NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Preliminary trials have been conducted to establish suitable hot-cold forging procedures for D6AC, 300 M, H-11, 4340, HP 9-4, and AM 355 steels. Closed step dies are employed to produce a part having reduction levels of approximately 20, 40, and 60 per cent. After suitable heating and forging procedures are established, screening studies will be conducted to determine the response of the six steels to hot-cold working.

Minor difficulties have been encountered in maintaining die temperatures above 600 F and in removing the forgings from the die. In addition, filling of the die was incomplete, even though the maximum forging pressure of 700 tons was employed. This resulted in reduction levels slightly lower than desired. Attempts are being made to alleviate these difficulties by improving the die heating arrangement, modifying the die design, and improving lubrication.
PROCESS DEVELOPMENT FOR DEFORMED METASTABLE AUSTENITIC ULTRAHIGH-STRENGTH STEEL

C. W. Marschall
J. H. Gehrke
A. M. Sabroff
F. W. Boulger

BATTelle MEMORIAL INSTITUTE
Contract No. AF 33(657)-9139
ASD Project 7-891

Interim Technical Documentary Progress Report No. 2
10 January 1963 - 30 April 1963

Preliminary trials have been conducted to establish suitable hot-cold forging procedures for D6AC, 300 M, H-11, 4340, HP 9-4, and AM 355 steels. Closed step dies are employed to produce a part having reduction levels of approximately 20, 40, and 60 percent. After suitable heating and forging procedures are established, screening studies will be conducted to determine the response of the six steels to hot-cold working.

BASIC INDUSTRY BRANCH
MANUFACTURING TECHNOLOGY LABORATORY
Aeronautical Systems Division
United States Air Force
Wright-Patterson Air Force Base, Ohio
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This document may not be reproduced in any form in whole or in part without prior approval of the Aeronautical Systems Division (ASRCT).

Qualified requestors may obtain copies of this report from the ASTIA Document Service Center, Arlington Hall Station, Arlington 12, Virginia.

Copies of ASD Technical Report should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notices on a specific document.
FOREWORD

This Interim Technical Report covers the work performed under Contract No. AF 33(657)-9139 from 10 January, 1963 to 30 April, 1963. It is published for information only and does not necessarily represent the recommendations, conclusions, or approval of the Air Force.

This contract with Battelle Memorial Institute of Columbus, Ohio, was initiated under ASD Manufacturing Technology Laboratory Project 7-891 "Process Development for Deformed, Metastable, Austenitic Ultrahigh-Strength Steel". It is administered under the direction of Mr. G. W. Trickett of the Basic Industry Branch (ASRCT), Manufacturing Technology Laboratory, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio.

This program is being carried out by Battelle's Metalworking Division under the supervision of Dr. C. W. Marschall, Senior Metallurgist, Mr. J. H. Gehrke, Research Metallurgist; Mr. A. M. Sabroff, Research Associate, and Mr. F. W. Boulger, Division Chief.

The primary objective of the Air Force Manufacturing Methods Program is to increase producibility, and improve the quality and efficiency of fabrication of aircraft, missiles, and components thereof. This report is being disseminated in order that methods and/or equipment developed may be used throughout the industry thereby reducing costs and giving "MORE AIR FORCE PER DOLLAR".

Your comments are solicited on the potential utilization of the information contained herein as applied to your present or future programs.

PUBLICATION REVIEW

Approved by:
F. W. Boulger
Chief
Metalworking Research Division

Approved by:
S. L. Fawcett
Manager, Department of Metallurgy
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>iv</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>PHASE II, HOT-COLD FORGING DEVELOPMENT STUDIES</td>
<td>3</td>
</tr>
<tr>
<td>Design and Preparation of Dies for Hot-Cold Forging</td>
<td>4</td>
</tr>
<tr>
<td>Hot-Cold Forging Trials to Establish Procedures</td>
<td>4</td>
</tr>
<tr>
<td>Results of Preliminary Forging Trials</td>
<td>9</td>
</tr>
<tr>
<td>FUTURE WORK</td>
<td>12</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preparation of Forging Preforms From As-Received Stock</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Step-Bar Forging Representing Three Levels of Reduction</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Design of Cavity in Matched Impression Dies for Step Forging</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>View of Lower Half of Matched Impression Dies for Step Forging</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Step Forgings of AM 355 Showing Typical Effect of Hot-Cold Forging Temperature</td>
<td>10</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measured Reductions Obtained in Hot-Cold Forging Trials</td>
<td>11</td>
</tr>
</tbody>
</table>
PROCESS DEVELOPMENT FOR DEFORMED METASTABLE
AUSTENITIC ULTRAHIGH-STRENGTH STEEL

by

C. W. Marschall, J. H. Gehrke, A. M. Sabroff, and F. W. Boulger

INTRODUCTION

Many investigators have established the increased strengthening produced by hot-
cold working as compared to conventional heat treatment. The ultimate objective of the
present program is to develop suitable methods for producing actual hardware items by
hot-cold forging techniques. The program has been divided into three phases:

Phase I. State-of-the-Art Survey

Phase II. Hot-Cold Forging Process Development Studies

Phase III. Experimental Production of a Typical Part by
Hot-Cold Forging.

The findings of Phase I were summarized in the First Interim Technical Documentary

In the development of hot-cold forging practices for commercial production of
parts, several major problems in producibility that must be overcome are:

(1) The extremely high forging pressures required to deform austenite
below its recrystallisation temperature

(2) The nonhomogeneous deformation usually found in forgings, leading to
nonuniform strengthening by hot-cold working

(3) The directionality of properties frequently observed after hot-cold
working.

Accordingly, the recommendations as to steel selection and experimental work for
Phase II were directed toward overcoming these problems. To reduce the forging-
pressure requirements, hot-cold forging would be performed at temperatures near or
above the pearlite nose on steels having isothermal-transformation diagrams which ex-
hbit a suppressed pearlite nose. Results would be compared with those obtained at hot-
cold forging temperatures near 1000°F. Preparation of the forging blanks by blocking at
hot-cold working temperatures would be investigated as a means of reducing the degree
of nonuniform deformation that is typical of closed-die forging. Finally, the steels used
in this program would be consumable-electrode vacuum-arc melted and be as free from
inclusions as possible to minimise directionality of properties.

BATTHEL MEMORIAL INSTITUTE
Approval to proceed with Phase II was received from the Manufacturing Technology Laboratory, ASD, on January 10, 1963. This report presents details of progress made in Phase II from January 10 to April 30, 1963. The primary objectives of Phase II are:

1. To determine, by screening studies, the response of the candidate steels to hot-cold forging and their general suitability for processing by this technique.
2. To choose, on the basis of the screening studies, the three most promising steels for studies of mechanical properties.
3. To establish realistic hot-cold forging cycles that lead to consistent mechanical-property response.
4. To obtain information on forging pressures, forgeability, and related die-forging characteristics.
5. To select an appropriate production-type forging design that can be produced successfully by hot-cold forging techniques in Phase III.

Six steels were selected for study on the basis of potential strength level and pearlite-transformation characteristics. These steels are D6AC, 300M, HP 9-4, AM355, H-11, and 4340. The H-11 and 4340 steels were included because they are currently used in forgings for aerospace applications. The major portion of the time and effort expended during this period has been on procurement of materials and preparation of equipment for the hot-cold forging trials. Preliminary trials were made on several steels to check out the tooling and forging procedures.
PHASE II. HOT-COLD FORGING DEVELOPMENT STUDIES

The overall objective of Phase II is to develop the most promising process for economical production of simple and complex forged components from high-strength steels by hot-cold working. Variables such as the forging temperature, forging reduction, and deformation rate are being studied for their effects on microstructure, flow pattern, longitudinal and transverse properties, etc., of a number of the most promising steels amenable to strengthening by hot-cold working.

Materials

The six steels chosen for preliminary investigation and their nominal compositions are:

<table>
<thead>
<tr>
<th>Steel</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
<th>Ni</th>
<th>Co</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6AC</td>
<td>0.47</td>
<td>0.7</td>
<td>0.3</td>
<td>1.0</td>
<td>--</td>
<td>0.08</td>
<td>0.5</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>300 M</td>
<td>0.4</td>
<td>0.75</td>
<td>1.6</td>
<td>0.85</td>
<td>0.4</td>
<td>0.08</td>
<td>1.85</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>H-11</td>
<td>0.4</td>
<td>0.3</td>
<td>0.9</td>
<td>5.0</td>
<td>1.2</td>
<td>0.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4340</td>
<td>0.4</td>
<td>0.7</td>
<td>0.25</td>
<td>0.8</td>
<td>0.3</td>
<td>--</td>
<td>1.9</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>HP 9-4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
<td>9.0</td>
<td>4.0</td>
<td>--</td>
</tr>
<tr>
<td>AM355</td>
<td>0.13</td>
<td>0.95</td>
<td>0.25</td>
<td>15.5</td>
<td>2.75</td>
<td>--</td>
<td>4.3</td>
<td>--</td>
<td>0.1</td>
</tr>
</tbody>
</table>

These steels were ordered from suppliers who indicated they could (1) provide consumable-electrode vacuum-arc-melted stock of aircraft quality, (2) provide chemical analysis of heat, and (3) offer the shortest delivery from receipt of order. The steels were obtained in the form of forged billet stock from the following companies:

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Supplier</th>
<th>Billet Size, in.</th>
<th>Delivery Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6AC</td>
<td>Midvale-Heppenstall</td>
<td>4 pc. - 8 x 8 x 3-1/4</td>
<td>April 3, 1963</td>
</tr>
<tr>
<td>300 M</td>
<td>"</td>
<td>4 pc. - 8 x 7-3/4 x 3</td>
<td>"</td>
</tr>
<tr>
<td>H-11</td>
<td>"</td>
<td>2 pc. - 8-1/4 x 5-1/4 x 5-1/4</td>
<td>"</td>
</tr>
<tr>
<td>4340</td>
<td>"</td>
<td>1 pc. - 9-1/2 x 8-1/2 x 3</td>
<td>April 30, 1963</td>
</tr>
<tr>
<td>HP 9-4</td>
<td>Republic Steel</td>
<td>1 pc. - 9 x 3 x 1-3/4</td>
<td>April 30, 1963</td>
</tr>
<tr>
<td>AM355</td>
<td>Allegheny-Ludlum</td>
<td>2 pc. - 8 x 8 x 3</td>
<td>April 29, 1963</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 pc. - 68 x 1-1/2 x 1-1/2</td>
<td>March 15, 1963</td>
</tr>
</tbody>
</table>

All of the alloys were supplied in the as-forged (cogged) condition with the exception of AM355 which was annealed.

Chemical analyses of the heats of each alloy are being supplied by each of the suppliers. Analyses of four of the alloys have been received and are as follows:
Composition, weight per cent

<table>
<thead>
<tr>
<th>Steel</th>
<th>C</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Si</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>V</th>
<th>N</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-11</td>
<td>0.43</td>
<td>0.25</td>
<td>0.008</td>
<td>0.010</td>
<td>0.95</td>
<td>5.24</td>
<td>0.15</td>
<td>1.30</td>
<td>0.47</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>300 M</td>
<td>0.43</td>
<td>0.71</td>
<td>0.005</td>
<td>0.005</td>
<td>1.67</td>
<td>0.78</td>
<td>1.80</td>
<td>0.34</td>
<td>0.07</td>
<td>--</td>
<td>0.10</td>
</tr>
<tr>
<td>D6AC</td>
<td>0.47</td>
<td>0.68</td>
<td>0.008</td>
<td>0.006</td>
<td>0.30</td>
<td>0.98</td>
<td>0.60</td>
<td>1.01</td>
<td>--</td>
<td>--</td>
<td>0.031</td>
</tr>
<tr>
<td>AM 355</td>
<td>0.120</td>
<td>0.93</td>
<td>0.018</td>
<td>0.008</td>
<td>0.16</td>
<td>15.14</td>
<td>4.27</td>
<td>2.65</td>
<td>--</td>
<td>0.082</td>
<td>--</td>
</tr>
</tbody>
</table>

With the exception of AM 355, typical isothermal-transformation diagrams for these steels were presented in Figures 1 and 2 of the First Interim Technical Documentary Progress Report. AM 355, as reported by Allegheny-Ludlum, does not exhibit a pearlite reaction in any reasonable times. However, there is a chromium-carbide precipitation from the austenite that requires the following times for initiation:

<table>
<thead>
<tr>
<th>Temperature, F</th>
<th>Time, seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1490</td>
<td>90</td>
</tr>
<tr>
<td>1400</td>
<td>120</td>
</tr>
<tr>
<td>1300</td>
<td>300</td>
</tr>
<tr>
<td>1200</td>
<td>1800</td>
</tr>
</tbody>
</table>

To prepare forging preforms from the as-received material, sections were sawed from the cogged billets as shown in Figure 1. These sections were then hammer forged to 1-5/8 inch-square bars, softened by overtempering, and cut in half to supply two preforms roughly 4-1/4 inches long. Each preform was then machined to 1-1/2 inches square. In the case of AM 355, no intermediate processing was required. Blanks were cut 4-1/4 inches long and machine to 1-1/2-inch-square preforms.

Design and Preparation of Dies for Hot-Cold Forging

Previous experience indicated that closed-die systems would be more suitable for hot-cold forging than would an open-die system. The forging design chosen for Phase II studies is shown in Figure 2. This design, when hot-cold forged from a 1-1/2- x 1-1/2- x 4-1/4-inch preform, will provide various deformation levels in a single part.

The dies necessary to produce this part have been prepared from H-11 steel to the dimensions shown in Figure 3, heat treated, and triple tempered to Rockwell C 48 to 52. One-half of the machined die is shown in Figure 4 prior to heat treatment. The other half of the die is identical.

Hot-Cold Forging Trials to Establish Procedures

Preliminary hot-cold forging experiments have been conducted on AM 355, H-11, D6AC, and 300 M steels to establish suitable procedures and to test the tooling. HP 9-4 and 4340 were not included because of their late delivery date.

*George Atten, Allegheny-Ludlum Steel Corporation, private communication.
FIGURE 1. PREPARATION OF FORGING PREFORMS FROM AS-RECEIVED STOCK
FIGURE 2. STEP-BAR FORGING REPRESENTING THREE LEVELS OF REDUCTION
FIGURE 3. DESIGN OF CAVITY IN MATCHED IMPRESSION DIES FOR STEP FORGING

Flash region around cavity is shown by light outline.

BATTelle MEMORIAL INSTITUTE
Preforms 1-1/2 x 1-1/2 x 4-1/4 inches were austenitized at appropriate temperatures in an electric air furnace. They were then cooled rapidly to the deformation temperature, held several minutes to establish temperature uniformity, and quickly transferred to the heated dies of a 700-ton forging press, operating at a ram speed of 80 inches per minute. The time required to deform the metal was of the order of 1 second. The step-bar forging was then removed from the die and allowed to cool in air. Measurements were taken to determine the actual percentage reduction in each section of the forging.

To cool the preform from the austenitizing temperature to the deformation temperature, two different methods were employed. For cooling to temperatures in the "deep-bay" region (near 1000 F), a 500-cubic-inch bath of molten salt (Houghton No. 810) was employed. For cooling to temperatures near the pearlite nose, a circulating-air furnace was used, inasmuch as quench time is not critical.

The lubricant for all trials was a mixture of kerosene and graphite on the die surface. Combustion of the kerosene in contact with the hot dies left a residue on the die surface that served as a parting agent. Molten salt remaining on the preforms cooled in the salt bath also acted as a lubricant.

The dies were preheated to 700 F in an air furnace, and then transferred to the forging press. A gas flame was employed to maintain the temperature at 600 F, which is above the M_s temperature for most of the steels being investigated. In conjunction with the gas flame encircling the die, asbestos foil separators were used between the die block and the press platens to reduce the heat-sink effect of the forging-press mass. Asbestos-foil shielding was also employed to minimize convection heat losses.

Results of Preliminary Forging Trials

Photographs of several step-bar forgings prepared from AM 355 are shown in Figure 5. It is apparent that the total amount of reduction is greatest at the higher forging temperature, Samples 5 and 6. In every case, fill was incomplete in the zone of highest reduction because the metal flow occurred predominantly in the long direction of the preform as forging proceeded. This reduced the volume of metal available for lateral movement in the zone of highest reduction. Furthermore, the early formation of flash at the ends and at the sides of the thick sections of the step forging acted to retard die filling in the thin section. As a result, the actual reductions in all of the trials conducted to date were slightly less than the desired reductions of 20, 40, and 60 percent, even though the full 700-ton press capacity was used in each trial. The forging conditions and measured percentage reductions are presented in Table 1 for each forging trial.

Another factor in these preliminary trials which probably had an effect on the reductions and die fill obtained was die temperature. The gas heating method employed did not supply sufficient heat to maintain the dies at the desired temperature of 600 F. In future trials, it is planned to replace the gas heater with electrical-resistance heaters, as well as to increase the thermal shielding. The problem of incomplete filling of the die cavity also appears to be associated with lubrication. Several other lubricants of the grease-type are being obtained for use in future trials.
FIGURE 6. STEEL FORGINGS OF AM 946 SHOWING TYPICAL EFFECT OF HOT-COLD FORGING TEMPERATURE

All bars annealed at 1000 F, Bars 6 and 6 forged at 1540-1600 F, Bars 11 and 12 forged at 1000 F.
Difficulty was also experienced in removing the forged part from the die. The die-draft angle was increased from 3 to 5 degrees to alleviate this difficulty, as indicated in Table 1. Although this made it somewhat easier to remove the part from the dies, it did not completely eliminate the problem and further modifications in die design may be necessary.
FUTURE WORK

After establishing suitable procedures, the six steels will be studied to determine their response to hot-cold forging and their general suitability for processing by this technique. Preforms will be hot-cold forged to the step-bar configuration shown in Figure 3 to achieve reductions in thickness of approximately 20, 40, and 60 per cent, accompanied by lateral flow. Two deformation temperatures will be chosen for each steel, one at about 200°F above the pearlite nose and the other in the deep-bay region of the I-T diagram. The approximate austenitizing temperatures, forging temperatures, quenching media, and tempering temperatures for each steel are:

<table>
<thead>
<tr>
<th>Steel</th>
<th>Austenitizing Temperature, F</th>
<th>Forging Temperature, F</th>
<th>Quench</th>
<th>Tempering Range, F</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6AC</td>
<td>1550</td>
<td>1475</td>
<td>1000</td>
<td>Oil</td>
</tr>
<tr>
<td>300 M</td>
<td>1600</td>
<td>1400</td>
<td>1000</td>
<td>Oil</td>
</tr>
<tr>
<td>H-11</td>
<td>1850</td>
<td>1550</td>
<td>1000</td>
<td>Air</td>
</tr>
<tr>
<td>4340</td>
<td>1550</td>
<td>1400</td>
<td>1000</td>
<td>Oil</td>
</tr>
<tr>
<td>HP9-4</td>
<td>1550</td>
<td>1250</td>
<td>1000</td>
<td>Oil</td>
</tr>
<tr>
<td>AM 35-</td>
<td>1710</td>
<td>1400</td>
<td>1000</td>
<td>Air</td>
</tr>
</tbody>
</table>

(a) After subzero cooling.

The preforms will be austenitized, cooled rapidly to the forging temperature, held to establish temperature uniformity, forged to the step-bar configuration in dies pre-heated to at least 600°F (above Ms for all six steels), and immediately quenched. Duplicate forgings will be prepared for each steel and each deformation temperature - a total of 24 forgings.

The step-bar forgings will be cut longitudinally into sections, and examined in the as-quenched condition as well as after tempering at various temperatures. The evaluation will include both microscopic examination and hardness determinations to establish the response of the steels to the varying amounts of deformation, the different deformation temperatures, and the tempering conditions. The results will be compared with results obtained from conventionally treated specimens of the same steels. Based upon these results, the steels will be rated according to their general suitability for achieving increased strength through hot-cold forging. Factors favoring one steel over another will include:

1. Little tendency to recrystallize or to transform to nonmartensitic products before, during, or after hot-cold forging

2. Large increase in hardness after tempering when compared with conventionally hardened and tempered material

3. Ease of forging (i.e., low pressures, little tendency toward cracking).
After rating the six steels, the three most promising steels will be subjected to further study to establish realistic hot-cold forging cycles that lead to consistent mechanical-property response.

* * * *

Data upon which this report is based are recorded in Battelle Laboratory Record Books Nos. 19371 and 20164.
DISTRIBUTION LIST

ASD (ASRCTB) Wright-Patterson AFB, Ohio (6)
ASD (ASRCEE, Mr. J. Tore*) Wright-Patterson AFB, Ohio
ASD (ASRCMP-4) Wright-Patterson AFB, Ohio
ASD (ASRCMP-1) Wright-Patterson AFB, Ohio
ASD (ASRC, Mr. A. M. Lovelace) Wright-Patterson AFB, Ohio
ASD (ASRCM-1A, Mrs. N. Ragen) Wright-Patterson AFB, Ohio (2)
ASD (ASRCEE-1) Wright-Patterson AFB, Ohio
Bureau of Naval Weapons
Attn: Mr. N. E. Promisel
Department of the Navy
Research and Engineering Division
Washington 25, D. C.
Climax Molybdenum Company
1270 Avenue of the Americas
New York 20, New York
Curtiss-Wright Corporation
Attn: Manager, Metallurgy
Wright Aeronautical Division
Wood Ridge, New Jersey
Douglas Aircraft Company, Inc.
Attn: Mr. S. D. Truban
1000 N. Memorial Drive
Tulsa, Oklahoma
Douglas Aircraft Company, Inc.
Attn: Mr. V. M. Comsa
Materials Division Group
El Segundo, California
FTD (TD-E2b) Wright-Patterson AFB, Ohio
Attn: Mr. Kenneth F. Mundt
P. O. Box 296
Azusa, California
Armed Services Technical Information Agency
Attn: Document Service Center (TISIA-Z)
Arlington Hall Station
Arlington 12, Virginia (30)
Bell Aerospace Corporation
Attn: Mr. H. D. Ellett
Manager, Production Engineering
P. O. Box 1
Fort Worth 1, Texas
The Boeing Company
Attn: Mr. Boyd K. Bucey
Assistant to Vice President - Mfg.
P. O. Box 3707
Seattle 24, Washington
The Boeing Company
Materials Process Unit
Attn: Mr. A. L. Paxhia
Wichita, Kansas
The Boeing Company
Wichita Division
Attn: Mr. W. W. Rutledge
Manufacturing Manager
Wichita, Kansas
Curtiss-Wright Corporation
Curtiss Division
Attn: Mr. V. C. Schulte
Chief Engineer, Materials
U. S. Route No. 46
Caldwell, New Jersey
Curtiss-Wright Corporation
Metals Processing Division
Attn: Chief Engineer
760 Northland Avenue
P. O. Box 13
Buffalo 15, New York

BATTELLE MEMORIAL INSTITUTE
The Martin Company
Attn: Chief Librarian
Engineering Library
Baltimore 3, Maryland

General Dynamics Corporation/Convair
Attn: Director, Mfg. Development
Mail Zone 2-22
San Diego 12, California

General Dynamics Corporation/Pomona
Attn: Chief of Mfg. Engineering
P. O. Box 1011
Pomona, California

General Electric Company
Attn: Manager, Engineering
21800 Tungsten Road
Cleveland 17, Ohio

Ladish Company
Attn: Mr. Robert Dakin
Cudahy, Wisconsin

Lockheed Aircraft Corporation
Attn: Manufacturing Manager
Marietta, Georgia

Lockheed Aircraft Corporation
Attn: Director of Manufacturing
P. O. Box 511
Burbank, California

The Martin Company
Attn: Director of Manufacturing
16555 Saticoy Street
Van Nuys, California

Ling Temco-Vought, Inc.
P. O. Box 5907
Dallas, Texas

Universal Cyclops Steel Corporation
Bridgeville, Pennsylvania

Armour Research Foundation
Technology Center
10 West 35th Street
Chicago 16, Illinois

McDonnell Aircraft Corporation
Attn: Mr. Howard Siegel
P. O. Box 516, Department 272
Lambert-St. Louis Airport
St. Louis, Missouri

North American Aviation
Attn: Mr. Jim Huffman
Materials Engineer
International Airport
Los Angeles 45, California

Northrop Corporation
Attn: Mr. R. R. Nolan
1001 E. Broadway
Hawthorne, California

Nuclear Metals, Inc.
Attn: Mr. A. Kaufmann
155 Massachusetts Avenue
Cambridge 38, Massachusetts

Rohr Aircraft Corporation
Attn: Mr. Ed Pederson
Manufacturing Manager
P. O. Box 878
Chula Vista, California

Ryan Aeronautical Company
Attn: Mr. J. A. Smithson
P. O. Box 311
San Diego 12, California

Ford Motor Company
Aeronutronic Division
Attn: Mr. W. Bandaruk
Ford Road
Newport Beach, California
DISTRIBUTION LIST
(Continued)

Westinghouse Electric Corporation
Materials Manufacturing Division
Blairsville, Pennsylvania

Harvey Engineering Laboratories
19200 South Western Avenue
Torrance, California

Belfour Engineering Company
Atten: Mr. R. C. Braden
Suttons Bay, Michigan

Lear Siegler, Inc.
1700 East Grand Avenue
El Segundo, California