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FOREWORD

This report was prepared under G.0. 8333,
in compliance with Contract AFOL(69%)-135.

ABSTRACT

The results of an analytical study to de-
termine the effect of heat input to the
Atlas MA—2/5 oxidizer start tank on vernier
engine duration are presented. Also pre-
sented are the results of a test program

to determine the savirng affected in
residual oxidizer weight through the use

of a special oxidizer start tank ullage

fitting with increased length.
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INTRODUCTION

This is a presentation of the effort to determine the vernier engine solo
duration capabilities for the MA-2/5 propulsion system during missile

flight. The effort consisted of two basic tasks:

Task 1., Oxidizer System: determine the properties and the quantity

of oxidizer in the engine oxidizer tank at sustainer cutoff

Task 2. Fuel System: determine the properties and the quantity

of fuel in the engine fuel tank at sustainer cutoff

In addition, the weight saved by adoption of an oxidizer tank ullage

fitting with increased length is determined,

R-5123 1
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SUMMARY

The effect of start tank refill rate, fuel availability, and heat input -
the oxidizer start tank on vernier engine solo duration was studied. Al
the ability of a special (long) MA-5 oxidizer start tank ullage fitting -

affect a saving in residual liquid oxygen weight was determined.

Start Tank Refill

The start tank must refill prior to booster cutoff so that the proper
amount of propellants is available for the proposed vernier engine dura-
tion, No problem has been associated with fuel tank refill but, because
of the physical characteristics of liquid oxygen, some difficulties coule
be encountered. A series of tests was completed at Rocketdyne's Compo-
nents Test Laboratory (CTL) from May to August 1959 to determine the cap:
bility of the oxidizer tank for refilling within the time from engine

start to booster cutoff. The results of these tests are presented.

Fuel Availability

No serious problem has been anticipated in predicting fuel availability.

The bulk temperature and density of the fuel in the start tank will most

likely be the same as that in the main tank and should remain so through-
out the flight.

R~-5123 3
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Heat Effects

After booster cutoff during an Atias vehicle flight, the oxidizer start
tank is pressurized and remains pressurized throughout the sustainer
operation. Separation of the booster section from the balance of the

vehicle exposes the tank to the following heat sources:

1, DRadiation heating from sustainer exhaust flame

2., Radiation heating from vernier exhaust flame

3. Radiation heating from exhausterator (turbine exhaust)
4., Solar radiation

5. Momentary forced convection due to direct vernier flame impinge-

ment

6. Radiation from other components

Because of the heat input, a propellant bulk temperature rise occurs and
a portion of the propellant is vaporized. The result of this interchange

is a loss of propellant for vernier operation and, thus, a duration loss.

A mathematical model has been devised to simnlate the reaction of the
system to finite amounts of heat fiux. Although, admittediy, the model
does not exactly duplicate the physical phenomena, the results obtained

correlate well with actual test data.

4 ' R-5123
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Ullage Fittin

The Mercury Atlas and other special Atlas vehicles do not require a ver-
nier solo phase. Therefore, it would be desirable to eliminate the oxi-
dizer used during this phase. Elimination of the oxidizer during tanking
would result in a saving in initial vehicle weight, which can be transfer:
to the payload. The weight saving was to have been brought about by the
use of a special (long) oxidizer start tank ullage fitting. Testing con-
ducted during the MA-2 R&D program indicated the increased length of the
ullage fitting did not prevent complete filling of the tank. Minimizatior
of oxidizer residual is an alternative to elimination of oxidizer during
tanking. A test program has been completed to determine whether or not
an oxidizer start tank, containing a long ullage fitting and having fillec
completely during tanking, would vent the excess liquid oxygen during

the venting cycle. This report presents the results of that test program.

R-5123 5
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CONCLUSIONS AND RECOMMENDATIONS -

CONCLUSIONS

Analvytical Study

The mathematical model may be used to determine, with reasonable accurac)
the density and the amount of propellant remaining in the start tank at

sustainer cutoff,

[F} The nominal standard vernier solo duration for a typical missile is 29 *
' seconds, The nominal derated vernier (525 1b,SL thrust) solo duration :
42 + 3.7 seconds.

The amount of fuel available for vernier solo operation is approximately
87 pounds, and its density would be the same ag that in the main fuel
tanlk,

Test Program

It is possible for the oxidizer start tank to fill completely when the
special (long) ullage fitting is used. When the level of liquid oxygen
is above the upper holes of the ullage fitting, the excess oxidizer
will be expelled by expansion of the ullage gas as the start tank is

vented.,

R-5123 7
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A weight saving, at booster cutoff, of approximately 70 pounds can be

achieved by the use of the special (long) ullage fitting.

RECOMMENDATIONS

The existence of a frost layer on the oxidizer start tank at booster cut-

vff should be verified during a missile flight.

Additional component tests should be run to gain more information about

the effect of heat flux to the oxidizer start tank.

8 R-5123
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DISCUSSION

The vernier and start system supplies propellants to the vernier engines
and fuel to the main thrust chamber igniter fuel valves during the igni-
tion stage. It also supplies propellants to the sustainer and hooster
gas gencrators during thrust buildup. Figure 1 is a schematic of the
vernier and start system with its associated components. The remaining

rocket engine components have been omitted for clarity.

The vernier and start system requirements are varied according bto mission
requirements of the Atlas missile. For some missions no vernier engine
solo operation is required. This poses some problems, In the first case,
it becomes nccessary to predict the amount of propellants available, 1In
the sccond case, an appropriate method for climinating the propellants

used during solo operation could result in a terminal vehicle weight saving

to be uscd for increasing the payload.

PROPELLANT AVAILABILITY

The major problem in predicting vernier solo duration is the determination
of the amount of available propellants and their density. However, since
the fuel start tank is located in the wmain fuel tank and since the fuel
has a low vapor pressure, no serious problems are anticipated in predict-
ing fuél availability or the ability of the fuel tank to be refilled after
engine start, The bulk temperature of the fuel in the start tank will
mast likely be the same as that in the main tank, The nominal weight of

available fuel will be approximately 87 pounds.

33
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The oxidizer start tank is external to the main oxidizer tank and the
vapor pressure of liquid oxygen is very high, Figure 2 is a pressure

vs time history of a typical tank., The sequence of events are as follow

1. The oxidizer start tank is initially filled from a ground sourc
through the low-pressure bypass line emanating from the No. 1
booster low-pressure duct and also through lines emanating from

the No. 1 booster and sustainer high-pressure ducts.
2, The tank is pressurized for engines start.

3. The tank is vented to allow refill from the sustainer high-

pressure duct.
4., A short time after booster cutoff the tank is repressurized.

5, The tank is maintained in a pressurized state for the balance

of sustainer operation.

6. The pressurized liquid oxygen is used for vernier engime solo

operation.

Two critical periods exist: while the tank is vented and refill is in
process, and while the tank is held in a pressurized state throughout th
remainder of the sustainer cperation and it is exposed to several heat

sources,

START TANK REFILL

The refill period is critical because the oxidizer start tank must be
filled with the required amount of liquid oxygen for the proposed vernie

duration.

R-5123 11
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A serics of tests was completed at Rocketdyne's Components Test Laboratory
from May to August 1959 to determine the capability of the oxidizer tank
for refilling within the time from engines start to booster cutoff. The

results of these tests are shown in Table 1.

The tests were run with various vent configurations. Theoretically the
refill rate is affected by the back pressurc presented to oxidizer flow.
The back pressure or, in this case, the stert tank pressure for a vented
tank is o function of the vent configuration and the vapor pressurc of
the liquid. * The vent configuration used for cach test is shown in

Table 1 under Remarks.

The theoretical ullage volume was 50 cubic inclies for all tests. Ambicnt

temperaturcs of 130 F were attained by rumning the tests in an envirommental

chamber.

In all cases the required liquid oxygen weight was achieved when missile
configuration vents were utilized at test site and simulated altitude
ambient pressures. A high corrclation was [ound between the weight

of liquid oxygen in the tank and the refill rate. The tests also indicaled

that refill was accomplished within the indicated time interval, except
for Test No., 310,

All of the tests displayed an incrcasce in start tank pressurc after repres-
surization, which soon equaled the feedline pressure. The cause was con-
sidered to be cither the vaporization of liquid oxygen due to heat input,

or the continuance of some liquid oxygen flow into the tank which compressed

the ullage volume,

R-5123 . 13
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LOX START T

LOX
LOX Weight, pounds |[Refill |Average j Ullage Feed Line
Test Start Time, Rate, Pressure, [Pressure,
No. Jof Refill |Refilled |seconds |1b/sec psig psig
197 1% 144 —% 1 0,155 — —
198 107 142 — % | 0.110 — —_—
210 L2 141 — 0.158 _— —
212 86 143 — % | 0.185 —% —%
248 140 150 17.5 0.571 — 620
251 141 150 8.8 1.02 — 602
231 127 130 37.5 0.08 — 690
236 121 130 40.0 0.225 —_ 670
257 128 158 152.5 0.197 —_% 610
308 1k4 158 66.0 0.212 50-35 600
309 138 160 57.0 0.386 3425 590
310 138 158 77.5 0.258 20-15 600
311 135 162 72.5 0.372 39-20 610
313 146 161 77.5 0.193 35 620
31k 141 163 55.0 0.400 42 610
316 144 161 137.5 | 0.12% 600-20 620

*Data not available or reading not good.
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TABLE 1

LOX START TANK REFILL STUDY

LOX
Feed Line LOX Ambient
Pressure, |Temperature,| Temperature

psig F F Remarks

—_— —_— —_——

—_— % — % _— %

— % —_— % — %

— % — ¥ — R

620 —_— % 130 Start tank not vented, vent and relief valve by-
passed with 1/4—-inch orificed line, orificed gate
removed from oxidizer fill and check valve

602 — % 130 Start tank not vented, No, 32 orifice in vent
bypass line, gate removed from fill and check
valve

690 —_— % 130 Start tank not vented, No. 80 orifice in vent
bypass line

670 — % 130 Start tank not vented, No, 47 orifice in vent by-
pass line, gate removed from fill and check valve

610 — 130 Start tank not vented, No. 32 orifice in vent
line

600 -288 130 16 psi AP .low pressure relief valve installed,
enlarged hole in gate of fill and check valve

590 -290 62 16 psi AP low pressure relief valve installed,
enlarged hole in gate of fill and check valve

600 ~295 62 No low pressure relief valve installed, vent
line open to atmosphere

610 -290 | 62 10 psi AP low pressure relief valve

620 — % 81 10 psi AP low pressure relief valve

610 —_ 78 16 psi AP low pressure relief valve

620 -280 ‘ 80 No low pressure relief valve installed

R-5123
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An analysis was made to identify the cause of the ullage pressure increas
Figure 3 is a graph of calculated ullage pressure vs time and is compared
to a curve taken from an actual missile flight, which was typical of seve:
flights reviewed. The theoretical curve was formulated by assuming the
ullage pressure increase to be caused by additional liquid oxygen flowing
into the tank under fill-line pressure and compressing the ullage gas at
a constant temperature. This was considered a reasonable assumption for
preliminary calculations, because the liquid oxygen bulk would absorb the
greater amount of heat caused by compression of the gas. The difference
between the two curves is attributed to the fact that heat input to the
tank was ignored. It was concluded from the analysis that additional
liquid oxygen was made available for vernier solo operation and amounted
to approximately 0.79 pound. The exact amount made available is dependent

on the initial conditions.

HEATING EFFECTS

The second critical period is encountered while the tank is held in a
pressurized state after booster separation, during the remaining sustainer

operation, At this time the tank is exposed to the following heat sources

1. Radiation heating from sustainer exhaust flame

2. Radiation heating from vernier exhaust flame

3. Radiation heating from exhausterator (turbine exhaust)
L, Solar radiation

5. Momentary forced convection due to direct vernier flame !

impingement

6. Radiation from other components

R-5123 15
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Figure 3., Ullage Pressure After Tank
Repressurization to 600 psig
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Because of the heat input, a bulk temperature rise occurs in the: liquid
oxygen, and also a portion is vaporized. The bulk temperature rise cause
2 decrease in density and the vaporized liquid oxygen requires more volum
than the original. The result is that a portion of the liquid oxygen in
the tank is forced back into the high pressure line, causing a loss in

liquid oxygen available for vernier solo operation.

A mathematical model was formulated to simulate the reaction of the syste
Yo finite amounts of heat flux, Appendix A is a step-by-step listing of
the formulas involved. The model is based on the relationship of exposed
tank surface area to heat input. Essentially, it is set up so that the
heat flux to the tank surface area, wetted by liquid oxygen, serves only
to raise its bulk temperature, and the heat flux to the surface areéa of
the ullage vaporizes liquid oxygen at the liquid-to-gas interface. Also,
the temperature gradient between liquid and gas vaporizes oxidizer. As
liquid oxygen is vaporized and, in turn, forces liquid from the tank,

the wetted surface area and ullage surface area change, This is a func-
tion of time., Therefore, the model evolves into a series of calculations
over specific time increments, using the results of one set of calculatio
as the initial values foxr the next. The smaller the time increment, the
more accurate the results. Although, admittedly, the model is not an
exact duplication of the physical phenomena involved, as will be shownm,

the results obtained correlate well with actual test data.

A previous analytical study at Rocketdyne determined that the net heat
flux incident on the tank from the various sources present during a
missile flight was 6159 Btu/hr—sq ft. This value was used for the first

set of calculations utilizing the mathematical model. The generated

R-5123 ' ' : 17
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curve of liquid oxygen weight vs time is shown in Fig. 4 and is compared
to a similar curve obtained from Test No, 308 of the test series described

eariier in this report.

Test No. 308 was set up to simulate the calculated heating conditions

around the oxidizer start tank during a flight by exposing the tank to a
bank of infrared laumps, The infrared bank consisted of seven 2000-watt
lamps and three 1000-watt lamps, arranged against a semicircular reflec-

tor set on one side of the tank.

An ambient temperature of 130 F was obtained by running the test in an

environmental chamber.

A large discrepancy existed between the calculated values for liquid
oxygen weight vs time and the valves obtained frow the test, For the

next attempt with the mathematical model, an average heat flux was de-
termined from the test data. A value of 975 Bﬁu/hr_sq_ft was used.,

The curve generated is shown in Fig., 4. This curve correlated well with
the test curve, the maximum difference between the two being approximately
3 pounds after 200 seconds. The initial conditions for all the curves are

as follows:

Tank volume (corrected for contraction

due to temperature), cu in. 5109
Liquid oxygen weight, pounds 160
Liquid oxygen teuwperature, F -279
Liquid oxygen demsity, 1b/cu ft 68.65
Tank pressure, psia 600
18 R-5123
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It was decided to attempt an explanation of the discrepancy between the
curve using 6159 Btu/hr_sq ft and the test curve to justify the use of
975 Btu/hr-sq ft as the value for heat flux in further calculations, A
thorough check of all formulas and values used for the analytical study
showed that no consideration had been given to the possible presence of
a frost layer on the tank., Also, the efficiency of the lamp bank was

assumed to be higher than the value recommended by the manufacturer,

The heat input used throughout the test was corrected for the proper lamp
efficiency, but no correction was made for the possible consequences of a

frost layer.

An analysis was conducted to evaluate the assumption of a frost layer,
Combined convective and conductive heat itransfer effect was calculated

to determine its surface temperature. Using a value of 0.035 Btu/hr_sq
ft-F/ft (corresponding to a frost layer thickness of 0.15 inch) for frost
thermal conductivity, results in a over-all heat transfer coefficient of
2,24 Btu/hr_sq ft-F. The calculated surface temperature for the frost
layer was -230 F, utilizing a heat flux of 975 Btu/hr-sq ft, The radia-
tion effects were also evaluated. Comparing the heat flux obtained from
the test data (975 Btu/hrmsq ft) with 6159 Btu/hrwsq ft, a value of 0.208
for frost layer surface emissivity, and absorbtivity results. The values
for frost layer surface temperature, emissivity, and absorbtivity compare

favorably with those obtained in Ref. 1.

It was decided that the discrepancy can, in fact, be attributed to neglect
of the surface emissivity and abserbtivity of a frost layer. There is no
reason to doubt that a frost layer, formed on the start tank at or near

sea level, will be transported to higher altitudes,

20 R-5123
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It is desirable to verify the presence of a frost layer during a missile
flight at booster cutoff. A motion picture camera aimed at the tank and
actuated at booster cutoff, or thermocouples located approximately 1/16
inch to 1/8 inch from the oxidizer start tank skin could be used for this

purpose,

If, at some later date, the presence of a frost layer is verified or
disproved, a more exact value for heat flux to the oxidizer start

tank can be used,

DIGITAL COMPUTER RESULTS

The method for caleculating the effect of heat input to the oxidizer start
tank lends itself to the use of a computing machine., A digital computer
program was written and is described in Appendix B. The program is
designed to handle combinations of tank volume, initial propellant weight,

propcllant density, heat input, and ullage plug length.
The computer program was used to formulate the results presented below.

Calculations were performed to determine the final weight and density

of the liquid oﬁygen remaining in the start tank after sustainer cutoff
during a normal missile flight. Figure 5 and 6 plot the weight and den-
sity vs time. Starting time was considered to be approximately 10
scconds after booster cutoff, when the tank pressure equals the refill

pressure, The following initial conditions were used:

Tank volume (corrected for contraction due to

temperature), cu in 4109

n=5123 21

SARIE AAR B A ATYR MRV Y BR



ROCKETDYNE

A DIVISION OF NORTH AMERICAN AVIATION, INC

i70

160

150

i40

130

LOX WEIGHT, POUNDS

120

Ho

100
o 20 40 60 80 100 120 140

TIME FROM BOOSTER CUTOFF, SECONDS

Figure 5, Weight of Oxidizer in Start Tank After Booster Cutoff,
Normal Missile Flight
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Figure 6, Density of Oxidizer in Start Tank After Booster
Cutoff, Normal Missile Flight '
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Liquid oxygen weight, pounds 160.8

Liquid oxygen temperature, F -280
Liquid oxygen density, lb/cu ft 68,92
Heat input, Btu/hr-sq ft 975
Tank pressure, psia 685
Sustainer duration, seconds 135

The final liquid oxygen weight and density available for vernier opera-
tion are 155.74 pounds and 68,28 lb/cu ft, respectively. When this
information is combined with vernier influence coefficients, the vernier
solo operation can be calculated. This was done and the nominal standard
vernier solo duration was determined to be 209 seconds. The nominal

derated vernier (525 pounds, SL thrust) duration would be 42 seconds.

A set of calculations was performed to show a comparison of liquid
oxygen weight in the start tank vs time for various values of heat
flux, Figure 7 is a plot of the curves generated. The following initial

conditions were used:

Tank volume, cu in 4109
Liquid oxygen weight, pounds 160
Liquid oxygen temperature, ¥ -279
Liquid oxygen denmsity, 1b/cu ft 68,65
Tank pressure, psia 600

2k ‘ R-5123
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Weight of Oxidizer in Start Tank vs Time for Varigus Heat Fluxes
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It is not recommended that weight saving be accomplished by a reduction in
tank size. The anomalies involved in predicting the weight of oxidizer
available require the use of an oxidizer pad to ensure the proper tanking,
This could reduce the saving substantially. Also, the fuel weight saving
can be accomplished by incorporating an ullage fitting in the present
tank,

SPECTAL ULLAGE FITTING TEST PROGRAM

The Mercury Atlas vehicle does not require a vernier solo phase, there-
fore, it is desirable to eliminate the oxidizer normally used during this
phase. A special (long) oxidizer start tank ullage fitting (MCR, MA5-5B)
wag adopted as a convenient means to prevent tanking of oxidizer in excess
of that required for starting the engines. Testing conducted during the
MAZ2 BR&D program indicated the increased ullage fitting length did not
prohibit complete filling of the tank. Minimization of oxidizer residual
is an alternative to the elimination of excess oxidizer during tanking.

A test program was conducted at CTL-1 to determine whether or not an oxi-
dizer start tank, containing a long ullage fitting and having filled com-
pletely during tanking, would vent the excess liquid oxygen during the

venting cycle.

TANK GEOMETRY, NOMINAIL WEIGHTS
The long ullage fitting (P/N 304L11) is identical to the standard fitting

(P/N 306231), except for the length of the tube. It extends approximately

to the center of the oxidizer start tank {Fig, 11). Holes positioned

30 R-5123
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{_ ULLAGE FITTING

304411 (SHOWN)
306231 (STANDARD, NOT
SHOWN)

TANK ASSEMBLY
301800

NOMINAL
UL'LAGE

DEPTH TUBE: | IN, OD
x 0.083 IN. WALL

THICKNESS 12 HOLES ( EACH

0.312 INCH DIAMETER])

0.44 INCH
; APPROXIMATE

10 INCH FLOGeED- A— TANK
RADIUS BAFFLE
WITH SHORT .
| ULLAGE FITTING,| WITH SHORT | WITH LONG
| AND TANK ULLAGE ULLAGE
| COMPLETELY FITTING FITTING
| FILLED
NOMINAL ULLAGE DEPTH, INCHES 0 1.349 9.479
NOMINAL ‘TANK VOLUME, CUBIC INCHES 4109.5 4109.5 4109.5
NOMINAL ULLAGE VOLUME, CUBIC INCHES 0 54.3 1930.8
NOMINAL EFFECTIVE LOX VOLUME, CUBIC INCHES 4109.5 4085.2 2178.7
NOMINAL WEIGHT OF LOX IN TANK, POUNDS 161.97 159.81 85.86
(DENSITY= 68.1 POUNDS / CUBIC FOOT )

Figure 11, Tank Geometry, Showing Nominal Volwumes and Weights
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near the lower end of the tube permit venting from the approximate center
of the tank, When the level of liquid oxygen reaches the top of the
uppermost holes, approximately 86 pounds of oxidizer is contained in the
tank,

LIQUID OXYGEN WEIGHT DETERMINATION,
TEST ARRANGEMENT AND PROCEDURES

To determine the effect of the long ullage fitting, tests were conducted
at CTL-1 using the schematic and vent configurations shown in Fig., 12.
Figures 13 through 15 show the test setup, The arrangement generally
simulated the missile oxidizer start tank fill and vent configuration,
except that the missile vent line is shorter and less restricted. The
first tests were conducted using vent configuration A, However, liquid
oxygen was sprayed over an asphalt apron Jocated to the rear of the test
cell, creating a safety hazard. The configuration had to be abandoned.
Configuration B was safe but differed considerably from the missile con-
figuration and delayed tank filiing significantly., Vent configuration

C was adopted as a safe, practical approach, although vent line resistance
was somewhat greater than that of the missile vent. Table 2 shows the
correlation between vent configuration, ullage fitting, and tank test

number.

The weight of oxidizer in the tank was determined by weighing the tank
with its contents and subtracting the TARE weight. An effort was made

to avoid erronecus weight readings from artificial restraints on the tank
by the installation of flexible sectioms in all tank inlet and outlet

lines,
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LOAD CELL

VENT LINE

L]

H
%

LOW PRESSURE
RELIEF VALVE
(9512-45049)

VENT AND RELIEF VALVE
(304327)

a

CHECK VALVE
5-26032)

SHUTOFF VALVE

Lo J;

FACILITY
LOX
SUPPLY
-
\~ CHECK VALVE
(NAS-26159)

VENT LINE CONFIGURATION
(A) 3/4 INCH DIAMETER, |5 FOOT LENGTH

(B) 3/4 INCH DIAMETER, |5 FOOT LENGTH;
}1/2 INCH DIAMETER, 100 FOOT LENGTH
(C) 3/4 INCH DIAMETER, 5 FOOT LENGTH ;
11/2 INCH DIAMETER, 50 FOOT LENGTH

(D) MISSILE CONFIGURATION,

3/4 INCH DIAMETER, 14 FOOT LENGTH;
| INCH DIAMETER, 78 INCH LENGTH

INSTRUMENTATION
PARAMETER

LOX WEIGHT, POUNDS

SUPPLY PRESSURE (P)), PSIG

TANK INLET PRESSURE (P,), PSIG
HELIUM PRESSURE (P3),PSIG
PNEUMATIC REGULATOR OUTLET
PRESSURE (Py),PSIG

LOX SUPPLY TEMPERATURE (Ts),F
LOX TANK INLET TEMPERATURE (T,),F
VENT TEMPERATURE (T,),F

RANGE
0 TO 200
0 TO 200
0 TO 1000
0 TO1000

0 To 1000

=325 TO +175
~300TO - 250
~325 TO +175

Figure 12, Test Schematic
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1262-12/4/62-S1B

Figure 13. View of Long Ullage Fitting Test Setup,
Showing 0Oxidizer Start Tank
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Figure 14, View of Long Ullage Fitting Test Setup,
Showing Oxidizer Start Tank
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TABLE 2

ULLAGE FITTING AND VENT CONFIGURATION
TEST HISTORY, CTL-1, 1962

Ullage Fitting Vent Configuration Test Numbers

Short A 711-1713
711-1714
711-1715
711-1716

B 711-1751
711-1752
711-1753
711-175%

Long B 711-1756
711-1757
711-1758

C ‘ 711-1782
711-1789
711-1790

R-5123
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Ingtrumentation was as indicated in Fig. 11; data was recorded by direct-
inking graphic recorders., Pressure measurements, Pl and P4s were useful
during the tests primarily to provide the desired supply and start tank
pressures. The temperature measurements were useful as a means of
determining whether or not oxidizer weight had stabilized at a given
pressure, i.e., the three temperatures were relatively stable and in
close agreement when tank weight was stable. In the analysis below,

tank weight and tank inlet pressure are the most important measurements.
In general, the test procedure was as follows:

1. Purge the tank with helium at 600 psig for approximately 1
minute to provide the tank atmosphere anticipated in the

missile.

2, Introduce LOX under tank head pressure (10 to 15 psig) and

chill the lines and tank for 5 minutes,

3. Increase the inlet pressure (Pl in Fig. 11) to 25 to 30 psig
" and permit the tank to fill.

L, After weight stabilization, increase the fill pressure to 55 to
60 psig and hold for 90 seconds or until weight stabilization,

thus simulating missile LOX tank flight pressurization,
5. Pressurize the tank to 600 psig.

6. After 15 to 20 seconds at 600 psig, close the facility LOX
inlet valve and open the bleed valve (to simulate the missile
firing sequence, in which there is a slight LOX loss to the
booster enginé after start tank pressurization and before

engine start),

38 R-5123
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7. Permit 15 to :( ounds «f LOX t« 26cape from the tank, then close
the bleed val ¢,

8, Vent the tank

Deviations from this pc:dir e :r indiri val tests are described in the
test log (Table 3).

TEST RESULTS

0f the !4 tests conduc :d, 1) w re valid It wns evident from the tests
that, at a £ill pressu'« > !5 0 '0 ysig, the relatively restricted vent
line configuration B do ayed in:ti.1 tank filling, and the use of the long
ullage tube prevented :implese nanl filling with vent configuration B or
C. At a fill pressure of *0 to 60 psig, there was no clear difference be-
tween oxidizer weights reached vt vent configuration B and vent configure-
tion C (Fig., 16 and 17) The evid nce in these tests does not indicate
that the vent line has any sign.fi ant effect on tank filling, except

that a relatively restr:cted vent inc delays filling the tank to the
level of the holes in the ullage t .be. Therefore, it is presumed that if
the tank, equipped with a long illuge tube, can be filled during component
tests with vent systems somewhar different from the missile vent line the

tank could be filled in the misgile,

The tank filled completely in tosts 711-1782 and 711-1789, with fill pres-
sures of 80 and 75 psig, and hold times of 9 and 6-1/2 minutes,
respectively, In each of the six tests with the long ullage fitting, the
tank filled above the ullage tubo holes at 50 to 60 psig facility inlet

pressure, presumably as a result of ullage compression, Therefore,

R-5123 39
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ToTh-1782

SEE EXPANDED |
SCALE BELOW
Mt
TANK INLET PRESSURE
|

]
25 PSlG——b‘Q——SO PSIG—=75T0 80 PSIG-I _

— | |

10 15 20 25 30 .3 40 45 50

55 60
TIME FROM INITIATION OF TEST, MINUTES

EXPANDED SCALE

VALVE | VENT

LOX LEVEL REACHES
HOLES IN ULLAGE FITTING

OPENED-‘

|
ic—sss FIGURE 20——-{

il
57

58
TIME FROM INITIATION OF TEST, MINUTES

Figure 17. Weight of Oxidizer
Start Tank vs Time From
Initiation of Test, Ven
Configuration C
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TABLE 3

CTL-1 TESTS, 20 NOVEMBER 1962 to 19 DECEMBER 1962

vTest No.

Comments

711-1713
711-1714
711-1715

711-1716

11-1751
711-1752

711-1753
711-1754

711-1756

711-1757

711-1758

TFacility and system checkout, iﬁvali& test
Bleed valve open at tank pressurization, invalid test

LOX weight = 167.5 pounds, regulator out pressure (P4) pickup
point changed

LOX weight = 182 pounds, presumed to be instrumentation error,
invalid test

Temperature bulb installed at T., replacing thermocouple,
vent line changed, bleed 50 poufids twice to determine the effect
of rigid flex lines on recorded weight; no significant effect

Inlet pressure varied in steps from 40 to 60 to 80 psig, 50-
pound bleed to determine effect on recorded weight, no ex-
planation for the extreme weight recorded in test 711-1716

No pretest helium purge, no significant effect due to
omission of the helium purge

No pretest helium purge, no significant effect due to
omission of the helium purge

First test with long ullage plug, weight increase from 0

to 80 pounds in 36 minutes, stable at 48 pounds for an
additional 12 minutes at 25 to 30 psig inlet pressure,
weight increase to 105 pounds in 52 seconds at 55 to 60 psig,
stable at 85 pounds for 20 minutes at 55 to 60 psig

Similar to 711-1756

See Fig. 12, fill to approximately 80 pounds in 50 minutes at
25 to 30 psig, fill to 121 pounds in an additional 52 seconds
at 50 psig, pressurize tank to 626 psig and vent, refill the
tank to 131 pounds in 3.5 minutes ("stable" weight = 102
pounds after an additional 12.5 minutes), pressurize the tank
and vent, final weight after venting = 76 to 77 pounds in two
trials

42
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TABIE 3

(Continued)
Test No. Comments
- 711-1782 See Fig. 13, vent line changed, flex line straightened

711-1789 | Fill to 93 pounds in 20 minutes at 25 to 30 psig tank inlet
pressure, £ill to 146 pounds in next 9 minutes at 50 psig
tank inlet pressure, fill to 170 pounds in the next 6
minutes at 100 psig facility supply pressure (75 psig tank
inlet pressure), unexplained weight loss at 609 psig tank
pressure, invalid test

711-1790 Fill to 63 to 82 pounds in 26 minutes at 2% to 32 psig,
£ill to 109 pounds in 66 seconds at 56 psig, bleed 18 pounds,
pressurize, vent, weight after venting = 71 pounds

R-5123% 43
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it seems unlikely that the missile oxidizer start tank will be filled complete-
ly, but it may be filled somewhat above the holes in the end of the

long ullage fitting. The tank inlet pressure in the missile ranges from

55 to 60 psig maximum; this pressure is not expected to be held long

enough to permit tank filling (Fig. 16 and 17).

During test 711-1789, an unexplained oxtidizer weight loss of 33 pounds
occurred with the vent, bleed, and facility inlet valves closed. This,
plus the 23 pounds intentionally bled from the tank, left only 115 pounds
in the tank just prior to opening of the vent valve., After venting, the
oxidizer weight dropped to 90 pounds in 10 seconds and to 78 pounds in
an additional 40 seconds. It is suspected that the weight loss before

venting was due to incomplete closure of the bleed valve,

In test 711-1782, the weight loss after venting was 53 pounds in the
first 16 seconds (152 pounds to 99 pounds) and an additional 22 pounds in
the next 76 seconds, making a total weight loss of 75 pounds in 92
seconds (Fig. 17).

The weight-time history of the oxidizer tank during venting was described
analytically by considering a polytropic expansion (PVn = constant) of
the ullage gas. The exponent, n, was determined empirically by relating
the initial conditions to the point at which the ullage gas begins to
vent through the ullage plug. This final point is discernible by
inspection of the pressure-time history of the tank. A relationship
between tank weight and ullage pressure at any instant was derived as

follows:

=BT

-]
<l <
[P
1
N\
9o
—/

o
=)
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B~

( 5w, ev, [(2) 1]

where
W = +tank weight
= oxidizer density
V = ullage volume
P = ullage pressure
n = polytropic exponent
Subscripts:
o = initial condition (start of venting)

AN
v
0

value at any time

R-5123

CABts 8ne B bl ATE DOV t.Ka

45



ROCKETIDYMNE

A DIVISION OF NORTH AMERICAN AVIATION, INC.

This relationship is plotted, for test 711-1782,in Fig. 18 for comparison
with actual test data. The correlation between the two curves is considered

satisfactory.

It can be concluded that if the tank fills, the oxidizer above the ullage
tube holes will be expelled through the vent line until the liquid

level reaches the holes in the ullage tube. Oxidizer will continue to

be expelled at a slower rate until the liquid level stabilizes somewhat

below the ullage tube holes.

The weight—time history of the oxidizer tank will vary as a result of
the level of initial filling and the tank vent line configuration. The
assumption that the tank fills completely and that a weight loss of

50 pounds will occur in 16 seconds with an additional loss of 20 pounds
by 92 seconds will yield conservative weight estimates for missile

trajectory analysis.
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s
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APPENDIX A

MATHEMATICAL MODEL, LISTING OF FORMULAS

LIST OF FORMULAS, CHRONOLOGICAL

The formulas for the mathematical model presented chronologically are:

1.

R-5123

Heat Input to Oxidizer

Q, = ap Ap, t = Btu

Increase in Oxidizer Temperature

Heat Transferred From Ullage to Vaporize Oxidizer

Uy, (T - Ty) b

qu = Btu
3600
Heat Input for Vaporizing Oxidizer
Specific Heat of Ullage Mixture
W .C._ + W . C .
C o - —ShEPul VL PVl g/ p
P ul v Y1

FARM ROR R Pl ATF RFV 1.RR
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10,

11.

52

Ullage Temperature Change

Yy

2 Tu “pu

Weight of Oxidizer Vaporized

&y Yy

ul W. C

W&Q =

Ullage Gas Constant

R - ul

¢, (T, - TLl) + A+ Cp (Tu

(a1 + w&l) Rul *

u?

Ullage Volume

(wui

wﬁl + w§1 + w§2

+ Wy o+ W) 2R,

Volume of Oxidizer Vaporized

Volume of Oxidizer Remaining in Tank

V., P
V., = S U P Vv

L
Pra

FORM 608 B PLATE REV, !.58

2 Pa (14k4)

pound

cu £t
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12, Weight of Oxidizer Expelled From Tank

13.

WLE = (VL + Vu2 - T) Py = pound
Total Weight of Oxidizer Lost for Vernier Solo Operation

Yoor = Yig v Woo

14, Final Oxidizer Volume

R~-5123
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NOMENCIATURE
A = surface area, sq ft
c = heat capacity, Btu/lb_F
Cp = specific heat (constant pressure), Btu/1b-F
q = heat flux, Btu/seewsq £t
Q = heat input, Btu
R = specific gas constant, E%E::l%
T = temperature F, R
t = time, second
Vv = volume, cu ft
W = weight, pound
p = liquid density, 1lb/cu £t
A = latent heat of vaporization
Subscripts
1 = initial value
2 = final value
L = liquid propellant
s = saturated
T = tank
TOT = +total
u = ullage
v = gasified propellant
E = expelled
54 R-5123
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APPENDIX B

DIGITAL COMPUTER PROGRAM

A digital computer program was written to expedite the calculation of
propellant loss and bulk density change using the method of Appendix A.
An important requirement of the program is the approximation of initial
conditions existing in the tank, which are input values. The closer
the approximation to actual conditions, the more accurate will be the
results, From initial conditions the program will compute and plot,

if a CRT plot is available, the following parameters vs time:

1. Propellant Weight

2. Propellant Temperature

3. Propellant Density

4. Propellant Volume

5. Weight of Propellant Vaporized

6. Weight of Propellant Expelled From Tank
7. Total Weight of Propellant Unavailable
8. Ullage Temperature

9. TUllage Volume

A program flow diagram is shown in Fig. 19. A typical input data sheet
is provided on page 62. The case shown uses a standard setup with the
data arranged chronologically. The data location numbers indicated are

assigned automatically, by the program. To run additional cases, it is

R-5123 55
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Set Up Program

Subroutine FLIN

Bead and Write
Title

Read and Write
Input Data

 » Determine Initial
Density Given an
Initial Temperature
as Inputl Data

Determine the ¢

Density for This |
Time Using the
Last Temperature
Calcullgted

Call FLIN

Subroutine CALC

Initialize Times

and Subscripts

Call CALC

Calculate Propellant

Height, Liquid Tank
Surface Area, and

Gas to Liquid

Subroutine FL@SS

= Calculgte

Temperature

for This Time

Interface Surface Call FLIN
Test to See if Area
Final Time has Call FLESS Calculate
Been Reached '4C6ntinue P a— Propellant
Loss for
No Yes .
This Time
: |
Increment -
Time and » 3
Subscripts Sibroutine PRINT Subroutine CR PLET
Call PRINT » Print Out Answers »Plot
For This Case Parameters
Return to at Selected
Read Data Test to See if ‘Pimes
for Next CR PLPT is Desired
Case. If no No Yes
More Data,
Job will be Call CR PIJ‘T
Automatically -
Terminated

Figure 19, Digital Computer Program Flow Diagram
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necessary only to indicate the desired changes. Pages 58 through 61 are
a sample of the required data for running an additional case. In this
example it is desired to change the ullage plug length, the total heat
flux, and the time from booster separation to sustainer cutoff. The
case number is automatically changed to the next higher number for each
case run. Therefore, only the number of the first case to be run is
required. A minus sign must be placed in the first column of the last
data card as an end-of-case flag. Fach piece of data is limited to
eight digits plus a decimal point and a positive or negative sign. The
decimal point may be located anywhere in a number, but must be included

for the program to work properly.

Pages 62 through 68 are examples of the printout produced by the program.
Page 62 presents input data, and pages 63 through 68 are program results.
Figure 20 through 28 are samples of the CRT plots obtained.

The program is equipped with preset limits which will economize computer

time. The case being computed will be terminated automatically:

1, If the number of iterations to find the propellant level in the

tank for one time interval will exceed 75

2. If the initial propellant volume is inadvertently chosen larger

than the volume of the tank

3. If the propellant density falls without the table values supplied

4, If the number of time intervals exceeds 300

5. If the propellant level falls below the top of the baffles

R-5123 57
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