NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
UNITED AIRCRAFT CORPORATION
RESEARCH LABORATORIES
EAST HARTFORD, CONN.

B-910068-2

Analytical and Experimental
Investigations of the Fracture
Mechanisms of Controlled
Polyphase Alloys

May 31, 1963

Prepared under Navy, Bureau of Naval Weapons
Contract N600(19)59361

Quarterly Progress Report No. 2

Period: January 30, 1963 through April 29, 1963

REPORTED BY

J. A. Ford
R. W. Hertzberg

Qualified requestors may obtain copies of this report directly from ASTIA.
UNITED AIRCRAFT CORPORATION
RESEARCH LABORATORIES
EAST HARTFORD, CONN.

B-910068-2
Analytical and Experimental
Investigations of the Fracture
Mechanisms of Controlled
Polyphase Alloys
May 31, 1963

Prepared under Navy, Bureau of Naval Weapons

Contract N600(19)59361

Quarterly Progress Report No. 2

Period: January 30, 1963 through April 29, 1963

This report applies to work
on Contract N600(19)59361
SUMMARY

The results of continued investigations on selected unidirectionally solidified binary eutectic alloys are reported in this quarterly progress report. Large grains have been produced in the Al-CuAl₂ eutectic ingots. Micro-bend specimens, whose length dimension made an angle of zero, thirty, forty-five, sixty, and ninety degrees to the lamellae orientation, were prepared and tests carried out for the zero and ninety degree orientations indicated average tensile strengths of 46,800 psi and 22,900 psi, respectively. The failure mechanism(s) are characterized by Al platelet plastic deformation and by CuAl₂ platelet cleavage.

Preliminary information on the effect of Cr whisker orientation on the fracture mechanism(s) of unidirectionally solidified Cu-Cr ingots has been obtained for the case of whiskers oriented at 45° to the tensile load axis. The predominant failure mode was of the shear type. Also, the fracture mode of specimens solidified at high growth rates and tested parallel to the fiber orientation has been determined to be controlled by Cr whisker failure. Both shear and tensile failure modes have been identified.

Extensive examination has revealed that the shoulder failures in the Al-Al₃Ni controlled ingots were not due to microstructural peculiarities, but more probably to stress concentrations and/or load eccentricity. The Al₃Ni whiskers have been successfully extracted from the Al-matrix using a 5% aqueous HCl solution.
Analytical and Experimental Investigations of the Fracture Mechanisms of Controlled Polyphase Alloys

TABLE OF CONTENTS

INTRODUCTION .. 1

CONTROLLED SOLIDIFICATION PROCEDURE 1
 Al-CuAl₂ System .. 1

MECHANICAL TESTING PROCEDURE 1
 Cu-Cr System .. 2
 Al-Al₃Ni System .. 2

RESULTS AND DISCUSSION 2
 Controlled Solidification Experiments 2
 Mechanical Test Results 2

FUTURE WORK .. 4

REFERENCES ... 6

TABLE I .. 7

FIGURES 1 - 7 ... 8

DISTRIBUTION LIST ... 15
INTRODUCTION

This is the second quarterly progress report for Contract No. N600(19)59361 entitled "Analytical and Experimental Investigations of the Fracture Mechanisms of Controlled Polyphase Alloys," covering the period from January 30, 1963 through April 29, 1963. The objective of this investigation is to determine the role of highly oriented fibrous and lamellar second-phase particles on the mechanical properties of selected eutectic alloys.

This report contains a brief description of results of the experimental work carried out during the second quarter and of the work to be conducted during the next report period.

CONTROLLED SOLIDIFICATION PROCEDURE

Al-CuAl₂ System

Several master heats of high-purity Al and Cu (99.999) were prepared by induction melting in 1¾-in. dia graphite crucibles. These master heats were then unidirectionally solidified in a newly designed high thermal-mass resistance furnace at a rate of 2.05 cm/hr. This experimental procedure was utilized in order to eliminate both the colony and banding defects.

MECHANICAL TESTING PROCEDURE

Continued tensile tests of unidirectionally solidified Cu-Cr ingots have been made and Al₃Ni whiskers have been extracted from unidirectionally solidified Al-Al₃Ni ingots for testing.
Cu-Cr System

Substandard tensile specimens (0.125-in. dia) were machined at an angle of 45° to the growth direction from a 1½-in. dia Cu-Cr ingot grown at 1.28 cm/hr. These specimens were tensile tested at strain rates of 0.03 in./in./min.

Al-Al₃Ni System

The Al₃Ni whiskers have been successfully extracted from the Al-Al₃Ni unidirectionally solidified ingots using a 5% aqueous HCl solution. The extraction procedure must be carefully controlled in order to remove the whiskers without any damage. Some whisker surface attack by the extraction reagent will occur if the concentration of the HCl is allowed to increase to 15%. These extracted Al₃Ni whiskers will be tensile tested using the procedure outlined in the first progress report.

RESULTS AND DISCUSSION

Controlled Solidification Experiments

Al-CuAl₂ System

The banding problem discussed in the first progress report has been successfully eliminated by using a high thermal-mass resistance furnace as a heat source which does not produce significant temperature fluctuations in the melt. Using this technique, several 1½-in. dia ingots were grown at 2.05 cm/hr. Large grains were produced in which no extensive banding occurred for over an inch in length which permitted machining of single-grain specimens for the microbend tests. Figure 1 compares an as-cast ingot cross-section to a unidirectionally solidified cross-section in which a single eutectic grain of 1½-in. length was produced.

Mechanical Test Results

Cu-Cr System

Further tensile tests were performed on specimens solidified at both slow and fast growth rates. The test bars solidified at slow growth rates failed by a single shear mode and those solidified at fast growth rates failed by a mixture of tensile and shear modes, respectively, as discussed in the first progress report. The shear mode found in both specimen groups has already been associated
with the presence of "elongated dimples" induced by the fracture of Cr fibers (Ref. 1). Studies of the tensile failure mode revealed a fibrous fracture surface apparently caused by large amounts of plastic deformation. If the Cr fibers were still the controlling factor in fracture nucleation, the fibrous regions might reveal "equiaxed dimples" as shown by the Al-Al₃Ni alloy and discussed in the first progress report. Though there are some indications of such dimples (Fig. 2a), the extensive plastic deformation occurring during the fracture process probably distorted this simple pattern into a disordered array of mounds and troughs with Cr fibers generally associated with the mounds (Fig. 2b). It appears, therefore, that fracture of the Cr fibers serves as the initiation site for both the fibrous and shear failure modes.

The effect of varying fiber orientation on fracture mechanisms of the alloy was studied. As the shear process associated with failure for specimens oriented parallel to the growth direction involves rotation of the Cr fibers in the shear band to a position nearly parallel to the fracture plane, it was of interest to study the behavior of the alloy when the fibers were initially positioned parallel to a plane of maximum resolved shear stress. Two substandard tensile bars were machined at 45° to the growth direction and tested. The resulting fracture mode was of the shear type. Electron fractography revealed that Cr fibers had nucleated the "elongated dimples" structure associated with shear failure (Fig. 3). Metallographic sections will be made to determine the relative position of the fracture plane and direction with respect to the position of the fibers in the sample.

Al-CuAl₂ System

Having successfully produced large grains of the Al-CuAl₂ eutectic, a group of microbend specimens were machined from one grain at specific angles in order to study the variation of strength with plate orientation. Seven circular discs whose surfaces were normal to the growth direction were cut from an ingot solidified at 2.05 cm/hr. Each disc was used to make one set of bend specimens wherein the length dimension of the sample made an angle of either zero, thirty, forty-five, sixty or ninety degrees with the plate direction (Fig. 4). Two discs were used for each of the sets containing plate orientations of zero and ninety degrees. By machining all samples from the same grain, the effect of crystallography on the mechanical behavior of specimens within each set was eliminated.

Test results, utilizing four-point loading, have been obtained for specimens with zero and ninety degree lamellar orientation. The data, Table I, indicate that the nominal outer fiber stress at fracture for lamellae oriented parallel to the test bar length was more than twice that for samples containing lamellae perpendicular to the length. The relative strengths of these specimens result from the presence of a maximum and a minimum amount of reinforcing by lamellae parallel and perpendicular, respectively, to the specimen length.
The data marked by asterisks in Table I indicate fracture strengths of specimens tested with the growth direction normal to the maximum stress surfaces, while the remaining data are for specimens which were positioned with the growth direction parallel to the maximum stress surfaces (Fig. 5). More data will be obtained before any definite conclusions are drawn concerning any change in mechanical behavior of either group as a function of the angle of rotation of the test bar about an axis parallel to the length dimension.

Light microscopy and electron fractography have established that for the case of lamellae parallel to the length dimension of the specimen, the Al platelets fail by plastic deformation while the CuAl$_2$ platelets cleave (Fig. 6). When the lamellae are normal to the test bar length dimension, the entire fracture surface appears to consist of cleaved CuAl$_2$ platelets (Fig. 7). Careful examination will be made to determine whether any interfacial decohesion had occurred along with the cleavage process.

Al-Al$_3$Ni

Metallographic sections were made in the region of the shoulder failures of those test specimens reported in the first progress report. One section revealed that there was no microstructural detail peculiar to the head end of the ingot which could be associated with the incipient fracture path. Careful examination of the unfailed shoulder of each test bar revealed the nucleation of one or more cracks. It is, therefore, felt that the shoulder failure was due to a stress concentration and/or load eccentricity and not to any microstructural detail found only at the head end of the ingot. In order to relieve the stress concentration, future tensile specimens will be machined with a more generous shoulder radius.

FUTURE WORK

During the next report period, work will continue on the following items:

1. Al-CuAl$_2$ microbend samples with lamellae oriented at thirty, forty-five and sixty degrees to the specimen length will be tested. In addition to calculation of maximum outer fiber strength, the elastic modulus of each sample will be obtained graphically and the modulus of the CuAl$_2$ phase obtained analytically.

2. Cu-Cr specimens will be prepared with Cr fibers oriented normal to the applied stress direction. Work will continue on the testing of individual Cr fibers and determining fiber size and spacing as a function of growth rate.
The data marked by asterisks in Table I indicate fracture strengths of specimens tested with the growth direction normal to the maximum stress surfaces, while the remaining data are for specimens which were positioned with the growth direction parallel to the maximum stress surfaces (Fig. 5). More data will be obtained before any definite conclusions are drawn concerning any change in mechanical behavior of either group as a function of the angle of rotation of the test bar about an axis parallel to the length dimension.

Light microscopy and electron fractography have established that for the case of lamellae parallel to the length dimension of the specimen, the Al platelets fail by plastic deformation while the CuAl₂ platelets cleave (Fig. 6). When the lamellae are normal to the test bar length dimension, the entire fracture surface appears to consist of cleaved CuAl₂ platelets (Fig. 7). Careful examination will be made to determine whether any interfacial decohesion had occurred along with the cleavage process.

Al-Al₃Ni

Metallographic sections were made in the region of the shoulder failures of those test specimens reported in the first progress report. One section revealed that there was no microstructural detail peculiar to the head end of the ingot which could be associated with the incipient fracture path. Careful examination of the unfailed shoulder of each test bar revealed the nucleation of one or more cracks. It is, therefore, felt that the shoulder failure was due to a stress concentration and/or load eccentricity and not to any microstructural detail found only at the head end of the ingot. In order to relieve the stress concentration, future tensile specimens will be machined with a more generous shoulder radius.

FUTURE WORK

During the next report period, work will continue on the following items:

1. Al-CuAl₂ microbend samples with lamellae oriented at thirty, forty-five and sixty degrees to the specimen length will be tested. In addition to calculation of maximum outer fiber strength, the elastic modulus of each sample will be obtained graphically and the modulus of the CuAl₂ phase obtained analytically.

2. Cu-Cr specimens will be prepared with Cr fibers oriented normal to the applied stress direction. Work will continue on the testing of individual Cr fibers and determining fiber size and spacing as a function of growth rate.
3. Tensile bars of the Al-Al₃Ni eutectic will be prepared with an increased shoulder radius and tested. Attempts will be made to determine the modulus of the alloy by ultrasonic techniques. Extracted fibers will be tested to obtain the strength and elastic properties of the Al₃Ni phase. These properties will be used in an attempt to mathematically predict the behavior of this material.
REFERENCES

1. Hertzberg, R. W., and R. W. Kraft: Fracture Mechanisms in Controlled Cu-Cr Eutectic Alloy. Accepted for publication in the Transactions of AIME.

TABLE I

Outer Fiber Strength of Al-CuAl₂ Microbend Specimens

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Strength</th>
<th>Sample Number</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-268-02-6a</td>
<td>42,300</td>
<td>63-268-02-1a</td>
<td>19,700</td>
</tr>
<tr>
<td>63-268-02-6b</td>
<td>44,900</td>
<td>63-268-02-1b</td>
<td>17,500</td>
</tr>
<tr>
<td>63-268-02-6c</td>
<td>47,600*</td>
<td>63-268-02-1c</td>
<td>33,900</td>
</tr>
<tr>
<td>63-268-02-7a</td>
<td>47,400</td>
<td>63-268-02-1d</td>
<td>26,700*</td>
</tr>
<tr>
<td>63-268-02-7b</td>
<td>47,600</td>
<td>63-268-02-1e</td>
<td>16,700*</td>
</tr>
<tr>
<td>63-268-02-7c</td>
<td>49,800*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63-268-02-7d</td>
<td>47,700*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\sigma^{'}_{\text{avg}} = 46,800 \] \hspace{1cm} \[\sigma^{-}_{\text{avg}} = 22,900 \]

* Specimens tested with growth direction normal to maximum stress surface.
COMPARISON BETWEEN AS-CAST AND UNIDIRECTIONALLY SOLIDIFIED INGOTS

MAGNIFICATION: 2X

AS-CAST

UNIDIRECTIONALLY SOLIDIFIED
ELECTRON FRACTOGRAPHS OF TENSILE MODE OF FAILURE IN Cu-Cr ALLOY

a) WHISKERS ASSOCIATED WITH EQUIAxed Dimples
MAGNIFICATION: 15,500X

b) DISTORTED ARRAY OF MOUNDS AND TROUGHS.
Cr FIBERS GENERALLY ASSOCIATED WITH MOUNDS
MAGNIFICATION: 6000X
"ELONGATED DIMPLE" STRUCTURE ON FRACTURE SURFACE.
SPECIMEN PREPARED AT 45 DEGREES TO GROWTH DIRECTION
MAGNIFICATION: 8600 X
SCHEMATIC ILLUSTRATING RELATION OF MICROBEND SPECIMENS TO LAMALLAE ORIENTATION IN Al-CuAl2 EUTECTIC
SCHEMATIC OF LAMALLAE LOAD RELATIONSHIPS IN MICROBEND TESTS
FRACTURE SURFACE OF Al-CuAl₂ ALLOY ILLUSTRATING CLEAVAGE OF CuAl₂ AND DUCTILE FAILURE OF Al

MAGNIFICATION: 14,800 X
FRACTURE SURFACE OF Al-CuAl₂ ALLOY ILLUSTRATING CLEAVAGE OF CuAl₂ PLATELETS
MAGNIFICATION: 110 X
DISTRIBUTION LIST

1. Commander
 Wright Air Development Division
 Wright-Patterson Air Force Base, Ohio
 Attn: ASRCNC

2. Nuclear Metals, Incorporated
 Concord, Massachusetts
 Attn: Dr. A. Kaufman

3. Battelle Memorial Institute
 505 King Avenue
 Defense Metals Information Center
 Columbus 1, Ohio

4. Lockheed Aircraft Corporation
 Lockheed Missile System Division
 Hanover Street
 Palo Alto, California
 Attn: Dr. John McDonald

5. Avco Corporation
 Research and Development Division
 201 Lowell Street
 Wilmington, Massachusetts
 Attn: Dr. Thomas Vasilos
 Chief, Metals and Ceramics

6. Commander
 Army Materials Research Agency
 Watertown 72, Massachusetts
 Attn: Mr. S. Arnold

7. Commander
 Frankford Arsenal
 Pitman Dunn Laboratory
 Philadelphia 37, Pennsylvania
 Attn: Mr. D. Kleppinger

8. Chief of Naval Research
 Department of the Navy
 Washington 25, D. C.
 Attn: ONR:423
DISTRIBUTION LIST (Contd.)

9. Director, U. S. Naval Research Laboratory
 Metallurgy Division
 Washington 25, D. C.
 Attn: Mr. W. Pellini

10. U. S. Atomic Energy Commission
 Division of Reactor Development
 Engineering Development Branch
 Washington 25, D. C.
 Attn: Mr. J. M. Simmons, Chief, Metallurgy Section

11. The Rand Corporation
 Aeronautics Department
 1700 Main Street
 Santa Monica, California
 Attn: Mr. George Hoffman

12. Department of the Navy
 Bureau of Ships
 Washington 25, D. C.
 Attn: Code 343

13. Boeing Airplane Company
 Seattle Division
 Seattle, Washington
 Attn: Mr. E. C. Bovee, Staff Eng' r for Mtl's and Processes Staff

14. Republic Aviation Corporation
 Farmingdale, Long Island, New York
 Attn: Mr. Harry A. Pearl, Chief, Met'l's Development Div.

15. Metals Research Department
 Armour Research Foundation
 Chicago 16, Illinois
 Attn: Dr. N. M. Parikh

16. Commander
 Naval Air Material Center
 Aeronautical Materials Laboratory
 Philadelphia Naval Base
 Philadelphia 12, Pennsylvania

17. National Aeronautics and Space Administration
 1520 H Street, N. W.
 Washington 25, D. C. (3 copies)
18. National Academy of Sciences
 Materials Advisory Board
 2101 Constitution Avenue
 Washington 25, D. C.
 Attn: Capt. A. M. Blamphin

19. National Beryllium Corporation
 4501 Dell Avenue
 North Bergen, New Jersey
 Attn: Mr. C. E. Nelson

20. Clevite Corporation
 Mechanical Research Division
 540 East 105th Street
 Cleveland 8, Ohio
 Attn: Mr. A. D. Schwope

21. Narmco Industries Incorporated
 Research and Development Division
 8125 Aero Drive
 San Diego 11, California
 Attn: Mr. Finn Claudi-Magnussen

22. Sylvania-Corning Nuclear Corporation
 Bayside, Long Island, New York
 Attn: Mr. Charles I. Whitman

23. Southwest Research Institute
 8500 Culebra Road
 San Antonio 6, Texas
 Attn: Dr. George Fish

24. Lockheed Aircraft Corporation
 California Division
 Burbank, California
 Attn: Mr. E. A. Green

25. Diamond Ordnance Fuze Laboratories
 Washington 25, D. C.
 Attn: Mr. John Nusser, Engineers Tech.
 Organization 930, Bldg. 16, Rm. 222
DISTRIBUTION LIST (Contd.)

26. Department of the Interior
 Bureau of Mines
 Washington 25, D. C.
 Attn: Mr. H. Austin Tucker
 Ferrous Metals Branch

27. Dr. Eraldus Scala
 Prof. Metallurgy and Materials Science
 College of Engineering
 Cornell University
 Ithaca, New York

28. Mr. J. W. Weeton
 Alloys and Composites Materials Branch
 Materials Structures Division
 Lewis Research Center
 National Aeronautics and Space Adm.
 Cleveland, Ohio

29. Department of the Navy
 Bureau of Naval Weapons
 Attn: RRMA-222
 Washington 25, D. C.

30. Armed Services Technical Information Agency
 Arlington Hall Station
 Arlington, Virginia (8 copies)

31. Dr. Merton C. Flemings
 Room 35-316
 Massachusetts Institute of Technology
 Cambridge 77, Massachusetts

32. Mr. Cedric D. Beachem
 Code 6320
 Metallurgy Division
 U. S. Naval Research Laboratory
 Washington 25, D. C.