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1 Introdust

Let us suppose that at a telephone exchange calls are
arriving at the instants ‘1’1, 't‘a, 't:3,..., Tpreees where

0 <'l:1 < 't'?_ <eue% 't:'n <,.s%< 05 ., As usual, in quewsing theory,

we assume that the inter-arrival times € =1, -1,  (n=1,2,... »Tp=0)

are ldentically distributed, independent, poaitive random variables
with distribution function

1) P{On x x} = F(x)’ (n = 1’2’0-0) °
Let
Q
2) o< = I xdF(x),
0
and

Us) = j: o "% %ar(x) .

The input is said to be a recurrent process. We shall assume that
there are infinitely many lines available and that, therefore, no
call is ever lost. Ordinarily, it is assumed that the holding times
(the durations of the connections) are identically distributed,
independent, random variables with an exponential distribution, The
American folklore, however, assumes that women talk more than men.
In thia paper, therefore, we shall conaider the possibility of calls
requiring one of several (s) different exponential holding times.
Por simplicity, let us consider the case where s = 2. Thus,
when a call arrives, it will be either of the first kind with pro-
bability p, or of the second kind with probability q. The holding
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times of calls of the first kind have the distribution function
1) H (x) = 107

The holding times of calls of the second kind have the distribution
function

5) Hy(x) = 1-e7¥% ,

We let (E(t), ol(t)) be a vector random variable denoting
the number of calls of the first and second kinds respectively
present in the system at time t. We define (gn’In) to be (E('rn-O),nz('t;laov’

i.e., (gn’?n) is the state of the system immediately before the
n=th arrival. Thus, the system is in stace EJk at time t if

(5(£) , (%)) = (3, x) .

We shall obtain the binomial moments of the limiting distribu-
tion of the Imbedded Markov chain (gn,zn). In order to accomplish
this, we first give a bivariate extension of Jordan's inversion
formula.

Later, we consider the general case where we allow an arriving
call to have one of the s types of holding time distributions
with provability p, ( %:; Py =1). Each of the holding time
distributions is assumed to be exponential, i.e.,

11

n
6) Hi(X) & leg (1‘1,2,00".)9



In section 5, we show that the dual problem of a Poisson
input with the possibility of several different holding time
distributions is easily reduced to the M/G/co crse dimcussed
by Takaés [1] .

It 1s well known that the probability theory of Type IIX
particle counters 1s Intimately connected with that of the queue
with infinitely many servers, We use our results to derive the
mean times between consecutlive registrations in a Type II counter
when the particles arrive according to a recurrent procesa and
the durations of the impulsaes produced are distributed as a

weighted sum of exponential random variables,

§2. Extensions of Jordan's Inversion Formula,

Ir iPk} (k = 0,1,2, ...) 1s a discrete probability distribu-
tion, ther the r-th binomial moment 43 defined by

©
(1) Kk
If the generating function U(z) = E Pz is anglytic in a circle

of radius 1+4€ , where € can be an arbitrarily small positive
nunber, then

1 au(z

and the binomial moments uniquely determine the distribution {Pk} R
Jordan's inversion formula expreasses the Pk(k = 0,1,2, «se) in terms
of the B, (r = 0,1,2, ...).



Theorem 1 (Jordan). wlj=

9) P, = é 1) i, .

irklkzi iy = 0,1,000,k;, 2 0,1,..,)

is a discrete bivariate distribution, we define the rlrz-th
binomial moment by

10) B = =2 ) kz) P
LR - féz’a( (’a Ik
Ir 0 oD "1.‘,“2

e ;E;;':o é;o Pkika z

is analytic in the region |z| < 1+4€, |w| < 1+€, then

1‘1+1‘
11) B = 1 2‘0 % W
rr, T Ir,l P T
8 T 2 (1,1) ]

The fundsmental inversion formula now becomes

12)  Pyy Z:‘,‘l‘:((l)lkl(l)z2 (:2)1.1,2,

Before proceeding with the proof, I shall state the general

multivariate result which is proved similarly.
Let

= 091, geees geoe y = 031. g0 e
Pyykpeeok, 0L 2 Ky 25000)

be a discrete n-variate distribution. Defining the (ryrj...r,)-th
tinomisl moment by

13) By =€—;’1 é"z é; C:) (:z) "'(‘2)1"1“2"-% ,

n



then the proper inversion formula is seen to be
ay)
o (11-1&1)*-(!'2 Ky 4ot (p el )

P %Zkz é;.:,n jj;(k ) Brlrz. «oTp

Proof of the Bivariate Case.

In order to verify the assertion that

I PRI O
1 = -1 1 ,
et En, Ba (VD D(2) 2,

we substitute the value of 13,,]‘1,2 in the right side of (15),
obtaining

= -k
1) > = (@)1 (rl)

(26 ) 7 -

Using the fact that

GG
() ()

interchanging the sums

and

-

a0 Q0 "‘2

00
md L]
%1 rszlno 'nsta r,-

B
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2 . ® s "1""1 m-lr,_ 2-1:2 n-k,
Recall, however, that (-1)""‘:{‘1’ if n>X

Thus, the only non-geroc term in our sum occurs when nakz and m=k1 °

Then our sum reduces to

18) > P_ =P .
(mi-;mka) m - Ckks

§3. The Ergodic Behavior of the Imbedded Markov Chain (&,, 7n) o

If we look at our process at the timess just before s call
arrives, then the random varisbles (§n’7n) = (§(”c'u - 0) ,fZ('vn - 0))
form a Markov Chain because we have assumed exponential holding

times, The transition probabiilties are given by

19 Py = P((§n+1.7n+1) = () (5,,7,) = (4,6)] ,
=p ]: (J71)e MR (1 g =Ax) JH1E (k) g -pixm () _o=bX)K-Typ (x)
+q T; (10X (1.9=2%) IE (KAL) guplmx (g o -pXymHlokgp y)

Starting from the initial distribution {Pk(l)} s, the dlatribue
tions {Pk(n)i can be determined successively from the Chapman-
Kolmogoroff equaticna

20) Pam(n'f‘l) - E ijm Jl(cn) o



It is lnown, however, that it 1s much more convenient to work

with the binomial moments of the distribution (gn’fn) , .0,

21) Brll(_:) ,E&rl ”Z:)f 3"1'1 ({_ l.)(k) (m)

Lemma, Let X and Y be two independent binomial distributions

with parsmeters (pl ,na) (pa ’n?_) respectively. Let Pk1k2=P (Xr-kl ,Y=k2)
be their joint distribution. Then

e -3 X\ /k, n, r, T,
P
22) Pryr, kf‘:‘il 22=r"2 (“1/ (’a) kk, "1)( a)p 1 P2

The proof is purely computational,
Theorem 2, We have By =1 (n=1,2, ...) and

23) Bl‘]_l(‘zﬂ) = ‘!(r At p.) ( (n) * PR, -(-nzl‘ %'191'?{} °

Proof, By owr lemma,

S+l (Tnel
B} ;1)(7“;2” €)= (3,0), o =x} =

“r.AX I X
1%k 2
(2,8 + q(f.l)o ,

24) p(j;l)o 1 '(k;]‘)e 2
1
because under our conditions the call 1s of the first kind,with
probablility p, and thus
§,4 18 binomial with parameters J+l and e~ %

and 7Tasy 18 binomial with paremeters 1k and o ¥,
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Likewise, the call i1s of the second kind, with probability q»
and thus
E,.1 18 binomial with paremeters J and o~ %
and

'Zn+1 is blnomial with parameters k+l and o"HE
Therefore, we have proved (244). Removing the conditioning on
6, vyields

25) Ei(§n+1)('1n+1 1 p)=ts } €rypora) PUZD G 1 ) ET]

Multiplying both sides of (25) by Pjéf) and suming over all
relevant (J,k), we obtain

26) B 1(121*' = r A+r2p.)|:B + pR, -1!:1-2 + 1,1-2 ]J

It 48 clear from (26) that if the limiting distribution
1im P[;n,7n) = (3 ,k)] exists (which it does in our case),

P =
& n>eo
then the binomial moments of {Pik‘g satisfy the equation

Yry M 1)
1l "2
27) Brll'z = I- drl’\ +1‘2p.’ (p %'1‘1 ’ra 1 ,l‘ -1]

with Boo = 1

Before presenting the solution to the difference squations abovs
we introduce further notation. Let D(r,,r,) denote the set of all
decroasing paths from (rl ,rz) to (0,0). A decreasing path is one
that always goes down or to the left. Let



if either m or n 4is different from zero; and let €(0,0) =1,
Por any path f in D(rl ,rz) s, fomm

c(s) = Trc(nlyﬂz):

where the product 1s taken over sll points (m, ,me) of the path.

Theorem 3. The solution to the system of equations (27) is

Pa
28) B = piq 2 {g c(f)
T, P4 ryr,) f}

The proof can be accomplished by doudble industion but a glance
at the aquation shows that the 131,11,2 given by (28) rit the
equation and reduce to the results of Takacs if p = 1. In his case
there 1s only one decroasing path as he dealt with a l-dimensional
problem and B, = TTc . If we impose the initial conditions

=13
o= T Sy

2
301-2‘;"1% ’

we ses that (28) gives the wmique solution to our equation.

and

As an example we compute 322 °



[
(9]
£

(0,2) _ (1,2) (2,2) o 712'.,2? iﬂ“?é?%?.“‘ﬁ'i;l,,
(2,2)=(2,1)=(2,0)-(1,0)-(0,0)
(2,2)={1,2)-(0,2)=(0,1)-(0,0)
(0,1) @af1) (2,1) (2,2)=(2,1)=(1,1)=(1,0)~(0,0)
(2,2)=(2,1)=(1,1)-(0,1)-(0,0)
(2,2)-(1,2)=(1,1)-(1,0)-(0,0)
(2,2)=(1,2)=(1,1)~(0,1)-(0,0)

(0307 1L, o7 12,0)

Consequently,

Bao = Cp5012002%1 * ©22°12001%0 * ©2215%11%10
t ColaCocfio * C22021%11%m * €220;1C3131Cy0 -

§li. The Gensral S-Dimensional Situation.

We now permit an incoming call to have one of s exponential
holding time distributions, We deal with the following modsl:
Calls arrive at a telephone exchange at times Ty < Ty Seee< Ty € se0 o
The inter-arrival times 6 =7, -1, (n=1,2, ...) ars mutually
indepsndent, identically distributed, random variables. Thus,

29) Pengz] =F(x) (mn=1,2, ...) ,
Qo
30) *zj‘xdl’(x)<oo ’
0
and o
31) Us) = j'oe'xdl?(x) o

Each call has probability Py of having the i-th kind of holding time
distribution '



32) Hi(x) = 1“- Ix (1 ".1, XX ¥ ') .

s .
Oof courss, vy = 1 . As usuzl, we assume that holding
g, :

time distributions chosen are mutually independent random

nd independsnt of the sequence of times of arrival

We denote the atate of our system st time t by an a-vector
[El(t), §2(t), coo §'(t)] whare Ei(t) {2 the rumber of calls
of the i-th kind present in the system at time & . We shall
determine tho binomial moments of the imbedded Markov chaln of

this process.
Lot & = (6 soec,80 ) = Blec, - 0),....800t, - 0)).
The transition probabilities of the s-dimensional chain are

given by

33) p‘jl""’ ’3 )(k»l’ooo ,k ) = P[§n+1 = (kl’°'f’ka)lg = (leoo. ,j )]
+1y - - +1lk - -
P 110 pix)ji i- ( )o “ka§ “vt d?(x)

z%rp’* jo( }

As bafore, it 1s easier to work with dbinomial moments

-2 _ (n)

= = -2 2y
£ 5 B

Proceeding as before, we arrive at the following equation satisfied
by biriomial moments of the stationary distributioa



=2~

{n)
P = 1lim P
Jye003s " oo Jyeeed, :

Qfé ’1"’1)

35) By pvuer, © -

12" "s 1-“_6!;1." )
Zy Tib1

[plsrl-l ,1‘2. ose ,r.wanl‘l .rz.l ,1'2... l': o0

+ p B
with s x'11'2"'1'3-1’1'3"]]

Boo...0 =1 -

Let D(ry, ... ;r') denote the set of all decreasing paths
from (rl,...,r') to (0, «.. , 0), and let
(3 ™)
¢ myp
Clmy yeue pmy) = ﬁ':l' °
I-Q(.;; ni"’i)

For any path ¢ in D(rl,..o,r‘) form

C(f) = -[T c(ml"l.Q ’n.)p

where the product is taken over all points (my,...,m,) of the
path § . We now can give an explicit formula for the moments
of the stationary distribution {le"'Js‘ o

Theorem l. The gsolution to the system of equations (35) fs

r
(36) B - 1 ¢ .
3 r1’°.°r' ﬁlpi {Erl .oofgle

\
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§5. Remarks on the Poisson Input C

Suppose the calls arrive according to a Poisson process.
Each call will have probabllity Py of having one of the s
holding time distributions

)
Hi(x) E Pi = 1)0 (1‘1’ vee ’.)’

The only requirement on the holding time distributions is that
they have finite mean, i.e.,

®© o
4y = Io xdnl(x) = Jo El-ﬂi(x)]dx < o for all & .

This problem is trivial because we can consider the input to be

composed of s different Polsson processes each with parameter

Api o Thus, we can regard our system as s different M/G/oo
systems. If we let &= (EY(t), ... ,£%(t)) denote the state

of our system, then by Theorem 11 of Reference (1] (also Theorem 1
page 160 of [2]), we have

ky

-
- E 81
37) E = p sse = = 81
P(E(t) (x, k)l ~e i‘alt T

where
31 = Miﬁ[l‘ni(x)]k (4 = Llycoe )!)o



$6. A Related Particle Counting Problem.

In this section we analyse owr problem from the point
of view of particle counting. We assume that particles
arrive at a Type II counter at times T,, Tpseees Tpsees (n=l 22 1ee3 Ty=0),
vhere the inter-arrival times en ] '-1;“1 - T, are i{dentically
distributed, positive, random varisbles with distribution function
F(x). As before, we let
®©
L = S xdP(x)
0
and
o
Us) = j’oo""‘dr(x)o

At the instant of its arrival a particle produces one of =

kinds of impulses. Each particle has probabllity Py of producing
the i-th kind of ‘mpulse the Juration of which has the distribution
function

38) Hi(x) = l-e-u"x (1=1,...,8)

8

Of course, F Py = 1. Furthermore, we assume that the durations
=

of the impulse times which are chosen are mutuslly independent,

random variables that are also independent of the seguence of

times of arrival i"cn} o

Although every arriving particle produces an impulse in the
counter, only those particles that arrive when the counter 1s free
are registered. The times of arrival of ths registered particles
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{T;S form a subsequence of the sequence {T,\. The times
between consecutive registrations, o!', = r,'m - 'r'; s Aare
also identically distributed, independent, positive random
variables with distribution function R(x). In this section
we shall compute the mean of R(x).

In this particle counting framework, the random variable
En = (E;I, ceo §:) denotes the numbsr of impulses of each
type present in the counter just before thes n~th particle
arrives, In particular, P, 3) 1s the provability that
the n-th arrival finds the counter fres and is registered.
The limit

m p,. @ = p
n=> 00 0 0 Q 0

exists and is given by

39) (=1)*" "
P cee B sas -1 B
0:++0 % £ *** =0 PpeeeTy ’

where the B
rlﬁ L] .r’

Pundsmental Identity of Sequential Analysis (see [2] page 183),

are given by (36). By applying Wsld's

we conclude that the mean time between successive reglstrations
is

ko)  rvosratiE
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Before we know what kind of particle has arrived, the
duration of the impulse produced by the particle has the
distribution

— ~iyX

> [} e
™

Therefore, the time between consecutive regisirations in a

1) H(x) = 1.

Type II counter, when the particlss arrive according to a
recurrent process and the impulse times are distributed as a
weighted sum of exponentially distributed random veriables,
and the time between consecutive registrations in our process

have
Has the same distribution. Hence

o«

I0’"0

*

is also the mean time between successive registrations in this
second process. Since any distribution function can be
approximated by one of the form (41), this result may be of
practical valus .Unfortunately, we have not been able to obtain
the variance of R(x) by the use of the imbedded Markov chain.
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