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ABSTRACT

This investigation uses ballistic theory in the analysis of the behav-
ior of an electron beam passing through alternate gap and drift regions,
with the gap regions having excitation fields. The anlalysis develops the
response to a complicated f‘requepcy spectrum of the drive signal. First
the double frequency case is analyzed. Relativistic effects are taken into
account and their influence on the current response studied, Then the
theory is extended to the more complicated case of a Gaussian spectrum.
The first-order bunching theory is used to plot current response curves,
An estimate of the pulse distortion resulting from nonlinear electron beam
dynamics is obtained from the curves. It is also of interest that the envel-
ope shape of the exit current is almost completely independent of the r-f
frequency. The large-signal, finite-gap analysis is carried out, and the

results extended to the multiple-cavity klystron,
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I. INTRODUCTION

A, bBJECTIVE

Mé;ny s;tag‘es of development followed the invention of the klystron
by the Varian brothers in l939l.. Until now, most of "che agalysis and dis-
cussion has been lirﬁited to the case of a continuous-wave drive signal,
The purpose heré is t.ojopen the door to investigation of the numerous prob-
lemsvassc‘)cia't‘éa with the use of pulsed microwave amplifiers for arp;plifi-
c;afi‘o‘n of nanosecond pu‘;'lsﬂc.as whose pulse lengths are of the order of several
cycles of the r-f carrier frequency. The main concern is with high-power
a.'fnplifiers'With average po.wer capabilities comparable to conventional
pulf.s‘ed'aiﬁplifiers; thus for‘comparable repetition rates, the peé.k power
would’be.h‘ig'her by fhe in\;erse ratio of the pulse lengths. |

’S:eve‘ra;l facférs may be important in determining the pulse response
;:éj)abiiity of high-power ami:lifie»r& such as the klgrstr'an. It follows, from
Fo‘ui‘.‘i-e.r ané.iysis, .that a long pulse of constant carriér. frequency includes
a nari‘o'w bandwidth; whivl‘e a pulse that is short in terms of éycles of the
r-f car'rilé.;f has a broa:d frequency spectrum. The spectrum ;:>f, the long 4
signal ca.n, however, be significantly broadened by introducing modulation.
Klauderg showed that to utilize the transmitting tubes efficiently, this modu-
lation must také the fo.rm of frequency modulation. By this method one can -
introduce the fre.quency-vspread characteristic of a short pulse within the
envelope of a long-duration signal. Klauder4 also showed certain advantages
of short constant-frequency r-f signals over the long signals with linear
frequency modulation. “This emphasizes the importance of nanosecond pulse

studies. One of the problems that arises is that the broad frequency spec-



' trum associated with the short pulses might be affected by the bandwidth

of the circuits associated with the amplifier, which will limit the response
and therefore cause distortion of the pulse, Operation of the amplifier at
maximum efficiency entails nonlinear behavior in the electron beam dy-
namics. This will cause the frequency spectrum of the output pulse to be
altered from that of the input pulse and produce distortion. Ballistic theory
will be utilized to determine the response of klystrons to the complicated
frequen~y spectrum, and lead to an estimate of the pulse distortion,

Studies in this direction will provide a solution for the conflicting
requirements of long range and high resolution in radar systems. Re-
solution depends on the transmitted pulse bandwidth, and nanosecond pulses
will, no doubt, satisfy the conditions for high resolution. For long-range
capabilities, large power requirements are necessary; hence, high-power
nanosecond pulses are expectéd to solve the two conflicting radar require-
ments. Radar systems that yield simultaneous information aboui the range
and velocity of a target would be useful in certain applications. Klauder4
showed an inherent ambiguity in a simultaneous determination of both the
range and velocity of a mo;ring target, when using the so-called ''chirp"
scheme. If the transmitted signal with an ambiguity function that is highly
peaked only at about t =0 exists, then high resolution is expected in both
range and velocity, Using analogs from quantum mechanics, Klauder showed
that the sequence of signals, f(t), that satisfy these conditions are:

2

1/4 ¥
f(t) = X H (WE) e 2 ,
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th

where Hn(z) represents the n~ Hermite polynomial defined by

2§ 2
H (z) = (-1)® 2" 4 -2
o dzt

When n is taken equal to zero, the Gaussian envelope, on which this analy-~
sis is chiefly based, results., Further details on the Gaussian spectrum are

given in Appendix A.

B. MODEL

Since a one-dimensional model of the electron beam is used, a2 uni-
velocity electron beam is incident at the entrance plane z = 0, moving in
the +z direction in confined flow. This assumption of a very strong longi-
tudinal magnetic field will depress the potential at the center of the beam
so that peripheral electrons travel faster than axial ones, introducing a
phase difference between the radio-frequency current carried by different
beam segments, This difﬁculty‘ is overcome by assuming the existence of
.a thread of positive ions along the axis of the beam, just sufficient to neu- .
tralize the charge density of electrons; thus, the effects of depressing the
potential across the beam caused by space charge are neglected, and so
also are variations in electron velocities caused by thermal noise. Elec-
tron velocities are assumed small compared to the velocity of light, per-
mitting a nonrelativistic treatment of the problem. In the analysis of a
double-frequency signal, however, the change in response caused by rela-
tivistic effects is studied. The electric field is assumed constant through-

out the cross section of the klystron beam.



II. RESPONSE OF KLYSTRON TO DOUBLE-FREQUENCY INPUT

In this section, the response of a klystron to a double-frequency

input will be treated. The signal is. V = Vl sinw,t + V, sinw,t. The
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DRIFT REGION
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o

four planes of reference in a two-cavity klystron are represented by
Ao s Al s A2 , A3 , and the subscripts o, 1,2, 3, respectively will be

used to identify quantities in the respective planes,

A. FIRST GAP

Applying Newton's second law of motion, we have '

de eV’ eV
= — sinw;t + sinw,t
therefore
eV eV
.é_z. = __....__1_ cosw\lt - —-——%— coswzt + k , :



where kl is a constant to be determined from the iritial condition; at t = to ,

the velocity dz/dt = U therefore

‘_if_ - u s eVl coslwlto ) cosw.lt | + eV2 cos‘wzt.o ) coswz‘t
dt o mdl w, ) md, w, w,
(2. 1)
Integrating again gives
z = uot + fndl Co:wl ° 4 e‘ 2 CO:wZ ol
1 1 md, 2
B eV1 . . eV .
- ———————md wz sx.nwlt + m 81nw2t + kZ‘ s
L 171 172

where kz is a constant, evaluated by inserting the initial condition: at

t= ’co , the distance 2z = 0; therefore

eVl coswlto eVz
z = l:uo + + ; cos wzto] (t - to)
md1 w; m 1“’2
eV eV,
- K (51nwlt - s1nwlto) - _d.__ -(s\lnwz at SIn'wZ‘to)
1“1 md92
Putting
o Va o 9% N @29) 5
-vo 1 Vo 2 u, 1 U, 1
gives '
au a,u
z = |u_ + cosw,t + © cosw.t (t -t) +
[o) 1 1 1" 20 o
2.¢l 2<1>1



a;u a,u
+ oo (s.mc.olto - smwl’c) + 2¢”w (smwzto - s1nw2t)
171 172
The distanceis z=d at ’c:t‘1 , where
t, = t, + T}, |
d &
I"l = transit time in first gap = = ° o
o] o
51 = correction factor,
wl + wz
w = —— , mandn being two numbers defined by
o m +n
wz -~ nwo N

Substitution of this condition in Equation (2.2) gives,

Q. a

d = u l+—-l—— cosw,t + —-2'— cos wot r
o} ! lo 1 20 1
2¢, 2¢,
1 1
o ug au
+ (sinw,t -sinw.t) + ° (sinw,t - sinw,t)
! lo 1 " 270 2
2¢1w1 2¢1w2

The following assumptions are made:

. [ .
sin ! 1 sin 1
cos (wlt -¢1 T w 61> ~ cos (""llc - ¢1)

€

sin ' ) " 2 _ sin ]
cos (“zt - ¢1 - ZE; 51) ~ cos (“’zt - ¢1)

. (2.2)

-Ww

= mw _and
o)

(2. 3)



The products a161 and 0.261 are negligible, and Equation (2.3) reduces to,

u051 a d1 \ a,d N a,u R . )
- — = — COS (wlt-le) + — cos(wzt-cbl) + [_sin(wlt-d)l) -sinwltJ
© 29, Bas! 26w,
azu 1 .
ot — [sin(wzt - d)l) - sinwzt]
. 2b,
ald . 1 . 1 dl . " . . "
NS L ('C,OS"wl,tC‘-OS ¢l’ + S-in-wlt- Sln¢1 ) + - {cos wzlt cosd>l + sinw,t s1n¢l)
1 29! - ‘ 2¢
1 1
a.u
. 170 r_. o ‘ st .
‘ .+ sinw.t cosd . cosw,tsind - sinw,t
g LT g 1 1 1t
B!
O'Zuo " ‘
+‘ ™ [sinwzt cos ¢'1' - cosw,t sin ¢>l - sinwzt] .,
;%2 |
therefore"
' o al ’ ' ! i !
6, = — [(1 - cos ¢'l - ¢1 sin 4?1) sinw,t + (sin d)l - di cos ¢l) coswllt]
Zf.bl.;rn. - S )
a5 : : ‘
VA . 1 oo I . 1" 1 1"
+——2 ({1 -cosd. - ¢, sind,) sinw,t + (sin ¢, - ¢ cos ¢ ) cosw t]
" 1 1 1 2 1 1 1 2
Z¢ln, ,
(2. 4)

Thus, the expression for the correction factor as given.by Equation (2,4)
is a superposition for each frequency, considered separately. The induced
current is calculated by Ramo's theorem; i.e.

t

t
. .o ‘ /dz g = Eo_ . +e‘Vl cgswlto cosc,olt
174, . \dt)" o Ta To ' md; w )
1
’c-JI

1 1 1
t-uI"l

—




. eV2 cos:uz\to coswzt at
mdl wz wz j (o]

Io 1Y% [ sinwlt‘-sinwl(t-l'“l)

1 N
dl o 24)1

@] - I"‘l coswlt]

u sinw,t - sinw,{t-IT.)
+ 20 [ 2 2 LI 1"1 coswzt]
24y “2 _ |
After simplifying, and in the process. neglecting m61 cos w,t and n61 cos wlt,
"we have
l~cos cp'i sin ¢; sin ¢'l' 1 + cos ¢; ‘
i, =1 41 all - sinw,t +{ - cosw,t
1 o o1 2 2 ! 1 \2 20" 17
24! ) ¢ !
/1 -cos ¢'1' sin ¢'l' sin ¢'1' 1+cos ¢”
: i
+I a,ff - | sinw,t + - cosw,t
o 2 w2 2 " 2 ”2 2 1 2
24, 49 ¢ *
(2.5)

;From Equation (2. 5), it is eyident that the effects of ‘the different frequency
components of excitation on the induced current are mutually independent.
"The double-frequency case can therefore be extended to the multiple-fre-

" quency input, and it can be concluded that the different frequency effects

"are independent of each other, subject to the approximations made in this

section.
B, DRIFT REGION

Thus the electrons enter the drift space with both velocity and current

modulation. From Equation (2.1),

-8."
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e Vl dl & eV d1 61
u; = + —eie [ cCOS W tl-u—- o —cosmltl + ‘,cosw*z ‘tl'ﬁ— "o
: mdlwl o %o mdlw2 ‘ 1, o
-coswz’cl .
Resorting to approximation made in Section A gives
. I R 1
smd)l , b s‘1ncbl e
u, =u +-l‘-uo._-§-—-—sinwt-——l- +—1-ua-——2———sinwt ——l
1770 "2 7ol ] 11 2 2 o2 " 72Nl T
¢ ¢
1 . 1
2 2
. (2.6)
Putting
s.mcbl smcbl
2 1
b =B, — =B
he! !
2 2

‘where B'l and ﬁ;l are defined as the gap-coupling coefficients for the re-
spective frequency components of excitation, gives the time of arrival at

plane A2 as

For small excitations, we get

n

[¢]

] 1A
’ _ 1 ‘ 1 ! . ¢l 1 1 . ) ¢1 ]
.LZ = tl + — 1 - -2— alﬁl sin (wltl - -—2~—> - E azﬁl sin G)Z,tl - 7)_]



[« N
ot
n
€
Q
i
wm

: I ! It "
2 = 14+ 1 1 cos fw. t d)l wlazﬁl cos |w,t, - ¢l ‘
= ra— “it1 3t — 21 T 3 ‘

i \ I
, = = ° (2.7)
d’c2 dt, i
dt dt dt
1 1 o
4 %
Again t, =t +I, =t + — + -— ; therefore
1 o 1 o uj w

as dl is independent of to » and N

dtl o

a;- =1+ -é—;l- [(l - ¢'l sin 4)'1 - cos ¢'l) cos <wlto+¢'l> - (simbi- cb'l cos¢ll>‘sin<wlto+ ¢'1>J

+ 5517 [(1 -4>'l' sin ¢’1' - c?s¢'l'> cos (wzto+ ¢’ll) - (sincb'lr- cb'l' cos4>l'>sin (w2t0+¢;.>] .

As a result,

' 1 ! n b 1"
i, =1 1 Slalﬁl cos |w,t 4)1 - Slazﬁl cos {w,t, - ¢l
2 = 4% ‘ T 1’1 - 7 2 271 7

4

z¢’1

[(1 - &) sing) - cos 4’11) cos(wlto-l-q)'l) . <sin¢'1 -4, cos¢'l>‘_- 'sin(wlto+¢'l'>]‘

" ~10-



-1

+ -2-}2;—‘ [( -¢,;' sin 4)'1' - cos¢’1') cos (wz’co +¢»'l') - (sinqa'l' - ¢'1' cos¢’l') sin(uéto +¢'1')] )|
1 :
) (2. 8)
where

i wlS]_ I w‘Z'S 1
S = s 8, =
1 u 1 u
o o
With
sin v sin
cos (wlto * ¢l) ~ cos (wltl) ’

and with approximations similar to those made previously, the current iz

can be expressed as a function of t and hence 1:2 .

l s
The periodicity of i2 is obvious, and therefore i‘Z. can be expanded

in Fourier series as follows. First, t‘2 Will be related to to’ as follows:

d S . . c1)II‘ d')”
B 1 1 [ 1 NNTRE 1
by =t o+ + e ’>1 - = af; sin G»l’_co + — > -5 a,B, sin (wzto + = ) )
o ° L 2 . ‘ : )

i.e., the term 6‘1/‘”0 is neglected, while the approximations with 'regard‘

to the sinusoidal terms are justified; then

1 o
i =53, ¢+ i a_ cosn(wt2 -8, - ¢l) + ibr cosn(c:.ﬂ:2 -8, - ¢1) ,
r=l r=1 .
where
wOSl wbdl ’
Sl = 3 . q)l = 5 s ao = ZIO s
e} o

-11-



and

T
I
_ 1 ‘ o ¢ ‘
a, = = f T;ﬂ; cos r(wt2 - S1 - d>l) d(wtz‘)
=T ———
at,
v ! 1
1 [N 4)1‘ no., 1
=~ [ I cosrljwt -k, sin|mwt + —]-k, sin [nw t +—}] d{w_t ),
T o oo 1 oo 2 1 oo , oo
-
v 1 0
b o= 2 I sis t -k '(m t+¢1 k!' si t+d>1 d(w_t
r = o Sin rlw t - 1s1n\<.oo()7 - 1smnwoo-—2-—:(090’0),
-
(2.9)
where
j 1"
o S190P) w o S1%Py
k, = e ki = —— =
1 2 1 2

The coefficients a, and br are simplified by a method indicated in Appen-.
dix B.

The general equation of motion has to be formulated for the calcula-
tion of the induced current in plane Aj, and the method adopted is similar
to that used in the first gap, with only the initial conditions different. This
is done later for the more complicated Gaussian spectrum and will be
omitted here, The main purpose of this section is to show the absence of
intermodulation of the different frequency components at the outpﬁt, subject,
of course, to the approximations made, It must be stated that the precedinvg
analysis was based upon frequencies Wy and w, not being very far from
the central frequency @, in the frequency spectrum, i,e., the numbers m
and n should not be much greater than 1. As the main purpose of this study

'

is the extension of this analysis to the response of a klystron to short pulses

12 -



with a narrow bandwidth of frequencies, the assumptions made are com-
patible with the condition desired.

No account has been taken of the rel‘a‘tiyistic variation of mass with
velocities. This problem becomes especially serious when the beam voltage
is large in high-power klystrons and where the very hard X-~rays produced
present an additional hazard to the operating personnel., A simple treatment
will be given of the relativistic effects on the response, using the same
‘model as before,

According to Einstein, nothing can move with a speed greater than
the speed of light. Newtonian mechanics combined with this postulate de-
mands that a mass subjected to a constant force must be accelerated till
the speed of light is attained; but, as the force is still present, the speed
must still increase, which is impossible. This ambiguity is solved by ac-
cepting the increase of mass with velocity, and assuming that mass 1s a
manifestation of energy, the two related to each other by the famous equa-
‘éion w = czrm , where c 1is the velocity of light.

An increase iﬁ rﬁéss, dm , when accelerated,results in c2 dm =
=dw=F ds, where F is the applied force over a dAistance‘ ds. Newton's,

second law gives

therefore

czfdm =Igdt— (mv) ds = [vd (mv)

Equating the integrands and separating variables, we have

dm. v dv

T

~13.



Assuming that rest mass equals m gives, by integration,

m = —o (2. 10)

the equation that demonstrates the variation of mass with velocity. In this

case, Newton's force equation gives

m u
d ‘ o

i

L2
L-=
C

With u(z,t) = uo(z‘) + v(z) eIt , where

u{z,t) = total electron velocity,
uo(‘z) = d-c beam velocity,
v(z) = amplitude of a-c velocity.

The basic assumption will be that v << ¢, which is justified, since
the signal voltage is not sufficiently high in practice to make the a-c velo-
city appreciable in comparison to the speed of light. Using the Taylor

series expansion, we have

u . u u
u - o L ve‘]wt d o - o n
p 2 2 1/2 duo 2 1/2 2 1/2
<1 - u_) uo uo uO
2 1l - — 1l - — 1 - —
¢ c2 c2 CZ‘

~14-



therefore

d uo Vejw't e
: —_— E . 2.11
dt 2\l/2 N\3/2 m ( )
u’o u'o °
l o = 1l - e
c2 c

~ As the excitation is variational, separating Equation (2. 11) into the d-c

and a-c parts gives,

a1,
dt | 2;172- o7
Yo
1 = —
C2 J
d - vejw‘t 7] e
— ' = V. si t+ V, sinw,t| 2.12
el 5 372 — [ , Ssinw, 2 S1nw2] ( a)
‘ a o1
1 -2
2
therefore
A 3/2
u V. cosw,t V, coswyt
‘ o e 1 1 2 2
v = - [l = + + k s
la-c &2 modl wy W, 3

where k3‘ is a constant evaluated from the initial condition that at t = ty

Via.e = 0. Finally
3/2
2
u cosw,t cosw.t
(e} e l7o 1
Viaee T ° l'_z_ d v w I
c mo 1 1 1
coswzt‘o coswzt :
+ Vz = - = .
2 2

-15 -



The total velocity at any instant in the gap is .

dz
T - % tViawc

Integrating again and using the initial condition that z=0 at t= to ,

we have
22
‘ uo o Vl coswltd V2 cosmzto
z=lu +[l-—= = + - (t-t)
c2 modl 1 w2 °
> 3/2
- 11_9_ Y e Vl 51nw1to ] Vlz s1nw1t0 s VZ- smwzto ] V2 ‘smwzto

Now z=d at t=1t =to+ r

1 Following the procedure of Section A of

1
this chapter, and making similar approximations, we obtain the expression

for the correction factor in this equation:

aw 1
171 : ) ! s ! . i b ! 1
6§, = ?T [(l -cos ¢ - 4>‘1 sm4>l) sinw;t + (sm ¢1 -<1>l cos d)l)coswlt]
19y
@ Zwo 1" 2l 1" " 1 1 \
+ l-cos$, - sind, sinw t + (sin¢ - b, cosd > cosw, t|)
26w | 1 1 1 1 1 1 1 1
172
2\3/2
U “
1--24 . (2. 12b) ¥
CZ

Equation (2. 12b) is very similar to Equation (2. 4) and shows that the
3/2
correction factor is only multiplied by a constant (1 - u%) / /cz when rela-

tivistic effects are included. Again, the total current induced as a result of

_16 -



the passage of electrons in the interval t0 =1t - I‘1 , and to =t is

S .
i =£.f u- dt .
1 d (o)
£-I,

Carrying out this integration as in the nonrelativistic case, we have

2 3/2 ! 7 1
us\ cos¢, sing, sing, (1 +co,s¢'l) ‘
i,=1 +|1 ~— I (o (|1 - ‘ - “ Isinw.t+ - osw.t
1 ) Cz ol"1 2 24). 1 2 26 1
\ 2¢ 1 2. 1
1 1
cosd;lI sinc}u‘ll sind;'l' lr+c0's<1>'l,I .
+ a3{l - - sinw,t + - cosw,t
2 v 2¢n 2 ”2 2¢n 2"
2¢ 1 2¢ 1
1 Nl
\
i (2.13)

From Equatio.n (2. 13) the relativistic effects on the induced current
in the first gap are very clearly observed. The explicit effect on the r-f
current resulting from electrons at high beam voltages subject to the simple
approximations made sh-ould be noted. For a particulaf beam voltage, the
r-f induced current is lower by the factor (l -u(z)/cz\)s/z when‘the rela- .
tivistic variation of mass with velocity is taken into account. A curve has"
been plotted to show this effect (Figure 2).

For low voltages and hence low values of U the factor (1 - ui/c2>3/2
is equal to unity, and the result becomes similar to that derived for the

T . 1
nonrelativistic case. For uo/c =17
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At a beam voltage of 104 volts,
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Figure 2. Graph Showing Relativistic Effects on Current Response.
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III. BALLISTIC ANALYSIS

A. FIRST-ORDER BUNCHING THEORY

The problem under con-sideration is f.orn;uilated as follows: A beam
of parallel electrons which have been accelerated through a potential of VO
volts is passed through the grids of a resonator across which there appear.s‘
a voltage Vle'a‘lcz sinwt . The resultant electric field is assumed paral-
lel to the electron motion. Since the velocity of an electron is proportional
to the square root, of the voltage through which it has been accelerated, the

velocity with which an electron emerges from the first;. or bunching, resona-

tor of a two-resonator klystron will be1

B,V 2
_ 11 -at . W ) ! -atz :
Va = u Jl + VO e sinwt, = vy \/l + ay Bl ¥ sinwt
where u_ = 2e Vo is the d-c beam velocity, Bl is the gap-coupling co-

efficient (taking into account the effect of the gap transit angle), and a, =
VI/VO . " Here Bl may not be related to the gap transit angle in the same
way as for the sinusoidal case, but it obeys the general definition of the
ratio of the velocity gained in the real gép‘ with Vl across it to the velocity
gained in an infinitely narrow gap with Vl across it and, as such, is always
less than 1. The time taken by an electron to move a certain distance along
the beam depends upon the point on the cycle at which it passed through the
resonator gap as well as upon the magnitude of the gap voltage. If S1 is

the drift length, to’ the time at which the electron leaves the first resona-~

tor, and tz‘ the time of arrival at the catcher; then
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2
-ato
U, 1+ alﬁl e smwto

Now, if the modulation factor @; is small compared to unity; then the fol-

lowing approximation is reasonably valid:

To find the current associated with the electron bunches,one must
remember that the principle of conservation of charge applies to electron
bunches for an intsrval with corresponding departure and arrival times. The

electron ctream is subject to the conservation of charge, so that

|

I dt
o o]

where iz is the catcher current; hence

I
io= o
2 =
d’c2
- dt
I
_ o
S. a.B -a.t2 -a’c2
1 1"1 o . o
1 4+ = - [-2at_e sin wt_ + we cos wt
uo 2 o o] (o)
I
_ o
- a.ec?;/w2 ab -a,e.i'/coZ
1 -k (e cos ® -2-2 e sin ©
o wZ o
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. . , wSl alﬁil alﬁl
where the bunching parameter,

= S
u, 2 12

is aperiodic, it cannot be represented by Fourier series, contrary to the

. As this expression

analysi$ carried out by Beckz for the pure sine wave. Since the catcher re-
sponse is desired, it has been found convenient to plot the output current
versus t, for different bunching parameters, similar to the treatment
given by S"pa:.rlg,enburg1 for the sinusoidal excitation, Since i, = f(Go), =

= f(-eo) the curves are expected to be symmetrical, If the Gaussian spec--

trum is represented by Ve cos wt, then

‘ -aez'/wz abf -aei/wz
1+kle © sin®  + 22 e cos 60
w‘

‘In this case i2 = f(eo) # f(-eo-) . For negative values of 60, we have

I
i = o
2 - 2,2 2,2
-20" /w ab ab’/w
I -k |e sin® +2 -2 e cos 0
o 2 o
w
The choice of a./w2 is governed by the following consideration. The
. 2

envelope has its maximum value at t= 0 (since the envelope is V e‘at cos

wt) and is supposed to fall to 1/e of its maximum when wt= 10w, so that
10 r-f cycles are enclosed between the points where the amplitude is 1/e

of the maximum value; therefore

2 (1om? = 1 2 -1 )
w w (10w)
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Graphs have been drawn for the output current versus exit time for differ-

at2

ent values of bunching parameter for the envelopes Vle' sinwt, and

. 2 :
Vl e-2t” coswt. In the first case the infinite peaks occur for values of

eo satisfying the transcendental equation,

The values of 60 at which infinite peaks occur are found graphically: For
k € 1, there are no infinite peaks, as is evident from the equations also
(Figure 3); for k=1, one infinite peak occurs (Figure 4); for k = 1.5,
there are 14 infinite peaks (Figu;re 5); for k=2, there are 18 infinite peaks, *
This can be justified as follows. In the pure sine-wave case, two
infinite peaks occur for k > 1; hence, for simplicity, we associate two in-
ﬁﬁite peaks with two peaks of the excitation signal. In the Gaussian en-
velope, the seventh peak occurs on either side of to=0‘, when wtoz_-_l-_ 6.5w.

-at
When wto = 10w, then e 0= 1/e; therefore when wto = 6.5m, then

"
%The response for k = 2 has not been actually plotted, for it is not ex-
pected to be very dissimilar from the k = 1.5 response plot. The num-
ber of infinite peaks, however, were determined by finding the points of
intersection of the curves: '

aeo 1 aei
cos 06 - 2 —— sin 0 and — e
(o] wZ 0 2
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OUTPUT CURRENT i, (IN i)

OUTPUT CURRENT i, (IN Ig)

0.5

X205
Vs Vle'm sin wt

! 1 1 ! L l ! 1 i | Y 1 I 1 1 I 1 i 1

25

20

-97 ~-8w -Tw ~6éw -5r -4w -3w -27 -7 o] T 2w 3r 4w Sw  éwr Iw 8T 9w
EXIT TIME wt,-8
Figudre 3. Output Current i, versus Exit Time wty -S5.
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1
-9 -

—1. 1
8w -7w -6w -57 ~-4w -3 -27m -7 0. r 27 3w 4w Sm 6w Tm 8w Sw

EXIT TIME witz-§

Figure 4. Output Current i, versus Exit Time wt, -S.
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OUTPUT CURRENT i, (IN Ig)

OUTPUT CURRENT i (IN io)

~ot2
Vs V'e ot sinwt
) " » -

k=15 I i ;
15
O

5.
0;4UQUAL./.L/QU.L..
- -6wr -5 ~-4w -3mr -27 - [o] ™ 2r 3r 47 S er ke 4

EXIT TIME w t;8

Figure 5. Output Current i, versus Exit Time wt, -S.
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V=V, €0 coswt
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1of
0.5F
o L 1. —l i 1 f 1 : 1 ]
ek -87 -6m ~4r -2 [« 2r 41 (1.4 8 10

EXIT TIME wt,-S

Figure 6. Output Current i, versus Exit Time wt, -S.

-24-



The value of k when wt = 6.5 (if ko = 1.5, when t = 0) is

Kk, = L5 L
6.5 = ",0.425 1

]
—
.

Hence, 14 peaks are enclosed in the region for which k > 1,

Again, .the ninth pe'ak occurs on either side of to = 0, when wto-: 8.5,
so that this region encloses 18 peaks. The value of k at: wto = 8.~51r (if
ko-::‘Z, at to = 0) is
2 2

k = =
8.5 o0.725 2. 02

~ 1 .

Thug, the occurrence of 18 infinite peaks for k =2 is justified.
2 .
at cos wt, no infinite peaks occur for

If the envelope is Vl e”
K = 1 (Figures 6-and?), For k= 1.5, there are 12 infinite peaks {Figure8 ).
2
This has also been justified by a process similar to the Vle-at sin wt

case,

B. KLYSTRON RESPONSE WITH VARIABLE GAP LENGTH

From Newton's equation of motion,

2 eV 2
d .z 1 -a

m —= = . e cos wt ;
dt d

hence

t
eV 2
dz =[ 1 e'at coswt dt + C
dt md :

where C is a constant,"W‘hen t= to , then dz/dt= U . Thus,
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t
eV1 atz
u'-[ e cos wt dt=C

from which

t
eV 2
dz _ 4 4 L et 05wt dt ;
dt ° md
t
°
hence the exit velocity uy from the first gap at t = tl is
Jcll eV atz
ul=u+f 1 - cos wt dt .
o md
t
o

‘The time of arrival at the catcher, if S. is the drift distance, is

1
S
t = t <+ 1 s
2
¢
eV 2 ’
u_ 4+ lf e 2t cos wt dt
°© md
t
o
therefore
t -1
1
S eV 2
ity =t + Lol — L e oswt dt .
o u mdu
o o
t
‘0

Here an approximation will be made to permit analytical computation:
t| = t +7r, where the transit angle r is (d/uo) +(8/0) .
We assume here that &6 = 0, so that r = d/uo . Again for small

modulation, the following expansion is permissible, at least for a first ap-

proximation:
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S, eV 2
t o= t +— [1 - 1 e ®t coswt dt
2 o u, mdu
t
o
dt S, eV ~aft +r)2 -a,t2
2 _ 1+ 1 1 -e © cosw(t +r) + e © cos wt
Eg - W2 md o of
o]

where ¢ =wd/uo, and k' =Sl°'1/2’ hence,

a gp 2 a A2
dt,, ! - ;'Z—(G@;H ¢) - w—z %
—— = ] e e cos{6 +¢ ) - e cos © ;
dt, b o To ol
o
thus
I I
i, = 2 = 2
2 T 4t - o
2 AT +¢-)2 .2 g2
dt kl . 0)2 e} o wz o
°© 1-— |e cos (GO+¢O-e cos &_|

The above expression for iZ , though approximate, does give an idea of the

catcher response at least for small signals. 8

" The expression for i, becomes a poor approximation for large gap angles
also. The graph of i, versus 6 with ¢ = m/2 has been plotted (Figure
10), taking k = 0.5, and 1.0; and the differehce between this and the first-
order bunching theory is obvious. It has been found convenient to plot i
versus 6 , in this case, rather than i, versus 92 , as we are only in-
terested in an approximate estimate of the response curve,
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Figure 9. Output Current i, versus Exit Time wt, -S.
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Figure 10. Output Current i, versus 90.
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C. RESPONSE WITH FIXED ENVELOPE AND VARYING FREQUENCY
Using the first-order bunching theory, and taking k = 0.5, we have
plotted the catcher current response for a fixed envelope for three differ-
ent r-f frequencies (Figure 9). It has been found that the shape of the
response envelope is almost independent of the change in frequency, es-

pecially at high values of w/Na .
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IV. LARGE SIGNALS AND FINITE GAPS

The ballistic analysis for large signals with finite gaps is carried

out as follows. Analysis is based on a two-cavity klystron (Figure 11).

>

A A A

|
oll i I 2‘! ; 3
|
o L
ELECTRON | | P
BEAM _ | | GAP GAP | |
' P DRIFT REGION > |
{ | [
| L
1 .
z=0 i {‘z=d, }e‘daal

‘Figure 11. Schematic of Model for Velocity-modulated Tube.

In the diagram, AO, Al’ AZ’ A3 represent the four planes under con-
sideration, The numbers 0,1, 2,3 will be used to identify quantities in the

respective planes,

A, FIRST GAP REGION

1. Induced R-F Current

Confining our attention first to the motion of an electron in the first
2
gap, excited by a Gaussian pulse V1 e @ coswt, and applying Newton's

second law of motion, we get
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therefore

dz _ xR -att et g4 G
dt 1 1
2 2
ol -a(-&>

= K1 e 4a Rel e 2a d‘c+C1 ,

where K, = eVl/rndl and Cl is a constant, Now at t=t_, dz/dt = u s

from which Cl is evaluated; thus

t . \2
w oo
dz i 'a('z )
== = Kle 2 Re e a dt+uo

dt
t
o
2
K, e /P . .
= u_+ Re lerfNa [t-32) - erfnam [t -2} .
o N]; 2 2a O 2a/t
(4. 1a)
-
2 2Nz
dz Kle_w /43»,\/;1_- ‘ 2 (aL’c2 2)
2Z o= u+ erfNa t-erfNa t_ + —— I:e- “Y lsinNaty
dt ° FINCY °
S
(ati—yz) ‘
-e- sin\/;ty dy| ) . (4.1b)
Integrating again, we get ©
2N

K
Z=u t+—
o

oF

2 2 2
e /42 erfNa t-erfAa t_ + 2 [e-(at iR )sin'\/g ty
: ° NT ‘
)

2 2
~(af - ) |
-e sinNa toy dy) dt + C2 )
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where C‘2 = constant.

This constant is evaluated by using the condition

thatat z=0, t=1t ; therefore

(o]

K

1 [
z = uo(t-to) + —é— \]';

o
L . —
2Na
Kl T e—m2/4a (t-t.) (erina t+————2 em(ato-y ) inNa ty d
- —z— -5 _O '\/.1? sin OY 3%
o
(4.2)
When t = tl , Z= d1 . Also the transit time is Tl = tl -to; therefore
’c ‘
£ ZV"
d; =u I, + - J— “ /4a erf'\/_tdt+-—j/[ -(at -y )smN/_'tYdY dt |
+ ¢
o
w
2 2
Ky = -(at -y)
-_2_ .Zn 'w/4a1"1 erfna t +—f s1n\/—tydydt
(4. 3)
dl 81
Suppose I, = - + —~, where & 6 1is the correction factor; then wd,/u =
1 uO w 1 1 ]

-

= d:l is the d-c transit angle. From Equation (4. 3),

w
t t 2Na ,
2 [ 2 2
e /4a erfNa tdt+ 2z et -y )sinN/a-fty dy dt
N
t t o

— w
b t2nE
2
@ /4a erfnNa tdt+ [[ -(at sm”/—tydy dt
t
._O
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w

2 .2
-(at -y7)

5 2na
Kl'\ﬁr @ /4a
- = (c]> + 6 ) erfNa t +N/— e
PINCY o)
o
Writing 'c1 as t and replacing to by tl - I“l -.rtl
K.w 2
_ 1 T -w /4a , 2
&, EG; z € erf«/é‘tdwTw
d 5 d
S oL
ug © u
K ] )
RN w/4al{rfm/— t__i__l_)
2 Va W
w
2N d & 2
~{alt, =~ =— = — -y
2 1 1.10 w
R —— e sin N [t
T
o)
2
Kle"" /4a d; 8,
1 - 50 - erf@(‘c-a——-_w_
° o
W

)

| (-_1__1
‘f[ ’

sinNa toy dy ;

2,
y )sin'\/aTtydy

dl‘ 61
el we get
o w
w
t  2Na
2
e-(att-
e
w
d1 51 a
ey B
o
-1

. (4.4)

In Equation (4.4), 6Iis implicit, and approximation must be made to obtain

an explicit expression for it.
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We shall assume that 61 is small so that

d1 61 .
Reerf ‘\/; f e =—— - —(:0— - —J—“-’—T
: \ Yo AN

where

1 d1 .
erf  |Nz [t-—] - Jo
‘ Y 2na

Now as I', is small compared to t, the following approximation is justi-

1
fied:
t
dl 61
erfNatdt = [ — +—| erfaat
U w
d 3
foa
U w
w w
t ANCY 2Na
, 2 2 d 5 2 2
[ fe"(at -y )SinN/;ty dy dt = a-l— +—51-f o(at-y )sinN/;ty“ dy
o
d 6. o o
gt L
u .
o
Substituting these in Equation (4.4), we have
wz
Ko — (4 & o \|
61=- 5 Jr/a e *2 = t = Re |erf (\NEt - -2 -
Yo o w 2Na /|
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. & d ,
) RN U P2 S o (O B
2Na - Y% 2Na
o | 8 1 d, ,
J« -Na — erf [NE [tows) - J9_
23 @ . %/ 2nE |l

This equation obviously gives a quadratic in 51 » which might be complica-

ted to solve, For a sirnpler‘sol‘»ution, we will neglect the 6? term; there-

fore

K, L $, , s d, .
5 =-—\P?-e4a — (Relerf (Nat- 22| _erf Na [t-—| -39
1 2 a uo 28 U'o 2Na

2
w
K ~ " 4a
l+_l'\]§eu
2 o

d . d d, .
- erf |NG [t - —i L -+ INa erfl Na [t - —l L
‘ Y, 2\ U’o Y% 2Na

vR.e erf <'\/5: t- iu:/;)

(4. 5)

Thus Equation (4. 5) gives an explicit expression for 61 . Denoting

’ 2
K, S8 . a\ o]
F(t)=——\/f—e4a — [Re{erf(Nat-d9 ) _ erfinaft- L) .3 ,
2 Va u, 2NE Yo/ 2nNm
wZ
K - d d :
G(t):-—lﬁe‘la --l'\/—;—R.eerfl Nl P ‘ ,
2 Va ol Yo/ 2nNE
(o}
gives
F(t
5, = AL (4. 6)
1+ F(t) + G(t)
$1
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According to Ramo's theorem, the current at time t resulting from the

charge entering the gap in the interval d’co between time ts and t. + dto is

-

di, = 2 udt ,
1 d (e}
1

where u = velocity at time t. The total current induced is

t
i, = Io/dl judto
t-I‘I

Substituting Equation (4. 1b) in the preceding integral, we have

t 2 @
e Z:/-a
I K, iz 2 (af - y*)
i, = — u +——F—‘e & lerfNa t-erfaat + — e =Y lsinnG ty
1 4 o T, \a ‘ o Jr
t-I'y L | 0
2 2
-(at -y7)
-e xsin'\ﬁa_toy‘ dy|
w / -
2 2Nfa
w
To 1 @ " 4a 2 -(a"c2 2)
= — \u I' +— a—e4a T jerfnNa t + —— e “Y lsinnNE ty dy
0 !
t t 7]
K, — 2 | R -(af -y
-— ,"— e 42 erfNa t dt +-—— e sinNa t y dy dt
> Va oo = | ) ol
t-T) t-I)
therefore -
W
W2 | 2Na
I 5§, Ko [d 6.\ ~o— 2 2 |
i, =1 + =2 uo__l_+_l . Hl + Ll 42 erff\/z_ft+-2—— e-(at 'Y)sinm/aTty dy|
d @ 28\ @ N
0
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Q’Z t
K1 - - (a’c y
mTEe‘la erf«/ét dt+—- sm'\/é.toydydt

t-T

1 1 ‘

.7

The above expression is considerably simplified if the following approxi-
mations are accepted as valid:

t

erfia to dto = 1"1 erf Nat s

t-I°

1
® )
2Na
-(at -y") 2 2
_j_—[ e 2 sinNa t y dydt_ 2\—/2: r, e'(at -y )sin'\/i ty dy
o r ‘
0

This is very nearly true, especially for small gaps; then, Equation (4. 7)

reduces to

,_‘
]
—
—
+

(4. 8)

It is interesting to note in this case that the time-dependent component of
current il is directly proportional to the correction factor 61
A more accurate simplification of Equation (4. 7) than that given by

Equation (4. 8) is obtained if

t
I
[erf«/a}t dt = I' erf'\/é.<t-——
o 1 2

t=T,
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d 6

~ T, erf \B [t - —— - 1
1 2u 2w
o
Putting this in Equation (4. 7), we have
wZ
I u d K -—— /d ) .
i =1, + 2 ‘:01 b=t /g e 42 E-l- +_°_)1_‘ 'Re (erf{Nat- 22}
dl. 2 o , 2na

‘ & .
-erf V;<-..L L) Jw
o

After expansion in a Taylor series, we get

2 jw 2
2 - (N2t -
I |ud K S /a6 ( >
i=1 +-2 Ol-{~R.e—i-—\/1-;-——ea -—l—+—l— e 2B
1 o g w 2 u )
1 T ¢} 1
I 5. K 4, 8.\ .2
_—_10+__9_ uo_‘.é_+_l _"T: Tfl'+_c'ol_ 2t cos wt
dl N o ‘
If the 6; term is neglected,
I ) v u 2 A% 2
ioo=1 +-2 B L S coswt+—-—-—l— d, &' coswt )
1 o w o 2V w 1 4V 1
1 o
(4.9)
where V = d-c beam voltage = = u2 .
o 2e O
2, Velocity Modulation
From Equation (4,1a), we have
2
K L |
_ 1 m 4a jw - jw
vl-uo+-2— 5 e Re [erf'\/.;'(tl —-Z—a-) -erfN/f(to--Z-Z .
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Making suitable approximations to simplify solution gives

Nat, -39
1 . 2
AN _ (,\/é PR
2 S e I\ D SV
N Ne \ % @
Na t -3¢
© 2aa
from which
s K d &§.\. -at
0 R 1 A 1 1y 75
(o] O o]

This is justified if the gaps are very short and the transit time small. For

larger gaps, a better approximation would be:

Nat, - 39
' o2 [aQ d)’ jc.o] .
2 d 5. "1 1724 ) TS5 y
et dt‘—"\/g.(—-l— L] e ° 2Na
i u w
x O
Nat - 22
(0] 2'\/5,

o7l
|

(4.11)

The neglect of 61 in the exponential is reasonable when the resulting simpli-
fication in computation is taken into consideration, Note that when 61 =0,

Equation (4. 10) reduces to
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v vV -at2
e cos wtl ,

Cl._
<.

an expression similar to the velocity modulation in the sinusoidal excita-

tion case.

B. DRIFT SPACE REGION

The electron beam enters the drift space with both velocity and cur-
rent modulation, as shown above, and it drifts in a field-free space resulting
in further increase in the harmonic content of the beam current.

Neglecting space-charge debunching, we have t, =1t + (Sl/vl)"

where S1 is the drift length; therefore

5

K _ﬁz_ ‘

u l+—l-e4a,1r'- erf (Na t L -erf'\/;t L.
o 2 a PN ° anE /i
) \ _[

a

Using the simplified expression in Equation (4. 10) gives

Sl
t, = t;+ , . (4. 12)
Kl d1 61 _ -at?
u_ |+ — | NT e cos wt
o 2u u w 1
o o}
Using Equation (4.11) results in a slight modification:
S
_ 1
tz = tl +
2
d
cale, - L .
B fd 8y <1 uo> ¢
U |l e el | e i e cos (Wi, =~ —
o 2 ug \ug W 1
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This expression for small modulation becomes
a V¥
' - tl - _1 - d)
S, K, [d & u_f
t. = t. + ! 1—6-1' 1-i‘- 1'e ° cosGot --—l>

It is difficult to differentiate this function because of the presence‘ of 61 .

It is better to keep the integral in the expression for dz/dt rather than

divided into error functions; thus !

1
tZ = t1+
u
[0}
o) tl+_
u
o
% _ S
at, N
Sl
r_\_.jl-—z- ’
u
o

assuming that

2 S 2

d 6.\
—aé_l-l>
1 u w
o

e cos(wtl - <bl -51)" = §

(4.14)
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¢ e i £ o i . e e i A ettt e i ¢
g .

therefore

= ;tl = E
5 2
e %
1 s, Vv, -atf '?Gl'ﬁo‘>
1 ra e cos wtl-e /' cos (wtl -¢1)
(o]

But by Equation (4. 7), il is related to Io; therefore theoretically, it is

possible to express

i, = Io f(tl) R (4. 15)

where f(tl) denotes a function in t . Again as ts is related to tl, as

shown above, it is possible to express i2 as a function of ty, i.e.,
i, = I glt,) . (4. 16)

Although Equation {3. 16) is expected to be very complicated, and rigid
mathematical analysis seems highly improbable in practice, a theoretical
for‘mulation is not ruled out. It is desirable to expand i‘2 in a series in
such a way that the various frequency components become distinguishable,

but the obvious aperiodicity of i2 rules out the pos‘s‘;ibility of expanding in

a Fourier series, as in the sinusoidal case analyzed by Beck,

C. SECOND GAP REGION

At this stage, attention will be directed to the motion of electrons in
the second gap. The beam indluces a voltage on the grids, and because the
voltage produces a change in beam current and velocity, we can consider

this behavior as a reciprocal relationship, so that knowing the effect of the
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L K _wZ | , .
22y s LT T R erf(v;t (e > -erf(\/;t Jﬁ..)
o 2 Ya 1 o ‘

voltage on the beam is equivalent to knowing the effect of the changing beam
upon the induced voltage, With this in mind, let us assume the voltage in-
duced in the second gap to have a spectrum given by the equation Vze.b('C+ p)Z
cos w(t+p), ‘where p is a constant introduced to take into account the
possible change of phase with re.spect to the original envelope Vle-atzcos wt.,
Although this assumption might differ from the actual physical conditions,

it is acceptable as a first approximation. The equation of motion in the gap

can therefore be written as

2 2
42 _ g, o PlEte) o w(t+p)
2 2
dt
therefore .
dz - _-blt+ p)2
= = K2 e cos w(t+p) dt‘+C3‘ ,

where C3 = constant, Now at t = tz ,

PANZS 2Na

Using this condition to calculate C3, we have

t
2

dz _ K2 e'b(t+p) cos w(t+p) dt + VZ s (4. 17)
at :

.tz

where
. 2
K -9 | . ' )
V, = u_ +— er‘ B Relerf[vEt, - 32) _erf(nmt -39 )]
2 o > \Va 1° 23 °" 5/
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Integrating again, we have

t

- 2
2=k, | e PP o5 wit4pyattv,itC, (4. 18)

2

t

where C4 = constant. At t= tZ , 2= dl + Sl ; therefore

2

e PEFP) og w(t+p) dt dt+V,(t-t,) +d

1+|'Sl .

Now at z = d2 + Sl + dl , wehave t = t3. Also ty -t = I‘Z is the transit
time in the second gap; therefore

3 2

w
d, = K, € ZZE \l%- Re {erf ['\/E-(tvk p) ~ %} - erf [«/B—(t2+ p) - ;—w—'\/g—_-]} dt +V,T, .
t-T

Suppose
d, “& wd
2 2 2 _
rZ = a—z— +—w- , and v = d’Z »
2

where 62 is-acorrection factor for second gap. Then, by a process similar

to that used for the first gap, and with similar approximations, we have

2
w

1K

T
a 2 T jw | Jw
62 = - _2__\.[_2_ E¢ZR.e{erf |:'\/B_(t+p) --E-JE_-} -erf'\/l-;(t2+ p) - .Z_'\/-B——}
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2

w
1 K‘2 e'ZH .
l+—-—JE Re (erf '\/E_(t+p) L.
2 VbV b )

2
-1
. d, . ‘
2nb 1 Jw
_erfl:k/g(t2+p)-;:°/5_] + —, erf [N/l?t2+p)---z——r\/g_-}} |
F,(t)
6, = - z , (4. 19)
1 B, (1) 6.0
+ + Gyt
4>2
where
2
w .
-5 :
F N Kze‘ v £ \/E jw ‘ £ ’\/E. jw
o{t) = T \F 6, Re (erf {t+p) -;\E] -er [ (t, +p) -2——%)_—:,
wZ
K - da,, .
T2 @ T35 b 1 : jw |
Y e Fn -]

Thus, the expression for 62 is very similar to that for 61.

As before, the total current induced as a result of the passage of

charge in the interval FZ is
”
i
2
i, = - u, dt
3 ‘ 2 2 ’
t-I',

where uz.is:‘the velocity atanyinstant t in gap 2; therefore

t
{
. 1 1
i = —— u,dt, |
3 29t
d, dt,
t-I dt,
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udt

dt,
t P dt

where u is, as usuval, the velocity at any instant t in the first gap. As
we have seen in the above analysis dtz/dtl can be expressed as a function

of tl; therefore

1 = — uzdtz - udt

This analysis can be extended to n gaps, and n-1 drift spaces; under

these conditions

(dtl o 9t t £ t
o ‘dtz dt
_ 4 |
nal T T g Qin-1) ¥om-1) | 2@-2)¥2(n-2)[ 2%
172 n % t2T i-r
n n-1 1
(4.20)

Expression (4.20) is of theoretical interest since it indicates the dependence
of the final current in the output gap upon the excitation imposed upon all

other gaps.
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V. NONLINEAR SPACE-CHARGE WAVE ANALYSIS

Here also attention will be directed to the Gaussian excitation,
since the behavior of an electron passing through alternate gaps and drift
regions with sinusoidal excitation in the gap has already been determined.
McIsaac3 has derived a general expression for polarization in the drift
region. Using his symbols for the input gap and the drift case, the polari-

Ty, To) in the drift region is:
I
1

ZAT,, T,) = 5= b[e(rJrTo) sin(T, - T) dT"

o , 72 cos oT
For the Gaussian case, B(T) = Ae ¥~ €08 704

L 2
1/ ~‘y(r+T0) .
Zl(Tl"To) = - 5o 1 Ae cos o-(r+To) sm(Tl -r) dr

0

R.epiacing the sine and cosine terms by exponentials and defining

z o2
erfx = 2_ lI’e"t dt R
,\/.R‘.
0

we have -
(o-1)°
Z(T, TO) = 1—1:- F\-’- je Ay ejT erf [W(r-{-To)-j(ZG_'\'/'_l__).] —erf ['\/Y—To‘j (2‘1}2]}
AR\ > —-—' -
oy T (o+1) (o+1)

r 4y -j £ NS+ o510 cerf[NT T -jlT

Je € {er |: Yir o) J 2'\/7] er [ YT, J——z,\/'\;‘ J}

+ complex conjugate| . (5. 1)
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For the input gap region,
'fl t

1 . .
I Zl(Tl‘To) = 35 f O(r + TO');. sm(Tl -r) dr
: 0 . - ‘

therefore, for the case under consideration:

v ’ 2‘
: /e

A 7 oIy T (o-1) , (o-1)]
Z(T,T) = = JTL Qe Y {erf [WT-J_Z.\&__} -erf[W‘To-J E‘I.;_]

-je- S WT-M -erf (NY T -jw
| 28k %

+ complex conjugate . (5.2)

A method will be indicated to express the complex error function in

terms of real integrals. Consider the expression,

2 zz
erf(a-jb) = F e dz s
-

in the complex plane with z =x + jy. As" e™? is an analytic function,

. )gf(z) = 0 around a closedpathofintegration. Hence integrating along the

path shown by the arrows gives
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Figure 12. Gaussian Envelope,

from which

o)

2 2 2 .
erf (a-jb) = 2 | e ™ ax --E-:j‘ e'(a -y ) +2jay dy

N N
0 0
b : b
2 2 2 2
= erf(x) 2 (@ -y )sinZaydy-j~2'— e-(a Y )eos 2aydy
N NI
0 0

(>.3)
As the polarization has to be a real quantity, and noting that T0 =T- Tl
=T- Zo =T-Z+ ZI , we have Equation (5. 3) written in the Z, T co-

ordinate system as follows:

2
et
Z(Z,T) = ZR.e-li% 3 lie Ty eJT{arf ['\/-\-(-(r+T-Z+Zl) -] (:V%)J
- erf [NY(T - 2 + 2,) - 5 t=8]
[ YTy
_(0'+r)2’ _ . |
-je 4y eI Jort l:'\fy—(r+T-Z+Zl) - (o+1)
| 2Ny
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e m s g =

-erf '\/—(T z+z)) - (Lt , (5. 4)
2Ny~
where Re represents the real part. Equation (5.4) is obviously implicit
P ‘ y imp
in Zl .and hence cannot be evaluated easily,
] to be small, a series expansion of the complex func-

Assuming Z

tions will be made, and only the first-order term in Z, will be taken into

1
account, A typical term is expanded as follows:
erf{'\/—(r+T Z+Z )-_] (o~ l)}
2Ny
= erf W(r+T-Z)-jM +'\/721 e‘rf1 1W(r+T-Z)-jM R
2Ny | 2Ny
Whére‘
(o-1)T
- [:W(r+T-Z) Ao ]
erf1 = e 2Ny
Substituting in .Equation {(5.4), we have
(e-b®
Z(2,T) = %J%V_R'e e BV T Jers [V?(r+T-Z)-jSZE%TQJ
o=
[N/—(r+T Z) - ——}
+tNY Z e 2Ny - {erf [Ny (T-2)-j (“'I)J
| 2Ny
(c-1) 2 2
[V‘(T Z)-j ] (1) '
+WNY 2,6 , 2y ) |-je Y eI s ['\/_y_(r+T-Z)
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2
. [«/V(HT-Z)-J' (Ltl_)]
] (_‘Lil_)] +Ay Z e AT R I:W(T-Z)

2Ny

(5.5)

AN !
o
Now, putting
W(r+T-2) = a; WIT-2) = a,
(c-1) _ b‘l ’ otl _ bz )
24y 20y

in Equation (5.5), taking the real parts, and transferring Zl to the left-

hand side, one derives an explicit expression for Zl as follows:

b
- (0'1)2 | l -(az-yz)
2,(2,T) = A % o 3Y erf(a,)-erf(a,) +§__ f ot 2a,y
8 ‘ ~_—
bl
( 2 2 [2 2
“Wary ) 2 - (al -y )
~-e sinZaly dy) sin T + (— e cosla,y
= 1
0‘
(az Yz\ ‘ (o+1)
-e 2 rcos Zazy dy) cos T|+ e Y erf(az)-erf(al)
b
2r (2 2 2 2
2 \%27Y "(al'y
+ — e sinZazy -e sin Zaly - dyy sin T
N J |
0
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b2

‘ A ' 2 2
2 (32 ) "R

+ (== e cos 2a,y dy -e cosZa .y dy [cos T
NG . DR

'

0
e
A '(a?’bl) "'(agf'biﬂ SN
1+ = N/'?r~ e cos Zalel - e cos Zazbl‘ sin T
. 2
(23-+1) (=251) A
- la] -b -{a,-b - i
+ [e 1 stalbl - e 2 lsinZaLZbl cosT| e Y
5
R X T
+ n T Yle cos Za.lb2 - e cos Zazb2 sin T
: 2 -1
_( 2_b2‘> _( 2-b2> - (0’+l);
- le 12 sin2a.,b, - e 2 sin2a b, |.cos T e Y :
172 272
If
b .
C )
%/_ f e V8 ‘sin.?.,amy dy = F(a_,b )
= -
0
b
n ) (az yz) .
2 e VT cos2a_y dy = f(a_,b ) ;
N m m’“n
then
(o-1)°
_ A [T T3y ‘ ‘ .
zyz.m) = 2[5 e {[erf(az)-erf(alHF(aZ,bl)-F(al,bl)] sin T

+ [f(al, b) - f(azbl)] cos T}
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+ [f(az, b,) - f’(a‘l, bZ)J cos '1>>

2
a -bl> (z-b
'\/— cos Za b - e cos .Za.zbl sinT

2 _(az_bz> (0' 1)2
+ |e 1 l sta b - e 2 Zsta cosT Y

(z z> ]
a Y “\#2-P2
Cos Zalb?. - e cos .?.azb2 sin T

2.2 2 .2 ‘
[ (”‘1"2) '(32*b2> - J
- le sin Za.lbz sin Za,zb2 cosT( e

Now putting

oo|3>

)
<]~
RS

(5. 6)

W(r+T-Z‘+ZI) =

3
NWIT -2+ Z)) = a,
()
e %/sin2a_b_ = G(a_,b )
mn m’ n
-(afrl_bi) .
e cos2a_b = gla_,b )
m n m’ n
erf(am,) -erfa.n = E(ra.m-an-) ,

we obtain

8z, = Y
_a_(z T)_-é- - 1(W[g(a4,bl)-g(a3,bl)]+f(a3,bl)-f(a4,bli> sin T
Y

¥ {W[G(a4,bl)‘-G(a3,bl)] ~E(ag-a,)+ Fla,, b)) -F(a3,bl)> cos

2
-b
-e 2 <{W[g(a3, bz)-g(a4, bz-)J; +f(a4., bz)-f(a3:,'b2§ sin'T
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+ {'\/7 [G(a4, bz)-G(a3, bz)] +E(a3-a4)+F('a3, bZ)-F(a4, b2)> cos )il
A b}
1+3 N e 1 {[g(ay bl)-g(,a4,bl)] sin T + [G(a3,bl)‘-G(a4,bl)] cos T>
2 , A\ -1
te {[g(a3, by)-gla,, bZ)J sin T + [G(a4, b,)-Gas, bz)} cos T}
| (5.7)

In Equation (5. 7), the termm Z. occurs on the right-hand side. To obtain

1
821/8T at a particular Z and T, therefore, the value of Zl has to be
obtained from Equation (5. 6) for the given Z, T, and then has to be sub-
stituted in Equation (5.7). Thus, the ratio Ja-c/Jo can be calculated.

Now, from Equation (5. 5)

2
-b
1 _4a % e l{[g(a3,bl)-g(a4,bl)] sin T + [—G(a4, bl)+c;(a3,bl)J cos T> NY

2
b ¢ .
¢ {Eg(a4, b,)-g(a3,b,)] sinT + [Glag by)-Gla,, b,)] cosT> NY
2
1 A i -b; b ( b)]'T+[G b )-G b)] AWa
t3 Ayl [g(a3, 1) -8(ay b)) sin (a, b)) -Glag, b,)| cos y
2 .

+ e 2 Q"g(a‘l’ bZ) + g(a3, bZ)] sin T + [—G(‘a3, b2)+G(a4, bz)] cos 'I> W— »

(5. 8)
Since
82, 97
dz, o 0Z t o5
daT azl ’
-7
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b2

dz [P .
—_— = _J_ e Q:-f(a3’bl)'f(a‘4’bl)] sinT + [—E(a3-a4)+F(a4,bl)-F(a3,b1)] cos’I}

2
'bZ

The relative simplicity in the expression for

u 3Zl
ug oT

is observed.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The ballistic theory of an electron beam has been developed, for
multiple signals, subject to approximations made to simpfly solution,
Some work, using nonlinear space-charge wave analysis, has also been
done and a comparison of the ballistic and space-charge wax{é analysis
should be attempted to throw more light on the problem. 'fﬂe graphic plot

6btained (Figure 9) which gives a value of 0.5 for the bunching parameter

" indicates that there is pulse distortion. ' The saturation of the lower half

of the envelope indicates that the exit current is rich in harmonics, even
for low depths of modulation.

_The theoretical study indicates that experiments can provide solu-
tions where theoretical formulation would be cumbersome. An experimental
verification of the theory should therefore be undertaken, using a set of
p?:vrameters designed to approximate closely the assumption of an infinite
beam and no space-charge effects.

Attention is now being directed to the generation Qf high peak-power
radar using nanosecond pulses of the Gaussian type. Once such pulses are
generated, the response of the klystron fo them can be observed. Good

microwave amplification of these pulses would lead to their use in radars.
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APPENDIX A: ANOTE ON THE GAUSSIAN SPECTRUM

As this report deals with the klystron respdnse to a Gaussian enve-
lope, a short note on the Gaussian spectrum is 'u.seful., The analysis pre-
. ’ 2 .
sented has been mostly based on the envelope g(t) = Ve-at _coswt:

;o 2 -jwt
1 fVe'at e © e+3wt dt

-0

]
Y
o
|

glwy)

(@, -w)
] ¢ -a (tz + j __'_Oa .
= Re j Ve : dt
- a

2
-
(@, ~w)?
= L jus Ve 4.‘3‘
2w a '

Thus, in the frequency plaﬁe the eﬁveiope is also Gaussian.. The
‘Gaussian envelope is evidently economical in bandwidth‘v for a given pulse
length, the majority of the energy being confined to a finite range of the
‘frvequency spectrum centered on’the carrier frequency. These factots to~
gether with the fact that a Gaussian pulse is easier to generate, are the cri-
terion determining its selection for analysis. It might be interesting to note
to what extent the envelope shape depends on the parameter a., Consider

just the envelope given by the equation,

2
f(t) = et ;
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then.

[AN]

w

42,

lo

g(wo) = % _e__..:.___
nNra

Select a = w/a., and multiply both £(t) and f(w ) by 1/No ; then

'thZ
e- o
£,(t) = —— )
! NES
2
aw
.S
47
‘ _ e
gl(wo) .

2
Thearea under the curve fl(t) = e-at /'\/E is given by

1
A = 2w gl(wo)

Therefore as a becomes smaller and smaller, the curve fl(‘t) becomes
taller and narrower and approaches a unit impulse as a approaches zero.
Since a is inversely proportional to a, one must have a high value of a

to obtain short pulses. If the frequency is increased, the value of a has

to be increased also, if the pulse is to decay to a fixed fraction of its ampli-
tude after a fixed number of r-f cycles. Actually for this purpose the
ratio a/wz , where w = 2wx frequency, has to be maintained constant.

The transition from a frequency spectrum consisting of a series of



discrete frequencies to one consisting of a continuous band of frequencies

can be made by treating the nonperiodic function as a periodic function in

‘ 2
which the period approaches a . The unit Gaussian envelope e 3" coswt

will be considered. The amplitude of the spectrum at @ is
a .

5 2 ~Jw t :

g(woﬂ) = L Re [ 'e-‘at .I_"Jwt e ° at .

2w
-a

For a single pulse, where £(§) 7 0, for all values of t except -L<t<L,

we have
; 7 a2
(w-wo)z. L [ (w-wd)] .
- — -a t_j —_—
glw) = Zi e 4a Re e 2a dt
J' T
Lo
2
{w-w )

-

21 N3 s

where use has been made of the identity,

erf(-x) = -erf(x) .

With the expansion for the compléx er‘roru‘fun‘ctioﬁ" and then taking the real

part, one obtains

dé-ig)”
glw,) = luli - e - 4% (Zerfna L)
2m Na .
- <er_f~/§._1:_) o T@ |
wnE

el BN (o -0,) (@ -u)
e % Re |erfNa <L, -J 0 w°> + erfna <L+.j _wzw_o )
‘ ’ a

H



The spectrum of a train of Gaussian pulses of length 2(L+ AL) recui‘ring
every T seconds will be found from the spectrum of a single pulse of the

train. Fox the single pulse at any frequency wo/Z"n' ,

(w-wo)‘2
erf Na (L +AL) o  da
mNa

glwy) =

For a period of such pulses recurring with a spacing T = 1/C, the sum
of spectra of the individual pulses form a Fourier series of harmonics of

C ; therefore

a

f{t) = A + Z A_cos2wnCT ,
o n
n=1

where An is the sum of an infinite number (one from each pulse) of infini-

tesimal terms g(2wnC) and g{-2wnC), giving

: _ (@-2mnc)°
A = erfna (L +AL) . 1z

n TNE

To put an absolute value on the amplit'u&es g(wo) , it is necessary to aver-
age them over the recurrence period of the single pulse, making them in-
finitesimals. However, in the train of pulses recurring every T = 1/C
seconds, the amplitude of An‘ can be determined by averaging the terms

in g(wo) over an interval T; then

(w-Z'n'nC)z
A = erfNa(L+aL) e- 4a

n mNa T
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and when T = 4L T é— s

2
Cerfr\/;L([-f-.é.E)‘ ‘.(_.w-;.—z;ﬂ
A - I, / 4a
n

mNE (4LC T 1,

thus,

£(t)

)]

A + A, cos2uCt + A
o) 1 2

where An is known.
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APPENDIX B. FOURIER COEFFICIENTS

The Fourier coefficients a, and b., as obtained in Equation (2. 9)
are simplified here:
n ,
)\ " ?)

1 ! . :
a, = = Io cosr y-kl sin |my +—2--‘ -k sin ny+—2— dy

=T

It is sufficient to obtain the solutions to the following coefficients, as they

are related to the ones in Equation (2. 9):

1r
a' = fcos.r [y+c1 sin(my+a1) t+c, ‘sin(ny+a2)] dy
-T

—

sin r [y+c sin(my+o.1)+c2 sin(ny‘+a2)] dy

o
H -
n
d¥—_ﬁd

)

-
_|_

.

o

o -
I

f jr [y +cy sin (my + al) +c, sin(ny + az)] dy
e
-
f -jr [y‘ +cy sin (my + ul)‘ +c, sin (ny + az)]. dy
e
-
Now, according to the property of Bessel Functions,

ej z sin®

J_(z) + 2 [Jz(z) cos 20 + J{z) cos 40 +.....

+23 [Jl(z) sin 8 + J(z) sin 36 +. ..

) eIP?

i

Jp(z (B. 1)

p=-a
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since J-p(z) = (l.)P Jp(z) ; therefore, using the property in Equation (B. 1)

ives
g a

, jp(my +a,) jalny +a,)
a,. +Jb J (rc e J (rcz) e dy

==Q q~_a

Jpm+an)y + j(pa; +9a,)
J (rc } Jq(rc ) e dy .

=-0 Q=-a

Because of the nature of the integrand, the order of integration and

summation can be interchanged; therefore

Q a
1 J(Pa +da ) L o
a + b =25 ) J (rc,) T (rc,) e L 2 sinlpmtantr)
r r pr 1t Tqt T2 pm+gn+r

=-a 9=-a

Now, noting that

a

m 1 jm viem ¢ v+im

(-1 F ze (—l)m(i>
J (‘—'Z) =J (zej“) = nizo = ejV‘!T A2
v v m! T'(v+m+1) m! T'(v+m+1)

m=o

since e’ 2wm =1, therefore

I (-2) = VT I (2)

Using the same procedure as before, we obtain

a a '
\ Jp(Tr+<1 ) +Jja(m+a,)

1 a5 ‘ sin(pm+qn-r)w
a_ - Jbr = 2] Z ZJp(rcl) Jq(rcz) e

(pm+qgn-r)
=-Q g=-a
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-

a Q .
} ' ’: ' jpa,+qa,) .
j + ‘ 1 2 ‘ -
= ZJ (_l)P q Jp(rcl) Jq(rcz) e Sln(pm+qn r)Tr
v ot

m+qn-r
p=-a 9=-a P 4

from which
a, = 2j Jp(rcl) Jq(rcz)l e

p=-=a 9=-a

(pm+gn - r) sin(pm+gn+r)mr + (_l)p+q {(pm+qn+r) sin(pm+q - r)w

{(pm + qn)2 - r'Z

, ey jlpa + ao,)
b, = 2 , ZJp\rcl) Jq(rcz-) e

' p= -VQ g=-a

(pbm+gn -1x) sin(pm +qn+r)m - (_l)p+q {(pm+gn+r) sinlpm+gn-r)w

(pm + qn)‘2 - r2

)

As r, p, and q are integers, ali, and br' will not be zero when m andr
n do not have integral values, It must be noted that for large values of

p and g, the quantity 1/'[(»pm + qn)‘2 - rz]‘ becomes small, and therefore
the double infinite series can be replaced by a finite series to permit com-

putation.
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APPENDIX C, EVALUATION OF erf(a - jb)

In the analysis of klystron response to Gaussian wave excitation,
complex error functions of the type erf(a - jb), whgre‘ a and b are real
numbers, have often been encountered. Here, a method will be indicated
to express the complex error function in terms of real integrals. Consider
the expression,

a-jb 2

erf(a - jb) =2 f e ? dz ,
, N p

in the complex plane with z = x + jy.
As e-zz is an analytic function, ff(z) dz = 0 around a closed
path of integration. Hence, integrating along the path shown by the arrows

in Figure 13 gives

a xZ b " .)Z, a-jb zZ
fe- dx-jfe- "W 4y = f e dz ;
3 & 4
Ny
-X_ . la,0) _«x
\/-,fy

2
Figure 13, Path of Integration for the Function e >
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wt

i

from which

a b
[ .2 : 22 .
erfla-jb) = 2 | e dx - L [ 7@ -y HAEY 4
N N
o] [}
b b
2 2 2 2
= erfla) + — | e -y sin2ay dY—J—g— e @Y cos 2ay dy .
: - -
. 0

This representation of a complex error function in terms of real integrals
has been used frequently.

Some other important results follow:

b
. 2 2 . 2 2
erf(-a - jb) = erf(-a) - 2 | ela-y) sin2ay dy - 2 o aTy) o 2ay dy ,
u v
)
as
erf(a) = -erf(-a)
a-jb
_ 2 ' 2
erf(a-jb) - erf(-a -jb) = —=— e”? dz
N
-a-jb

b
2 2
= 2erf(a) + -—4— e 2 V) i 2ay dy
N | |
)

which is a real quantity. This same result can be obtained by contour

integration around a suitable rectangle in the z-plane. Again
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‘ ‘ 2 [ -(az- 2)
erf(a - jb) - erf(c ~ jb) = erf(a) -erf(c) + — Le Y ) sin 2ay
' N
0

b
2 2 2 2
semle-y) siany] dy +j—2—- [e-(c -y cos 2¢cy
N
0

_(aZ 2)
-e "V ) cos Zay] dy

These results show that 2 complex error function can be easily
computed, and its real and imaginary parts separated. Considerable sim-
plification in computation can result in specific problems. The asymptotic

expansion, for example,

2
-a
. .3 1.3.5 ,
c 11 S L L SN ,

a N (2a2) (Z‘a.Z.)'2 (Zaz)

erf(a) = 1 -

is convenient for computation when a is large,
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