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PREFACE

In this RAND Memorandum the authors present further
mathematical results in the problem of radiative transfer
in a one—dimensional medium. This subject has ilmportant
implications for meteorology, astrophysics, and the
detection of nuclear blasts.

The research presented here was sponsored by the

Advanced Research Projects Agency.



SUMMARY

In the present Memorandum, by means of the
invariant—-imbedding technique, the integral equations
for the reflection and transmission coefficients of
radiation in a one—dimensional medium are obtained,
allowing for the release of absorbed energy with a
random time delay. Furthermore, the reflected and
transmitted intensities for the fluorescence problem in
a one—dimensional medium are expressed in terms of
these coefficients, assuming no distribution of emitting

sources in the medium.



PREFACE. « « « « &
SUmARY L] . L] L] . L]

Section

~vii-

CONTENTS

1. INTRODUCTION . . . .«

2. THE EQUATION OF TRANSFER

3. THE REFLECTED INTENSITY.
4, THE TRANSMITTED INTENSITY.
5 L] DISCUSSION L L] L] L L) L] L] L4

REFERENCES . . . .

. 111

11
14

15



INVARIANT IMBEDDING AND TIME~DEPENDENT SCATTERING OF
LIGHT IN A ONE~DIMENSIONAL MEDIUM

1. INTRODUCTION

In a recent serles of papers, based on the principle
of invarlant imbedding, which stems from the invariance
principles of Ambarzumlan and Chandraselichar, varlious
kinds of timco—dependent neutron—transport problems in a
fixed rod of finite length made of fissionable material
were exactly treated by Bellman and Kalaba [1] and Wing
[12]. It was shown that the Laplace transform of the
integral equation for the reflected flux derived by them
provides an analytic expression of the solutlon because
of the convolution form of the integral term [10].
Furthermore, the technlque was extended [2] to the
deriva®ion of a functional equation governing the
reflected neutron flux from a rod of varying length;
the analytical study of the solution of the partial
differential integral equation was made with the aid of
an iterative procedure [11].

In the theory of radiative transfer, Miss Busbridge
[5] used the Laplace transform for reducing the non—
stationary transfer equation to the statlionary one. The
invariant-imbedding technique and the principle—of-
invariance method were applied by Bellman, Kalaba, and
Ueno [3], [9] to time—dependent diffuse reflection

problems of parallel rays by an inhomogeneous flat layer.
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On the other hand, time—dependent scattering
problems of 1light in a one—dimensional medium were
discussed by several Russian astrophysicists. Intro—
ducing the duration of temporal capture tl and the
mean free time ¢t, 1in formulation of the transfer
equation, Sobolev [8] extended the probabilistic method
to some transient scattering problems. For simpllcity,
he derived an exact solution in a semi—-infinite
homogeneous medium when ¢, >> t,. With the aid of the
Laplace transform method, linin [ 7] obtained an explicit
expression of the quantum reflection probabllity and of
the quantum emergence probabllity at any level from the
semi--infinite homogeneous medium, allowing for both time
parameters, t, and t,. Recently, Kaplan [6] ailso
extended Sobolev's procedure to the three—dimensional
nonsteady case and discussed the functional equation for
the reflection coefficients in a semi—-infinite homogeneous
medium when £ >> 6,

In a serles of papers, making use of the probabilistic
method, Kaplan and others [6] considered the scattering
of light in a one—dimensional semi-infinite homogeneous
medium with a moving boundary. Biberman and Veklenko [4]
also extended their probabilistic approach to the
derivation of relationships for the generalized
reciprocity principle for noncoherent scattering in

radiative transfer. Lists of many other papers attempting
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to solve the time—dependent transfer process will be
found in the references of our preceding papers [3], [9].
In the present lemorandum, the lnvariant—imbedding
technique is used to derive the integral equations for
the coefficlents of reflection and transmission of
radlation by a onc—dimensional homof;eneous medium of
finite optical thiclkness, allowing for two characteristic
time—scales, tl and t2' Furthermore, the reflected
and transmitted intensities from this medium, illuminated
by a unlt step—functlion time—dependent pencil of
radiation from outside, are expressed in terms of these
coefficients, assuming no distribution of emitting

sources In the medium.

2. THE sQUATION OF TRANSIFER

Consider a one—dimensional homogeneous medium of
optical thickness Ty > 0, 1lluminated by radiation of
time—dependent specific intensity IO incident on the
right-hand boundary T = T, (see Fig. 1). Scattering
of light in either direction i1s assumed to be equally

probable.
I(t,t) I,(7,t) I, (7,,t)
Iz(o,t) ’2 ’ 1 ’ R 1 l’
€ » ————e—)
- [ ] -
M 1 3 i
0 T T I (7y,t)
Fig. 1

A Time—dependent Transport Process
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Let Il(r,t) and IQ(T,t) denote respectively the
specific intensitles of radiation at the level 7T at
time t, directed toward the boundaries 7T = Ty and
T = 0.

Te equation of transfer appropriate to the present

case takes the form

oI, 1 9L,

(2.1) 3?—+C—£-3T+II=B(T,'C),
I, oI

(2.2) =~ 4 2 w2 + I, = B(T,t),

where ¢ 1s the speed of light, £ 1s the attenuation
coefficient, and B(7,t) 1s the source function.

lle assume that the duration of temporal capture,
which corresponds to the mean molecular interaction time
in the kinetic theory of dilute gases, 1s equal to tl,
and the probability of emission durlng the interval of
time (t,t + dt) 4is glven by exp(- t/tl)dt/tl.

Assuming the above emisslon probability in the
successive scattering processes, consisting of absorption
and emission, we see that the source function B(7,t)

can be written in the form

3 ntnw =3[ InGeen s el
Q0

where a 1s the albedo for single scattering, 1.e., the

probabllity of quantum survival. Under some limited
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conditions Sobolev [8] discussed the solution of
(2.1) — (2.2).

If we write
(2.4%) cl = 1/%,,

where t2 is the mean free time, the equations of
transfer (2.1) — (2.2) become

OIl BII
012 312
(2.6) - T + t2 RE = - I2 + B(T,t),

torether with the boundary and initial conditions

!

(2.7)  I1,(0,8) = 0, Iy(7y,t) = Io(¢),

(2.8) I,(7,0) = 0, I,(7,0) =0 (0T ™)

where Il(Tl,t) and Ig(o,t) are called respectively

the reflected and transmitted intensities, and I2(Tl,t)
is the intensity incident on the boundary 7T = T, at
time t¢.

3. THE REFLECTED INTENSITY

Let R(Tl,t) denote the coefficient of reflection.
Consider that at time t = t, (0 < t, < t) the incldent
radlation falls on the boundary T = Tye Because the
optical propertlies of the medium are constant with
respect to time, for convenlience we can put to equal

to zero without loss of generality. Then, by definition,
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t
(3.1) I, (7y,t) =\/\ R(T),t — t1)I,(7y,60)atr,
-—m

where Ie(Tl,t) 1s given by (2.7).

Jle shall seek an integral equation for the
reflection coefficient R(Tl,t), making use of the
invariant—-imbedding technique.

Imbedding the one—dimensional medium of the optical
thiclkness Tl in position and time, we have
(3.2) Il(-r1 + A,t + t2A)

= Il(Tl’t) + A (- Il(Tl’t) + B(Tlxt)} + O(A):

where o(A) 1s of the order of magnitude of the
infinitesimal 42, From (2.6) we get

(3.3)  I(1,8) = I(1, + 4,t — t,)
- Ig(Tl,t)A + B(Tl,t)A + o(a).

By initial condition (2.8), (3.3) becomes

(3.4) To(7,t) = I,(t = t,8) = I (£)A
t ~(t—=t')/t
—00
v ~(t~t1)/t
+5 8 e a’,
—00 1

Making use of (3.1) and (3.4), we obtain
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t ~
(3.5) Il('l'l,t) -f R(‘rl,t - t')Ia(Tl,t')dt'
-0

t
=f R('rl,t - 'c')IO(t' - t,8)dt!
~00

- Aft R(7y,t - t')Io(t')dt'
—w

t
+%5 Af R(Ty,t — t')at!
~QD

t —(t'—t")/t "
N RN '
-0
a t
+ 5 A\/\ R(rl,t — tt)dte
00
t —(t'=t") /t "
f 1,(t")e ( /%1 at )

N
—00 1

On the other hand, we have
(3.6) Il(‘rl + A,t + t2A)

t+t2A
=\[\ R('r1 + A,t + t2A - t')IO(t')dt'.
)

With the aid of (3.5) and (3.6), (3.2) becomes



3

/‘- t+t2A

—00

(3.7) R(r1 + 4, + t,0 - t')Io(t')dt'
t
= f R(Ty,t = £1)I (¢! — t,a)dt!

-0
t
- 24 f R('rl,t - t')Io(t')dt'
-0

-t t —(6'=t") /by o
+ 5 Af R(Ty,t — t')dt! f I,(7y,t")e i EE-I
—00 -
t t ~(£'=t") /by qpr
+ 5 Af R(Ty,t = t')at! f I (t")e /% 9%
e o) -0
% —(t=t1)/t
+ g A\]‘ Il(Tl,t')e 1 Q%i
-0
t ~(t=t')/t
+§Af I (t')e 1%‘—;.

5

The Dirac delta—function time—dependent case. In

vhat follows, we shall treat the case of the Dirac delta
time~dependent function, Io(t) = F6(t), where F 1s a
constant and & 1s the Dirac delta—function. The
substitution of Io(t) = F6(t) 4into (3.7) provides

(3.8) R(‘rl + 4,t + t2A) = R('rl,t - t2A) - QAR(Tl,t)
t t! —(t'=t")/t "
+ g. Af R(Ty,t — t1)at! f R(Ty,t")e 1 i’“r
Q0 -Q0 1
t —tt/t
a 1 dt!
+~2-Af R(Tl,t - t1)e -TI
-0
t —~(t=t1)/t ~t/ty
+§Af R(T,,t")e 12:-'-+3A§—€—.

Q0 1 1
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Hence, letting A - 0, we get
(3.9) 9R_, ¢ + 2R
Ny 3?; 2 3t

-t/ % oy
Ha[gz%;—*f eyt —we 4L

) 1
t t' —(t'-t")/t ' )
+ %f at! f R(7y,t — t1)R(7;,8")e 1 EE-I .
) —00

The conditions imposed on R are
(3.10) R(rl,t) =0 for 0>t; R(O,t) =0 for t >O.

Equation (3.9) is the requisite integral equation
governing the reflection coefficient R(rl,t).

The unit step—function time—dependent case. Consider

a fluorescence problem for which the diffusely reflected
light decreases for a long time after the sudden
switching—off of the external radiation incident on the
boundary, assuming no emitting sources in the medium. 1In
the time interval (— o0, 0), let the radiation of
constant intensity F fall on the boundary T = Tys and
at time t = 0 1let the incident radiation be suddenly
quenched.

Writing
(3.11)  I(7y,t) = FH (t),

where
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1, t<oO

* L 2

(3.12)  H (t) =
0, t > 0,

we find that the requisite intensity Il(Tl,t),

reflected by the end T = Ty at time ¢, 1s given by

t *
(3.13) Il('rl,t) = Ff R(‘rl,t—t')H (tr)dt
-0
= F\/\oo R(Tl,u)du,
t

where Rl(Tl,t) is governed by (3.9).

In the next place, consider a Heaviside unit—~function
time~dependent case, in which from the instant t = O
the radiation of constant intensity F falls continuously
on the boundary <7 = Ty from the outside. We ask for
the gradual increase of the lntensity reflected from the
medium at time t > 0. Writing

(3.1)  Ip(7y,t) = FH(t),

where
1, t >0,
0, t <O,

(3.15) H(t) =

we obtain

(326)  Ty(ry8) = B [ R(ey,beb (8 ot
-0

/"t
- FJ R(Tl,u)du)
o
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which provides the required reflected intensity in this

cage.

4. THE TRANSMITTED INTENSITY
Let T(Tl,t) denote the coefficlent of transmission.

Then we have

t
(h.2)  T,00,8) = [ B(r),6-60)T,(7y,60 Jabt.
-0
We inquire into an integral equation for T(rl,t).
In a manner similar to that used in the preceding section,

we have

(4.2) 12(0,t+t2A) Ie(o,t) + A{— Ie(o,t) + B(0,t)} + o(a).
From (4.1), we obtain

(4.3) 12(0,t+t2A)

t+t,0
Jr T( 1+A,t+t2A—t')Io(t')dt'.
-0

On the other hand, using (3.4), we see that the trans—
mitted intensity I2(O,t) is given by
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| . )
(h.4)  T,(0,t) -f (7,6t ) T, (1), 61 )dt !
—m

t
.f T(Ty2t-t1)I (E'-t,0)dt!
-0

t
- Af T(Tl,b-t')Io(t')dt'
-0

a t
+ x5 Af T(Tl,‘b—t' )dt
—®
t —(t'—t")/t n
.f Il(.r],'t")e / 1l dt
1
—00
a t
+ 5 Af T(‘l’l,fr—t')dt'
N

t! —(t'-t") /¢t "
. JF Io(t")e ( / 1 g%;.

-0

Then, recalling (2.8), (4.3), and (4.4), we find that
(4.2) becomes

t+t,0
(4.5) [ 7 m(e 40, bab,0-80)T (51 )at
—~00

t ¢
.f T(T),t-t") I (t1=ta)dt" — Af (T2t )I (¢! )at!
-00 -

t' bt t'—t" t ]
[ ntmene M %

~® 1

+ % Ab/wt T(Tl’t"t')dt' ft Io(t")e-(t'-t")/tl "

—® —00 1

+ A{-— I,(0,t) + gft 12(0,1:');(1"-1:')/tl %—;} + o(a).
—m

t
+ gf T(Ty, -t )dt?
—00
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The Dirac delta—function time—dependent case.
Inserting Ie(rl,t) = F5(t) 4into (4.5) and letting

A -+ 0, we have

(4.6) %E- + 2, 35 427 = a[\/‘ T(Tl,b_tl)e LAY g%i

' v -t")/t,
+2-f at! ft T(7,,t-t! JR(7T l,t“) ~ /
-0 —00

1 dt'

'fI

along with the boundary and initial conditions

(4'7) T(Tl:t) =0 (Tl >0, 0>t or t< Tlt'r)’
T(0,t) = F&(t) (t > 0).

The unlit step-function time—-dependent case. To

begin with, we conslder the same quenching fluorescence
problem as that treated in the preceding section.

Under the incident intensity IE(Tl,t), given by
(3.11), the requisite intensity transmitted from the
boundary T = 0 at time t 1s provided by

t *
Ff ‘I‘('rl,t—t')H (tr)at!
—~00

o)
F\/ﬁ T(Tl,u)du,
t

(4.8) IQ(O,t)

when T(Tl,t) satisfies (4.6).

Next, we seek the transmitted intensity when the
boundary T = Ty is illuminated by a pencll of external
radiation of intensity Ie(rl,t), given by (3.13).
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Then we have

t
(4.9)  Ip(0,6) = F [ B(m),t—t)H(t1)at"
—00

t
= F\[\ T(rl,u)du.
0

5. DISCUSSION

In later papers, the present approach will be
applied to problems of light scattering in a finite
one—~dimensional medium with a moving boundary.
Furthermore, the fluorescence problem in which the
distribution of emitting sources in the one-dimensional
medium is a function of T and the external light
source 1s distinguished at tlme zero will be considered.
An analytical and computational study of the solutions
of the integral equations for the R— and T-functions
will also be made.
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