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ABSTRACT

This paper presents an analytic tool in the realization of circuit matrices: the

method is based on forming linear trees with each row of a fundamental circuit matrix

and combining them to form a tree of the graph. With this method, more difficult

problems in the synthesis of contact networks by linear graph theory can be considered.

A method of simultaneous synthesis is developed in which two or more switching functions
are realized by sharing contacts in an optimal form. Finally the multi-terminal proce-

dures are extended to the synthesis of non-bilateral, 1 port switching networks.

It
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SECTION I

Introduction

The present work discusses short-cut methods of realization of circuit matrices

and applications to multi-terminal networks. The tool used is graph theory and the

particular interpretation used is that of the vector spaces associated with a graph.

" The vector space VG consists of the set of all subgraphs of the given linear

graph G. The field F over which the subgraphs of G constitute a linear ve-tor space is

the field mod. 2, and addition of vectors is the ring-sum operation. The set of all sub-

graphs constitute a linear vector space of dimension e (where e is the number of edges).

A basis of this vector space of dimension e is that defined by each edge of the graph:

any subgraph can then be expressed as an e-typle(gI, g2... ge) of 1' s and 0' s. In

particular the rows of the circuit matrix B are vectors of the space V G. The set of

all linear combinations of the rows of B consitute the subspace VB: there are. 2" (includ-

ing 0 ) vectors in VB where u is the nullity of the graph G, and each of these is a cir-

cuit or a disjoint union of circuits of G. " (Seshu and Reed2).

Although the present work does not deal with interpretations and theoretical

point of views, but of practical solutions, this is the point of view adopted and will

be referredtoin following discussion.

On examination of incompletely solved problems or problems solved by trial

and error procedures arising in the graph theoretical method of solving switching func-

tions a systematic method of solution is found which greatly reduces the number of

computations required to form a solution. The GouldI method of realizing given switch-

ing functions has left many unsolved problems one of which is believed to be solved in

this paper and another which is a venture in the adaptation of the method to multi-term-

inal networks. The problem to which this technique is best adapted, is that of simul-

taneous synthesis of two or more switching networks.

To form abetter concept of the methods developed, a very brief resume of the

Gould method is presented: tlhs resume is essentially that given in Smith, Healy and
3

Mow , ai.d so will be quoted verbation.

" Consider a topological graph G having n + 1 arcs and v vertices. Let one arc

Dbe labelledthe distinguishedarc, corresponding to a source and detector. The vertices

incident upon D are the terminal vertices of the graph. With each of the remaining n

arcs associate a binary switching variable xi, and let each such variable be distinct

and independent. Each vertex of G corresponds to a node of the contact network. The

paths through D are related to the transmission function of the network in the following

way. First, obtain the collection P of paths through the distinguished arc D; let each
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such path be denoted as IA.. Next, form a term pi which is the product of the elements

in the path ei . Under these conditions, the sum of the product terms p, (graph function)

is in a one-to-one correspondence with the transmission function of the network. This

function is called the S-C (single-contact switching function F). "

Synthesis of S-C (graph) functions

(1) The S-C function F is expressed in normal form as a sum of products in

which no product term includes another product term.

(2) A loop-set matrix H is constructed from F. The columns of H correspond

to the arcs of G; one column is assigned to each contact variable and to the distinguished

arc D. The rows of H are the prime loop-setvectors of the graph which contain D. Let

L.. 1= if arc J is in path i and L.. 0, otherwise

(3) By elementary row operations (modulo 2), the matrix H is reduced to a

fundamental loop-set matrix of the type

Bf [Bf 1 2  I

where I is the identity matrix and Bf.2 is a submatrix corresponding to a

tree of G

(4) The normal procedure would be to form Kf orthogonal to Bf. the cut-set

matrix and by elementary row operations, Kf is converted into an incidence matrix

from which the graph follows immediately.

There are many methods by which step (4) is reduced: all of them are complex
9and are results of graphical methods as in (Okada and Young ), semi-graphical methods

(L. Lofgren 8), arguments based on cut-set submatrices (Mayeda7), arguments based
10

on the theory of resistive n-ports (Halkias and Kim ). Step no. (4) is the problem of

realizability of a fundamental circuit matrix and an argument is derived which uses

only matrix properites and two topological theorems. Hence as a really efficient sub-

stitute for the above methods, the partial linear tree method of realization is given.
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SECTION 11 (a) Realizibility of circuit matrices

The procedures to be developed are applicable to separable or non-separable
4 .11 8

graphs. The problem of realizability has been solved by Gould , Guillemin, Lofgren

Mayeda , Okada and Young9 and others, and more recently by Halkias and KimI°

the procedures given by the latter although considerably simpler than the previous ones

are not extremely adaptable to mechanization on digital computer. A partial linear

tree method of realization is developed.

Def. 1: A linear tree is a tree whose branches are all contained in a single path

(see Fig. 1).

x y . z w

Fig. 1: Linear tree

Let Bf be a fundamental circuit matrix of order v by e and rank v: then Bf can be parti-

tioned in a basic form

B f =[U B fl 2] where U is a unit matrix of

order v by v and Bfl 2 is a

matrix whose elements are

members of the particular

tree chosen by the diagonal-

ization.
So far Bf has not lost its general character.

Theorem 1:

If Bfl 2 containis a row (w) with non-zero elements in the columns i, j, k---

then a necessary condition for the realization of BV, is that the matrix K formed by the

columns i j k --- be realizable as a linear tree structure.

Proof: the circuit defined by a particular row (w) with non-zero elements in the

columns i, j, k ... contains every element of the tree defined by edges corresponding to

columns i j k: hence all branches are in a single path.

Notice that the order of the edges in the particular partial tree so defined is not

known as yet: also notice that the matrix K, defined by removing from Bf 1 2 all columns

which do not contain a" I" in the particular row we are considering is nothing else but the

circuit matrix of the original Bf matrix with the tree edges not appearing in row (w) short-

circuited.

Theorem 2: ordering the linear tree(due to Ash and Kim)6

If there exists an arrangement of the columns of the matrix K defined by row (w),
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such that no two I' s are separated by one or more 0' s, then this matrix is always real-

izable as a fundamental circuit matrix of a connected graph defined by the edges of the

tree considered.

a) the tree is linear

b) the edges are ordered in the same way-as the columns of the matrix defined

by row (w) (after rearrangement).

The proof of this theorem goes as follows: if no two 1' s are separated by one or

more zeros, then the ordering of the edges contained in a row of matrix K is not con-

tradicted by the ordering of other edges in another row- of matrix K.

Example: a b c
Consider K =1 0 1

1 1 0

0 1 1

There exists no possible rearrangement of columns such that no two 1' s are

separated by one or more 0' s: Hence.if this matrix is a submatrix of.Bf, Bf is unrealizable

as a fundamental circuit matrix of a graph.

Realization procedure

Given Bf = U Bfl2

a) Examine each row of Bf 1 2 : rows of Bfl2 which contain only two non-zero

occurrences need not be examined for the reason that the linear tree formed by short

circuiting all tree edges except the two edges considered, always exists (two columns

always satisfy theorem 2) : consider each row containing more' than two 1' s in Bl 2.

b) For each such row (w) form matrix (K) by deleting from matrix Bf1 2 all

columns in which 0 occurs in row (w).

c) For each such matrix K, reorder columns such that the order of the linear

tree -upon which matrix K is based can be found. (via Theorem 2)

d) Combine the' various- linear (partial) trees found in (c) and obtain the tree

'upon which B is based.

e) If reordering of, a particular matrix (K) based on non (w) is impossible, the

graph does not exist.

f) If combining of various partial linear trees is impossible Bf is not realizable.

This realization procedure varies markedly from that given by Gould 4, in res-

pect that the order of the deg s in a particular row of B f12 cound be found only after

inspecting the complete matrix and forming all sets of path intersections. The



5

procedure resembles that of Gould' s in that each partial linear tree is combined with

the others.

The procedure described resembles the one given by Halkias and Kimn0 in that the

various linear tree ports are formed, but the method of computation in the n-port

resistive network differs completely from the method of rearrangement of columns.

Finally this method is a generalization of a procedure given by Ash and Kim6 for the

class of maximal path graphs.

Several examples will illustrate the ease with which a matrix of any size can be

realized, and how this method is adaptable to mechanization and more difficult problems

concerning matrices with unspecified states.

In actual computation, two problems arise. The first is how do we rearrange

many columns such that no two 1' s are separated by one or more 0' s: to do this choose

any three columns, and rearrange them so as to obey the premices of theorem 2: if this

is not possible, the procedure stops and no graph exists. Next take a fourth (if

there is a fourth column in matrix K) and rearrange the first 3 and the fourth in the

same manner, with the same conclusions, if this is not possible; we do this for all

columns. The second problem is that concerned with combining each partial linear tree

of Bfl 2 : it must be recognized that the ordering of columns, the order obeying theorem 2

is not unique, hence each order can give rise or not to a graph.

Notation.: K(w) = matrix obtained from Bfl 2 by deleting all columns having 0' s in row w.

SECTION II(b) Examples

Example 1: Determine if the following matrix given by Ash and Kim6 is realizable, by

the method described.

e f g h i j a b c d

B 1 0 1 1 where U is the unit matrix

rI]i 1 0 0
U 1i 1 0 1u Il 0

1 01' 0

1 . 0 01

•0 11 0

examining the rows of Bfl 2 ýve see that rows 1 and 3 contain more than 2 non-zero occur-

ences, we form K1 and K 3 .
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a c d d a c
"[1 1 1 [ 1 1

K] = 1 0 0 reorderedinte0 1 0 satisfying theorem 2
1 0 1 11 1 0
1 1 0 03 1 1

1 0 1 l1 1 0

LO 1 oo o 1

order of this linear tree is d a c

a b d b a d
"K- l 0 1 -0 1 1"

K3 1 0 reordered into

1 1 0 1 1 0
1 1 1 .1 1 1

1 0 0 0 ] 0

1 0 1 0 1 1

0L 1 0 1 0 0

: order of this linear tree is bad

Combining results obtained from KI and K3 we get

d as a tree

c -- t-o

and d • a/ as the completed grapý.
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Example 2 : Determine if the following non-oriented matrix, is realizable as a funda-

mental circuit matrix of a graph.

1 .....-- 0 10 12 13 14 15
1 il 1 . •

2 11 . 1 •

3 1 . . 1

4 1 . . . 1 Note = 0' s have been replaced

5 U • 1 . 1 . by dots for clarity

6 •~ * 1 . 1
7 , 1 1 1

8 1

9I9 t!• 1 1 .

10 iI .1 1

examining the rows we see that only rows 7, 8, 9, 10 need be examined: we form

K7 , K 8 , K 9, K1 0

11 12 13 12 11 13
"1 1 . "i 1"

1 . 1 . 1

K91 reordered into
1 . l 1

* i 1 1 *

1 1 • '1 1

1 * 1 • 1 1

1 1 1~ 1 1

order of linear tree is 12, 11, 13
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11' 13 14 14 II 13
"1 • .1

K 8 = 1 1 reordered into 1

1 1 1 1
1 . 1

* 1 1..

1 . 1,

1 1 1 1 1 1
1 *1 * 1 1

1.1 . 1 1

order of linear tree is 14, i1, 13

12 11 15 II 14 15

"1 1 .1

* 1 order 12, 11, 15 1 order 15, 11, 14
* 1 , 1 1

K7= 1 1 = 1 1
1 . * 1

* 1 .. 1
1 1 1 1 .1

. 1 •1 .

., 1 1 .1

' 1 1I 1 1 1

From K7T we get 12, 11, 15

From K8) we get 14, 11, 13

From K9, we get 12, 11, 13

From K10, we get 15, 11, 14

Combining these various partial trees we get

12 ......... -as the tree obtained from the partial trees
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7

9

13 6

12 I

15

4 4 as the completed graph

3
8

10

Example 3: Determine if the following non-oriented matrix discussed by Gould4 is real-

izable as a fundamental circuit matrix of a non-oriented graph.

1 23 --- 16 117 18 19 20 21 22 23 24 25 26 27 28 29 30 31"

f 1 .

41

5 1

Bf = 6 U

7 1
8 1

9

12 1

13. 11

14 1

151.Ii

L16 i I

Examining rows of Bf12 we see that only rows 2, 7, 11, 13, 15, 16 need be considered;

we form K,2 K7' K9, K 11, K13, KI5' K W
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17 19 23 27 29

1 1 -
K2 2 1 1 1 1 1

3 2 to reorder K2 such that no two 11 s

4 1 *are separated by one or more 01 s,

5 1take any 3 columns, reorder them;

6 then take another column, reorder

7 1 this column With the previous three

already ordered and so forth, doing

this we get

10 order 17, 29,19, 27, 23

11 .

12

1 3 .

14, * 1

15 •

16 1 1 . 1

17 22 24 31 17 19 23 27 28 29

1 -1 1 * *1

K7 2 1 K 2  1 1 1
3 . . 1 3 . ...

4 1 1 . 4 1 • • .

5 . 5 . 1 I

6 . . . . 6 . .

7 1 1 1 1 7 1 .

8'. * 1 . 8 . . .

9 I . .9 i i i I I

10 1 0 ..

Ii•1. 11 ...
12 . . . 12 . .1 . .

13 . 1 . 13 .

14 • . . 14 • 1 . . 1
15 . . . 1 15 . .

16 1 . .. . 16 1 1 * 1 1
stands reordered as is order notice that K2 gave us an order of 17, 29, 19, 27, 23

17, 22, 24, 31 or 24, 31, 17, 22 all that need be done is to arrange column 28 into

others are possible. this ordering we get order 28, 17, 29, 19, 27, 2ý.
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18 25 31 21 24 30 18 28 31

K= 2 K = K=1113 15ý
3 . 1 .

4 • I
5
6 I
7 1 1

8 order 1 1 stands ordered order

9 18, 31, 25 . as is ordered I 18 31, 28

10 1 21, 24, 30

12

13 . 1 . I 1

14 . ..

15 1 1 . 1 1

16 ; L ,J

K16 is a submatrix of K 2 hence 'ordering of K2 holds for K1 6

Gathering partial trees

From K 2, order 17, 29, 19, 27, 23

From K 7, order 24, 31, 17, 22

From K 9 , order 28, 17, 29, 19, 27, 23

From Kl1, order 18, 31, 25

From K13 , order 21, 24, 30

From K15 , order 18, 31, 28

Arranging each linear tree part together into the next one and doing this for each tree

part we arrive at the following two. tree.
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2 22

24+

30

The completion of the graph can be done by inspection and is left as a check of the

correctedness of the method: it is to be noticed that edges 19 and 25 do not appear in

any K matrix: we get a two tree, the second portion having as tree the arcs 19 and 25

and thus no ambiguity.

SECTION II(c) Conclusions

As seen by the increasing complexity 6f the problems solved and relative ease

of solution, the method of partial tree realization has distinct advantage.

As far as mechanization is concerned, we see that a simple process of extract-

ing matrices from Bf12, and by successive permutations of columns, a computer could

find all the successful orders of columns, i. e. all rows would contain an uninterrupted

sequence of 1' s: this function can be detected by a simple iterative network: as soon

as a particular ordering produces an interrupted sequence, the ordering of the columns

would be changed, and the process repeated.

As a final application, mention can be made of matrices arising, in connection

with non-monotone realization of switching circuits: these matrices contain certain un-

specified variables with constraints governing the choice (0 or 1) of these variables.

This will form the next topic discussed in'Section III. As one can see, the speed and

accuracy of a computei could reduce even larger problems to a routine matter.
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SECTION III (a) The problem of constrained matrices and non S-C functions

The full benefit of the method presented is that it forms a powerful tool in solv-

ing problem of the non S-C functions: this will be illustrated, but first a very brief

discussion on the non S-C method is in order.

The method is well known and is summarized very well in Smith, Healy and
3

Mow3, and will be cited for completeness.

" From the given switching function, a particular set of prime implicants is

selected. Assuming tentatively that the function is a S-C function a loop-set matrix B

is formed from the set of prime implicants. This matrix is tested to see if the space

spanned by it is acceptable; that is, linear combinations of rows which yield a loop

through D, are formed and in each case, the resulting path is examined to see if it is

included in the function. If all such paths are included in the function, the vector space

spanned by H is acceptable and an attempt is made to realize a graph from it. If no

graph is found, by the method of partial linear trees, then other normal forms of the

function involving no more contacts must be tried to see if a graph results: in none of

these k columns matrices yield a graph then a k + 1 column matrix is examined: this

is formed by " splitting" a column corresponding to a variable x. in such a way that the1 1

new matrix is acceptable I

In this process of splitting columns or of effectively duplicating the corresponding

contact in the desired network, the resulting matrix may be of such a form that binary

variables appear in the tree portion of the fundamental circuit matrix. We are thus

faced with a multiplicity of choices (this will be demonstrated in an example) and the

problem is then to find all possible graphs: as an example, in the realization the

symmetric function S1(W, y, X, z) there are 9 possible 11 x 4 matrices: it was mentioned

that the partial tree method could be very simply mechanized: the examinations and

realization by computer is realistic, but more insight is brought into the particular

problem if it is completely solved by hand.

Ex.-Give all possible realizations of S1 (w, x, y, z) by graph theoretical methods.

Matrix His formed from the specified function.

w wl x x' y y' z z ' D

H 1 2

• , 1 . 1 . . 1 1 3

H1 .1 . i 1 . j1 4
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w wt x xt  y y' z z' D

1i El E 1 1 2 3 unacceptable

i [] 1 i 1 1 I 1 2 4 unacceptable

I l 1 1 ED 1 1 3 4 unacceptable

1 1l [ 1 l 1 2 3 4 unacceptable

(Note: [ denotes a zero by addition of an even no. of P s)

All linear combinations of (odd number rows (modulo 2) are unacceptable: all

zeroes (dots) originating from the addition of two one' s (modulo 2) are enclosed by a

square. To make rows 12 3, 124 acceptable we could split w': to make rows 1 34, 2 34

acceptable we could split y' : the rules for doing this are explained in Gould , pages

279 - 280, and a more complete, table is given in this report on page (27).

w wl w2' x,.. y Y 2 z z D1i 2 . b2 12 " i Di

b2 1 1 11

H 1  1 1 . b 12 1 11 2

b 1 a . 1 1 3

b I I a 2 1 4

where a. = 0 or b. = 0 or both in HI

By rearranging columns we get the fundamental circuit matrix

w x y z wI w w• x' yl' Y1 z D

I I b 1 1 1 1
2

I a1 1 2 b 1 2

Bf b 1 3 P1 i

1 lb 1 1 1 a2 4

We assignto a row a particular value for the variables present in that row: for this

assignment, the variables in the corresponding columns may take several values. The

important point is that we extract a sub-matrix corresponding to a particular row i. e.

K , after having assigned to the variables in that row particular states (0, 1): only thisw
sub-matrix need be examined for realizabliity. Assign to row 1 in Bf, b2 1 :
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Kl1 b(b 2 Y yJ 2 ' D

1 1 1 1 1

1 1 1

1 . . 1 1i

i 1 a 2  .

This is unreorderable: columns x', yI, z' cannot be ordered as stated in theorem

2, Section II: hence we have the choice b2 1, a 2= 0, 1 'unacceptable without even consider-

ing its effect on the total mat~rix. Since (b2 = 1, a 2 = 0,j)can be associated with any of

the three possible choices for (a1, b1), we have then eliminated 6 choices of binary

variables

Next we try b 2  0 in row 1

K1 ( 0) x y' z' D
1 22

1 1 1 1

• 1 1 1

1 a2 1

and we examine this sub-matrix for realizability for a 2 = 1 and a 2  0.

Clearly, for a 2 = 1, in K1, xI, yI, z' are unreorderable: hence only a 2  0,

b 2 = 0 is a possible assignment which will satisfy sub-matrix K1 : for K, (b2 = a 2 = 0)

the order of the corkesponding linear tree is y ' zDx'.

Next we continue, using only successful choices in K1 and form K2' For a= 1,

we form K 2

K(a1 1 w w' z' D
2 1 2

. 1 1reordered as z' D w. w{

l 1 1 or w 1 7' Dw'2

Lbl 1LbI
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for a 1  0,

wI wt  z' D
1 2

K2(a1 l) 1 1 1 1 ordered as w yýz'Dor wIDz'yI or w Iz' Dy

K2 (ai 2 [ Y1

bIj whether b = 1 or 0
hI1

This submatrix K2 yields no information as the nature of what the parameters aI b,

should be, since all of them are clearly acceptable to K2

Next we form K 3 for b1 = 0

w'2 x' z' D

F. 1 1 1 for a 1, columns w'2 x z, are un-reorderable

K3 (b= 0) l 1or a = 0, we get order zDx' w: hence for
3 1 12

1 a1 1, b1  0 no realization possible.

All that is left to be determined now is b

for b = 1, form K 3

w'I w X1  z' D
1 2 and columns wt x' z' are un-reorderable hence

1 1 1 1

K3(bI =1) no matter what a1 is for b =1, we do not get a

1 a . 1 1 realization. Hence only a1 = 0, bI = 0 is a con-

1 1 1 1 1sistantassignment.Sofinal successful choices of

binary variables are:

2  0 2  and these are unique

From K1 we get order: y' 2 Z' Dx' a 1 = 0, b= 0

From K we get order: wl Dz' y-1 orwly z'D
K1 2 wyiz'

From K3 we get order: z' Dx' w

From K4 we get order:' z' Dx' wl'
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Combining these linear trees

W Y2 z xD w2 Y,
we get 0 0 0C - as a tree

1.

and as the graph.

Notice that K4 was not even used: we eliminated all possible choices of binary

variables before using up all our analytic tools. It remained then only to check if

successful binary choices made K4 contradictory or not. In this case it did not. It is

thus demonstrated that the method is applicable, but is generally tedious: the high

speed of a computer would in this case be well adapted to such problems. The advan-

tage of the method is that only submatrices need be examined whereas where no method

existed, it was necessary to examine the complete' matrix for each particular combina-

tion of binary variables: a summary of a synthesis procedure of this type now can be

given.

SECTION III(b) Realization procedure

For the case of fundamental circuit matrices with constrained binary variables;

to answer the problem of finding all possible realizations, we give this procedure:

1) Extract a K matrix (corresponding to row w) having beforehand assigned aw

particular value to variables in this row: examine the realizability of this matrix with

this assignment.

2) Give another assignment ot the binary variable in that some row and proceed

as in 1.

3). Do this for all rows, but allowing only values of binary variables that were

successful in step 1 and 2, to appear in step 3.

4) Corresponding to each successful set of binary variables, combine all linear

trees: for each set there may or may not exist a graph, as discussed in the synthesis by

partial linear trees.
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SECTION IV (a) Multi-terminal networks

As a mechanized way of finding if a matrix yields a graph has been demonstrated,

this leads to consideration of problems of higher order of complexity such as multi-

terminal contact networks. There are different methods yielding multi-terminal net-

works: we can picture this type of problem as a multi-input, multi-output block box

problem. It has been stated by authors that methods of graph theory are applicable to

this problem, and a resume of the work that has been proposed shall be given. The

primary reason for this investigation is that there eixsts no method of yielding minimal

multi-terminal switching networks: the graph theoretical methods do yield in most in-

stances minimal solutions (in terms of numbers of contacts) for a single input-output

system: i. e. a 1 port. The question is then: does the graph method yield a so-called

minimal solution for multi-terminal system.

Gould and Lofgren both proposed methods that shall be described briefly. The

technique discussed by GouldI is that for each of n outputs realizing n switching func-

tions F , there exists a detector D and all of these detectors have in common a sourcen n
Do: the vectors or loop-sets in Fi should have 1- entries for D and Di respectively;

furthermore, it should be verified that every vector in the space which has 1-entries for

D. and D 0 but not for D., either is a block-loop set or comes a prime inplicant vector
of F.. Hence every vectEr in the space which has a D 1-entry will also have either a

1 0

1-entry for D. or D. but not for booh. Now it is stated that this guarantees that the source1 3
and detector share a common terminal: that this is not so is proved simply by the argu-

ment all that the Di s and D guarantee is that they form closed paths each pith contain-
ing Do, but with no reference whatsoever to the fact that the Di' s and D must form a

star point: if this method did specify a star point for D and all the D.i s, the problem0 1
would be simplified. Once the matrix has been found acceptable, then the realization

problem from thereon in, follows the partial linear tree method.
8

The second contributor Lofgren recognizes that fact that the source and detectors
need not form a star point: it is therefore purely accidental that they should form a star

point, if no further restriction on the detectors, are imposed.

We now differenciate between a common terminal graph and a non-common

terminal graph: the specification of a common terminal (all detectors originating from

the same node) will be shown to be a special case of the more general situation. From

the black box approach this is easily seen: we havre a set of input and a set of detectors

at the output: no matter where the detectors originate in the box, we known that a cer-

tain combination of inputs, corresponding to a vector in F., occurs if D. is energized.
1 1

Consider for example the specification
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TI0 xyz, T 2 0  xyz', T3 0 ,xy' z', = xy' z

Realizing this specification by the disjunctive tree method we get the following common

terminal graph.

D Z

. DD

We now try to solve this probeim by the methods of graph theory: first we change the

specification to

T 1 = xyz, T 2 = xyz', T 3 = xy' z', T 4 = xy' z

and search for a solution such that as far the the detectors are concerned we get the

same switching functions. We set up the H- matrix and check for acceptability of H.

If a path has one or more detectors init(andthe source Doit must cover a vector in

each function specified by the detectors in that path or else represent a block-loop set.

x y y' z z' D1 D2 D D4 D

1H0= Ii I1 1 .i 123uacpa

1 • 1 09 1 1 1 . 1 1 124

1 1 59 1 0 . i 1 1 1 234"

1 1 09 0 1 1 • 1 1 1 134"
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Sum rows Contacts to be split

123 y, z'

124 y, z

234 y z

134 y, z

We can thus satisfy sum rows 123, 234 by splitting z' and sum rows 124, 11-1 by

splitting z. An alternate arrangement is splitting y and y' : the former shnal .nt ulsed;

the splitting is of the form I1 a] , a= 0, or b= 0, or both

Since- the matrix is in diagonalized form, we thus have reduced the problem t,, ' t of

realizing a fundamental circuit matrix with constrained variables.

D x y Y' zI z 2  zi z' 2  D1  D2  D3  D I
0F ' 1 * 1 a1  ". 1 ..

Il 1

SbI 1 a2 1

i 1 b I .1

Where the a's 0 r b's= 0 or both

There exists nine possible matrices and the problem is to find for which assignment is

Bf realizable. Following the procedures developed in section II we find

For the case a1 'a 2 = 1, bI = b2 = 0

we get 1rom KI order z 2 xDoyzI

from K, order z1 xD yzI
2' 2 0 1

from K3, order z'2 xD oy'

from K4 . order z2 xDoy'

and _ 2 X 0 D I as a tree

and as the complete graph.

zI

D 2 Y• ..
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Sum rows Contacts to be split

123 y, z'

124 y, z

234 y', z'

134 y t , z

We can thus satisfy sum rows 123, 234 by splitting z' and sum rows 124, i "4 by

splitting z. An alternate arrangement is splitting y and y': the former shadl ,t, used-

the splitting is of the form [I a] , a= 0, or b = 0, or both

Si,.e the matrix is in diagonalized form, we thus have reduced the problem ti. ,, it of

realizing a fundamental circuit matrix with constrained variables.

D x y Y' z z2  z z' D D D Io 2 1 2 1  2 -

1 1 . 1 a1 2 1 .

f 1 1 1b . b 2 1 a 2

L 1 . 1 bI 1

Where the a's 0 r b' s = 0 or both
There exists nine possible matrices and the problem is to find for which assignment is

Bf realizable. Following the procedures developed in section II we find:

For the case a -1 , bI = b = 0
21 2 2

we get from K order z 2 xDoyzI

from K2 , order z2 xDoyz1

from K 3, order z' 2 xD oy'

from K4* order z 2 xDoy'

and 0 as a tree

6'

Z2 y'

and as the complete graph.ondz2 Zlj
D2i
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This was for a particular choice of binary variables, but it illustrats the point

that ;as far as the output is concerned, it behaves in the same manner as the common

point detector type of graph. It is to be noticed, that as a special case of binary variables

aI. a 2 b•2  bI = 0, we get from the matrix H, the following trees.

from row 1, K I order : D 0 xyz 1

from row 2, K 2  order DoxyZ '1
from row 3, K 3 : order : Doxy' z2

from row 4, K4  order : D xy' z 2

• ~Zl -0--

and D as a tree

z 2--.--.-

i'his is exactly the tree obtained by the disjunctive tree method. Thus it has been demon-

strated that the common terminal is a special case arising in the synthesis by graph

theory of multi-terminal switching networks.

SECTION IV (b) Simultaneous synthesis

The conclusions to be drawn on this seemingly pointless realiza;,tion are two-fold:

fi rst the method has demonstrated that a star point of detectors specification is a special -

izied specification and secondly that a method of simultaneous synthesis of switching

functions can now be evolved.

The usual problem dealt with in multi-terminal switching networks is that of the

con-mon terminal detector type. A number of methods are available: among others

there is the assumed form method, the boolean matrix method, the disjunctive tree method;
12

all are well known (Caldwell )and each best adapted to specific types of problerns.
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The problem of interest and which can be solved is the following: given any two

or more systems, could it not be possible to utilize some of the components pf systems

(Ai ... A s) and minimize systems (Bi ... B.) and vice-versa. The systems here would

represent the realization of particular switching functions. Given two or more switch-

ing functions, is it more economical to realize each function separately or simultane-

ously.

A systematic procedure is developed: the price paid for absolute minimality and

generality is usually an abundance of additional complications: the price paid in this

method is that the physical size of the problem increases beyond proportion for moderate

size problems. Nevertheless,each step shall be discussed and systematized.

Step 1: Multiple output prime implicants

Since the single output method dealt with the function reduced to one of its prime

implicant form (if more than one exists), the same technique but with the generalization

to multiple output prime implicants is presented. The treatment of the generalized
13

case is essentially that of Vandling , and will briefly be summarized. Given q different

single-output functions of n variables, each is expressed in sum of product form as

2 n~l

Fi= 3 Zi' f.j Z.ij = I or 0, i = 1, 2 ... q

:where f,(xI - -Xn) is defined by the arithmetic sum

j = b1 + 2b 2 + 4b3 ... 2n-lbn

and b = 1 if x appears in f., b = 0 if x' appears in f,
p p .1 p p

:where Z..' s are assigned values of I or 0 depending on whether or not F. is to have a
13 1

I or 0 output for input values described by fi. If we associate to each single-output3

function an auxiliary variable Di, we can express the multiple output switching function

F as q 2-n

F 3 DiZijfj where Zij = lif fj is in F

i=l j=0

and 0 otherwise: by definition each D. f. is a multiple output minterm.13

Ex.: F 1 = x+ Ix' 2F = x'x 2 + 2
;2= xlx2 + xi 2
F= Ix+ X, x
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then F=Dxx +Dx "x' +D +D I2 + + D
1 12 31 2 2Y2~ D2 xx 2 + D3 xix 2 + D 3 2xl

To obtain the prime inplicants, a set of 2 q - function Gm are defined, each of which

corresponds to a subset of the set of all sum of products appearing in the q function F..

GI

G1 2 FI

G= F2F
3 1 2

G4 = F 3  where, n means the us'ual
intersection symbol.

G5 = FlnF 3

G6 = F 2flF 3

G7 = FIOF 2 nF 3

G2q~l FIlnF 2 nF 3 ... nFq

where the subscripts m are assigned according to:

m = aI + 2a2 + 4a 3 .... 2 i-la aq-la

1 q

and a. = 1 if G is a function of F.

ex.: form= 15=1+ 2+4+ 8 G15 = F 1 F 2 F 3 F 4

For each single-output prime implicant Sq of the set Gm there is a correponding multi-

ple output prime implicant (M) of F such that

M= (h1 DI+ h 2 D2 --- hq D q) S(GM)

where h. = 1 if G is a function of F. and 0 otherwise.
1 m I

The next step in the determination of the multiple prime implicants is to set up

a prime implicant chart, the rows of which correspond to M, the columns of which corres-

pond to a minterms in specific F.' s and we proceed as in the ordinary prime implicant1

chart with an additional relation: a multiple output prime implicant M, implies a single

output minterm B if

a) every literal in M appears in B, no variable appearing primed and unprimed
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b) every auxiliary variable in B appears in M
The reason for this discussion will become apparent after an example.

Ex. 1 Xlx2x' + xl X x + X2'Y ' + X l'yx'x'3 F]
1 123 1 2-3 + 12<'3 112

02: x' + xIx 2 x 3 + X ,x2 x + ' xx' = F2

G1 02 03 x x' + , ,xx1 2 x:- 2 3 x x+ 2x3

Prime implicants S Prime implicants M

F F x 2 x3 D xzX1 3 12 3
x'x ' DX '•X'

1 3 1l 3

X1 X 2 X3  D xx 3 x 1

F xIx D 'x'X
2 2 3 2 2 3

\. q • • 2 23X X X X

M D. CI
1 2i

Dxlx3'

DI 2x3xI
D x

D x

2 I3D xx 3

D2xlX2x3 - -1 1
(DI + D2)x1' xl-
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and from the table we find that

F= DI". 2X3 xl + DIX2 X3 ' + (D1 + D 2 )xlx'3 + D 2 x' 2 x' 3 + D 2 x 1 X 2 ' 3

Now in the graph theory approach a vector (DI + D 2 )xlx'3 would appear in the matrix as

x~l x ' D, Do

and the modulo 2 sum of these vectors would yield a vector DID 2 : although at first sight

we could not even check such a, combination (sum row) since its D entry is zero, we
0

get a contradiction in specification: D1 D2 implies that D1 = D2 since the detectors would

be in parallel. The prime implicant chart does give us an indication of what contacts

to split in order to preserve the proper specification. This then indicates that not only

linear combinations ( nod. 2) of 3, 5, 7 ... rows have to be checked, but also those rows

which have identical primary variables in them, but different D.' s. In this example
1we thus know beforehand that either x' or x'3 mustbesit

Generalizing if Dip DT and DK share ai path set, in F, then we know that a contact

must be split in three.
Step 2 Optimum contact splitting

Once a minimal form for the multiple output function F has been found, to each

vector we assign an auxiliary variable D and each vector thus affixed with D (source).
becomes a rowof a matrixH. : if F= (D1 + D2 ) fi

then H =Fi D" D°o

A problein that arises in testing H, is that of splitting elements in such a way that a

minimum number of elements are needed. This is dealt in a method analogous to the

prime implicant chart: for example consider the following table arising in a simultan-

eous synthesis of two switching functions T1, T 2 each having three vectors.

row sum contact split to make row sum legitimate

146 w', xI

245 y'

345 w t , y

346 w, x', y'

12345 w', z

U13456 w, x1, z'

423 w1, I

623 
w', y
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Consider the following construction

146 245 345 12345 13456 234 523 346

w!

WI -_ _ _ _ ___XI

zI

Reasoning as in the prime implicant chart, we conclurl.e that y' is an essential

element to be, split since it alone covers column 245. y' covers 245, 234, 346, hence

these columns can be ruled out. No matter what other row is chosen it cannot cover

all other columns, hence we conclude that a minimum of 3 but no more rows are needed

to cover all columns: there are many possible combinations: all of these must include

y as an example we have y t , w', z'

A table which is an enlarged version of that given by Gould is presented, giving

rules of duplication of contacts.



27

Duplication rules

Row sun specified General configuration Restriction on variables

1. + I • a a = 0 o b 0or both

2. + e ýýia if.a= 0 b=
l+ cb if a= 1, b= c', d= 0

3. 3 + a= 0 or b= 0 or both

4 .• + 7'1 b H l I r b = r b t

4. + Ha a = 0 or b= 0 or both
S+~

5. + 71 1 a a= 0 or b=O0or both
1 b 1 e = I or f = or both

e f g = I or h= 1 or both
y g h__

6. + '1
+ 1 •]c b same as 2 with

e= I or fl= or bothy
7. •+ 1 a

1+ •b asame as 3 with
K+ e = I or f= I or both
Y,

8. •+ e 1 a same as 3 with
+1 b'a' e = I or f= I or both

TI +C b Iý+,q+ y+• y

9. same as 2 with
S+e if a=0, and c=d, e=O or f=l

S+ •if a=0, and c/ d, c=l or f=1
+ +1 + C + y y if a=l, and c=0, e=0 or f=0

if a=l, and c=l, e=l or f=l

10. + 1 1 a same as 1 with
S+ 1 + C + y b I if a=0,b=l,f=h,or g/ e

e f if b=0,a=l,fih,org=e
y g h if a = b = 0, f=h,or g=e

11. + a = 0 or b= 0 or both
+ e= 1 or f = 1 or both

12. + ",1 t a = 0 or b= 0 or both
q+ r1 if a= 0, e = 0 or f= 0
•+ 71 + ! if a= 0, e= 0 or f= 1

+ 1++y y e +
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SECTION IV'(c) Formal synthesis procedure

1- From the specificationiil we form the prime implicants for each T. and

then set up a prime implicant chart for the multiple- output function F.

2- From an examination of F, we determine the absolute minimum numbers of

contacts to be split in order that T. / T;.

3- Form matrix H, from each vector in F and check for acceptability: all un-

acceptable paths and all sums of paths which were shared in F are written below H.

4- Split contacts (if needed) according to the ordinary acceptability requirements,

and requirements of step 2: use is made of the duplicating chart and the table of dupli-

cation rules.

5- The synthesis procedure follows from here, the same steps as in the single

output synthesis as discussed in Section II.

SECTION IV (d) An example

Synthesize the function F = DlXx 3x 1 + DIX2 X• + (Dl+D 2 )x~x' + D2 xlx 2x 3 + D2 x2 3

We assume that the specification { TI, T2}' has been transformed in F by the methods

discussed previously. Next H is formed from F.
X x DI D D

x1 i' 2 x' 3 3 1 2 0
I 1 •1 1 1 . 1

2 . 1 1 . 1 1 . 1
3 . i 1 1 1 1
4 1 i . 1 . 1 1

6 S . .* 1 * ..1

34 . *] . . El 1 1
134 1/ [] 1 1 [ * 1 1

234 . E] 1 • 1 . 1 1
345 . 1 1 1 . 1

346 1 1 1 El 1 . 1

12345 1 1 1 I 1 . 1

12346 1l El El 1 1 1 1

13456 1 'El 1 1 1

23456 1 El ] 1 1 0 . 1 1
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Sums rows Contacts to be split

A 34 x, or x'

B 134 x, or x'
1 3

C 234 xf
1

D 345 x

E 346 x• or x

F 12345 xI or x' or x
1 2 3

G 12346 x 3 , x2, x,
H 13456 x 3 , x

J 23456 x'V x2 , x3

A B C p E F G H J

k /x2 -

'\ /

- - - - I/ \ _ __ _

We try a solution splitting x'1 since it covers all sum rows.

x 1l 'q2  x2  2 3 x Dl D2  Do

1 1 . 1 1 . 1 I -

2 . . . 1 . 1 1 .

3 . 1 a . . . 1 1 .

4 . b 1 . . . 1 . 1

5 . . ... 1 . 1 1

6 1 . r1 b 1 or 1b1

a =0 or b =0 or both
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From the specification F we know that at least one contact must be split (either

I or xt must be duplicated). FromH, we eliminate row 2 being linearly dependent of

row sum 156. There exists three possible solutions of the matrix H, due to the con-

strained variables. Each choice fails. The method is so built that it searches for

absolute minimality: next a solution by duplicating two contacts is tried. From the

duplicating chart we must use x{ since it covers columns C and D by itself, and in con-

junction with xI we duplicate x 2 ,

Solution for xI and x2 fail: similarly solutions with x'1 and x'2 , x'1 and x3 x1

and xI all fail.A solution by duplicating three contacts is is tried: using x and x'I and x we

get an immediate solution: the splitting is of the type [a 1]\ Diagonlization in this

case is very simple and we end up with

x11 x'12 x21 x22 21 xl x 3  x D D2  D
. .. 1 . 1 1 1 . 1.

BF: ...
1. .. .. . . . 1 1 i

1 . I 1 . . 1 I

From K1 , order xIx 3 DoD1

" K 2 If X3DoD1

"K 4 1 x• DoD 2

" K5 XX3 Do D2
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" X • DI as the tree

~X 2

D2

and X a3 the find graph F

"\ ~Xl

As a conclusion to this example, it can be added that for a quick solution having

a 25 % or more savings in contacts we could at the outset of examining the contact

splitting chart, choose more than the minimum number and try for a solution. The

more contacts are split, the easier the solution becomes. It can be verified that the

separate synthesis takes 12 contacts and the simultaneous solution presented, takes 9'
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SECTION V (a) Contact diodes networks

The main disadvantages of the method of simultaneous synthesis discussed in

Section IV, is the physical size of the problem, and the search for absolute minimality.

This search tends to be of a repetitive nature and rather than present more examples

which are theoretically and practically capable of being solved by repetitions of the

processes discussed previously, a very special set shall be investigated.

Suppose the specification of the system is of the type

(T1 2 ' T 21}

In other words we shall be dealing with non-bilateral one-port switching functions, and

all the methods discussed will apply. Previous work on this subject, by graph methods,
3 -

has been done by "Smith, Healy and Mow" . The problem is solved for a special set

of functions, realizable by maximum loop techniques. The synthesis depends on the final

orientation of a modulo 2 fundamental circuit matrix Bf, by setting all non-zero entries

of the matrix to +1, provided the matrix in maximum loop form.

Bf = [I Bfl 2 ] is in maximum loop form if Bfl 2 contains a row which has non-

zero entries for each column of Bfl 2.

The solution adopted shall use. only the field of integers modulo 2 and some

additional methods of making the H matrix acceptable.

Applying previous methods, it is seen that two functions are specified, and thus

two detectors are needed. An additional constraint is added in the specification in that

both detectors are connected to the same nodes: this implies the use of oriented or non-

bilateral detectors, oriented in the same direction with respect to the path they form.

Since we are dealing with a one port, no source shall be provided. The synthesis is

started by the usual single-contact and single diode technique. The method of converting

k T12 ' T 211 into F (multiple output function)using a literal r to designate the diode

is discussed in Smith, Healy and Mow3: examples will illustrate the method.

SECTIONV (b) Simplification and constraint

A simplification due to the unilateral element is provided in the testing proce-

dures for the acceptability of the loop-set matrix H. In checking if the original loop-

set matrix is acceptable, we may come 'up with a path which is unacceptable (does not
J

cover a row of H, or does not represent a blocked loop-set). For example, take a

path xyrDI. To make this path acceptable, we can choose the orientation of D and r to

be opposite in this particular path. This would represent a blocked loop-set: this also

implies that r and D2 have the same orientation in that path and this may or may not
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be acceptable. Now if r is assigned to be of opposite direction to Dlin a path k and of

opposite direction to D2 in the same path k, we find a contradiction in the orientation

since D1 and D2 are by hypothesis of opposite direction: the only way to satisfy such

a requirement is to duplicate the diode and place them back to back in that path. We

then have two methods of duplication; diode duplication or contact duplication.

A constraint due to the specification is imposed on the detectors D1 and D2 :
these must form a closed path. There exists vectors in T12 and T21 which are common

to each other: each common path is represented in H by two rows, one affixed with DI

and the other affixed with D2 . This ensures that D and D2 form a closed path. On
splitting diodes or contacts an arrangement must be maae such that these rows remains

identical or are altered in such a way that they remain identical. In resume then, we

can run up against 4 possible situations in checking H for acceptability.

1) Path acceptable (covers a row of H): no diode present in that path.

2) Path acceptable only if diode is oriented in same direction as its detector in

that path set.

3) Path acceptable only if diode orientation is opposite that of its detector: this

implies that this path conducts for the second detector: this may or may not be accept-

able. If not acceptable, diode is duplicated and must be in a back to back connection in

that loop.

4) Diode duplicated to make path acceptable as in (2) or (3).

With these constraints, it is possible to check H, fromthe modulo 2 point of view:

the final orientation is done on the. unoriented graph, according to the restrictions

brought about in checking H. Even if we were 'using an oriented matrix failure to real-

ize the function, may be due to conflicting orientation. The artifice of using two detectors

permits us to check H in the modulo 2 field; no need for maximum loop techniques are

needed since there is no requirement to orient H. In checking H, only those row sums

which have duplication requirements are used in making H acceptable: once a non-ori-

ented graph has been found, all orientation requirements are imposed on the non-oriekted

graph.

SECTION V (c)

Example 1: x'y' zi + xyz', = x'y' z' + x'yzE m leh T2 , T21

Sxvy' z' (D1+D 2 ) + xyz' rD1 + x'yzrD2

where r represents the diode in the unoriented state.
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x x' y y ' z z r D1  D2H
H 2 •[ 1 . 1 . 1 * 1 1

3 I. 1 1 1 1

41 1 . 1 1

123 . 1 1 1 1 1

124 1 1 1 1 . 1

134 1 0 1 1 E 0 . 1

234 1 0D E0 1 1 ,] 1 .

Row Sums Splitting

123 y', zV, r and D, opposite

124 x', y, r and D2 opposite

134 x', y, z', split r and back to back connection

234 x', y, z' split r and back to back connection

On examining this table, it is seen that splitting r, or z', or y can possibly lead

to a solution: this will satisfy row sums 134, 234; the first two (123, 124) can be satisfied

by proper orientation: thus a minimal solution would be tired, splitting only 1 element.

All these alternatives must be tried if we are searching for a minimal solution:

each duplication leads to no solution; contradictions arise at an early stage of the realiz-

ation procedure. The next approach would be to duplicate a contact; L e. solution by

splitting r and xI or r and y or r and zI. Only the solution for r and x' is given.

Split r and xI

:constraint on xf splitting, such that rows 1 and 2 of H are not altered or, if

altered they remain identical except for D and D2:

x x1 x12 y y' z z' r1  r 2  D D2

H= 1 . 1 . . 1 . I . . 1

21 . 1 . 1 1 .

3 •1 1 . 1

4 1 . 1 1 . 1 1 , 1

r2 and D1 opposite 1 2 3

rI and D 2 opposite in 1 2 4
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D1  z X X X 1  X'2  Y r1 r 2 D2

Bf = 12 1 
. .1

2 1i 
.

1 
1

14L11 1 1 1

K2.= x y' D2 ordered as is, K = x12 y r2 D. ordered as is

1 1 1

K or e e 

1

K4 = Y y r1 reordered as xly'yrI

we then get y' 02 r2  as a tree

*y 
y

x2

D, r

and Y as the oriented graph.

(the orintotion procedure according

to constraints on matrix and F

• -•.__z
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It would seem that this solution is minimal: however; by a simple topological process

another solution will be presented.

Consider

r
3

fl

f f2

f4

104
D2

Where f. is path between, nodes J and K1

Call loop 1 f I rf2 D2

Call loop 2 f 4 rf 3 Dl

if fIf 4 = 0, f 3 f 2 = 0 disjunctive then loops 1 and 2 are the only possible conducting loops.

:given f x' and f 4 = x

and f2 = yz, and f 3 = z'y

We have then flrf2 D2 = x'yzrD2

and f 4 rf 3 D1 = xyz' rDI

It remains to add the bilateral loop.
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y
Z

D,

02

as the non-bilateral portion of the graph

adding the bilateral term we get, on duplicating z'

r

X. ZZ YX' \ Z

D2

as the complete graph.

This solution presents only 1 contact duplication: duplicating x' instead of z'

in the bilateral path leads to a similar solution. The conclusion to this example being

that even after only I contacts is split, methods of extending the vector space must be
15tried, and this is never an obvious step

Ex: 2 Realize

T 1 2 = abc + ac + ae + cd + de, T 2 1 =abc + abe + bcd+ de}

F = abc(D1 + D 2 ) + de(D 1 + D 2 ) + (abc + bcd)D2 + (ae + ac + cd)rD1
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On examination of this specification we find no primed variable. If the loop-sef
matrix contains unacceptable paths a method available to make paths acceptable, is to

orient the diode and the detector in opposite directions or duplicate diodes. In the

specification of multi-terminal metworks, mention should be made of the importance of

linearly dependent paths,once a duplication of contact is made. This example is an

illustration of this fact with diodes.

a b c d e r D1  D2

I11 1 1 . . . 1

2 1 1 1 . . . . 1

4 1 1 . . 1
4 Il • • i 1 1 1

H5 = . 1 . i 1

6 ; . * 1 1 . 1 1
7 1
8 1 1 . . 1 1
8 }. 1 1 1 . . . 1

9 L . •L.i •

Rows 7, 8, and 9 are linearly dependent and in checking H are deleted. They are brought
in question only if there occurs a duplication in any of the rows they are linearly depend-

ent on. Linearly dependent rows 7 = 245, 8 = 256, 9 = 123 (modulo 2). Linear combin-

ations of rows modulo 2 are taken, 3 rows, 5 rows at a time and unacceptable paths are

tabulated.

Row sums Requirements

124 r and D2 in opposite direction

125 "

126 "

156 r and DI in opposite direction

345 split r: r and D2 in opposite direction

356 "

356

12345 " "

12346

12356

Requirements: split r and r and D2 in opposite direction is the case of a path made

acceptable by insertion of a diode to make this path cover a row of H.

Duplication is performed: then orientation requirements are checked.
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Splitting is of the type

rI r2 r1 r2 rI r2

(a) (b) (c)

Each of these alternativet can be tried: a non-oriented graph may result, and

the orientation requirements may 'e satisfied. A more logical way of proceeding, is

to examine the linearly dependen paths.

case (a) Path 8 =-256 = bcdrIr 2D .: this implies, r 1, r 2 , D2 in the same direction

A subset of this path: l1345 = cdr2Di

This cannot be satisfied 'y any orientation of the r' s.

case (c) Path 7 = 245 = aberIr2D2: this implies, r 1, r 2, D2 in the same direction.

A subset of this path: 12356 = aerlD1

This cannot be satisfied by any orientation of the r' s.

case (b) No linearly dependent path has both diodes in it. This case is used in H.

The matrix is diagonalized the orientation proceeds as according to the requirements.

c D1 d r 1  b a D2 e r2

1 . 1 1156
1 . 1 • . 12

Bf= 1 1 1 4

1 1 1 1 . 467
1 1 1 1 . 256

r,
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If an argument by linearly dependent paths is not possible, then the procedure

would be to use each alternative; if no orientation is consistent with the specification,

another alternative must be used. The realization procedure is then two-fold: finding

a non-oriented graph and finding an orientation to the graph; the realization may fail

due to any of these steps.

The whole argument in this presentation is based on methods that avoid the

oriented matrix and generalize the tree configuration possible: if the non-oriented

matrix is unrealizable, then of course so is the oriented one; if the oriented matrix is

not regular, then the non-oriented matrix may still be realizable 14. Since only the

diodes and detectors need be oriented, the artifice of using two detectors is sufficient

to yield enough information for realizability.
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SECTION VI Conclusions

A method of finding conditions of realizability of fundamental circuit matrices

has been developed and used extensively throughout this work. The process is mechan-

ical up to the point of combining various linear trees that it yields. Failure due to

unrealizability of a sub-matrix is immediately recognized: failure due to impossibility

of constructing a graph satisfying the order of each linear tree is still a semi-mechan-

ical visual process. It is felt that even this step could be mechanized completely.

The examples on constrained variables matrices were brought up because of their

recurrence as soon as problems of moderate size are undertaken. The multi-terminal

examples were introduced and developed up to working point because of the inherent

possibility of getting minimal solutions: as was seen the method is so geared as to

search gradually for a solution; if a quick solution is wanted, more than the minimum

number of duplications are performed.

Simple one port diode-contact networks were analyzed and synthesized as an

outgrowth of the methods developed for multiple-output synthesis. The process was

essentially that of orienting the graph after realization modulo 2, and using a set of

new constraints on the matrix.

The graph theory approach is not at the moment the most flexible method of

realization because of its character of minimality. The procedures developed seem

to point the way to total mechanization in order to yield quickly a minimal solution,

since the process is repetitive in nature, and involves for each repetition, examination,

testing and realizing matrices as graphs of specified functions.
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