NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
FLOW STRESS-STRAIN RELATIONSHIPS IN TENSION TESTS OF STEEL

TECHNICAL REPORT WAL TR 834.2/10

BY

JOHN NUNES

DATE OF ISSUE - APRIL 1963

AMS CODE 5011.11.838
BASIC RESEARCH IN PHYSICAL SCIENCES
D/A PROJECT I-A-0-10501-B-010

WATERTOWN ARSENAL
WATERTOWN 72, MASS.
The findings in this report are not to be construed as an official Department of the Army position.

ASTIA AVAILABILITY NOTICE
Qualified requesters may obtain copies of this report from Director, Armed Services Technical Information Agency, Arlington Hall Station, Arlington 13, Virginia.

Copies available at Office of Technical Services $0.50

DISPOSITION INSTRUCTIONS
Destroy; do not return
Flow Stress-Strain Relationships in Tension Tests of Steel

Technical Report WAL TR 834.2/10

by

John Nunes

Date of Issue - April 1963

AMS Code 5011.11.838
Basic Research in Physical Sciences
D/A Project 1-A-0-10501-B-010

WATERTOWN ARSENAL
WATERTOWN 72, MASS.
FLOW STRESS-STRAIN RELATIONSHIPS IN TENSION TESTS OF STEEL

ABSTRACT

From the observation that the tensile flow stress curve remains reasonably linear once local necking occurs, a useful relationship between the uncorrected flow stress curve and the corrected flow stress curve is derived utilizing Bridgman's correction formula. The slopes of these curves, m_t (corrected flow stress) and m (uncorrected flow stress), are linear strain-hardening indices. They are analytically and experimentally shown to be related by a constant factor which appears to be 0.5. It is possible to approximate the corrected flow stress curve and the linear strain-hardening factor m_t employing the relationships proposed here. It is further shown that a useful linear strain hardening index can be evaluated at a necking strain of 1.0 using the relationships of $m = 0.4m_t$ (the uncorrected flow stress at a necking strain of 1.0).

JOHN NUNES
Materials Engineer

APPROVED:

J. F. SULLIVAN
Director
Watertown Arsenal Laboratories
INTRODUCTION

Most of the past work done on tensile deformation has been concentrated on the uniform strain region of the tensile flow stress curve where complex stress systems introduced by localized deformation (necking) are not present. However, it may be possible to obtain some useful true stress-true strain relations in the necking region provided a few simple assumptions are made concerning maximum load and the start of necking, and that Bridgman's flow stress correction factor is used.¹

An attempt will be made here to determine and evaluate such a function and to show that the complete flow stress tensile curve to fracture can be analytically treated.

ANALYSIS

In an analysis of a simple tensile flow stress curve, some basic assumptions must be made about the material tested which are: (1) it is polycrystalline and isotropic, (2) no metallurgical transformations occur, and (3) there is no change in deformation mechanism occurring during the test. These factors can act to change the shape of the tensile curve, and hence would influence any functional relationships established between true stress and true strain. With these assumptions in mind, Figure 1 has been constructed and represents the typical tensile curves obtained both for the specimen load area and the flow stress-strain parameters. Referring to the peak load shown on the load-area curve, it is assumed that necking generally starts at the point where \(\frac{dL}{dA} = 0 \). Also the end of the uniform strain (the strain at maximum load, \(\epsilon_{m1} \)) is observed to equal the strain hardening exponent, \(n \), from the power law equation,

\[
\sigma = S_1 \epsilon^n
\]

and hence \(\frac{d\sigma}{d\epsilon} = \sigma \). Although this power law equation has had no theoretical or analytical justification yet, it has proven to uniquely describe most
true stress and true strain data, particularly when the other variable factors previously referred to have been controlled or taken into consideration.

Although the emphasis here will be on the relationships observed between the measured true stress \((\sigma)\) and the corrected true stress \((\sigma_c)\), it will be useful to review some basic definitions and derivations. First are the definitions of true stress \(\sigma\) and true strain \(\varepsilon\), where

\[
\sigma = \frac{L}{A} \quad \text{and} \quad \varepsilon = \ln \frac{A_0}{A}
\]

\(L = \) load

\(A = \) instantaneous area

\(A_0 = \) original area.

The true strain can also be derived from the concept of constancy of volume which postulates that the volume of deformed material during plastic flow remains constant as follows:

\[
\text{volume} = lA \\
\frac{dl}{l} = \frac{-dA}{A} = d\varepsilon
\]

where \(l = \) length.

However, this also involves a basic definition, which is that the change in length or displacement over a given gage length is equal to the strain. Referring back to the definitions of true stress, the following relationships between the tensile flow stress and the load-area curves can be obtained

\[
\frac{d\sigma}{d\varepsilon} = \sigma - \frac{dL}{dA} \quad \ldots \ldots (2)
\]

when

\[
\frac{dL}{dA} = 0, \quad \frac{d\sigma}{d\varepsilon} = \sigma.
\]

It can readily be seen that the above relationships at maximum load \((dL=0)\) go to a form which is compatible with the empirically postulated power law equation 1 at maximum load.

Although equation 2 is valid for the entire flow stress-strain curve, equation 1 is not (once necking starts), due to the highly localized strain resulting at the minimum cross-section of the neck. This is also accompanied by an induced hydrostatic stress component which
acts to increase the measured flow stress values at this region. By employing Bridgman's formula, a correction for the increased flow stress \(\sigma \) based upon the neck geometry can be obtained.

\[
\sigma_t = \frac{\sigma}{(1 + \frac{2a}{R}) \ln (1 + \frac{a}{2R})}
\]

where

\[
a = \text{minimum radius}
\]

\[
R = \text{radius of curvature of the necked region}
\]

Such corrections do not necessarily prove the validity of equation 1 as no consideration is given to the effects of strain. However, it has been suggested that the correction factor of \(\frac{a}{R} \) can be replaced by the necking strain, \(\varepsilon_n \), which is equal to the total strain, \(\varepsilon \), minus the strain at maximum load, \(\varepsilon_{ml} \).

Previous work by Marshall and Shaw resulted in data which correlated with this relationship quite well. This implies that for an untapered tensile specimen

\[
\frac{a}{R} = k\varepsilon_n
\]

and \(k \) is approximately 1. To illustrate the validity of this expression a test was conducted on an AISI 4140 steel where the neck profiles could be determined by employing a test system previously developed. These results, which show \(k \) equal to 1, are shown in Figure 2 where the necking strain is plotted versus the \(a/R \) ratio. With this type of relation, it is now possible to obtain Bridgman's correction as a function of stress and necking strain.

\[
\sigma_t = \frac{\sigma}{(1 + \frac{\varepsilon_n}{\varepsilon_n}) \ln (1 + \frac{a}{2R})}
\]

Also from this, a simple table can be calculated which gives the correction value for a given necking strain. This was done and is tabulated in Table I.
TABLE I
BRIDGMAN'S FLOW STRESS CORRECTION FACTOR
BASED ON THE NECKING STRAIN, ε (where $a/R = \varepsilon_n$)

<table>
<thead>
<tr>
<th>ε_n</th>
<th>0</th>
<th>0.010</th>
<th>0.020</th>
<th>0.030</th>
<th>0.040</th>
<th>0.050</th>
<th>0.060</th>
<th>0.070</th>
<th>0.080</th>
<th>0.090</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.000</td>
<td>1.003</td>
<td>1.005</td>
<td>1.008</td>
<td>1.010</td>
<td>1.012</td>
<td>1.015</td>
<td>1.017</td>
<td>1.020</td>
<td>1.022</td>
</tr>
<tr>
<td>0.100</td>
<td>1.025</td>
<td>1.027</td>
<td>1.030</td>
<td>1.032</td>
<td>1.034</td>
<td>1.036</td>
<td>1.040</td>
<td>1.042</td>
<td>1.044</td>
<td>1.046</td>
</tr>
<tr>
<td>0.200</td>
<td>1.048</td>
<td>1.051</td>
<td>1.053</td>
<td>1.055</td>
<td>1.058</td>
<td>1.060</td>
<td>1.062</td>
<td>1.065</td>
<td>1.067</td>
<td>1.069</td>
</tr>
<tr>
<td>0.300</td>
<td>1.072</td>
<td>1.074</td>
<td>1.076</td>
<td>1.078</td>
<td>1.080</td>
<td>1.083</td>
<td>1.085</td>
<td>1.087</td>
<td>1.089</td>
<td>1.092</td>
</tr>
<tr>
<td>0.400</td>
<td>1.094</td>
<td>1.096</td>
<td>1.098</td>
<td>1.100</td>
<td>1.103</td>
<td>1.106</td>
<td>1.108</td>
<td>1.110</td>
<td>1.112</td>
<td>1.114</td>
</tr>
<tr>
<td>0.500</td>
<td>1.116</td>
<td>1.118</td>
<td>1.120</td>
<td>1.122</td>
<td>1.124</td>
<td>1.126</td>
<td>1.128</td>
<td>1.131</td>
<td>1.133</td>
<td>1.135</td>
</tr>
<tr>
<td>0.600</td>
<td>1.137</td>
<td>1.139</td>
<td>1.141</td>
<td>1.143</td>
<td>1.145</td>
<td>1.147</td>
<td>1.149</td>
<td>1.151</td>
<td>1.153</td>
<td>1.155</td>
</tr>
<tr>
<td>0.700</td>
<td>1.158</td>
<td>1.160</td>
<td>1.162</td>
<td>1.164</td>
<td>1.166</td>
<td>1.168</td>
<td>1.170</td>
<td>1.172</td>
<td>1.174</td>
<td>1.176</td>
</tr>
<tr>
<td>0.800</td>
<td>1.178</td>
<td>1.180</td>
<td>1.182</td>
<td>1.184</td>
<td>1.186</td>
<td>1.188</td>
<td>1.190</td>
<td>1.192</td>
<td>1.194</td>
<td>1.196</td>
</tr>
<tr>
<td>0.900</td>
<td>1.197</td>
<td>1.199</td>
<td>1.201</td>
<td>1.203</td>
<td>1.205</td>
<td>1.207</td>
<td>1.209</td>
<td>1.211</td>
<td>1.213</td>
<td>1.215</td>
</tr>
<tr>
<td>1.000</td>
<td>1.216</td>
<td>1.218</td>
<td>1.220</td>
<td>1.222</td>
<td>1.224</td>
<td>1.226</td>
<td>1.228</td>
<td>1.230</td>
<td>1.231</td>
<td>1.233</td>
</tr>
<tr>
<td>1.100</td>
<td>1.235</td>
<td>1.237</td>
<td>1.239</td>
<td>1.241</td>
<td>1.242</td>
<td>1.244</td>
<td>1.246</td>
<td>1.248</td>
<td>1.250</td>
<td>1.252</td>
</tr>
<tr>
<td>1.200</td>
<td>1.253</td>
<td>1.255</td>
<td>1.257</td>
<td>1.259</td>
<td>1.260</td>
<td>1.262</td>
<td>1.264</td>
<td>1.266</td>
<td>1.268</td>
<td>1.269</td>
</tr>
<tr>
<td>1.300</td>
<td>1.273</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Corrected flow stress = σ_t
Flow stress (measured) = σ
Correction factor = u

$$u = (1 + \frac{2}{\varepsilon_n}) \ln (1 + \frac{\varepsilon_n}{2})$$

where $\varepsilon_n = a/R$

$$\sigma_t = \sigma$$

It is now possible to go into the next step, which is to show the relationship between the corrected and uncorrected flow stress equations.

Illustrated in Figure 3 are the corrected and uncorrected flow stress curves for the 4140 steel, where it can be seen that at some small strain beyond necking to the vicinity of fracture these curves are reasonably linear. This has been a generally observed phenomenon for heat-treated steels at test temperatures of 200°C to temperatures of -196°C. Furthermore, the work done by Bridgman on many different steels to true strains as high as four (greater than 98 percent reduction of area) has shown these curves to be linear for both the measured and the corrected flow stress parameters. This indicates that a reasonable assumption of linear strain-hardening also can be made once localized deformation (necking) ensues.
Returning to equation 4 and differentiating, the following relationship between the flow stress parameters σ and σ_t results

$$\frac{d\sigma}{dz} = \frac{1}{u} \left[\frac{d\sigma}{dz} - \frac{\sigma}{\varepsilon_n u} (1 - \frac{2u}{2+\varepsilon_n}) \right]$$ \hspace{1cm} \ldots (5)

where

$$u = (1 + \frac{2}{\varepsilon_n}) \varepsilon_n (1 + \frac{\varepsilon_n}{2}).$$

Also, if we assume that $d\sigma/dz$ approximates a constant, m, from the previous observations shown for steels, and that $d\sigma_t/dz$ is also approximated by some constant, m_t, then the ratio of these will be some constant k as shown below:

$$k = \frac{m_t}{m} = \frac{1}{u} \left[1 - \frac{\sigma}{u \varepsilon_n m} (1 - \frac{2u}{2+\varepsilon_n}) \right]$$ \hspace{1cm} \ldots (6)

Analysis of equation 6 based upon the 4140 data shows that at any specific value of ε_n up to fracture, k is approximately equal to 0.5. Calculated specific values which were obtained for the experimental data points are plotted in Figure 4 and show that this approximation is quite reasonable. That this constant k of 0.5 could be the same for all steels is an interesting possibility which could be rationalized on the basis that the neck geometry primarily controlled the strain hardening curve and was the same at any given necking strain. Experimental confirmation of this is shown in Figure 5 where the slope values as determined by Bridgman are plotted. The resulting k value, obtained with a high degree of reliability due to the small amount of scatter present, is 0.52. These particular data did not intercept at the zero coordinate due, most likely, to the test specimen geometry which was tapered and of a gage length 3 times the diameter. These factors result in a higher than normal flow stress curve, as it may be considered equivalent to prestraining a specimen under such conditions. The tests conducted on the AISI 4140 steel were run on specimens which were
Figure 4. COMPARISON OF THE CALCULATED VALUES OF k VERSUS THE NECKING STRAIN FOR AISI 4140 STEEL.

Figure 5. UNCORRECTED SLOPE m VERSUS THE CORRECTED SLOPE m_b.
untapered and had the minimum gage length to diameter requirements of 4.3. This is shown as an open point in Figure 5 which falls on the postulated zero intercept slope, i.e., \(\frac{m_0}{m} = k \). It is immediately apparent that with this relationship the complete corrected flow stress curve to fracture may be obtained easily.

Assuming that \(k \) is constant (0.5) for all steels, it is then apparent that the \(\sigma/m \) ratio will be a function of \(\epsilon_n \). The following equation has been obtained from equation 6 to illustrate the form of this relationship:

\[
\frac{\sigma}{m} = \frac{(0.5u - 1) (2 + \epsilon_n)}{2u - (2 + \epsilon_n)}
\]

(7)

The obvious relationship of a constant strain hardening slope, \(m \), simply dependent on the flow stress at a given \(\epsilon_n \) is an important factor that can be used in basic flow stress analysis. Such analysis could be analogous to the strain hardening exponent, \(n \), for nonlinear strain hardening where the slope \(\frac{d\sigma}{d\varepsilon} = \sigma \) at a \(\epsilon_n = 0 \). In the linear case, an example can be chosen for \(\epsilon_n = 1 \) which shows that \(m = 0.4\sigma \). With this function, analysis of flow stress behavior in the region of linear strain hardening can be readily obtained and can be further expanded to include \(m_t \) which has been shown to be simply related to \(m \) by a factor of 0.5.

SUMMARY AND CONCLUSION

Based upon the analysis and data shown here, it can be concluded that by employing Bridgman's correction factor a useful relationship between the corrected and uncorrected flow stress curves can be derived. With this type of relation, the complete flow stress curves can be corrected rather simply, provided that the basic assumption of a linear flow stress-strain curve after maximum load is made. This linearity, which can be assumed to generally hold for steels where considerable experimental evidence has been obtained, can also be utilized in an analysis of the linear strain hardening indices \(m \) and \(m_t \) which are obtainable after necking occurs. It was shown that the relationship between these slopes is relatively a constant \(k \) of 0.5 where \(m_0/m = k \) for steels in general, based primarily upon the experimental results of Bridgman. This ratio (0.5) has also been successfully approximated from an equation derived from Bridgman's correction formula in an AISI 4140 steel tested here where

\[
k = \frac{1}{u} \left[1 - \frac{\sigma}{u \epsilon_n^m} \left(1 - \frac{2u}{2 + \epsilon_n}\right) \right].
\]

It has been further shown that for the value of \(k = 0.5 \) the function of \(\sigma/m \) is equal to some constant at any given strain, e.g., when
\[\dot{\epsilon}_n = 1, \sigma_1/m = 2.5 \text{ or } m = 0.4\sigma_1. \] Although it has not been proven, it can be assumed that this functional relationship of \(\sigma/m \) at constant strains remains constant due to the constant relationship of \(m_c \) to \(m \). However, further experimental proof is necessary to verify this assumption.
REFERENCES

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commanding General, U. S. Army Munitions Command, Dover, New Jersey</td>
</tr>
<tr>
<td></td>
<td>ATTN: Chief Scientist</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, U. S. Army Test and Evaluation Command, Aberdeen Proving Ground, Maryland</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSTE-IM, Technical Library, Building 313</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, U. S. Army Transportation Research Command, Fort Rustis, Virginia</td>
</tr>
<tr>
<td></td>
<td>ATTN: Physical Sciences Division, Dr. G. D. Sands</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, U. S. Army Weapons Command, Rock Island, Illinois</td>
</tr>
<tr>
<td></td>
<td>ATTN: Chief Scientist</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, U. S. Army Ballistics Research Laboratories, Aberdeen Proving Ground, Maryland</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. Coy Glass</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, U. S. Army Chemical Corps Nuclear Defense Laboratories, Army Chemical Center, Maryland</td>
</tr>
<tr>
<td></td>
<td>ATTN: Nuclear Physics Division</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, U. S. Army Engineer Research and Development Laboratories, Fort Belvoir, Virginia</td>
</tr>
<tr>
<td></td>
<td>Commanding Officer, U. S. Army Quartermaster Research and Engineering Laboratories, Natick, Massachusetts</td>
</tr>
<tr>
<td></td>
<td>ATTN: Pioneering Research Division, Dr. S. D. Bailey</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, Harry Diamond Laboratories, Washington, D. C.</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXDO-TIB</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, Frankford Arsenal, Bridge and Tacony Streets, Philadelphia 37, Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>ATTN: Pitman-Dunn Laboratories</td>
</tr>
<tr>
<td></td>
<td>Research Institute</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, Picatinny Arsenal, Dover, New Jersey</td>
</tr>
<tr>
<td></td>
<td>ATTN: Feltman Research Laboratories</td>
</tr>
<tr>
<td></td>
<td>Technical Library</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, Rock Island Arsenal, Rock Island, Illinois</td>
</tr>
<tr>
<td></td>
<td>ATTN: 9320, Research and Development Division</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer, Springfield Armory, Springfield 1, Massachusetts</td>
</tr>
<tr>
<td></td>
<td>ATTN: SWESP-TX, Research and Development Division</td>
</tr>
</tbody>
</table>
Commanding Officer, Watertown Arsenal, Watertown 72, Massachusetts

1 ATTN: SMIWT-EX, Chief, Engineering Division
1 SMIWT-OE, Industrial Engineering Section

Commanding Officer, Watervliet Arsenal, Watervliet, New York

1 ATTN: Research Branch

Commander, Office of Naval Research, Department of the Navy, Washington 25, D. C.

1 Director, Naval Research Laboratory, Anacostia Station, Washington 25, D. C.

Commanding General, Air Force Cambridge Research Laboratories, Hanscom Field, Bedford, Massachusetts

1 ATTN: Electronic Research Directorate

Commanding General, Air Force Materials Central, Wright-Patterson Air Force Base, Ohio

1 ATTN: Physics Laboratory
1 Aeronautical Research Laboratories

Commander, Office of Scientific Research, Air R&D Command, Temporary Building T, Washington 25, D. C.

1 ATTN: Office of Technical Information

U. S. Atomic Energy Commission, Office of Technical Information Extension, P. O. Box 62, Oak Ridge, Tennessee

Director, George C. Marshall Space Flight Center, Huntsville, Alabama

1 ATTN: M-S&M-M, Dr. W. Lucas

Director, Jet Propulsion Laboratory, California Institute of Technology, Pasadena 3, California

1 ATTN: Dr. L. Jaffe

Director, Lewis Flight Laboratories, Cleveland Airport, Cleveland, Ohio

1 Director, National Bureau of Standards, Washington 25, D. C.

1 Director, Research Analysis Corporation, 6935 Arlington Road, Bethesda, Maryland
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Commanding Officer, U.S. Army Materials Research Agency, Watertown 72, Massachusetts</td>
</tr>
<tr>
<td>1</td>
<td>ATTN: AMXMR-LXM, Technical Information Section</td>
</tr>
<tr>
<td>1</td>
<td>AMXMR-OPT</td>
</tr>
<tr>
<td>1</td>
<td>AMXMR, Dr. R. Beeuwkes, Jr.</td>
</tr>
<tr>
<td>1</td>
<td>Author</td>
</tr>
</tbody>
</table>

65 -- TOTAL COPIES DISTRIBUTED