-moment coefficients are, from (3-11), (3-13), (3-31),
end (3-33), using (A-17), (A-aO) and (A-aa), ’ "

CLolt)= 2. (X35 RIF) + 8 [X (1-a) 4300 X 1) ] £525 )

(4-55)
CL. )= % [R‘S‘“KWK) CFL{Q *‘%E&%"* %‘& 8 !M\] C‘F"'ﬁl
| (1-5)
Cmold) ==& (xtxen) F14) - § [—s_zx,,g%; Punadx ] CHM

(4-57)
and ; .

Con,16)= Bz SR G 180 [ - S flownn - #0e?n ) SEE

(k-58)



If the limit E-o yor X>© s is taken
in this problem, the equations reduce to the pure jet-deflection
equations of 8ection 4.1, provided care is taken at the trailing edge
to preserve the jet-deflection angle in the limit of vanishing flap
chord. Also, in the limit E-=! , or X —= T , the equations
reduce to those of an airfail in pitching motion about its leading

edge, i.e., the limit of € -0 in the equations of Section 4.3.

4.5 Problem of Airfoil Entering Sharp-Biged Gust
As seen from equation (2-15), there are many possibilities

of gust configurations which might be considered. The fundamental
transient gust problem which has been cousidered in the literature is
that of a sharp-edged gust of constant upwash amplitude moving

over a flat plate airfoil with relative speed Uﬂ/ )N ) 1.e.,

Wiatd = - W 1('&" %\,

(k-59)
For A=) , this is the well-known Kiissner (1936) problem, of.
von Kérmén and Sears (1938). Miles (1956) generalized it for all
positive and negative&alués of A , positive values
corresponding to gusts proceeding over the airfoil from the leading
edge to the tralling edge, and negative values to gusts overtaking
the airfoil from behind. The corresponding oscillatoxry problem
is defined by ”

Wirtls ~We

iw(4- XF)

(4-60)
This is the Sears (1941) problem of a sinusaldal gust of constant

samplitude if A=l , and was extended by Kemp (1952) for & generul,
complex A\ . '
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For the jet-flapped airfoil, the presence of the jet
extending to infinity dowvmstream, along with the assumption, implicit
in Bection 2.3, that the disturbances of the Jet must die out at
infinity downstream indicate +that the transient, sharp-edged gust
moving over a flat plate airfoil with tangential Jet from the
leading edge towards infinity downstream, A>O ; is a
reasonable problem to treat.

The downwash distribution of the gust, (&59), implies that
the basic downwash equations for the system, (2-19), rewritten to
express the additional downwash which must be induced by the vortex

distribution to cancel (4-59) must be
i N . [

wied) +w LH- 3% =—z—{,§!_’;§%’ , 0cyce,
[

(4-61)
where W/y,b6) is still given by (2-1). The inversion of ‘ )
Section 2.3 again holds for this equation, so the alrfoil-quasi-steady
expressions may again be calculated in the usual fashion, replacing

wivd) v WAL-BE) in (2-51), (2-53),
(2-54) and (2-87) and using (A-7), (A-34) and (A-35), giving

1’__ W w3 h*(%)h
¥ i

X.l'l,{:) = 4 . o<x<cc ,

o (L), Heeen

(k-62)

+ 2 (AP {48f] octit
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cerew |,

{*# e[ (571 - 9 (5P ] et g
welyrt) =

umha=4

a[i- (46 %) | 2 o iem

(k-63)
"
r chfw'ﬂ%ﬁ)‘] - [oet l):.-u‘{)] } octelf
W -2¢ 783
i mwe 1TH-25) kb,
(4-64)

(S T T]- 9 0P I el o 521
SIE -~ RS

Ceyecow,

W[ ] AR, Keeo,

(4-65)

MemMnmulwmumaumtMmuumtm1muu&

results of Bection 2.3 with (4-59), and (2-69) to (2-87),



and either

Wiy t) =~

wirtd)= 1

L

B e 2550, coxee,

(4-66)

r L et l.ﬂ m&)u . 2R f0 [%)"[%)’-]
W) e | oetes

Cexe oo,

- AL flE) e sD-eprlanc)

-wdl-4E), Aoico

(4-67)

H% vkt | o8 o[t 0]
Iy Ty R (11T Y

{

Cexcm,

- ] 4708 S
-Wiu'%)’ ba%‘cé"o

(4-68)



wvith either
or
and
g
}1
g-c

4

wic+, )= 0
(k-69)

1_.,“7"(‘1- 7 § ('_‘ mwt

(4-70)

[ we o [Le- LQ.k)j‘;lck-uoe)"'}‘ ocledf

813,{')33 =+

I ..aniﬂ-%‘-.) . %44,‘@ .

(4-11)

The airfoil-quasi-steady and alrfoil apparent-mass lift and

pitching-moment coefficients are, calculated in the same fashion as
(4-62) to (4-65), from (3—11), (3—13), (3-31) and (3-33), using (A—16)

and (A—19)

Ce, (£) =+

Ce, (H)= 4

K [b.mcc-u.e\]"’J Y

o] Lo i

)D‘-:A tecow ,

(4-72)

o K -a 45‘” ?
(4=73)



Cmo(6) =4

Cm, )= 1

3

L

- E& ) %‘é‘a‘
(4-T4)

"
[ Rhaukolbicbd]™ | e

Ve BC* ’

0, Zu%ctt-w.

(4-75)
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CHAFTER 5 - LIMITING THEORIES OF THE UMSTEADY JET-FLAP THEORY

5.1  Reduction of the Equations to the Classical Uns =Alrfodl

The classical theory of the unsteady motion of thin airfoils
without Jets is contained in the above formulation. To recover the
fundamental equations of that theory it 1s sufficient to set C3z0
formally, proﬁded certain remarks about the equations are made. The
vortex distribution behind the airfodl, &/%,&) y Cetie
and the dowmwash behind the airfoil, wrix,¢) , C4%xzw,
are convenient functions to treat.

As discussed in 8ection 2.7, the jet effects appear
explicitly only in the dynmic Jet41ntgraction equations (2-69)
to (2-72). All the equations derived from the inversion of the
kinematic downwash equations, (2-19), do not change if Cyso ,
provided the 1/Bquare-root singulai-it'yI at the trailing edge is
understood to be excluded by the Kutta condition. Therefore (2-73)
and (2-88) remain the same. In the absence of the jet, it is no
longér poéaible to prescribe fhe slope of the Jet deflection at the
trailing edge. Hence, at the trailing edée the downwvash is always
continuous, (2-57). The circulation in the system is constant by
the argument.of Béction 2.6 using Kelvin's Theorem, so the Wagner
integral condition, (2-68), which faollows from a kinematic equatiom,
remains the same. 'I'herefbre the only equation which formally cheg es
is the jet-interaction equation, (2-71), say. The pressure
difference across the 4 - axis berind the airfoil is proportional

to C3 , so in the absence of the jet,
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.D..A"&-'-*—)goJ CcHY LSO,
(5-1)

This equation is a statement of Helmholtz' Theorem for the comservation

of vorticity of a fluid particle convecting with the stream, cf. Sears
(1954). Equation (2-69) becomes, when (CyzO  , using (2-7),
(2-45) end (2-49), |

8/1,ES= --‘J‘ d{éﬂ 'é.gl_{;’"“‘“‘ cexem,

(5-2)
and, in particular for L=<+ ,
weet= - 4,438

(5-3)
A clear picture of the physical nature of the problem can

be seen fram (5-1) and (5-3). As the circulation around the airfoil
changes with time; vorticit& is shed off the trailing edge in equal
and opposite amdunts according to (5-3). This vorticity then convects
with the free stream, its strength remaining constant by (5-1).
Solution of the problem has become considerably simplified

by the disappearance of the downwash from (5-1), because .it can

be solved immediately for the vortex distribution, without simultaneously

solving for the downwash. According to Chapter II of Webster (1955),
the solution of the first-order, homogeneous, partial differential
equation, (5-1), is that the vortex distribution must be s function

of the characteristic variable < - !'6‘:- » namely,



k)= ¥l4- %\. Cene,

(5-4)
The functional form of Yh- 5E) 18 then determined by
considering the Wagner integral condition, (2-82), as an integral
equation for § ’ —
€@
f(,.gj’m- $\d¢=- 110,
c
(5-5)

This is the problem considered by von KArmén and Sears (1938), and
many others, although the equations were derived there in a more
physically direct manner.

Once the vortex distribution in the wake behind the
airfoil is known, the downwash behind the airfoll, (2-73), the
vortex distribution on the airfoil, (2-88), and the other properties
of the airfoil and wake may be found. The 1ift and pitching moment
coefficients may be calculated fram (3-20) and (3-37) as discussed
in Chapter 3. ' ) ) -

A sharp contrast may be drawn now between the classical
problem and the jet-flap problem. Classically the vortex strength
in the wake behind the airfoil depends, cf. (5-1) and (5-3), on the
history of the circulation around the airroii, oi' as e:ipreised
through the Wagner integral equation (5-5), on the airfoil-quasi-
steady circulation. Thus ()  ~ 1s the important input
to the problem, the actual distribution of downwash on the airfcdl
having been integrated. Many different chordwise downwash distributions
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would give the same vortex distributionm in the wake if they led
to P.(&) of the same time depandence. In the jet-flap problem
the vortex distribution representing the jet depends not ouly on the
history of the circulation around the airfoil, but also on the details
of the downwash distribution at every point of the jet, through the
dynamic coupling expressed by (2-69) to (2-72).

5.2 Properties of the Classical Transient Solutions

The two types of transient problems are those in which
the motion of the airfoil is initiated at 'E =0 » in accordance
with (2-14) and (2-16), and those in which the leading edge of the
airfoil enters a gust at € %0 , in accordance with (2-15) and
(2-16). In these linearized problems the shed vortex wake behind
the Q:irfon grows in length with rate ()  after initiation of
motion, so, at any time, & , it extends downstream to L =C+Ust
The fundamental equation to be solved, then, is the Wagner integral

equation, (5-5), written as
cHUgt

f(_’%"m- ) ¢« - T
© ' (5-6)
For airfoil motion, the fundamental problem is the so-ca.]'.led"
Wegner (1925) problem, where the airfoil-quasi-steady circulation has
step function t:l.me‘ dependence,

ﬂlé\r Vec 1@ .

(5-7)
Once the solution of this problem has been found, solutions for other

transient [o(8) may be found by Dubsmel superposition. The



application of the Wagner prcblem te actusal airfolil motions of the
types considered in Sections 4.2 to 4.4 has been misunderstood at

times in the literature. mfenme' to the particular problems of

the above Sections will clarify this assertion. For an airfoll in

plunging motion with Flé)= Qaé 1K) , i.e., plunging at o

constant speed, (4-14) gives

[AitY= Thbec i),
' (5-8)
a direct application of the Wagner problem. On the other hand,
for an airfoll in pitching motion with  F(&)= 1) | 1 e., the
airfoil being snapped up instantaneously to an angle of incidence,
(4-30) gives

M) = woholec 1U) +Teo? (3 -€) S1Y),

(5-9)
vhere the Dirac delta function, Sl , is
. diw
i &=
and has the properties that
S’“,).-.Q'L#O (5-10)

but such that

fsu\de .« 1

It is important to recognize that the §) tem must not be
neglected, as it is, for instance, by Robinson and Laurmann (1956)
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on p. 505. Physically this temm represents the limit of the motiom,
vhich, although occurring in & vanishingly small time interval, occurs
at such a rapid rate that the result is a finite rotation throuah
the angle d, . Considering thls term as such a limit, it
is clear that it will have an important effect, particularly for
small times. Therefore, only for an airfoll pivoted about the
three-quarter chord paint, €= 34 , is the Wagner problem
directly applicable to the airfoil snapped to angle of incidence.
Likewise, the tralling-edge flap snapped to an angle of deflection
vith Fit) = 4.(¢) | gives an airfoil-quasi-steady circulation,
(4-47), which contains both 4 () ama S

AR Uspic [xgsmn) 110 + 13‘_""_‘—3'[\(:-2.“.\) +5im \L:.-fu\)] §i4),

(5-11)
The fundamental gust problem, that of & sharp-edged )
gust of constant amplitude W  moving with a speed  Uo/\
relative to the alrfoll, A>O , is formulated in Section 4.5.
" The airfoil-quasi-steady circulation is, from (4-64),

zic{w-‘ﬂ\lffﬂ - L‘l‘*_t;.‘z_u‘i‘).:jh} Jocboc
rcl'ﬂ b
awc 4(t- &), ¢« et s oo,
(5-12)
Sharp-edged gusts overtaking the airfoil from behind, XZeo ,
can also be treated, cf. Miles (1956), but cannot be extended

readily to the jet-flap case and will not be treatedhere.



A method of solution, valid for all trensient [(t),
will now be outlined and certain results noted. Upon the
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transformation
. o SN
t =T,
(5-13) -
(5-6) becomes
t ,
e-z+%.)" nodts - L,
-T
(5-1%)

In a similar fashion the 1ift coefficient due to the wake, CL,H;) s

is, from (3-21),

t
N R {454
CL,[Q - u’.ﬂé-t)lé‘t" &)]h .
(5-15)
and finally, from (2-67), (2-68), (2-7) and (5-13),
IXtﬂdt c-Lrw

(5-16)
Sears (1940) cbserved that the integrals in (5-14) to (5-16) are '
of the convolution type, and used Laplace transforms as & convenient °
technique for treating them. Defining the Laplace transform of a

function by
o0

F(p =‘.:J‘e,"’t Flodt , Rp=o,

°
(5-17)



P R e

A method of solution, valid for all transient F.l&) ’
will now be outlined and certain results noted. Upon the
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transformation
)
t- o = T,
(5-13)
(5-6) becomes
t “
bzt &.) nodt= - 4.
(5-14)

In a similar fashion the 1ift coefficient due to the wake, (i, (¢) ,

is, from (3-21),
. t

_ 4| ximde
N R A [ T
(5-15)
and finally, from (2'67): (2-&), (2‘7) and (5‘13)1 '
Ixmdz e-4 MW

, (5-16)
Sears (1940) observed that the integrals in (5-14) to (5-16) are '
of the convolution type, and used Laplace transforms as a convenient °
technique for treating them. Defining the Laplace transform of a

function by
o0

Fp) -:J‘e"*m)de , Rip) =0,

°
(5-17)
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Sears (1940) showed that

2D Ap
i(g) +k(8) |

Tp = -

(5-18)

C.ﬁ F o(P)
F [+ kg

() =

(5-19)

and

C—LJP\’ _2 K.(;mf'.tp)

0sc r ) +KE, )],

(5-20)
vhere  Kof %eo) and K, (%5.) are the Modified Bessel & _
Functions of the S8econd Kind. From the definition of the
airfoil-quasi-steady 1ift coefficient, (3-11), and using the
airfoll apperent-mass lift coefficient ;pproi)ria.te to the particular
motion considered, (3-13), the lift coefficient, (3-20), is upon

transformation,

(P + 2 K\(ﬁo)mﬁ
“P 0 Py engy)

En.(f) =

(5-21)
For the Wagner problem, (%=T), ' _

(5-22)
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and the well-known results emerge. Upon inversion of the laplace
trensforms, for instance, the small- and large-time 1ift limits are
Gl _ e Culd) 1A + ol
b 8= e, B8 410000,
(5-23)
- . .
y QLli) ) Cl—l lé) - +
‘%‘7'..9 Gl }é'i"u""c..?;) AT ).
(5-24)
It is of interest to note in the application of (5-23) to )
the plunging case that the 1ift coefficient a8 L w0+  is,
using (4-23),
. Cult) - 4 . d
l::“ T = & S + 4 1(6) + ol¥)

(5-25)
Therefore, for small time, airfoil apparent-mass 1ift is dominant.
This follows for all types of airfail motion, since  [o () ,
and hence (g, (4) and CLL(&] have, for small time, the
same time dependence as the airfoil dowawash, cf. (5-20) and (3-11),
wnile ([ has time dependence like the time derivative of the
alrfoil downwesh, cf. (3-13). That 1s, (i, [0 ad (18
are, for small time, proportional to the velocity of the airfail,
vitle G, (¢) is propértionel to its scceleratica.

In view of the nature of the jet-flap equations, same of

the local properties of the flow are of interest. From (5-18) and
(5-22), it can be shown that, upon taking the inverse Laplace %mrom,
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¥lt- %) - - Gplarmmy) -5 ¢ ot - % et
(5-26)
This 1/Bquare-root singularity in the vortex distribution at

the trailing edge of the wake vortex sheet is the mathematical
representation of the "starting vortex" cbserved by Prandtl in his
striking pictures of these flows, cf. Prandtl and Tietjens (193%).

The downwash behind the airfoil can be calculated fram (2-73) or (2-85),
in principle, once ¥ (¢- ‘—"w‘) bas been found. Hobbs (1957)

made such calculations in order to estimate the loading on the

tail of an aircraft whose wing is flying through a gust field.

Without details of the calculations, Hobbs gave curves for the

Wegner problem which indicate that the downwash 1s finite as

2+ C+Uet- on the wake vortex sheet, has a square-
root singularity as X =+ C+Ust + off the sheet, and then
dtes off at infinity like 1/4* . In analogy with the Behavior

of the dowmwash induced by the singularity of the vortex distributions
near the leading edge of a flat-plate airfoil, this behavior at

o= C+Uot 16 consistent with (5-26).

As t+0 , the end of the shedvortex sheet moves

in towards the trailing edge. Also, inversion of (5-19) with (5-&)
shows that D) ~ th as +=+0 . Inthe
absence of circulstion around the alrfoil, there must be flow arcund
the trailing edge in the first instant, &= 0+ , after
initiation of the Mim, in order to satisfy the downwash boundary
condition on the airfoil. Presence of the Jet for Cy >0 .,
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vith the requirement that it always remain tangential to the trailing
edge of the airfoil, (2-57), will therefore greatly modify the flow
pattern near X s C+Uot by preventing flow around the
trailing edge in the firast insteant, and thus for all later time.

If the response to [J [é)= -&“&) is desired in
order to treat the problems of ean airfoll snapped up to 1n§1dence
and the impulsive deflection of a trailing-edge flap, (5-9) and (5-11),

ﬁlp) = & may be substituted formally into (5-18) to
(5-21). Hov;ever, consideration of f[p) for this input indicates
that, for | A ’ slp) ~ p'/" . Inversion
of this transform cannot be carried out because it is too singular,
corresponding, as seen by differentiation of (5-26), to ¥I(<T) A-t"h'
for small T . This implies . that although |b(p)= %;
can be substituted formally into (5-18) to (5-21), the integrals
(5-1%) to (5-16) and these transforms fall to exist. Therefore the
cases involving [1(£)~ §(&)  are too singular to permit a
solution. However, the step-function inputs are themselves idealiza~
tions of physically realiza.ple inputs, so these physical inputs can
be treated by direct application of the results (5-18) to (5-21)
with their f-‘;[p) V

For the sharp-edged gust problem, as defined by (5-12),

the transform of [ () may be found to be, cf. Sears (194%0),

or Miles (1956),

Rip = Lie e-ﬁ{m ) - 1,(%5)} >

(5-27)
vhere  T,(3%) aa  I,(3F) are the Modified
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Bessel Punctions of the FPirst Kind. Substitution of (5-27) into
(5-18) to (5-21) gives among its results the fascinating one
noticed by Sears (1940) that, for the Kiissner problem, A<=l ,

- - |
Cupd= ‘%FW‘ e ﬁ',.[m%) +K(g)] ,

(5-28)
which has the same dependence as ﬂ(r\ for the Wagner
problem, using (5-19) and (5-22). The 1lift coefficient for an
airfoil flying through a stationary gust depends on €  in the
same fashion as the circulation in the Wagner problem.

The vortex distribution at the trailing edge of the shed

vortex sheet is, upon inversion of (5-18) with (5-27),

§IL-%E) = -%& [t- GE) 1 U-5E) +o (4-%5) , - %tocy,
o (5-29)

vanishing as L= C+Uot- = on the sheet, hence
coutinuous at 2=C+lot . Hobbs (1957) also
gave curves of downwash for the gust case with several }.>o .
He found that, consistent with the continuity in the vortex
strength at the end of the shed vortex sheet, the downwash is
continuous there. However a discontinuity in dowiwash appears
st A= cHU(4- 35 , vhich 1s the paint in the wake
corresponding to the arrival of the gust at the trailing edge of the
airfoil. By the arguments of p.33, this discontinuity in downwash
implies a logarithmic singularity in the vortex distribution at
that point. That the discontinuity arises at this point rether than
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at 4 =c+Uet , which corresponds to the arrival of the gust
at the leading edge of the airfoil, can be seen by considering

L) 5 (5-12) . This function of time is continuous
and has a continuous slope at {;éo » but is continuous with
a discontinuous slope st €= 2‘7‘—; , the discontinuity in

slope leading to the downwash discontinuity.

The presence of the jet for C3 >0 in this problem
will modify the flow pattern near A =C+le (&- %) » since the
Jet is required to remain tangential to the airfoll at the tralling
edge, (4-69), preventing a velocity discontinuity vhen the gust

arrives thei'e.

5.3 Properties of the Classical Solutions for Steady-State Oscillations

The appropriate functions of time for steady-state
oscillations of airfolls have been discussed in S8ection 2.2 Airfoils
in infinite sinusocidal gusts have been tré;ted by Sears (1941) and
Kemp (1952), but will be amitted her:. For oscillations beginning
at t&=-® , the shed vortex wake behind the airfoll will
be infinite in length at the finite times under consideration.

The fundamental problem for airfoil motion is the Theodorsen
(1934) problem, in which the airfoil-quasi-steady circulation is
exponéntial in time; 1i.e.,

M&Ys Uec e™*, Stwso,

(5-30)
80 the governing Wegner integral equation 1is '
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o
Yo iwt
c (5-31)

This problem was shown by Sears (1940) to be related to the Wagner
problem of Section 5.2 in the fashion typical of linear systems;
i.e., the steady-state response to an exponential input like (5-30)
is found from the Laplace transform of tie unit-step-function
respouse by replacing the trensform variable p by [(fw)
and multiplying the response by (iw)e“’i . Itisof
certain interest to go through the salution in the manner of von KArmén
and Sears (1938). The application of the Theodoresen problem to the
adrfoll motions conmidered fn Chapter 4 presents no difficulties of
the type encountered in the Wagner problem. Considering the airfoil
in plunging moticn, for Fiiz e, Mo 1

M) - ivhecrwe™?

(5-32)
and is a direct application of the Theodorsen problem. The airfoil

oscillating in pitch and the airfoil with oscillating trailing-edge
flap, both with Flt)= e“"" are also direct applications
of the Theodorsen problem, since, from (4-30) and (4-47),

¢
N = TUec e viracw (3-e) e’ s

(5-33)
md - -
i t
AHCE Uspsc (\fs..‘..\) c"“-q- 3 ,&%"_‘ [\a-:m\\ +w\{uu-\\]c“,
(5-34)
respectively. ) -
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For steady-state oscillations, all the functions have

wt

time dependence a/ € » therefore

wit- %)

YI-ES) = e

(5-35)
and the Wagner integral equatiom, (5-30) , becames

;M (,_cshe Jgi U , Dlan so,

(5-36)

The integral in (5-36) exists for D{w) <o , but for pure
oscillations, J(w)=20 , the integral is finitely oscillatory.
A camon approach to this, cf., Robinson and Laurmann (1956), has
been to solve the problem for  QJ(w)c o and then argue by
analytic continuation that the result is valid for Jlwlzo ,
too. von KArmAn and Sears (1938) treated this in another way. They
considered as the basic equation"not the Wagner integral equation,
. (5-5), but the equation (5-3), fram vhich (5-5) can be derived if

Adleo, 4) vanishes. 's‘lbstituti;g ] %‘E ot (2-67)
into (5-3), and ueing (5-30) and (5-35) gives '

S’lw\{n ‘ﬂ‘(& - | 'ng)dg} *» - iwe

(5-37)
The integral on the lefthand side of this exists for Ylwle¢o .
To evaluate that integral, von Kirmén and Sears (1938) used the
integral representation of the Modified Bessel Function of the
Becmdnnd, cf. Jahnke and Ende (1%5), wvith identically equal
1ntegre.ls added snd subtracted, i.e.,
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l" £ J‘ --wl'*ﬂ

Ko(48) = j‘w “_% df + -—G—Jé Siw)s o,

(5-38)
Differentiating this with respect to iWcfy, , and using the

identity

Kcllg\ = - Kc(&)’

(5-39)

the integral in (5-37) can be evaluated to give
~Swec
o) = -3 we &m‘rl%\) Ywseo,
(5-40)
vhere
?.Uo
(w)
flﬂtb jwe no“ﬁ;‘ *Kol%’)] & 40,

(5-k1)
is the Sears Function, and was tabulated by Kemp (1952). The
circulation, also fram (2-67), is .

P = voc e ’%‘)5‘ (¥6), Siwso.
(5-42)

The circulatory 1ift coefficient may be calculated from (3-20),

using (5-35), there being no difficulties with convergence, giving
wt
Coold)+ Gy &) = 2 CL25) ™, Y(w) 50,

(5-43)
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vhere

)+ L)

Wwso,

(5-44)
is the Theodorsen nmct:lon, tabulated in detail by Luke and Dengler
(1951).

. Of particular interest for the jet-flap analysis is the
shed vortex distribution in the wake, given by (5-35) and (5-40),

i.e.,

swié- Ef)

¥t = -we S(¥)e S so,

(5-45)
which has the above-mentioned oscillatory properties at infinity if
Siwy=0 . The downwash behind an airfoil perfoming
steady-state,purely oscillatory, 9(w)=o » plunging motion
was calculated by Lapin, Crookshanks and Hunter (1952). Their

results were

b ) cyh
WIl.t\s iwcL.c {' - (E—_C)I [-_n-‘l—g)-;:ﬁ——jm] (‘E.

Rl NV 4-51,"*111)"1
[be (3856w e, 25

"ﬁ b- ) 2oy | T e wiv§)
I_z.tss?m-a,t)] T§ He rﬁﬁ\ ] ot

(5-46)

where 6
He'le.4) = %f&liﬂ Sariy

(5-47)
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is a function defined, discussed and tabulated by Schwarz (1943).

A fev limiting cases of (5-46), for wvhich simple expressions msy be
found, were given in their paper. For (U-»o , (5-46)

reduces to the airfoll-quasi-stesdy downwesh distribution, Wel1,é)
of (k-13) . In the limit of W= ,

i (g]"‘(%\hg'%*"u +olw) , Lrc+¥y

wivt) ~ 1

| - [i. %(“;“-&) e_.g% + o(w)] lz-c)"‘ + olz-c)", 1l C !3.

(5-48)
The latter expression of (5-48), although not given by them, may A
be found using equation (30%) of Schwarz (1943). Away from the

trailing edge, the dmmwﬁsh.increases like wfs as
W . Finally, for arbitrary W » but

L —~e » Lapin, Crookshanks and Hunter (1952)
gave - they have neglected a minus sign - ‘

swit- EE)
Tt'lo we e ®
U > 00

AE hlwy) '

wiy &) ~

(5-49)
This result may be shown to be the downwash induced at a point due |
to a dqubly infinite distribution of vortices of strength

sulé- E)

amihotic €

Kigg) vE(58)

x"'at‘ - =

~®<ygaco

(5-50)
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This is the vortex distribution shed by an airfoil in plunging
oscillations as seen by application of (5-45) to this case,
using (5-32). The dowvnwash and vortex distributions in the wake
oscillate both in space and time far downstream. For Y Wico ,
these results damp to zero as Lo , and it is also
clear to see from these results wiy ) (w)>0  must be

excluded from consideration.

5.4 Reduction of the Eguations to the Steady Jet-Flap Theory

The steady Jet-flap theory is also includéd in the
above formulation. It wiil be the limiting solution of the equatiomns
for L +e0  in the transient case if, lé:“ Fley=1
For steady oscillations, it is the limiting solution as W +©
Formally, however, the steady equations can be recovered simply by

setting
2 - )
3'& - O.
F&) =) )
- (5-51)
and Ft)zo, | -

Using (2-1) and (2-7), these reduce (2-69), (2-73), (2-78) and (2-79),

for examplé, to 'i;he ;et

Sx) = -%w‘ln , C<Xa® |
(5-52)
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md [ ]
‘h
wiy)= “ilﬁ(!%c) %!‘cy.yi!g-‘! + Welw) , Cexcom,
(4
(5-53)
vith either .
Wice) = Wolc)+Uo T
(5-54)
or ) .
¥ ¥
* Yis)de
%(}E igc) —ﬁ = ‘ZUoto.
~olt <

(5-55).
The assumptioms (5-51) imply that &+  much faster than
A->ow , therefore the circulation in the system 1s no longer
zero, and equations (2-81) to (2-83) and (2-85) to '(2—88) are not
valid. Likewise the 1ift and pitching-moment coefficients are not
given by (3-38) and (3-39). The 1ift coefficient, using (5-5)
in (3-10), (3-11) and (3-13), and using (5-52) in the integral over

5 ‘becames

o
‘h

Co=C, -%[}J w1)ds.

l

c .

(5-56)
The pitching-moment coefficient in similar fashion reduces from - ‘

(3-29) to
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Cns Ca, +C, -(4+0)CL

- [Nl s ey

(5-5T)
Eliminating &i%) between (5-52) and (5-53), the single
equation treated by Spence in I and II

th “9yat
iy = wniny + S (55 f af wadt  coxce,

(5-58)

with either

Wict) = Wele) +UeTe |

(5-59)

or

o ]
: o wid¥ _ queTe
’é:“. ?’LT(T) f ?f__cj _ﬁ‘ CCy ’

(5-60)

is found. ’ '

In I, Spence assumed in the Jet-deflection problem

(Section 4.1 above) that
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urn = 2 fa -] d [ - ]}

[ -]
6 .
T U

(5-61)
where ’

L= 5
23 .

(5-62)
The first tem was introduced to satisfy (5-60), the series being ‘
regular at 4 wC . Having substituted this expression into
(5-58), the resulting equation was approximately salved by a collocation
scheme, i.e., the first N coefficients, An , were found
by satisfylng the equation exactly at N points. This approximation
converged rapidly, and detailed results for N=9 were found.
Spence also solved, in I, the incidence problem (8ection 4.3 above
with assumptions (5-51)) in the same fashion, having assumed

”- .
wi) = - Hade > T[rcngand +#ntin guinnd]

(5-63) -
Finally, Spence (1958) sclved the jJet-augmented-flap problem

(Section 4.k above with assumptions (5-51)) by collocation, where

D .
Wiy = - ﬂg&.i;%;[zu.gmné +4n5ing G ué].

(5-64)
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Later, in II, Bpence solved (5-58) to (5-60) analytically,
in the jet-deflection and incidence problems, for /'u.t-l ,
vhere

Cx
4 .

/L

(5-65)
This was done by transforming the downwash distribution by

wiv) = UoTo[§) e %) + W14 2 (B4 £ 2]

(5-66)
A detailed discussion of this transformation and its implications

will be made in Section 6.1 for the full equations of the unsteady
problem. It suffices here to say that substitution of (5-66) into

(5-58), with Wo (v) given by (4-29) funder the assumptions
(5;51)), led to an iterative expansion of '-cr('y.') and C, [+)

of thé ' forms

Fott) = fotx) +ufitx) + yom (P R
+/‘“[Fs”") - "1%!7{:14‘) Rm] +op),
(5-67)

and

Folv)= [1+ 4 (D + 2)] Fute) - “}‘/f.ls\d! +ofp),

(5-68)
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vhere ¥ is Euler's constant. Equations for the functions
L) £ilx) ) £ lv) and )
were found to be

,.L Ll =0 , ot%"v}

Folﬂ = 's
' (5-69)
l’l ’
L Giy) =~ z'l‘l'{(%) %" O0<Ly'c @
filo) =0, (5-70)
L&) - 2%, ocrce }
F‘,IG)’Q'
(5-71)
! , - Gols'
L&, lx) = -af(%-)“ ﬂ’%%&%g, 6 < Kcw
Eiloy=o0,
(5-72)

where

g-n

©
L Fe) s flo) - #ﬂ%’,)*a £UsIde

(5-73)
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These equations were then sclved by a Mellin-Transform procedure,

a technique to be discussed in Section 6.2. The lift coefficients
found fram this solution agreed very well with the numerical

solution of I, even up to /L=’ .



CHAPTER 6 - "BOUNDARY-LAYER" NATURE OF THE PROELEM: TRANSFORMATION
OF THE EQUATIONS TO “BOUNDARY-LAYER'COORDINATES

There are many problems in applied mechanics which may
be typified as "boundary-layer" problems. The name ariszs from
the mathematical similarity of these problems to Prandtl's (1904)
“grenzschicht," or, as it has been translated, "boundary-layer,"
in the flow of viscous fluids around bodies. Properties and
examples of "boundary-layer" problems have been discussed by
Carrier (1953), Friedrichs (1955), and others.

Carrier (1953) states three requisite criteria for
consideration of a problem as of "boundarylayer" type. First,
the coefficient of the highest-order derivative appearing in the
equations of the problem should be very small compared to O(I)
S8econd, the other important tems in the equations should have
coefficients of OfI) . Finally, the domain of the prcblem
in the coordinate system chosen must be characterized by lengths
of O)

Spence first realized in II that the equations for a
jet-flapped airofil in steady motion were of "boundary-layer" type,
provided the jet momentum coefficient, C;— , was sufficiently
small. In most practical applications proposed for the Jet-flap
the required (g are within the limits of the restriction.
Spence then made the transformation to "boundary-layer" coordinates -
equation (5-66) of Section 5.4 - and solved the steady problem within

that framework. For the unsteady problem, Spence made a similar

120
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approach in III. It is important to discuss the unsteady problem
in detail with respect to Carrier's criteria in order to determine
the validity of this approach.
= First, the highest-order derivative appearing in the
problem is always on the right-hend side of the particular dynamic
interaction equation, (2-69)-(2-72), used. This derivative is
miltiplied by M, (5-65), so if ,~=om the
highest-order derivative is o(l) . As mentioned in Bectiom 2.7
this is the only explicit appearance of /A. in the equations
of the problem, hence Carrier's second criterion is also met.
Consldering the problem in the form of the single equation
in  X/vt) or Adivr,t) » (2-90)=(2-93), these criteria
are again seen to be met. Therefore these two criteria apply in
the unsteady problem exactly as in the steady one.

The characteristic-length considerations of the damain in
the unsteady problem are scmewhat different fram those of the steady
one. In the steady problem, Spence's numerical solution in I
clearly indicated that the downwash and vortex distributions die
off rapidly within a few chord lengths behind the airfoil. Thus
the chord length, C , is a significant characteristic length.
In the discussion of the classical unsteady transient solutions
in Bection 5.2, however, discontinuities in the downwash
distributions and the associated singularities in the shed vortex
distributions were .oted. In particular, Ust  end Up{{-3%)
are significant lengths for airfoil motion and gust penetration,
respectively, in addition to the airfoil chord, € .

S8imilarly, equation (5-45) indicates that for steady oscillations
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U
the wave length, %IT s of the shed vortex distribution
is an important length. Therefore, for times, y.‘éi’ , of

O(l)  or smaller in the transient case, or for frequencies,

_‘_é’_% » of o) or larger in the oscillating case,
2ATVe
the airfoil chord, C » 1s again a sufficient characteristic
M 2.1l
length since Ut , Uol¢ %B) and .
are of the same order as ¢ . Purthermore, (2-100) and (2-102) show

that the downwash and vortex distributions die off at infinity even
more rapidly than for the steady case, for 2> Vot . For
times so large, or frequencies so small, that Uot , Uo (&~ %) s
and %’g—" are much greater than » & "boundary-
layer" based on C alone is inadequate, since important effects
would be well outside the layer. Spence, in III, treated the
region near /4 = C+Uot as of primary importance for large
times in the transient case, along with the region near the trailing
edge.

Rea.liziné the time or frequency limitations just discussed,
the appropriate transformation of the coordinates for small /b

is, following III,
r= (1 +/u1.') ,

(6-1)

(6-2)

(6-3)
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The leading edge',. 130 , transforms to %% - }.". ’

so for vanishing /J- » the airfoll becomes semi-infinite in
length. n conjunction with the coordinate treansformation, it is
convenient to follow Spence's procedure of II and III and transform

the dependent var:la.bies representing the Jet by

APhd) = o 20.CA (%)*Fh',&’) ’

(6-4)
c\Va |
Yied = 20 () gime),
(6-5)
Yia = Biay) +pe (G hie),
(6-6)
and .
‘h
wiry= -.LB.-.{-"L—-'*) + UsA [‘2‘_) k/x‘,&.’\ .
(6-7)
The time dependence transforms by .
Fib)y = Fie),
(6-8)
Determination of the non-dimensional constant A , and the '
function  Blx,s) will be discussed after transformation

of the equations.
The equations relating downwash and jet ardinate, (2-1),

and potential difference and vortex distribution, (2-7), transform to
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' ohi¥d) hixt)
Riz,g)= =3¢~ + —+' VT allgny)
(6-9)
and

# flid)

amers B0 B
(6-10)
Trnasforming the various fomms of the equations of the Jet,-

main-gtream dynamic interaction, (2-69) to (2-72), gives

AFLY) aczg,p _thivd) | J_ Shire)_ ;2 3hiy)
ot M= /u aln;uw v "7‘1- 3 40741-')‘
o0c ¥« 0,
(6-11)

SR |, ), FENAD_ bl 3
2“—"' +2 Sy >y* /u 1-9“%‘ [ ay-"

BF/ &) - P Rix ki) a ,t) ,
/“4u*/*1¢)‘ - "L"& /“1/7- oK /‘ 4/:/414) bepsw,

(6-12)

gly & » Phivt) . 3 P
29I , 2 Ix;: ),/u%/x!z __!i.f un/w_i%p

FY%
}blxt’) 3 lsgllx',t') /
/z‘myﬂ en}uv’) p LKL,
(6-13)

and
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%)“%) + 248 - p 09«:'[‘4%&)* J mz

Shix ¢ Phix kMY L 3 IShhE)
l-h—-"-r +#“'7‘¢) 99.;:) /"4—(_7 K /U- Wa

Ocyew,
(6-14)
provided ' i
CH BAY) _
ra’s .
(6-15)

The two forms of the downwash equation, (2-73) and (2-85),

transform to

RiEE) = -3 E(ﬁ ’;f'),‘*’ iop (B [intm- D] oscns

(6-16)

k[,_',u’) . f(_f_' s‘,t')d's b':T \ (.%5/1[w‘ i, e)i- '_p_ebﬁ,__‘ul 0eve,

ot 2

(6-17)
The various forms of the trailing-~edge boundary conditions,_

(2-76) to (2-80), become

Yic- 8) - Blerd)
ZZ

k(onb’\ =
(6-18)

2hlort) _|_ ;ytc-.» Lla u] Yie-A)-Bles #)
2.¢c

>y

[709]
+ ke A ’ (6— 1 9)
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g _dBlod)] . T Fw)
h(“t DA W, e+ 4] LDT‘!J + 2=

A ’
(6-20)
i . .
2 8(8 Fl:’)al! . T FlE: 516‘)
1.40* f(ﬁ) 1 R
(6-21)
vhile the Wagner integral condition, (2-82), becomes ) ’
) )
ats'.e)ds n'e)
‘[ !“Ig 2u°cA/ﬂ1. R
(6-22)
where
r'ol‘h A ro"u;l) .

(6-23)
The 1lift coefficient, (3-15), and the pitching-mament .

coefficient, (3-35), became,under this transformation,

Cott) = G 1) - "A ﬁf; g1s. wds'
(6~24)

Cmig) = Cmalt) +Cmile) + 22 Calt) -3(;.1;)/%[' giaxlde

-w}ul -2 Aﬁf!"” 1g' ¥ My’ +¢Af! 311 Mt

(6-25)
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The function B(Z,&) can be determined in each case
s0 that the factor (%)’ha ( |+ /M'If)'h no longer appears in
the terms lT.LA (%)'h[w.lt.é) - Egﬁjﬁ‘] and aL‘(%)"[ur. b - L%-’EH]
of (6~16) and (6-17). This gives a first-order partial differential
equation for Bf1,4)  which can be integrated subject to the

conditions that

Ylc-t) - Blert) =0
and
2Yle=t) _ Blewd) _
%~ ey -9
or

Wolett) - D—B.E[%'i) =0, |

vhich make the boundary conditions, (6-18) to (6-21), dependent
only upon the jet deflection, T, F/¢) . The constant A
18 chosen to simplify the form of the firal equations.

The equations given above are exact. For small /U— )
however, neglecting terms of O(/L) enables the equations to be
greatly simplified. The chief simplifications are in the kernels
of the integrals of the dovnwash equations, (6-16) and (6-17), and,
as will be seen below for the particular préblena- of Chapter &,
in the inhomogeneous terms on the right-hand sides of these
equations. These simplifications are equivalent, in the first
approximstion, to neglecting /uwf with respect to | , which
is valid only near L =0 , 1.e., within a "boundary layer"
near the trailing edge, and to neglecting ' /l-'k' with respect to | ,
valid only near -L':o , i.e., within a "boundary layer"

near the time origin. Higher approximations in

e it s et 1o
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//‘v may be obtained in the unsteady problem by expanding
the solution in terms of /Ar as Spence did for the steady
problem in II, as mentioned in Section 5.4.
The equations of the various problems of Chapter 4 will
now be written in the transformed coordinates.

Jet-Deflection Problem: The input to this problem is

+he boundary condition on the jet slope at the trailing edge.

Therefore, choosing

(6-26)

and

Blrty=0,

(6-27)
the important boundary conditions (6-19), (6-20) or (6-21) become

dhilost?) _ Yoo P LYo gusi)dy _ 2y
____)_x.—,l__ _h(o+.t) ﬂ;’“ ”fl%;) '.1, = f'{e),

(6-28)
This is the problem formulated by Spence in III.

Plunging-Aifroil Problem: Here, A  and B(%¢)

are found to be

A=-£"/°7.

(6-29)
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Birt)= hoc FI4),

(6-30)
The important terms are, then, in the downwash equations (6-16)
and (6-17), '
h . Do) v JFi) ,
_UL._A (%) [ur.lx. Te_] = Z/L‘X- il o«y'coo

(6-31)

and

UA('E) [“”"‘*‘ MM)] " +7“7"(‘ d?(é), oxxcw,

(6-32)

in the boundary conditions, (6-18) to (6-21),

9 "/’ o ‘
(-4

(6-33)
and in the Wagner integral, (6-22), 7
‘a/t'd)de £00)
f Yt =1
0
(6-34)

The leading inhomogeneous term in /I- in the equations is

the right-hand side of the Wagner integral condition if the downwash
equation, (6-16) with (6-31), is used, or § €yt 12 tne
form of the downwash equn.ti&n incorporating the Wagner conditionm,
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(6-17) with (6-32), is used. The second term in (6-32), i.e.,
the leading term in (6-31), is proportional to /k because it
is a higher power of 1.' . It would be necessary, then, to
carry the solution to the second abpro:d.mtion in ﬂ. to account
campletely for the airfoil-quasi-steady downwash. The first
approximation will give, however, the leading term in )l- for
the 1ift and pitching-moment coefficients.

Pifchig-ﬂrfoil Problem: Here it is found that

_ [‘3"&)“0
.._2/_"57;

- %/%’ , e=Y4
(6-35)

e#%4
As

and

Blv.t) = de/r-ec) FlE),
(6-36)

The important dowwash terms are, fram (6-16) and (6-17),

(1 “ 5#3/
. 't
UTA(QTMMQ'%“] = 0c¥cor,
, 'Y
. §.¢‘hé§£_,€)+/uz[z“"f/€)+1%%)]‘ e=3%,
(6-37)

and
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(ol [0 e )

a , [y
b @ e ad) < | s [ s L] e

84r <0,
i SRS

(6-38)
the boundary conditions, (6-18) to (6-21), are -

N e dhiond) _ Ve- b Y g’ _ L
hiore] = 5= = hlont] é:,ﬁf(?f e " ° -

(6-39)
and the Wagner integral condition, (6-22), is '
- .

27) ¥) 3
. 1] dTT V(i:é)?( , €¥3/4
gls',f.')dg' -
g ]
o
T Fe), e=34
) (6-40)

The equations of the first approximation in /‘- are thus
identical to those for the plunging airfoil, if e#3/4

The higher approximations in /.t satisfy different equations,
however, including the e »34 case which is really
a second approximation. Here the analysis must be carried to the

third approximation in /w to account for all the airfoil-
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Quasi-steady terms. The first approximation is now clearly restricted
to very emall 'l:l » since certain terms in (6-37) and (6-38)
are higher-order in because FI(t) is higher-order in
/,, than dﬂ%b
Blown-Flap Problem: As the downwash equations (4-50)

and (4-51) stand for this case, they are inconvenient for calculation;

however the arctangent may be expanded like
. 3
Tt (23] s T -ab (255 ol (B

(6-41)
LS AV . -1—1

valia 1 cob 3 << (32 ® k. Providea X 1is not too
small, use of this expansion is consistent with <the neglect of

/41,' campared to | in the first approximation. Therefore
a first approximation should be obtainable in this manner. Furthermore,
when \:Tl’ the equations agree with the pitching problem for

€=0 . In this approximation,

1-2cook) +SAn K (2-co0 K
A= - F..[g g“/‘:wf & ]

(6-k2)

and

Bt = (2 ca* B FIY

(6-43)
The downwash terms including 0940 only are, from (6-16)
and (6-17), )

; gkt Lomn-2 okl %)
5%;(%)’1-“’“"*\‘ 2%9] -'/A T 0;\12"‘“\)] ¢ 0s¥ceo,

(6-4b)
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and

' o7
3;'7\(%)“[”"“"“ ’}%t] %F / [Ka-um\)‘i—l’sl-s\h.-mm)]{l"t')rj:";iLK o)

(6-45)

the boundary conditions, (6-18) to (6-21),

hlo+,t) = aH“‘e) hlu—t’)-—ﬂm sz;" lt't’)d =0 °

(6-46)
and the Wagner integral condition, (6—~2), becomes ' )
(s £M¢ A?HJ 471 i) Fit))
,(‘ g =T =7 /‘ ﬁ[aam*%&wﬂ] * °9L .
(6-‘&7)

The equations for the first approximation in /»A are again

identical with those of the plunging and pitching airfoils. For

the first approximation alone, the expansion (6-41) is not used,

since the leading term in (6-45) comes from the airfoil-quasi-

steady circulation which is exact. Again the approximations involved

clearly limit the validity of the first approximation to very small
é‘

Sharp-Edged-Gust Problem: The downwash equations (4-67)

and (4-69) are also not in convenient form as they stand. An
expansion for small + , and small +4~-¢ , may be made.

From such an expansion, it is found that
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®
A= - Hoe (6-48)

Bat)=0 ,
=0 (6-49)

The downwash terms including o{/a,) only are, from (6-16)
and (6-17),

L

(6-50)
and ’
! 2 % ' 62 ,
(T;A{%Y [W‘cll..t)- %ﬁ\] = o'l "7"[%‘7%_ '%l* *"-’h] + oﬂ‘"} o0cKkem);

(6-51)
the boundary conditions are, (6-18)-(6-21), 4

s

&
. hlotd) _ Ne. U " / “_
hlor) = 2R~ o) = éﬁf@)’ggz o

(6-52)
and the Wagner integral condition, (6-22), is

(e ¢)d¢' " D a
rl—-éﬂ;— =Tt -‘-/l-ITT{OﬂI).

(6-53)
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The equations for the first approximation here are the same as for
the above three cases if their time dependence is explicitly made to
be ‘Ew) = 'li‘%' . The approximations have the same
implications as to their validity as above.

From consideration of the above five problems, it is
clear that in the first approximation for small M and small ¢’
there are two fundamental unsteady jet-flap probl:ems to be solved.

The first of these is the jet-deflection problem first
treated by Spence in III. The problem, in terms of thé downwash,

ki t) , and the jet vortex aistribution, 311‘,#) ,

for example, is governed, using (6-4) to (6-23) and dropping the

primes for convenience, by

2
S B P e

(6-54)
and
N
o
(6-55)
or
by s hIED 4 2hixd, #F(%#%%f | sexew,
]
(6-56)
with either

hiot, ) = FtB),

(6-57)
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or

e A1 9388 -0

+
(6-58)
and » -
f 3:33,5)149 o
° (6-59)
The problem can also be formulated in terms of the jet ordinate,
hiv,) , and the potential difference, { (3,4 ,
using the first approximations to (6-9) and (6-10),
kvt = 9“?’:@ + 2his)
(6-60)
and
grae 258,
(6-61)

and the appropriate equations from (6-11)-(6-23),
To the first approximation in ) , then, the 1ift and
pitching-moment coefficients, (6-24) and (6-25), for the jet-deflection

problem become

Clh)=-4 "-r.o%-b sharselds
[}

(6-62)
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Cu )= -3(1- 4) )T ﬁf{"azwu .

(6-63)
It 1med.:i.a.te1y follows that, to this order, the center of pressure '
is at the three-quarter-chord point, as= ’/4 . For steady
flow Spence found numerically in I (and unpublished calculations
using the results of II confirm it) that the center of pressure,
to first order in /& y 1is at ﬁhe half-chord point. The
validity of the "boundary-layer" transformation for small time only
is pointed up here, since the cénter of pressure remains at the
three-quarter chord point for all time in this approximation.

The second fundamental problem in the first approximation,

corresponding to the airfoil-motion problems and the sharp-edged

gust problem (if T = -l;%' ) is, in terms of k!y.,l:)
2 3 \g 3 I
(6-6k)
and

kit =~ -‘ﬁﬁi"-f)'"éi’r-f‘,—ff ,0crcw,
©

(6-65)

or

)
h/l-,'ﬂ =- 'rlf {(—;_)‘/’a—'——["t_)ig + -1,'[4‘ d‘j’fz@{ 0cxew,

(6-66)
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with either
Rlo+¢) =0,
(6-67)
or ) )
ﬂ“ [
. § L gisnds _
1»0‘!‘" ’(‘ -y ’
(6-68)
and ) B
.
au,udg .y )
A - at .

(6-69)
The 1ift and pitching-moment coefficients, (6-24) and (6-25), are

"
Coty= Colt) - 4pA \[g"g/md?,

(6-70)
and .
Q0
Cald) = Ca, 1814 Cun () + 125 G 10 -3 (1- 13')/»"’,4 i[g"'a/:,udg)
(6-1)
vhere O, , Cmolt) ,and Cm ) are appropriate

to the particular problem.

The solutions of the two fundemental, small =M,- ¢ ,
problems are closely related. To explore this relationship fully
in the transient case, it 1s necessary to consider lLaplace transforms
taken on the time variable. Using the definition of the Laplace
transform, (5-17), and the initial conditions that the flow is
undisturbed prior to initiation of the transient motion, expressed by
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qher= Bise) o 2. Tg. 0,
(6-72)
the Laplace-trensformed equp.tiona of the jet-deflection and
airfoil-motion problems, (6-5#) to (6-»59) and (6-6&) to (6-69), are

T
P‘%t(‘l,;p) +2p a-a—l-t)(" Tl" ), "—T"};" ) , 04¥<cw,

(6-73)
- th at/e A
ST 7 %
[
| (6-Th)
. o
- —tl N -
kE(ovp) = —%ﬁ%\fﬁf’ %ﬂa‘! = _'-F-(r) ,
’ (6-75)
rg"/’g Y1,pds =0,

(6-76)
and . ‘
2 - —ay.. 2=a/ , 3&,
p aa(m‘,pha.f %FMi&_%IL— }_%‘(;:.ﬂ' osrLe
(6-77)
’L«.(,‘P__J_\?[ » ‘1!)? ocvem,

(6-18)

i‘“ﬁf”'&ﬁﬁﬁ'i‘%eﬂ =0

(6-79)
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f g'f‘*g‘ls,palsz wp?tr) s

(6-80)
where at"ﬁ-‘,p) and Etf?»; )] are the transformed vortex
distribution and downvash for jJet deflection;  g¥x)p)
and 7@" (x,p those for airfoil motion, and ? ()
the transform of 35 (&)

Differentiating (6-77) and (6~-78) with respect to %
gives ‘ — — )
3y > ) > “lt)_ - 4"‘“—) £xee,
PP or 2P - S,
- (6-81)
- S

'a"';ﬁ;flw wT _ﬂ')f ‘85"’) L
\F@‘)" 5P 4 f—x- 41'3%2%[?)“' 0s 1l

(6-82)
| “ .1
vhere the identity g§3 = ¢7¢-y) s has been used.
By inspection of (6-81) and (6-82), the deflection solution of (6-73),

(6-74) and (6-76) suggests that the airfoil-motion solution may be '
vritten as

L apfp

(6-83)
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and

3—’&;-:%‘-12) e A/P)I‘lt',p) ,

(6-84)
Integrating these with respect to % » and using the tralling-edge
boundary condition, (6-79), and the condition that the vortex

distribution vanishes at inﬁ.nity dowmstream gives

[- 4
o0
gunp = % Picﬂﬁ‘l*m“ [ehguepde
x °

} 2
Rmp=-I p‘f'cp)\[ E‘tr,ﬂd/ﬁ"g‘amd g,
(6-86)

where Al P\ has been evaluated from the Wagner integral conditioﬁ,

(6-85)
and ’

(6-80), upon integration by parts and use of (6-83). To camplete
the sblution, the integral required for the 1ift and pitching~-moment

coefficients, (6-70) and (6-71), is, upon integration by parts,

J(g*'ﬂg-u;pds - l;-rﬁfrﬁ*g_’“)lﬂ/ﬁ" gupis,
o L]

(6-87)

Therefore, once the Jet-deflection solution has been found, the '
airfoil-motion solution follows.

The Laplace-transformed equations of the transient problems

also hold for the problems of steady-state oscillations, i.e., where
) irt
gl = 3!1333 e

(6-88)
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and
A .
Rivt) = ki et ,
(6-89)
provided the transforn varisble P is replaced by (1)
and ?cp) vy | . Thus the relations (6-85) to (6-87)

with the proper modifications, also hold for stea.&v-stai:e oscillations

in jet deflection and airfoil motion.



CHAPTER 7 - CRITIQUE OF ATTEMPTED SOLUIIONS IN “BOUNDARY-LAYER" COORDINATES

7.1 Critique of Spence's Solution of the Jet-Deflection Problem for
Small Time.

Spence, in Bection 3 of III, approximated to the equations
of the transient jet-deflection problem for small time after a unit-
step-function input, and then obtained a "solution” of the simplified
equations. In the present section it will be shown that this
"solution" is incorrect, and that no valid solution of Spence's
approximate equations can be found.

The approximation of III is to neglect, for small time,
the derivatives with respect to 2 campared to the derivatives
with respect to 'L in the convective derivatives whicb appear

in the problem; i.e., it is assumed that

% (%),
(7-1)
which is valid for

£ = ol
(7-2)
This holds, for small time, everywhere except so near the tralling
edge, =0 , that & =OM) and %:O@.&) .

8ince the important boundary condition must be evaluated at the
tralling edge, it must be satisfied there in a sense consistent with
(7-2). The small-time solution, if found, clearly will be

143
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non-uniformly valid near the trailing edge. Very near the trailing
edge, on the other hand, 1f 4 = of#) and nence 2 5o(3),
the equations reduce to those for the steady jet-deflection problea
treated in II (and discussed briefly above in Section 5.4). The
steady sclution is valid near the tralling edge in a region growing
with time.

Instead of the downwash, 8pence treated the Jet ordinate,
hiz,t) | as the unknown function, along with gle.4) :
Cross-differentiation of the small-time approximation of the
appropriate equations, (6-13) and (6-54), and elimination of
3‘11.,&) gives the equation in  W/%,b)  alone,
denoting by subscripts ( ), and ( )’_ partial

differentiation with respect to those variables,

'ﬁ“l%.é = -T'-r- (%)h_l'm&g'*ﬂ‘l.‘ | 0Lrstm.,
° (7-3)
The form of (7-3) implies that

3 a2
2-,= O(33),
(7-4)
i.e., that
A= Olf”’) .

(7-5)
which from (7-2) implies that "

L= oftM.
(7-6)
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Instead of solving (7-3) for  hi%, &) directly
in terms of a similarity variable, 5 = "/e/’ , as in
III, it is more instructive to retain % and ¢ explicitly,
and to solve simultenecusly for hl14) and 311.“ while
retaining the similarity approach. Improper treatment of the
unit-step function appearing in the problem is one reason for the
incorrect result of iIJI.

1z Fly=1@ , the equations.(6-13), (6-55),
(6-18), (6-19), (6-58) and (6-59) are, in this a.ppré:d:mation,

aahl-,e) =-h,,.l1t.l=) , Ocx<éom

(1-7)
and
© )
= - %f(g)" 8498 ocyeo,
’ (7-8)
with either :
hlo+tY=0
(7-9)
and .
l‘;’ ot t) = i "E\ >

(7-10)

or

L, i 4388 < 100,

(T-11)
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g Pqis1ds =0,
It

(7-12)
Following III, but in tems of 4 and & instead

of 3 , define thé'uellin-tmnsfom veirs
ctio

.
hisd) = ;'ﬂJ‘oE s L3694 (1) His)ds

cie | (7-13)

13 = |2 hirt g

(7-14)
and ) . .
Ctim

girar= ,%tfm"é*"'*‘:t_la G ls\ol%
o (7-15)

L g

1(04369¢)5) - J‘ Kignnd,

o J (7-16)

vhere ¢ is, as yet, an undetermined real constant.

From the form of (7-13) and (7-15), the assumption of

an ’X«/-L"’ similarity is evident. For /M < | ’

the functions N/ut)  and Jt,t)  can be evaluated in

series in increasing powers of ')4/.[,"3 ’ (T/tﬂs) _&,[ ‘!/gh) ,
etc. by moving the line of integratiom, Ssc¢C , to the left

past the singularities of HIS) and @G [S) , respectively in
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the S- plane. Because of (7-2), such series would be valid
in the limited range where '64%-4‘ ﬁ"" ; 1.e., vhere

t=of2) :o[-elé"’)] )

(7-17)
In a similar manner for ¥Ph »| |, hht) and 8/1.,{,)
can be evaluated in series in increasing powers of (’[./gl;)" ,
L’yfgls)" A/Ws) » etc. by moving the line of
integration, S=C s to the right past the singularities
of Hls) eand (G/s) , respectively, in the S - plane.

These expansions are velid for

£ = ofr) ,

(7-18)

By successive differentiation of (7-13) with respect to 4 ,
Ctiwo

hogp 8 = = 55 | 252 B4 () s s fs42) His)s

C~0
and, provided §(s+)is+2) H(s) is regular in the infinite

strip, €~-3<Ris) cc » the line of integration can be moved
to the left to S =¢-3 . Writing € =35-3 and

dropping the bars then gives
ctlo

My () = - L I’L’ s 1359 () (s-2)is-2) {s-1) His-3)ds,

ani
¢~ o0

(7-19)
Substituting (7-15) into the integral operator in (7-8),
interchanging the order of integration, and using the integral
glven in Section 3.1 of III (where the factor Z“ wvas in-

advertently omitted), namely,
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§(%)" 908 styons l0sled,

i (7-20)
glves
CHos
%ﬁﬂw{‘%’ f - 18654 4 (0 bucws G1o)ds,
°  (7-21)
i leled

Next, differentiating (7-13) with respect to & gives
Ctieo

hy v = ;'ﬂqu { (¥ h)g g faes) 4 H0 Sle)} HisMs,
c-lvo (7-22)

vhe: = $(£) 1is the Dirac delta function, (5-10). For Rls)<¢ ,
Loeyec 2% by (-17) and € is necessarily

greater than zero. Therefore the Su—\ term may be neglected

since it is zero for £ >o . For QRUisY» ¢ , E/'&%

by (7-18) and 4 1s not necessarily greater than zero. Thus

the S\ll:\ term must be considered. By the definition of S“‘\ ’

nowever, it follows that if &%0 , E€MH)=0

Therefore the Sl H term may be neglected provided the first

pole of H[S) to the right ot RIS)=¢ occurs for
R >-1 . This is clearly satisfied here since
lel<$ ', 80
ctio
- 2 +1S
hoft = ﬁfac‘é*” D40 (24) Hisds.
c-ie

(7-23)
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Differentiating (7-15) with respect to &  gives

| - |
Qulr) = z'?f;‘{ft“' 14 ) (=t4a5) 4 £¥6 IS 10)] Guords.

c-le

(7-24)
By the same arguments given for )1‘.1‘&.6) , the S[t)
term may be dropped if the first pole of (3(S)  to the right
of Ris)=c occurs for  R[s)> ‘i‘ . Assuming
this to be satisfied gives
Ct 100
qoinir= b e L0 (19) Gl ds.
c-iw

(7-25)
Finally, differentiating (7-13) and (7-15) with respect
to . glves

cti®

helzi)= - ,i,ng‘ys-'{*""’iu) S HisMs,
-4

(7-26)
and
ctio
Qulrd)e - Llg=gbs B semds,
c-lo
(7-27)

Substituting (7-19), (7-21), (7-23) and (7-25) into the
equations (7-7) and (7-8) gives ‘ '

Cciuo
a';f L1 15) 6L - ts-ats (5 His-)}ds = o
C-10

(7-28)
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cilo
(s2) . 243$ S =
;:.'.‘ 455{" :LP«){ tunns 6(s) +(._;_)ms)} ds=o0,
c-i
(7-29)
These will be satisfied for arbitrary 4 and ¢ - provided

Gls) =(2425) estms His) « L‘F'J,!:—;;M His-3),
4154
(7-30)
From (7-13), it follows that the trailing-edge boundary
condition, (7-9), ill be satisfied if 0<€C<$ end HIs)
is regular at $=0 . The input trailing-edge boundary
condition, (7-10), will be satisfied, using (7-26), if  HI(S)
has a simple pole with unit residue at S=-|
By inspection of (7-16), the Wagner integral condition,
(7-12), will be satisfied provided Gl =0
Sumarizing, (7-30) must be solved for  HIs) and G(s)

subject to the conditions that

S (s+N{s42) H{3) 18 regular in the infinite strip,
-3 &l8)c -'5 ,
(7-31)
G(S) 1is regular in the infinite strip, O<RIS) < §, '
(7-32)
His) is regularat S=0 , )
(7-33)

e
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HIS s gy near s+,

(7-34)
and
64 =0,
(7-35)
The difference equation, (7-30), for H(s) will ' A
be satisfied if i )
-Mein 8
His) = "(g;_f_:"' Mis)Wis)
s /-
(7-36)
vhich implies that ’ ’
(s-)! 5in &
G (s)= _(__”B)_' wd s Mis)Y(s) ,
=2
(7-37)
vhere MIs) is some function of period three, and W(S) ‘
is the function introduced and discussed by Spence in III.
The Spence function, Y(s) , satisfies the
difference‘ equation
Wis) +tmms Yis-3) =0
(7-38)
and may be written as
Yis) = Go (5%")60(%) G‘[S_;_l_),
(7-39)

where (50(s)  1is the Lighthill function discussed by Spence

in II. This latter function satisfies
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Gols) - tanws G, (s-1) =0
(7-ko)

and is represented by the infinite product,

- "
SR,

1.e., (ols) has poles of order W &t Ss =0

(7-41)

and at S= h-‘}, » zeroes of order W at §$=n

and at ss-n-i , and equals unity at S =0

and S$s- . Therefore, in the region of primary
interest, say - %—LRIS) < i ’ Y(s) has simple poles
at S=-4-3-2,4,3% % axd simple zeroes at

§= - } ). 3 *

(s-) SinT Wis)
(=

to be regular in -3 < Rfs) < -}_ » except for the required

Using these properties, is seen
simple pole at S= -1 , and & double pole at Sz-2 ,
where only a simple pole is permitted. Also, ‘(s._"!% ] cotws Yis)
is regular in O «R(s) <! , but G“ﬂ #0 .

Therefore the function M/s) must have a zerc at S= -2

to satisfy the regularity condition, (7-31), and a zero at S = ',,"

to satisfy the Wegner integral conditicn, (7-35).

To insure the existence of the Mellin-tra.nsfom, (7-13)

and (7-15), it is necessary tbat (*/ﬁ"’)-s HIS) and
(’Y-/t’fs).sé [s) be integrable as l 0is)) —» @0
along [Rfs)ac . In tas Lmit  (%/@h)°

1s bounded, as 18 Cot WS . Using the appropriate
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form of Stirling's formula, (s-1)] ~ '9153)“)-*3'!‘9”' ,
[z toiml3897% 30 -
[z~ |9 34 LTI . spence fownd
in IT and III that  W(S) ~ e E® , while

Sin If' ~ e’*’“" . Therefore,

C"/E”).‘ His) ~( "—/t”’).sél s) ~ e'*‘s“"' , which is

integrable.

The requirement that MIS) introduce zeroes at

=-2 , S=1% , could be met in only two
ways. In the first of these it would be at the expense of introducing
corresponding poles into HI(S) and GI(S) in violation
either of the regularity conditiomn, (7-31), or of the regularity
condition, (7-32). The second would. be at the expense of introducing
exponential factors making MHIS) and G(S) fail to be
integrable along R/[S)=C . Therefore, no function MI(S)
with the desired properties can be found; Thus no solution of the
approximate set of equations, (7-7) to (7-12), can be found. Discussion
of reasons for this will follow the details of Spence's “solution"
of III.

Spence obtained his “solution" in III by choosing M/s)

as

4 Gt '
3G HG) wmER

Mis) =

(7-42)
where the numerical factor is chosen to give the pole of HIS)
at S§= -| unit residue. The zero required at $S=s-~-2

is introduced at the expense of a simple pole of MIS)



at ¢§3 & )y S=-% , etc. While the simple pole at
S=»- { does not violate the regularity of

S(6+1) (s+2) HIS) in -3<zp8)e )
(7-31), since ‘!%43'—?- Yis) has a simple zero
there, the condition on the regularity of ((S) in

ockis) e 4 , (7-32), is violated by the simple pole
of  GIS) introduced at S = % by MIS)
Therefore, the neglect of the  $(¢) temm in (7-24) was not
Justified. Furthermore, of course, the Wagner integral condition,
(7-35), is violated; in fact the integral, (7-12), does not even
exist with the (5(S) found here. On these two grounds, the
"solution" is clearly inva.liﬁ.

Investigation of the properties of this invalid "solution"
helps indicate the failure of this attempt to approximate the full
equations for small time, and is thus worthwhile. Since the
behavior of H (s) and (G(S) in the whole

S - plane, in particular their poles, is known fram (7-36),

(7-37) and (7-42), series expansions for h (1,4 and 3[‘1,‘-)
nay be found to be

21 3
[ adlt) - "‘li'f’ z——y—;”_““ +o(£ )) ye L
hixd) = <

S Sy () + O (R | 2 %
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(7-43)

o e o 12
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pe

Jom + & Frel®), neew
311,&) = {

31 o 25, 10 L/r/pn) + Olf), xrt%

L
(7-4k)
(The third term in the small - /s expansion for '
hivt) has the sign corrected from equation (38) of
III.) S8imilarly, the first terms in the expansions for the important
derivatives and integrals are, from (7-19), (7-21), (7-23),(7-24),
(7-26) end (7-27), -

e o) | xeet

~

h, b)) =

AR (L) | st
(7-45)

[ 4) + olh) , Lt

halzd) =
—T_,,.:*ﬂ‘z Inl/en) +o{£l;1:/ )) 1o eh

(7-46)



hm/m\ x .

8‘ i) = \

3,11-.4:\ » 4

and

it
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-~

o T IR T

10)
_g%é_iw [“/z/#") +0(.£%:';‘_%_‘.)‘ 'l’éw"
i (7-47)
C- stron + OLE) | vee
00t B bbiey) ¢ O1%), xoet,
(7-48)
L1 o), nete
g z
Bl o[ x e b lu/pa)] , x>
(7-49)

A 8

.
'%Wh +o[PEH) | xetr

- 33 Dulxie) + o[zt huifes)], 1t

(7-50)
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Fram (7-45) and (7-50) it is seen that the approximate
equation, (7-8), is satisfied; from (7-47) and (7-48) it is seen that
the approximate equation, (7-7), is not satisfied for large
2/ , the extraneous Sit) term in
(7-48) arising since it wﬁs incorrectly neglected in (7-24). The
boundary conditions at the trailing edge, (7-9) and (7-10),( are
satisfied, considering (7-43) and (7-4€', however, the alternate
statement of these conditions in terms of the vortex distribution, (7-11),
is not satisfied, considering (7-50).
The 1ift coefficient was evaluated in III using (6-62),

vwhich is

Cold) = - s, iﬁ"y/gms .
) (7-51)

It is important that in the derivation of this form of the 1lift
coefficient, satisfaction of the Wagner integral condition was
required. Since this condition is violated here, (7-51) should
not have been used. Furthermore, (7-U44) shows that the integral in
(7-51) does not even exist. In III, the calculation was actually
carried out by taking 9/3t  inside the integral in (7-51) and
using (7-7), the ensuing integral existing only because, as seen
above, (7-7) is not satisfied by the “solution® of III.

As a final property of the “solution," the assumptions
that  aind) = o[getr)] and  hylrt) » o[ htrt)]
will be checked. For 2IPh < | , the expansions are

valid in the range & <<x<< s , (1-17). 1f
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t= 09
and
2>0(9]
(7-52)
where K>>I is some constant, this inequality is met.
Furthermore, the inequality {;df-'l:‘h , (7-6), 18 also

satisfied. Substituting (7-52) into (7-45), (7-46), (7-h8) and (7-49)
indicates that

h(24) = O }
(7-53)

gb (24 » O(KY

é
31[’-“) = 0 (K) R (7_51“)

Therefore 3“1—.&\ >> g,(;.e\ as assumed, but hy/x¢)

is of the same arder as  hy /x,t) , inconeistent with the
assumption that  he (.t) >> hylxt) . In a similar
fashion for R/ >| , the expansions are valid
for 2 >> ¢ s (7-18), such that the inequalities (7-2)
and (7-6) are also satisfied. These are if | '

t= oK™
r=0I(L") ,

(7-55)
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vhere K >7| is again some constant. Substituting (7-55)
iato (7-45), (7-46), (7-48) ana (7-49) indicates that '

helrd) = oKk
h.” = O (K.V%F)

(7-56)
and
Gulnd = { 0™ t-0
O (K™hk), t>o
Grird) = O(K%)
(7-57)
Therefore l\* lrt) > holrt) as assumed. At t=0 ,
3¢ (td)>> i,lr:_,e) as assumed; however the solution
should also be valid for t>o provided (7-6) is satisfied,
but aeh.,{)éc Jy,(x..«é) , and the assumption breaks down.
The question arises whether the unit-step-function time
dependence assumed here, being discontinuous at & =0 , 18 too
singular to permit a solution. HWer, if the general input,

';?(é\ 3/1.'{"1“-\ , h>o0 , is treated in
precisely the above fashion, again no solution can be found that
satisfies the regularity condition on  §(S+1){s+2) H(s) ’
satisfies the regularity condition on the new G/S) and

satisfies the Wagner integral condition.
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This approach to the solution of the small-time Jet-deflection |
problem clearly is inadequate. Consideration of the result, (7-53),
indicated that hy (2. %) came out to be of the same
order as  h, (1. t) , indicating that it should not have
been neglected. This does not se_ém surprising in retrospect, since
the important input to the problem is the boundary conditicm, (7-10),
on hy /2.9 . Neglecting halr,d) with
respect to  hy [nt) in the downwash equation, yet
requiring satisfaction of the boundary condition on  hy (2t)

seems inconsistent. This suggests, as an altemtiire, formulation in

terms of the downwash, R[xr.t) , and the vortex distribution,
3/7-.9 , still making the approximation }t >> %-x.

for small time. The next section will deal with this formulation
and its subsequenf failure to give a valid approximation to the

complete set of equations for small time.

T.2 Further Critique of Small-Time Approach: Jet-Deflection and

Airfoil-Motion Problems.

Formulation in terms of the downwash on the jet, R (%,+4)
and the vortex distribution representing the jet, a/ 1. t) ,
by equations (6-54) to (6-59) in the jet-deflection problem, and in
the airfoil-motion problem by (6-64) to (6-69) eliminates the
contradiction of satisfying the input boundary condition on h,/x,e)
while neglecting it with respect to ht /‘l‘.ﬂ in the
equations. The small-time approximation of neglecting

4.- derivatives with respect to ¢t - derivatives,

wherever convective derivatives appear, will be retained. Therefore,
the various order-of-magnitude restrictions, (7-1), (7-2) and (7-4)
to (7-6) still hald.

R |
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The approximate small-time Jet-deflection equations are
then, from (6-54) to (6-59), denoting this approximation by a
subscript  ( )

h 1 T
Gl =Ky, oenes,

(7-%8)
and
ke (2,¢) =-#§(%.)"‘ .‘a_e)d! ‘ o(_u"’,
[-]
(7-59)
with ;
. =~ 0 ik Xis.0)ds
Rlor) = 100 = - S (895,
(7-60)
and .
o
.k T -
IS 3./1.&)41; :0,
(7-61)

Equation (7-59) is exact, so only in (7-58) has it been necessary
to approximate for small time. '

To treat the problem, again define the Mellin-transform pairs

ct oo 1
T —c12f T
ke (24) = ;',—,«J¢’LT 1K 19)ds
cie (1-62)
FLaXow = (2K e

(7-63)
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and
o 1
PO P ELOCTE
-y s
(7-64)
L4010 .05 5) = J;"‘ 3.‘{ xtldy ] _

(7-65)
vhere €  1is, as yet, an undetermined real constant. _ )

SBuccessive differentiations of (7-62) with respect to %

glve ctieo
ke (2,t) = -z'm £33 A1) siseiisea) XStls) ds .
>y
c-io

(7 66)
Substituting (7-64) into the integral operator of (7-59) and evaluating

it as in Section 7.1 gives

@0 celow
Jh '((" . T
?'fg:) #F;)i’ 2 -;“,—J'x.‘e'*i&)ﬁqws @, (s\ds,
° C-ho
(7-67)
if lel <4 . Differentiating (7-64) twice with respect

to 'L glves
cile

3.: ( 1t) = z—'ﬂ f t { TN $s6-3)+ Fs ¥

c-im
Y %’Q}Efzs) ds,
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but, provided BT (s) 1s regular in the infimite strip,
C£Rs)eced , the arguments of Section 7.1 Justify
neglect of the $(¢) ana 4 FI‘VA & terms, so

3.‘&.9 = ;',—,;Im"" F1w2¥)0+%) Bltsends

-4
¢ (7-63)
Substitution of (7-62), (7-66), (7-67) and (7-68) into equations .

(7-58) and (7-59) gives

T etim .
z-"-'ijy: si¥4 (é){-slsw)luz) Utis) + 2+ ¥WI+¥ )ﬁ.‘lﬂs)}ds =0,
e (7-69)
and
c+ioo
#;J‘x_s.z égilé){y.tlﬂ - liuurs 93[3)} ds = 0 >
C-ioe
(7-70)
vhich will be satisfied if
T/ey - v 24X+ ) [t
o (9) = tmns& (s) = L‘s‘[’s‘ﬁ?ﬁ%’ ,Q, (sn) .
(1-71)
From (7-67) it is seen that the trailing-edge boundary
condition, (7-60), will be satisfied if O0&C< % and
INDE has & double pole st the origin with
coefficient -T||-, . The Wegner integral conditiom, (7-61)
will be satisfied, using (7-65), if SSiL)=0 .
Sumnarizing, (7-71) may be considered a difference
equation for 201: (s) - wvhich must be solved subject

to the conditions that
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F(s) 1e regular in the infinite strip, 0<Rfs)< 3§,
(7-72)

85(s) = %; near S=0,
(7-73)
and |
4F )= o,
(7-74)
The dlfference equation, (7-71), will be satisfied if '

Tin o 2 (S"\!S.M“? .
i) e — g oY,

(7-75)
vhich implies that

. o2 (s-) Simm 5t
Kits)- Weet-d)6ult) (1)l Nis) ¥1s),

(7-76)
wvhere N(S) 1is again same function of period three, and W(S)
is Spence's function, (7-39). For  A(s) = | , the
conditions (7-72) and (7-735 are both satisfied. However, the
requirement, (7-'-7h), to satisfy the Wagner integral condition is
not met. As in Section 7.1, if NIs)z) ) .@:[S)‘v e'yw’”
and is integrable as | 915)] —»e0 along R05)= C
Introduction of & zero at S= { by & function N(S)
of period three would either introduce a pole into the strip

oz Ris\< § in violation of the regularity condition

on Q:’ (s) » or would introduce an exponential factor
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making the Mellin transform of 9): (s) fail to converge
as IMS)"“"' along QRis)\=¢C . Therefore, a solution
satisfying all the conditions cannot be found. Evaluating the
integral, (7-61), for  NI(S) 2| » using (7-65), (7-75),
(7-40) and (7-41) gives

[

- W%
° (7-77)
clearly greater than zero. If the order-of-magnitude considerations

of the previous section are 6bserved., the assumptions of neglecting

T T
3.‘ ’l_‘l.ﬁ) and 3.4{-.*) with respect to
334;.4) is satisfied. Therefore, failure to

obtain & solution here results solely fram the inability to satisfy
the Wagner integral condition in this approximation.

The spproximations a.‘l'l.é) and k.t(%,'a
may be considered as the first terms in an expansion of the full
equations, (6-54) to (6-59). This expansion may be written in terms

of the Mellin transforms as

(237
g1 = 5y [ 4108 L3500 0% 4 o(é‘“')};s,
¢
(7-18)
and
Cti®
RS fnt) g&c { LS410%5 ) « FV L0 KT +o(¢*°"')} ds,
¢c-{e

(7-79)
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The second approximations, 2.‘ (s) ana XT(s) ,
are the transforms of gf (ri) and  RFigd) )
say, which satisfy

3&1-.&) +2.?.1£_1-,e) s - hf‘ﬁ,e) , 04X

(7-80)
and [ ]
% at
R 4y --%,f[}) P ocrenm,
[
(7-81)
with
[
v Y/RNT YA N R
kilond) é:« oﬁ) + -0
(7-82)
and
| f g"'“g,’[f,é)df = 0.
’ (7-83)
Operating on the Mellin transforms (7-78) and (7-79)
for 3}('&;6’\ and kn‘[%&) as for 3} (2,¢)
and k: [.t) , the inhomogeneous difference equation,

.
XTls) = tanws B, 15) = :i.m,m Y ls+3) - —-é%}@ Ista),
(7-8k)
mst be solved, vith 0&£c& 4 , DT(s) regular in
o<« &ls)c % ’ 9,1: (s) having no stronger
a8 singularity at the origin than a simple pole in order to satisfy
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il
the downwash condition, (7-82), and %, ( ,_\ =0 to satisty
the Wagner integral condition. The solution, vhich again satisfies
everything but the Wagner integral condition, is

(7-85)
and the corresponding K,;°(S) . Evaluating the integral,
(7-83), using (7-78) and (7-85) gives
shouseds = 20T £h4n)
g st)d§ = 0! 1
(7-86)

Therefore the second approximation in 'E not only fails to correct
the error in the first approximation of failing to satisfy the Wagner
integral condition, but introduces further error.

To complete the picture, the small-time approximation will
be applied to the airfoil-motion problem, as defined by (6-64) to
(6-69), and the solution attempted. The time dependence here will be
aseumed to be  F ) = utIl) 4o avotd the astriculties vith
the Dirac delta function as discussed in Section 5.2. With the same
small-time approximations of (7-1), (7-2) and (7-4) to (7-6), the

equations simplify to

[ 8 [ 3
- - 0eyx<®
Joiph - kifyer, o

(7-87)

and

ke ) = - #f(;)”‘ﬁ_;%“—’ ecnce,

(7-88)
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wvith .
)t: (ot i) = - %:o;# f(%)'h _3;‘_'(1‘,#? . 0
°
(7-89)
and
J;"” graady = Tp 14)
| (7-0)

The important input to “the problem is the Wagner integral condition,
(7-90), as contrasted to the trailing-edge boundary condition,
(7-60), in the jet-deflection problem.

In view of the relation of the airfoll-motion solution to
the Jjet-deflection solution as pointed out in Chapter 6, it is
impossible that an airfoil-motion solution of this type will be found.
However, it is instructive to carry through the Mellin-transform

approach to see exactly how it fails.

Assuning a similarity solution in /4% , the
Mellin-transform pairs are
ctin
3.‘ [rd) = ﬁj‘qc‘{%‘"*’ 400 Yts)ds
¢-ioo
o (7-91)

/e*"‘*‘ilé)&fm = fﬁ";ﬁ lrt)dx
(7-%2)

and o

ke 11.4) = 73‘4&” 504 0% s\ ds
C-leo
(7-93)
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/u{,“" D4 1) Y5y =J:."‘kf (rd)dy .

(7-94)

Three 2- derivatives of (7-93) glve
Ctino

k 11., £ = - ﬁj‘tf‘ ’Lvs 419 Stsh)lsea) Ys (s)ds |

c-io

(7-95)
Substitution of (7-91) into the integral operator in (T-88, and

evaluating it as usua.l yields

ciieo
1f(ar st DL tans b,
’ o (7-96)
1 |ele{ . Differentiating (7-91) twice with respect to
t , and dropping the §(¢) and dflé)/“ terms by
the arguments of Section 7.1, provided Y5 fs) 1s regular

in the infinite strip, C cRIs)c c+3 , glves
Ctio

ghirb) - f A (s £¥5D 4 10) (9499) (22 ° fsusrds.

w0
(7-97)

The equations (7-87) and (7-88) are, upon substitution of

(7-93) and (7-95) to (7-9?),

Ci00

_&J -5-3 4}13-‘)1_14){ slstilsis)¥s 1s) ,,.(_%S) [uu) & lsu)] ds=zo
- (7-8)

-and
4o

#J L5541 { %' (s) - tammrs 't )} ds = o

(7-99)
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vhich will be satisfied if

§428 "
X, 1s) = tunus Yoo = -(:s%);t)g,) Yi tse9),
(7-100)

The trailing-edge boundary condition, (7-89), will be
satisfied if o0cced  andir B ()  has a singularity
at the origin no stronger than a simple pole. The Wagner i'ntegral
condition, (7-90), is satisfied, using (7-%2), if o )=

In suﬁ;nry, the difference equation, (7-100), must be

‘ -
solved for 9, (s) subject to the conditions that

S,Q:[s\ is regular in the infinite strip, 0¢ ﬁls)c-}_ ,

(7-101)
and
Loth)=m,
(7-102)
The difference equation, (7-100), will be satisfied if
b = i Sy PO
(7-103)
and

(s-lsnn
,{o‘ls) - - ﬂ';:z)&lf) t_“_'!‘-’ ‘ P/S) Yis) s

(7-104)
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vhere P[S) is a function of period three and ('/S) is
Spence's function, (7-39). With PIS)E) , S Q.‘ (s)
18 regular in the strip, O« RIS)¢ -}_ , and Q.‘li) =T .
Hovever, J. (S)  bas a double pole at the orlgin, removal of
which by a suitable function, P(s) , would again either

introduce a pole into the strilp 0 <& ek)e L , violating

the regularity of ‘ Qo“ (s) » or would add an exponential factor

making b: (s) fail to converge as | 94s)) o0 along
Ris)=C . Thus, as expected, a solution satisfying

all the conditions of the problem cannot be found. The double pole
at the origin of %: (s) gives, in terms of  Re (1.t) R
fram (7-93) and (7-104)

k:h#,ﬂ = % f.‘h’

(7-105)
which is not zero, but in fact singular, at t=o0 .

Introduction of a continuous time dependence at 420
by Fley= /L" €418)  for both the jet-deflection and airfoil-
motion problems lead to the same failure as above to yield solutions.
Therefore, it is not a question of the motion being too singular
at ~L= (o]

It has been seen that in both the Jjet-deflection and
airfoil-motion problems, no solution using the present small-time
approximation can be found. For the jet-deflection problem, the
input boundary condition at the tralling edge was satisfied, but
not the Wagner integral condition. On the other hand for the
airfoil-motion problem, the input through the Wagner integral

condition was satisfied, but not the trailing-edge boundary conditionm.
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The condition left unsatisfied in each instance is an important
physical condition on the problem, a.nd. a “solution" which fails
to satisfy it is meaningless. Moreover, t'.he' approximation does not
change the order of th‘e equations, since ﬁe highest A~ derivative,

k,!,.‘.'ive) . (or 1z hivd) is eliminated, 3,’&4*)
is retained, s; thereAia no Jjustification for failure to
satisfy one of the conditi;:ns: ‘Fallure to get a solution in"this
emall-time approximation, i.e., the failure to get & similarity
solution to the full equations for small time, must arise from the
inability of this approach to give a valid result near the trailing
edge. As discussed in the beginning of thié section, any solution
foundwould have been non-uniformly vaiid in time near the trailing
edge. Furthermore, as expressed by (7-17), a similarity solution
for small 4  would be limited in validity, because of the
small-time approximation, to the range where £ << Xec &
This restriction apparently prohibits satisfaction of the equations
at x=0 » and results in the failure of the present approach.
A recent private communication from Dr. D. A. Spence indicates

that he has solved the small -/U- Jet-deflection problem exaf:tly,
using Laplace transforms on both the %« and ¢ variables. The
exact leading 1ift term for small time has been found. His results
also indicate that the solution near the trailing edge is not expressible
in terms of the 1'/{."/3 similarity. These results will be

reported shortly by Dr. Spence.
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7.3 High-Frequency Steady-State Oscillations; Jet Deflection and

Airfoil Motion Problems.

No similarity solution in  Z/}¥s could be found
for small time in the previous sections, yet the same approach for
high frequencies of steady-state oscillations appears to lead to an

2™

all the conditions, still approximating by neglecting x-

simllarity solution satisfying the equations and

derivatives with respect to 4+ - derivatives. In Bection 5.2
of III, Spence found high-frequency "solutions" to the Jet-deflection
problem in terms of the Jet ordina.te.and vortek strength. Although
these "solutions" do not, of course, encounter the step-function
difficulty, theyAd.o fail to satisfy the Wegner integral conditionm,
hence are incorrect.

The equations for the jet-deflection problem in
steady oscillations, with W) <o , are, fram (6-73) to

(6-76), using (6-88) and (6-89) and the remarks following them,

(@ § ) w2 (63) gL+ 3;,(;;9) =-kifn) | ocnce

(7-106)

and

kt/?r?)'-# ?—)ﬁ “?)f ocr<cw,

(7-107)
with

ktlo+;i)=-&off(%r'% =/,

(7-108)




fg""é'ls:#)als =0,
o

In full generality, Mellin transforms may be defined by

(237

‘k‘(g;n = ! J’;:" E‘ (5,9) dS"1

ami
o

RE(s;1) = J‘i"' kil |

r

and
ctioo

a 3
3"(1;9) = ;—LJ’L" G¥s:Nds

c-wo y

Glis;N) =Ji"‘3‘ (e |
(-]

Using the techniques of the preceding sections, the

various derivatives and integrals are
cti

)A;;(’;»;D)s -;',;-, %Y sls+i)(st2) ft‘ls;?)ds ;

¢-ia0
and, provided é‘[s;?) is a regular function of §
in the infinite strip, CLR(s)ecC+3
ctlo

g"(g;o) = ’T;-‘J‘fr,"" at(ﬂs;i’) ds ,

c-teo
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(7-109)

(7-110)

(7-111)

(7-112)

(7-113)

(T-114)

(7-115)
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A
3:11;9) = 'r:.tjf*’ [s+2) G¥(sa; N ds,
ow (7-116)
and
CHit0
Gopah = sl 2 snismrisnnds
e (7-117)
and, 1f Jcled
+ie0
* 4% (g:V)de L]~ AT,
R
° Cc-iw
(7-118)
Substituting these into the governing equations, (7-106)
and (7-107), gives '
T ehie ) .
‘{:FJ":” {ﬂ)‘ét(su;)) - 200 [s42) G (s42;0) + [s+1)sv2) G¥tsur:))
e - S{sH){S+2) !‘ﬁ'(S,’ "]} ds = 0
(7-119)
and
A oo
5'3‘?1 1—“{2‘(5;?) - tanms étls;n}AS =0,
c-io
(7-120)

vhich will be satisfied, if

Kes;)) = anms Ges;0) = s(t:z:)lsu) G(sul) - %‘% G'(s+3;9) v Gowd),

(1-121)
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The trailing-edge boundary condition, (7-108), is satisfied
1z o0cced and é'ts;a) has a doubile pole
vith coefficicnt g"-‘. at S=20 . The Wagner integral
condition, (7-109), is sstistied 12 G (4 ;N=o0
Buma.rizing, the difference equation, (7-121), must be

' " - -
solved for G (S;7) subject to the conditions that

A
G®Ls;V) 15 reguler in the infinite strip, oc@is) e §,

(1-122)
é" (S,‘?):#-s,near s=0,
(7-123)
and
GitiM=o.
(7-124)

Examination of (7-121) indicates that an approximation
scheme in ? , for large Q , may be made by expanding
A
K‘ls;?) . end ét[SJ'J) in terms of Y by

IZ‘ (s;9) = (s-)} T?Dﬁ 1s) + 77 KE1s) + 0(9-%Y]
(7-125)

E¥is:0) 1s-0 V% [GF 5) 417 GT1s) +OM)]

(7-126)
This approximation is precisely the same as that of the previous
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sections; i.e., it is assumed that (7-1) is, here,

éi‘#f"’ < (1§ () < 6V ),

(7-127)
The same limitations in the regions of validity of the solution hold

nere, (7-2 ), (7-5), (7-6) (7-17) end (7-18), with 1/  replacing
+ . Equatioms (;7-i21) to (7-124) may thus be written

-

KE (s) +1078 KT (s) + oli-*h) = tanws GF(s) +i V- lanns G 1s)

+004) = - GE(s+3) - iVBGEIsr) +2 G s42)] +0l1h),

(7-128)
with
GXs) +197BGrLS) + o)) regular in = 0< @< ],
(7-129)
LG5 ts) 1 1BGTts) to0Mh)) = "—'s, nesr S=0,
(7-130)
and
FIBLGE (4) + 3P GEE) vot)2h)] = 0,
(7-131)

Equating like powers of ¢ ‘A tpen gives the iteration scheme

for successive approximations in 9
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The first approximation requires solution of

lK} (¢) = tanms GElS) = - G (543),

(7-132)
subject to the conditions that
Gl (S) is regular in the infinite strip, 0« R#8)e }')
* (7-133)
6;‘15)’#?: near S =0,
(7-134)
and ,
GSth)= O ;
(7-135)
the second approximation requires solution of
KXiS) = tants G,X(s) = - G (s+3) =2 G (s+2),
(7-136)

subjJect to the conditions that

S G (s) is regular in the infinite strip, 0% RIS)< i,

(7-137)

Grlt)= o,

(7-138)
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The difference equation, (7-132), of the first approximation
1s satisfied 1f ' )

T . . s-% .
Gi(s)= - m) s S e 52 Yrses)

Furthermore, all the conditions, (7-133) to (7-135), are

(7-139)

satisfied, including the Wagner 1ﬁtegrai ‘c;‘o):-xiiti?s‘:’%gsing the
e as |96)) w0

along (RIS)=C . The complex 9 may be written
D= W e Y M .

as | 9(s)) oo along Rl)=C , é‘(s;?)'-"%)".* e_'”" whlhal

as |965)) 0 along RIS)=¢ . Therefore, since the

results of Section 7.1, (&)} GEis) ~1%s)

Mellin transforms, (7-110) and (7-112), must be integrable along
Ris\=¢ for Occle ',l_ ", it is necessary to restrict
'a&a” < E . This 1s a mild restriction for the case of
steady-state oscina.tions; eliminating only purely divergent motion.
In a like manner, the inhomogeneous difference equation,

(7-136), of the second approximation is satisfied if

GTIS) = -3—‘316_?1_m-) ls#)%n‘%’ Finmt -s—'-.—-al wls- 4)

16 | $-%a
+ YR\ Y Sy a2 Pis-3) .

(7-140)
vhere the first term is the particular salution to the inhomogeneous
equation, (7-136), and the second term is the general solution of
the correspondiﬁé homogeneous equation. Both conditions, (7-137)
and (7-138), are satisfied and the Mellin transform is again integrable

1t 'wa\?l < T
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G: (s)
Higher approximations 5 (S , etc. could also
be found, but are not treatedhere. Alsc, higher approximations
in /‘- could be found following the technique of Spence in II
for the steady problem, but these, too, are cmitied here.
The 1lift and pitching-moment coefficients can be evaluated,

using (6-62), (6-63), (7-113), (7-126), (7—139), (7-“*0), (7—39)
and (7-h0), glving

2 .. 4 -
C‘_szhr/ﬁ to{l+ Ioh +o(Y ’I')-}
(7-11)

and
A A
CM b l%'ﬂ.‘ C(_ .

(7-142)
As derived in Chapter 6, the solution for airfoil motion

is related to that for Jet deflection by (6-85) to (6-87). Here,

in particular, using (7-”3) (7-125): (7-139), (7-140), (7-39) and (7-40),

3 ‘i) = —N"\?*[lu ‘,‘—@9 AM{P”)]_G‘“ i)J! 0erim

(7-143)

x
R ) = i Vi sh by oH-‘fs)]f};‘lf,'?)J!, ocxcw,

(7-144)
vhile the important integral in the 1lift and pitching-moment

coefficients is
? ‘/ .' _
f?“'j‘/!;\?) df =i %’ -1 37 B 4o "’)] .

(7-145)
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These results check, of course, with those found by a direct
Mellin-trensform solution of the airfoll-motion problem.
For the plunging airfoil, fram (6-70), (6-71), (k-23), (k-2),
(4-25) and (7-145), o ' |

o e T B 53 0]

C]_ =
(7-146)
Cu = e (B[ 2% e -1 s -5 257 4 0 #)]
2 2 .
(7-147)
The leading term in both 1ift and pitching-moment coefficients is
the apparent-mass contribution and is lowest-order in both )
and /a. . The next tem is circtﬂ.atozy in nature and is the
leading Jet effect. The last {erm, also circulatory, may be
identified as preciaeiy the leading circulatory term for the
classical, _/u-‘-o , limit. That is, the 1ee.ai£g Jet-induced

term, proportional to ?"V/A , 18 lower-order than the leading
clasgical circulatory term, which 1s recovered, however, in this
approximate solutiom.

With like interpretation, the 1ift and pitching-mament
coefficients for the pitching and blown-flap airfoils ma'y‘ be written.

For the pitching airfoil they are

A

Corama BHTFE + F 028 - 15 (- ) + 0 ®]

(7-148)
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- 274, (d) {l +8{l-u)lo 2e) | ;'!‘ﬁ (,-4*)[,_ 4)79“

-3 gle-a) +9(-4)(I- u + 0 9‘9.#3)} :

32¢

(7-149)
for the blown-flap airfoil,

84. = “ez." (%)‘{[’L‘%‘-\ + @3-\ ¢ __&ff_“" ’\]
+ é,[\(l-zwo +s&-&lz~e~0],$§7. - z[% (K- S xeoox) 500~ u..\] #

+0 (/?“”)} _
(7-150)

{u[\- (loao\-4ao’0]+ ’“[ MK | ok o _%5]
+ 8 (1- ) [xfrre) +ei-&(z—¢o-&)].»$§,, +i[. NP X Wi

- Q_—_’;_Q_(;\.g,\ Kb x) - 3.(;-1:_«)\(1-2&&) -—%{l-‘lﬂ% X {2-co \)]’%
+ ol/MV"”)}

(7-151)
It appears then, that in the sense that (3V) 9,11 v)
and 3{1’/') are neglected in (7-106), a solution
of the problem of steady-state oscillations can be found satisfying
all the equations of the problem, including both the tralling-edge
boundary condition and the Wagner integral condition. Whereas
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there was fallure to solve the transient problem for small time,
solution to the oscillating problem has been found. The restriction,

i 4‘39' < I} , imposed to insure existence of the Mellin
transforms, is interesting in view of the Laplace-transform approach
to the transient problem. As mentioned above, replacement of (V)
by a real P , and multiplication of the result by & (p)
should give the lLaplace transform of the transient solution. B8uch
an identification is excluded by the restriction Ima?l = lﬂa-l"r)" E
This inability to extend the solutions to real P » hence failure
to get a La.pla.ce-transfom solution of the transient problem, is
consistent with the failure in Section 7.2 to get a similarity
solution in' ‘Y—/els , for small time. However, these
circumstances lead to the remarkeable conclusion that, contrary
to the usual experience in such problems (in particular the
classical unsteady solution discussed-in Sections 5.2 and 5.3), the
transient response for small time is not related through its fa.place
transform to the high-frequency response to the corresponding
problem of steady-state oscillations. Finally, it should be
remarked that Spence's latest approach to the transient problem,
if correct, must be made to tie in consistently with the above
solution for steady oscillations. It must be concluded, then,
that the solutions given in this section for steady oscillations
must be regarded as tentative, subject to further study, both of

them and Spence's new results.



CHAPTER 8 - CONCLUSICNS

By extension of the existing steady, Jjet-flapped, thin-
airfoil and classical, unsteady, thin-airfoil theories, a model
for unsteady motions of Jet-flapped thin airfoils has been
formulated in the first four chapters. 8tudy of these existing
theories has clarified certain features of the unsteady jet-flapped-
airfoll behavior. Buch studies have suggested the feasibility of &
"boundary-layer” transformation, which amplifies the region near
the trailing edée of the airfoil for small Jet-momentum strengths,

/u. , and for either smail times after initiation of

transient motions or for high-frequency steady-state oséillations.

The 1nvalid.ity- of the small-time "sqlutioﬁ" found by
Spence in iII for th:e Jet-deflection probléﬁ bas been pointed
out and discﬁssed‘in dej;a.il. No correct solutiéns using Spencc's
approach could be found, however. Likewise Spence's error in III
for the high-frequen;y response to steady-state oscillations
in jet deflection has been pointed out. For this problem a
tentative solution, as yet not mlly undez;stood, has been put
forth. It satisfies the equations and all conditions of the
problem in an apparently consistent sense, and can be extended
to the corresponding airfoil-motion problem.

Spe'nce's long-time solution in IIX, i.e., the approach

to the steady solution after a transient jéi: deflection or airfoil

184
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motion, is the only established result remaining for this problem.
Although not discussed in this report, this solution 1s found from
the full equations by examining the neighborhood X3 C+Ust
and showing that in the vicinity of this point for very large times
there is concentrated an amount of circulation equal in magnitude
but opposite in sign to the total circulation of airfoil plus jet
in the steady solutions of I and II. Considering the interaction
of this "starting circulation® and the “steady-flow circulation,"™
the 1ift coefficient for apprc;ach to thé steady solution was found
to be

o0, <1~ 4[4 ] 5) ().

(8-1)
where 3‘““”/:% is the lift-curve slope in the ‘steady, -
incidence, Jet-flap solution, say equation (65) of II, and <+
is the physical time.

The surface has only been scratched in finding the 1ift
and pitchibg-manent responses to unsteady motions of Jet-flapped
airfoils. The approach through the “boundary-layer” transformation,
if solved would only give results in.a. limited range of /u— and ¢
or w .  Nevertheless these equations have the strength of
their relative simplicity and give same hope for further analytic
attempts to solve them. It remains, as mentioned in the previous
chapter, to investigate fully Spence's new, as yet unpublished,
solution for the transient case, as well as the tentative high-

frequency solutions for steady oscillations given in that chapter.
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With the resolution and understanding of these limiting

results, digital computation of the full equations would probably
be necessary to give solutions for all intermediate times between
small and large, and for all frequencies up to the high ones. As
briefly discussed in Section 5.4, Spence in I obtained rapid
convergence to the steady-state solution usibg & numerical collocation
scheme, since the functions being sought had a monotonic behavior
in 4 . A collocation scheme should also be applicable in the
unsteady problems, although convergence would hy no means be as rapid,
due to the much more camplicated behavior, in A and t or w
of the unsteady solution. Furthermore, the collocation points would
have to be chosen“ in a fashion to adequately handle the important
effects in the immediate vicinity of the trailing edge, AL=C,
and those in the vicinity of = CtUet or Asc+Ue(4-%E),
say.

' Finally, and probably most important, is the need for
definitive experiments to test the validity of the modél formulated
here, and any solutions which might be found. Only in’this way can
the ultimate value of this theory be established.

It is strongly felt that further research along the above

lines is worthwhile, not only to obtain results of use to the
design engineer, but also to understand the interesting mathematical

and physical points raised by the present model and its equations.
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APPENDIX A

Evaluation of Certain Integrals

Although many of the integrals to be evaluated in this
Appendix may be found elsevhere, it is conven:lent to treat them
in genersl and collect their results here for the particular
applications required in the text.

The first type of integral to be treated is defined by

e o
o, ENRTA | e
I, Ff(z-;) $"ds
a | (a-1)
for 0sd<4f <C , with integer values of 'n ’
such that n=-l . The suyperscript, O , refers to
this type of integral and the sﬁbscript, n » to the exponent
of | . The integral is readily evaluated by making the

transformation, '

g=c 6
dS= 2¢5$in6w0edd

(a-2)
vhich gives

s[4

I. o= 38" s de .

s[(9Y]

(a-3)
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Using the trigonometric identity given by extension of equation 4Ok
of Msht (19k7), namely

Siu"'"‘e g (2'::,') - t o “ g - ')h(:::n)““ho’

(A-4)
(A-3) may be immediately integrated to give

Toap = #(5" o o 18 - ]
s S tRL{E) na  H] - enfsts]]

(a-5)
A particular case of this is

(17]
Titoo) = () (2030).
(a-6)
The examples of (A-5) and (A-6) vhich are required in the text are

I.(0,%) = & sa'[)]- + Vet ;n—u.e'*

L

(A-7)
°/, . » C (X +9nx)
I. [(A7% {.,c) T _%_ﬁ_.&. ’
" (a-8)

IMec) = %,

(a-9)



ToUads,0) s S (X +48mX R ),

and

° 3c
I, lO,C) s T'

The second type of integral is

¢

Lol skt s,

vhere Of—,o(‘?f-_c with integer values of W

n=0

using the transformation (A-2), it may be related directly to the

I, (4,8)

previous integral,

» such that

. Although this is readily evaluable

Y= (@& (50,

it is seen from (A-1) that

» With the identity

T.(ap)= cI.,ldp) - I (4p)

A particular case 1s

" Iuloc)=

2
el

-4

e

(zn
n

)
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(A-10)

(A-11)

(a-12)

(A-13)

(A-1k)

(a-15)
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The required examples are

T (o, tb) = £ sin[(4)]- £ Ml}"— anu);'lw’t

(A-16)
I lcard,e) = & (X simxcon),
(A-17)
. 1
I.‘ (O,C) = %— ’
(A-18)
I (o, %4) = wu[(u.e)’-] & (u.t)’_‘:‘lxc-u.t)"‘
Ya oy Yy
Ust)" (MUt Vet )¥* [ 2c-Ust)
< L")'X“"') y t__)f.}",(__ ’
(a-19)

Swx _ .ed a
X f‘-ﬁsu-:\ao\ z%’-rﬁa\ang,

(A-20)
. 3
I, (6,¢) = -I% ,
(a-21)
T, lcwdd, ) = 25 5¢* x 4 56'.47' gnx_[16- 9a0x -1 K- 60d K]

(a-22)

Py
{ s'c
I; {olC) = T;-_?- )

(A-23)
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The third type of integral is

?

oh ™
. HTA 43
I, (dp2)e FJ(?:) s ,
¢
(A-24)
vhere O<£do 4@{.-.6 and n is an integer such
that nz-i . The integral exists for 0L %&ok ,
?42{.44 " and x>c , and in the

sense of the Cauchy Principal . Value for o<x ¢F

Substitution of (A-2) makes it

s’ [
Ietapn = I sl
o [(‘)*] | (A-25)

The integrand may be rewritten, using the identity

eda

- adinp)

g e 3 (2hee- (g
(A-26)
and the definition of Ty (d,8) , (a-1) , a8
o [(@1]
1. (4,p,%) qu‘"IJ,up) 22" ?%o
“ﬂm | (A-27)

The remaining integral may be evaluated using equation 436-7 of
Dwight (1947), as
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w81 é"«ﬂ”l%lﬂ%ﬂp

(A-28)

Yo'b =

sw 19]

el - Wi al), cone

The final result is, in general,

3 nhy- o -2 e jcr fi!]‘ c-x¥s
PP ﬁ”’{&"ﬁ' &2 IS ‘}

o0cxect
I:ld,r,'],) s 30

Erne- sl Wiy m‘ﬁ

¢¢¢¢¢

A particular case is
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2 ()G, oerce
I, (o,c,9)= (a-32)

u )(¢) A 1;"" cencn
-o

-

(4-33)
The particular integrals necessary to the text are

Lite4e,m « (h-34)

o[ - H( e (k) (5], covee,

-t

(A-35)
. A hﬁl\ c-xYs
LR G e
_I:[Cao‘J;'c,'x): ~ (a-36)

e ], o,

(A-37)
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r l ’ 0&YLel

I (o¢c,%) = ; o

- conee,

(A=39)

ah
"%mxih,%.wk*%f‘%ﬂ”,%%

VX XTI (a-k0)

I

Ip’.(c‘”‘*) ("1) = 9

| Bl 8) ¢ Gk - (2 Tt (2]

CLrecoO

(A-11)
-and
[+ § oenec
(A-42)
If[o,c,')r-\= 1
Y
L¢+ %_1_(%)'; LeNLd |,
(A-43)

The final type of integral is

I.6ene TLJ{%!)* =5
d

(A-bb)
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vhere O&%‘Qéc and W 1is an integer such that
nao . Astor In (d,,2) , 1t exists
for 0&Lredh , Pl ®ece and A >cC ’

and in the sense of the Cau:hy Principal Value for R<CcrLe @

" Use of the identity, (A-13), reduces it to

I (dp¥) = c I, ldp2) - Tolspx)
(A-45)

A particular case of interest is

i

i ( )h“ ("b‘) 'x-H-h -2 | ocrec

I lec,v) = 4 (a-16)

S E - e )" e
L ke

(a-47)
i tasonts et o et
gl 4 TR o
T2 lopy) - | (a-48)
-3 (@ 30 o [T G eonee

(A-49)
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