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1. INTRODUCTION.

If F is a probability distribution such that F(0-) = 0 and
-]
§ xrdF(x) = By { o, and if r,t > 0, then according to Markov's

0-
inequality,

pr/tr’ t2 Fr
0<1-rt-) < (1.1)

1, t < pe

This inequality is known to be sharp; indeed, for each positive r and +t
there exist distributions satisfying the conditions of (1.1) and attaining

equality.

A number of improvements of (1.1) have been obtained under additional
assumptions about the distribution F. Perhaps the most notable of these
is the result of Gauss (1821) which applies in case 1 - F(x) is convex
in x > 0, and predates any version cf (1.1). Hypotheses similar to
that of Gauss have been used by a number of authors to obtain improve-
ments; mich of this work has been summarized by Fréchet (1950). Improve-
ments of the classical bounds were studied by Mallows (1956) under restric-
tions on the number of sign changes of some derivative of the distribution,
and also with restrictions on the size of the derivative. This work
extends the result of Gauss as well as that of Markov (1898) which utilized
bounds on the density. Recently, Mallows (1962) has extended his earlier
work, as well as the results and methods of Krein (1951), to obtain
inequalities on distributions having n specified moments and whose

first s derivatives satisfy certain boundedness and sign change conditions.
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In this paper, we obtain sharp upper and lower bounds for 1 - F(t-)
under a variety of conditions, particularly that the hazard rate is mono-
tone. These conditions are of interest for two reasons: First, they
are sufficient to yleld quite striking improvements of (1.1), and second,
they are natural to many situations in life testing, reliability, actuarial

science, and other areas of statistical interest.

A distribution F is said to have increasing (decreasing) hazard
rate, denoted by IHR(DHR), if 1log[l - F(x)] is concave where finite

(convex on [0,®)). If F has a density £, then the ratio
a(x) = £(x)/[1 - F(x)]

is defined for F(x) < 1, and is called the hazard rate. It is easily
seen that log[l - F(x)] is concave (convex) in x > 0 if and only if

q(x) 4is increasing (decreasing) in x > O.

The practical interest of the hazard rate derives from its probabi-~
listic interpretation: If F  is a life distribution, then q(x)dx may
be regarded as the conditional probability of death in (x,x + dx) given

survival to age x.

The property of monotone hazard rate is connected with the theory
of total positivity in the following way. A distribution F 1is IHR if
and only if 1 - F(x - y) 1is totally positive of order 2 in real x and
y (see Schoenberg (1951) for a definition of terms). A distribution F
is DHR if and only if 1 - F(x +y) 4is totally positive of order 2 in
x +y 2 0. Properties of distributlons with monctone hazard rate have

been investigated by Barlow, Marshall and Proschan (1963).
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We pay particular attention to the question of sharpness of the
inequalities given, and to the conditions for equality. Examples
attaining equality serve not only to prove sharpness, but also indicate
what stronger assumptions may yield a further improvement of the inequality.
For if a property is enjoyed by a distribution attaining equality, then
the assumption of that property cannot result in further improvement.
Where uniqueness of a distribution attaining equality can be shown, then

of course strict inequality holds in all other cases.

The statement of (1.1) for r > 0 is in reality no more general
than its statement for r = 1. This is because of the fact that for

r =1, (1.1) may be written in the form
P{X > t} < u/t

where p = E(X). With X = Y, one then obtains (1.1) for arbitrary
r > 0. The results of this paper cannot be so simply extended, because
the property of monotone hazard rate need not be preserved under a trans-

formation of the form X = Yr.

Throughout this paper we assume unless otherwise stated that distri-~

butions are right continuous.
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2. METHDS OF PROOF.

If X is a random variable satisfying P{XeI} =1 and certain
moments of X are known, there is a standard method for obtaining a
sharp upper bound for the probability thet X 1lies in some specified
set 27 CI. If 4 is the class of polynomials h(x) = ZZaJx‘j where
(1) aj
dominates the characteristic (indicator) function of 7 on I, then

= 0 unless the jth moment of X is known, and (ii) h(x)

P{xet} < inf Eh(X) (2.1)

(see Marshall and Olkin (1961) for a more general discussion). The
usual proof of Markov's inequality (1.1) is of this form where the

minimizing polynomial is x /t%.

This proof of Markov's inequality does not seem adaptable to the
case in which other kinds of information are available about the distri-
bution F. We consider an alternate proof based upon the following
lemma: If ¢ 4is an increasing function on [0,x) and G

G, are

1’72
probability distributions satisfying Gl(x) < Gz(x) for all x, then

Sm((x) dGl(") > Swt(x)dGz(x) . (2.2)
0- 0-

To apply this, observe that
1, x<0

1-F(x)21-G(x)={1-F(ts), 0&x<t (2.3)
x 2 t.




Then since x'/t* is increasing in x,

Pr o Kar(n) > Kac() = 1 - F(t).
t7 0-t¥ 0- t*

Some kinds of information sbout F readily yield a sharpening of (2.3)
with consequent improvement of (1.1), and we illustrste with two simple

examples.

Example 2.1. If F(x) is convex in (0,t), then

1 - xF(t-)/t, x<t
1-Fx) >
0, x> t.

Using this, one obtains

m b
1-F(t-)gt—§-%(1--§, (2.4)

an improvement of (1.1) due to Narumi (1923).

Example 2.2. If 1 - F(x) is convex, x>0 (e.g., if F is the
distribution of a random varisble X = |Y| where Y has a density with
unique mode at 0), then 1 - F(x) has a supporting line at t > O,

so that there exists a {1 such that

1, x<0
1 -F(x) >f{a + [1-F(x) -alx/t, 0<x<at/la -1+F1t)] (2.5

0, x> at/[a -1 + F(t)].
Thus for some a <1, b > (at)r+l/(r + Dtle -1+ Ft)T, or

1-F(8) o - oM/ + DVTYT 2 o(0). (2.6)
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Though we have no way of obtaining o to satisfy (2.5), we do obtain a

valid bound by maximizing o{a) for o < 1l. This maximum occurs at

= rp:zl‘/r/t(r N LTI rp.i/r(r ¢ 1T 2 to andat a=1
if t ¢ty Thus
1-t/(r+ 1)1/";%/", t <t
1-F1) < (2.7)
[k /t" 1 (x/(x + DT £t

This result was obtained by Camp (1922) and Meidell (1922). For r = 2,
it is essentially equivalent to Gauss' result of 1821, and the method of

the above proof is due to Gauss.

The method of Example 2.2 has the disadvantage of providing no
inequality unless the problem ol maximizing ¢ can be solved; this is
in contrast to the method utilizing (2.1), where a valid bound is provided

by any h satisfying (i) and (ii).

We use a third method in Secticns 4 and 5, which may be described
as follows. Let F be a family of probability distributions. Call
A C F extremsl for F on T if for each teT and FeF ,
there exists Ged such that F(t) = G(t). If 4 is extremal for F
and FeF , then clearly

inf G(t) < F(t) < sup G(t).
;2 4

If the family A is sufficiently small, the bound may not be difficult

to obtain. This method has been used by Royden (1953) and Mallows (1956).
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Our proofs that M is extremal involve a parameterization of y. N
4. = {c :aeI}. We single out & crossing of F end G,» and show
that this crossing must occur at each teT as a ranges over I.

Although this is conceptually simple, it 1s usually difficult to rigorize.

Example 2.3. Let F be the class of distributions F where F 1s
-]
convex on its interval of support and satisfies F(0) = 0, § xdF(x) = By

Let 4 ={G:0<egp}, where

0, x< a

- X - 0a
G, (x) = Mo - o alx< 2 -a

Suppose that Te % . Then F and G have at-most two crossings. It
is not difficult to see graphically (we make no attempt at a rigorous
proof) that the first crossing must range over the interval T = [O,p.l]
as a ranges over the same interval. For 0< t £ Byy we compute

G () =G (t) =t
oggil o8 = Go(t) = t/2u,

and conclude that

We mention two other useful methods. Inequality (3.8) can be obtained
by an application of Jensen's inequlaity, as can (2.7) in case t ¢ to.
Finally, we give another proof of (1.1) which, suitably modified, yields
a simple proof of (3.10). The distribution G defined by

1, x<0

1-6(x) ={s/tT, 0&x<t

0, x2t




-}

has r® moment Ko = § x"dF(x). Hence F and G must cross at
0-

least once; such a crossing can occur only in the interval (0,t),

and thus

1 -F(t-) <1 -G(t=) =p/t.

The ideas of this proof are also useful in Section 4, where more than

one moment is known.
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3. BOUNDS FOR 1 - F WHEN F HAS MONOTONE HAZARD RATE,

We introduce this section with some general lemmas that are later

applied to obtain more specific results,

Let t >0,
1, x<z,
l1-G ,W(X) = X=2
t-z
w . x>z,
and let

1-6,(x)=1- GZ;I_F(t_)(x) .

Lemma 3,1 , Let F be IHR, F(0) = 0, Let I be a function
®
strictly increasing on (O,@ ) such that I L(x)dF(x) = v exists
(o]

finitely, Then

aD
¥w) = sup [ c(x)ae . (x)
0<z<t O '

is strictly increasing, and if (1 - F(t -)) < @,

W-l(v), t(t) < v
1-Ft-)>

0, g(t) > v, (3.1)
where t-l(v) = sup {wig(w) < v},

Proof, Note that Gz-w(X) is decreasing in w for fixed x and 3z,
1 ®
Since { 1is strictly increasing, this means f Z(x)dG .w(x) is

z
0 !
strictly increasing in w, so ¥(w) is strictly increasing, Since

¥(0) = £(t), ¥"(v) is defined when gt) <v,
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Since log[l - F(x)] 1is concave, there exists 2ge 02yt
such that F(x) > G, (x) for all x, Since [ 1is increasing,
0
® ® @
v = [ o(x)ar(x) < £ ((x)aey(x) ¢ sup [ 0(x)dg,(x) = ¥(1 - F(t =)} (3.2)
o 0<z<t O

and (3,1) follows, ||

Note that no use was made of the condition F(0O) = O other than

to confine z

o te [0,t] rather than (- ® ,t],

Lemma 3,17, 1f (t) < v and ¥ is continuous at v equality is
— N L

attained in (3,1) uniquely by the distribution G 1 (x), where
z%y ~(v)
) ®
z* is defined by [ Z(x)dG 1 (x) = sup £ L(x)dG 1 (%),
0 z*5¥ (v) 0<z<t z ;¥ " (v)

If ¢(t) >v and {(s) = v has a solution, then,e,g,, the distribution

degenerate at s  achieves equality,
Proof, If ¢(t) < v, then i-l(v) exists, Since ¥ is continuous
at v,

-1 @
v = $(¥ “(v)) = sup I (x)dG

®
(x) = | z(x)dG (x) =
0<z<t O z;¢_1(v) é‘ -1

z* ;v ~(v)

=y1-6 (£,
z*3% ~(v)

so that the hypotheses of Lemma 3,1 are satisfied when F =G -1
z2*3¢ (v)

and equality is attained, Uniqueness follows from the fact that

equality must hold in (3,2) if it holds in (3,1).||
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Lemma 3,2, If the conditions of Lemma 3,1 are satisfied and if, in
®
addition, ({ is convex, then (1 - F(t -)) = 'f Q(x)dGo(x)
0

whenever [(t) < v,

® L ® X =3z
Proof., g C(x)dGz(x) = - { g(x)exp(t - ZL)dx =
® L
= - L.f (2(1 - y) + ty)e¥hdy = o(z),
0

where L = logll - F(t-)], Since { 1is convex, ¢ 1is also convex,

and sup (z) = 0(0) or o(t), If g(t) <v, then
0<zst

(D(t) =

sup o(z) = o(t) implies by (3,2) that (1 - F(t -))
O<z<t

= L(t) > v, a contradiction, so that (1 - F(t =)) = sup o(z) =
0<z<t

D
0(0) = [ (x)dGy(x), If L(t) = v, the result follows by limiting
o

arguments,

From {3,2) and Lemma 3,2, it follows that if [ is strictly

increasing and convex on [0,®), and if ((t) < v, then

® @
v = f C(x)dF(x) < I L(x)we Xax
0

0
where w = -t-llog(l - F(t =)), This inequality is to be compared with
the inequality

® ®

[ tx)ar(x) < [ o). L e
0 0 "1

-%/Hy
dx (3.3)

®
where %, = £ xdF(x) and { need only be convex, Inequality (3,3)

follows from an integration by parts and ths fact (Karlin, Proschan and
~x/p

Barlow,1961) that 1 - F(x) crosses e 1 exactly once, the

crossing being from above, Inequality (3,3) is due to Karlin and

Novikoff (1962), ®

P
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Lemma . Let F be IHR, F(O) = 0, Let [ be a function .
®
strictly decreasing on [0,®) such that I L(x)dF(x) = v exists
®
finitely, Then v > inf [ L(x)da, (x) ,
0<z<t O ‘
®
¥(w) = inf r Q(x)dGz_w(x)
O<z<t 0 !

is strictly decreasing, and

I, ) >
1-¥Ft-)> :
o, glt) < v, (3.4)

where t-l(v) = inf {w:¥(w) < v},

The proof of Lemma 3,3 is essentially the same as the proof of
Lemma 3,1, and will be omitted, The obvious analogs of Lemma 3,1' and

Lemma 3,2 (with concavity replacing convexity) are also omitted,

Let 1 - Ha(x) =
o, x2t.,

Lemma 3,4, Let F be IHR, F(O) = O, and let [ be a function
®
strictly increasing on [0O,® ) such that f [(x)dF(x) = v exists

0
finitely, Then

D
v = z[)’ Z(x)dH_ (x)

has a solution a, if and only if v g g(t) ; 1in this case, & )
is unique, and

1 v > (t)
1-F(t) <

e v <5(t), (3.5)
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Proof, There is at most one crossing of 1 - Ha(x) by 1 - F(x) in (0,t),and

if such a crossing exists, it is from above (Karlin, Proschan, Barlow,
® ®

1961), If a, exists, v =|f L(x)dF(x) = [ C(x)aH, (x) and o

0 0 '

strictly increasing implies F and H are not stochastically ordered,
-a_t %o

Thus 1 - F(t) <e O,

If a, exists, then v f l(x)dH (x) < f Q(x)dH (x) g(t); if
£(t) > v, then f(t) = g ;(x)dH (x) > v > ;(0) = lim f L(x)aH, (x)
a=® 0O

together with continuity of f C(x)dﬁa(x) implies 2. exists, Uniqueness
0

(0]

ot &y lollows from the stochastic ordering of the Ha and monotonicity

of .||

b B i

Remark, Examination of the above proof shows that (3,5) still holds if

the hypothesis that F is IHR 1is replaced by the weaker condition that

x—llogfl - F(x)] 1is decreasing in x < t,

Lemma 3,4', If a. exists, then equality in (3,5) is uniquely attained

0
by Ha . If a, does not exist and { is continuous, then {(s) =
0]
has a solution S5 > t and the distribution degenerate at o attains
equality,

Proof, We need only prove uniqueness when a, exists, Since

logll - F(x)] 1is concave, 1 - F(t) = 1 - Ha (t) implies
0]

1-Fx)>1- B (x) for all x in [O,t], and hence for all x. This
% o

®
together with v = [ (x)dH, (x) = [ C(x)dF(x) implies 1 - F(x) =
0 0 o

=1=-H (x) for all x, ||
80

Remark, In case v < z(t), the distribution Ha attaining equality
(0]
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is not right continuous, If right continuity is demanded, equality
cannot be attained in (3,5), but the bound can be approximated by a

distribution of the form

»
A
ct
+
®

1 - H(x) =

Ve

®
where a_ is determined by f Z(x)dH(x)
0]

Right continuity of F was not used in the proof of (3,5), and
hence F(t) can be replaced by F(t -) in (3,5). Of course, the

right continuous version of Ha attains equality in (3,5) so modified,
0

The analog of Lemma 3,4 for decreasing I is straightforward,

and is omitted,

Let t>0,
a(w/a)x/t , 0<w<ac<l, x>0,
l"K‘(X)z
ov 1, x<O0,
and let
1-K(x)=1- Ku'l_F(t)(x).

Lemma 3,5. Let F be DHR, F(C-) = 0, Let { be a function
@

strictly increasing on [0,®) such that ; {(x)dF(x) = v exists
O-

finitely, Then

@
¥ = inf [ LK, (%)

Lo>w 0~ !

R
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is strictly increasing, and
1 - F(t) < ¢ 1w, (3,6)

where ¥ 1(v) = inf {wiy(w) >vl<,

Proof, Since 1log[l - F(x)] is convex and t > O, there exists
ay <1 such that 1 - K, (x) €1 - F(x) for all x, Since { is
(0]
increasing,
® @ ®
v=[C)aRx) > [ ax)ak (x) > inf [ 2(x)dK (x) = y(1 - F(t)),
o- O~ 0 1>a>1-F(t) O- @

As in the proof of Lemma 3,1, (w) is strictly increasing in w , so that

(3,6) follows if 'W-l(v) is defined, But {w:¥(w) > v} is not empty, since

@® @
lim $(w) = lim [ g(x)ae™ax = 1im 1im [ £(x)ae™Xax > lim (M) > v ,
wtl a0 0 M- av0O M M-@

Since lim $(w) > v, there exists w < 1 satisfying ¥(w) > v , This

w=1
implies ‘l'-l(v) <1, |
Lemma 3.5', Equality is attained in (3,6) uniquely by the distribution
®

K _; (x), vhere a* is defined by [ g(x)ak g, )=
at,y (v) 0 a*, b (v)

®
= inf  [o&k G,

0 a,y (v)

ait-l (v)

The proof of this is similar to the proof of Lemma 3,1', We omit
the analog of Lemma 3,5 for decreasing (; its statement is obtained by

substituting the words "decreasing' for '"increasing'" and "supremum" for

BPEpS
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"infimum'" in the statement of Lemma 3,5, The direction of inequality

(3.,6) is then unchanged,

Lemma 3,6, Let F be DHR, F(0-) = 0, and let [ be a strictly
®
decreasing positive function on [0,@ ) such that g L(x)dF(x) = v

exists finitely, Then

is continuous and strictly increasing in we[0,1], and

1-Ft) >y v >0, (3.7)

Proof, Since [ is positive and log[l - F(x)] is convex,

X
(Y

t t c
v = [ C(x)aF(x) > g t(x)daF(x) > [ r(x)a@ - (1 - F(£)1%) = w1 - F(b)).,
0 0

One concludes that ¢ is continuous and strictly decreasing, that

lim ¥{w) = £(0) > v and that 1lim ¥(w) = O by considering the integrand
w=0 W=l

in the definition of % , Thus t-l(v) exists, Since v >0, it

follows that § S(v) > 0. ||

Lemma 3,6'. Equality is attained in (3,7) uniquely by the (improper)
distribution
-1 X
[yt 0<x<t

l - G(X) =
O x> t,

e Bl et 5 24 e R 1 S B 2t a4
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®

If 1lim f Z(x)ae **dax = 0 uniformly in a, 0<a< 6 for some
Mo m

6 > 0, then for sufficiently small ¢ > O, there exists a proper

distribution satisfying the conditions of Lemma 3,6 with the value

1l- t'l(v) -¢ at t, so that no sharpening of (3,7) is possible,

Before proving this result, we note that lim {(x) = 0 implies
a X~
lim [ Z(x)ae™ dx < 1im {(m) = O, so that the limit is uniform in a,
m-m® m m-m

P @ -1 x/t
roof, Choose ¢ so small that f o(x)a{l - [y (v) + ¢ 37V ) > v,
¢ Oz *ty p° -1, | x/t
possible since lim [ (x)a{l - [y "(v) + eIV ")= JLC(X)d{l =0y (VMY 7Y = v,
®

e0 O-

and since [(x) > O for all x, Choose ay to satisfy £ C(x)dGa(x) = v,

where
v + 7Y, o<x<t,
l - Ga(X) =

[t"l(V) + c]e-a<x-t), x> t,

In order to show that a, exists, note first that by choice of ¢,
'faz(x)dGa(x) >v vwhen a = = t-llog[t-l(v) + ¢]. Then since {(x)
g; :?iformly integrable with respect to Ga’ a<b, iig gj%(x)dGa(x) =
= '(I;.C(x)dGo(x) < v [Loéve, P,183,(1960)]. By continuity of

fat(x)dGa(x), a, exists, Since a, < - t'llog[t-l(v) + €], 6, is DHR, ||
0-

0 0

We do not give an analog to Lemma 3,6 for {(t) increasing;

instead we prove

—
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Lemma 7. Let F bve DHR, F(0-) = 0, If [(x) is an increasing

function on [O,@ ) such that 1lim Z(x) = ® and such that

® X~ o

f [(x)dF(x) = v < @, then the inequality 1 - F(t) > 0 is sharp

0-

for all t > O, That is,no non-trivial lower bound can be given.
°

(]
Proof, Since v <o, [ L(x)be"¥dx <o forall b>b, =
0

lim F'(x)/[1 - F(x)], where F'(x) = dF(x)/dx, Let
X=s®D

(]
a=[v- 201/ L(x)be ™ ax - £(0)], Then 1lima =
0

b#bo

h

[v - 2(0)1/[1im (x) - £(0)] = O, 50 that for b - by sufficiently
X-®

small,
1, x <O,
1l - Gb(x) =

ae'-mc , x20

is a distribution function satisfying the conditions of the lemma, But

lim 1 - Gb(t) =0, |
b,

Lemma 3,7 is still true even when a density is required to exist,

as can be seen by considering distributions of the form

-aX

e O0<x<t

1l - G(X) =

e-Bx-(a-B)t’ x>t

® ®
where ‘f C(x)ae ™™ dx < v and B is determined by [ tx)ae &) = v,
0 0
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b MOMENT GIVEN,

3,1 BOUNDS FOR 1 - F, r°

a
Theorem 3,8, If F is IHR, F(0) =0,r>1 and [ x"dF(x) = B ;
0 :

then
expl- /2 Y1, £ YT
1-Ft-) > i y (3.8)
1/r
o, t> b '
where A = pl./r(r + 1), This inequality is sharp,

Proof, This theorem is an immediate application of Lemmas 3,1, 3,1' and
3.2, where ((x) = . |l

Incase r =1 and F is continuous, (3,8) has an elegant
direct proof, Since 1log[l - F(x)] is concave, it follows from Jensen's
inequality that

@®

log[l - F(ll)] > f log[l - F(x)]dF(x) = Illog(l -u)du = -1,
(¢} (o]
/A
hence 1 - F(A;) > e-l. Since [1 - F(tzﬁ/t >[1 - F(kl)] 1 for

tn (See Barlow, Proschan and Marshall, 1963), we have

-t/\

1-Fe)>e T,

The above proof can be easily modified with limiting arguments to
include the case that F is not continuous, S.Karlin has pointed out

that this proof can also be generalized to include the cases r>1,

@
Theorem 3,9, Let F be IHR, F(0) = 0, r >0, and {xrdF(x) =u, .
Then

. = rtrglxr-lwxdx (3.9)

sedaws



has a solution w, if and only if ¢t Zurl/r In this case, W,

is unique, and
1-F(t) < (3.10)

This inequality is sharp,

Proof, This theorem is a special case of Lemmas 3.4 and 3.4', ||

Again we give a simple, direct proof different from that given for

Lemma 3.4, Since F 1is IHR, [1 - 1“(x)]l/x is decreasing, and

® t
wo=f w0 - FGoJax > [ el - Fe) T tax =
0 0

] -
= o™ [y - R Pay =0 (- D, (3.11)
O \

Differentiation easily yields the result that cp(w) is strictly

r

increasing in [0,1]; furthermore, ¢(0) = 0, (1) = t, Since

tT > ur . there exists a unique L) such that cp(wo3 = p.r. Mono-
tonicityof ¢ together with @(1 - F(t)) < b, implies that

Wo 21 - F(t), |l

Of course, bounds for distribution functions also yield bounds for

percentiles, Specifically, for 0 <p <1, let Ep be a solution of

F(Zp =)<p< F(:p)

MWe assume F is right continuous), If L(t) < F(t) < U(t), these

A ARy AR L5 T
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inequalities together imply L(Ep =) <pg U(Zp), and if we define

rx)

sup {y:L(y) < x}, 0 x) = inf {y:0(y) >x}, then

U-l(p) < Ep < L—l(p). Bounds for lp obtainable in this way from

(3.8) and (3,9) are given in

a
Corollary 3,10, If F is IHR, F(0) = O and [ x"dF(x)

! = ur , then
-hrl/rlog(l -p)yp <1 - exp[T(r + 1)]]”/r
1
url/r[f ryla - p)ydy]_l/r >¥ 2 (3,12)
0 P
prl/r , p>1 - expll(r + 1)1¥7

where A = pr/F(r + 1),

Proof, The lower btound for z;p follows directly from (3,8) and the
definition of U_l. The upper bound follows from (3,11) with t = :p’

1 -F(t) = P. "
Note that distributions which attain equality in (3,8) and (3,10)
also attain equality in Corollary 3,10,
The case p = 1/2, r = 1 is of special interest, and yields
By log 2 <M< Zul log 2

where M is the median,

@
Theorem 3,11, If F is DHR, F(0-) =0, r> 0 and g x"dF(x) = p_ < ®,

then
-t/ A rl/r 1/1‘
e ’ t< rkr

1-F(t)< (3,13)

r -r
re |5 r,-r -r Ny 1/r

e =rTtTTe A, t
T(r + 1) r - F € Apr Z Ay i

t

[P




This inequality is sharp,

r

Proof, We obtain the bound from Lemma 3,5, with {(x) = x*, and .

®
{_C(x)dka_w(x) = at"T(r + 1)(log q/w)-r,
]

so that

r.r -r

we' t'r I(r+1), we<el

¥(w) =

t'T(r + 1)(- log w) 7, w>e T,

Computing t-l(ur), we obtain (3,13) from (3,6), Sharpness follows
from Lemma 3,5' .||

Theorem 3,12, Under the hypotheses of Theorem 3,11, no non-trivial

lower bound for 1 - F(t) can be given,

Proof, This follows immediately from Lemma 3,7.||

%,2 BOUNDS FOR 1 - F, LAPLACE TRANSFQORM GIVEN AT A POINT,
Bounds for 1 - F(t) under the assumption that

®
£ e'sxdF(x) = f*(s) can be obtained even when the moments of F are

not finite, Bounds of this kind do not seem to be generally known,
although they are easily obtainable using standard methods,

We remark that inequalities given the first moment are
obtained from those given f*(s) by letting s -0, F(0- ) =0,

Before giving the improved bounds for distributions with

monotone hazard rate, we prove the following
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@
Theorem 3,13, If s> 0, [ 6™ F(x) = £*(s) and s, = - &8 'log
0-
then
[1 - £(8))/I1 - &%, 28
1-Rt-) < .
1, t < 8, H
1 - [1#(s)/e™5%], t <5,
1 - F(t) >
o, t> SO‘
® -5X @ -5X -
Proof, 1 - £*(s) = [ (1 - ¢™)ar(x) > [ (1 - e X)dF(x) > (1 - e
o- t-

= (1 -¢"%50n - Ft )
which gives (3.14),

® _sx t+ -5X -5t t+ -st
£*(s) = [ ™ aF(x) _>_£ e *¥aF(x) > ™" [ daFk) = e™ "F(t)
0 0

which gives (3.15). ||

Theorem 3,13' , Inequalities (3,14) and (3,15) are sharp,

£*(s),

(3,14}

(3.15)

(]
%[ ar(x)
t-

Proof, TFor fixed s and t, we consider the following examples;

for (3,14), t2sg,

e-st]

p=1[01-f(s)V[1

for (3,14), t

I

5 place probability 1 at 54 H

Oi
for (3,15), t

v

s place probability 1 at 8¢ i

o,
for (3,15), t

IA

& place probability Pn at t, 1 - Pn at

O’
. _ omsm -

Py = £-é§%~—-s:sa . Then 1lim Pp = o(s)/e st.
e ‘-8 M-

place probability p at t, 1 -p at O where

m where

R e s SN, i

s e O e v A A
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In each case the distributions satisfy the hypothesis of Theorem 3,13,
Equality is attained except in the last case, where the bound is

approached asymptotically,
If F is IHR, it follows from (3,3) that

®
f*(s) = f e *X4r(x) <1+ uls)'"1 so that f*(s) < @ for all
0

§> ~ uIl . Thus the following theorem has meaning for at least some

values of s < O,

Theorem 3,14, Let F be IER, F(0) = O, let s £ 0, and let

@
£(s) = [ ™ FaF(x) < @
0

Then
expl~ it_f;fs:)]’ 0<t<is i'(s) ’
1-Ft-)> exp(Lo), sl - f*(s8)l <t <~ s-llog £*(s)
and >0 (3.16)
0, t> - s-llog f*(s) and s > 0; or

t> 5 1 - £%(s)] and s < 0,

where Lo is the unique solution satisfying -1 <L <O onf

f*(s) = = L exp(- st +1 + L) ,
The inequality is sharp,

Proof, Suppose first that s > O, We note for later reference that

sl - £2(s)] < - s~ 1og £*(s) < Wi

the first inequality is the well~known inequality log x<x -1,

R

RPN
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The second inequality follows from the fact that f*(r + s) is totally

positive of order 2 in r and s (see Schoenberg (1951) for

definition) so that - s-llog f*(s) is decreasing in s, and

therefore - 5 ‘log £*(s) < lim - 5™t
540+
-sx

Now let [(x) = e , so that the conditions of Lemma 3,3 are

log f*(s) = B o

satisfied, and

®
£4(s) 2 inf [e™%4G (x) = inf ofz)
Ozt Oczet
where ¢(z)=-Lé */[s(t - z) - L] and L = log[l - F(t =),
Since e °X is convex, ¢ is also convex (See proof of Lemma 3,2),

. d
Setting 3= q:»(z)lz=z = 0, we see that

Z=t-( + L)s,

Note that % <t whenever t < - s-llog f*(s), since in this case

t<- s-llog £*(s) S, implies 1+L>0 by (3.8) with r =1,

In case s-l[l - f*(s)]>t, weclaim % <O, Suppose the

contrary, O<z<t, Then

f*(s) > inf o(2) = oz
ozt

o) = = Lexp(-st +1+ 1), (3,17)

or

f‘(S)GSt-l z - L

Le,

and since 2z,>0, =L>1=-st, But 1+1L>0 so that

0

1-s8t<=-L<1, Hence f‘(s)eSt-l > - I.g'> (1- st)eat_l,

PR
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or f*(s) >1 - st, contradicting t < s~ 1 - £*(s)], Thus 2 <0
and we conclude inf o(z) = (0), But f*(s) > ©(0) yields (3,16)
O<z<t

l[l - f*(s)] and s > O,

for ¢t < s

Next, suppose that s-l[l - f*(8)]<t< - s-llog f*(s), The

~-X+8t=1

function xe is monotone increasing (decreasing) in
xe[0,1](in [1,® )), and attains the maximum St at x - 1, Since
t<- s-llog f*(s), there exist solutions 0 < ¢g <1, 6> 1 of
f£o(s) = xe X*1-st , and setting ¢ = =L we obtain from

f*+(s) > e cHi-st (i.e,,(3,17)) that ¢ < ¢y or c2c,, But

1+L>0 implies ¢ <1, so that c<cy. This yields (3,16) in case
sl - £4(8)] < ¢ < - s_llog f*(s) and s >0,

SX

If s <0, then let I(x) = e - 1, and the inequality follows

from Lemmas 3,1 and 3.2,

Sharpness of (3,16) follows from Lemma 3,1', and its analog giving

sharpness of Lemma 3.3l

(¢ 2]
Theorem 3,15, If F is IHR, F(0) = 0, s £#0 and [ e “YdaF(x) = £*(s) < o,
0

then

1, t< - s 11og £*(s) .
1-Ft)< (3.18)

e ' t>- s-llog £*(s)

where a, is the unique solution of

5 (s+a)t | &

» -
£*(s) = s+a s+a

The inequality is sharp,
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Proof, Incase s <0, the inequality follows from Lemma 3,4, and

for 8> 0, it follows from the analog of Lemma 3,4 for decreasing

L. Shurpness fullows from Lemma 3.4',]|| i

Theorem 3,16, If F is DHR, F(0-) =0, &40 and :

@
I e °XdF(x) = f*(s) < ®, then
0

exp{- st £*(s)/[1 - £*(s)]}, t < [1 - £*(s))/s

1-Ft)< M1 - 1e(8))/st, [1-£2(s))/s <t and st<1 (3.19)

1 - f*(s), st >1 ,

The inequality is sharp,

Proof, We compute Ia;-sdea(x) =an/(st + 1) +1 -a where
n = log a - logll - th)]. The inequality then follows from Lemma 3,5
and its analog for decreasing [, Sharpness follows from Lemma 3,5',
In case t < [1 - £*(s))/s, the inequality is more easily obtained as
follows, From the proof of Lemma 3,5 and its analog, E
sf*(s) < s IF;-sdea(x) for some a, 1 - F(t) <a<1l; solving thie
for 1 - F(S) yields 1 - F(t) <  sup o exp{[st(f* - 1) + a« st)/[f* - 1]},
1-F(t)<a<l

From this one easily obtains (3,19) for st < 1, ||

If st > 1, the distribution achieving equality in (3,19) is improper,

but can be approximated by proper distribution functions,

a
Theorem 3,17, If F is DHR,F(0-) =0, s> O and g e Xar(x) = f*(s) < @,

then

Lo

1-F(t)>e (3,20)




]

where Lo is the unique solution of
£o(s) = L(1 - e¥5Y)/(L - st),

The inequality is sharp,

Proof, This is a direct consequence of Lemmas 3.6 and 3,6',||

Note that by Lemma 3,7, a non-trivial lower bound cannot be given

under the conditions of Theorem 3,17 if s < O,

3,3 BOUNDS FOR 1 - F UTILIZING BOUNDS ON THE HAZARD RATE,

In this section we indicate, without any attempt at generality,

how bounds on the hazard rate can be used to yield bounds for the
distribution function, Theorems 3,19 and 3,21 which assume an
increasing hazard rate have unstated DHR analogs, We assume that F
has a density f , so that the hazard rate q(x) = £(x)/[1 - F(x)]

is defined,

Theorem 3,18, If F(0-)=0, q(x) >a for all x> O, and

®
J‘xf(x)dx = #, then

x
e-at, t< - % log(l - ap) = t,
1- K< (3.21)

-t

.a_}i._.g t > tO ;

1-¢"2

-at
ap =1l +e 7, t <t
0, t>t,

R

)




We remark that q(x) > a implies ap <1 so that to
is defined, More generally, by integrating both sides of

x"2(x) > ax"[1 - F(x)] it follows that

2o /re+l), r>-1, (3.23)

It will be seen from the proof that the bound 1 ~ F(t) < .-at

is valid for all ¢; this is a sharp bound for all t in case »

is unknown,
t
Proof of (3,21), q(x) >a dimplies g q(x)dx > at implies
t

1 - F(t) = exp(- £ q(x)dx) < e-a't, which is the upper bound for t < toe

To obtain the upper bound for t > t., note first that q(w) > o implies

(]
for t > x,
\ -a(t-x)
[1 - F(£)V/[L - F(x)] = exp(- [ q(w)aw) < o .
x
Thus

® t @ t
wa gxf(x)dx ,gxf(x)dx + {xf(x)dx > zEm[). - F(x)Jdax + t[1 - F(t)] >

t .
> ‘[xa[-l - F(£)16* ¢ ax 4 £ - TV -

= all - F(£)16™0 - tale®t 4 a72(1 - e*%)] 4+ t[1 - F(t)]

= [ - KO - 0 %Y ae™ |

or

1 - R(t) <ane /(1 - o), ||
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Proof of (3,22),

™ t @
u=f[l-F(X)de=_g[l-F(x)]dx+{[1-F(x)]dx
0
t D t
Sge—axdx"_f f(x)dx=l-e-a +1-F(t),
t a a a

or

l-F(t)Zap.-l+e'at, Il

Theorem 3,18', Equality is attained in (3,21) uniquely by the

distribution
e-ax’ 0<xgty,
1 - 6{x) = t <ty
0, x > to ’
ane
-t ! xst,
l-e
1-G6(x) = t > to .
o, x>t ,
Equality is attained in (3.22), uniquely when t < to s by the
distribution
e s x<t
1-6(x) = t <ty
(ap -1 + @-at)e-a(x-t)’ x>t ,
e-ax’ 0<x< to ’
1 -6(x) = t 2> to o
o, x>t

-e

ErS—
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The remark following Lemma 3,4' is appropriate to the above left
continuous distributions, The above distributions do not have densities,
but can be approximated by distributions satisfying the hypotheses of
Theorem 3,18 and having densities, Inequalities (3,21) and (3,22) hold

when no density exists, providing lim [F(x + A) - F(x)1/A[l - F(x)] >a,
A-O

Note that if t < t under the hypotheses of Theorem 3,18,

O ,

£() > all = F(£)] > alap - 1 + e™%), (3.24)

Theorem 3,19  If F(0-)=0, q(x) >a, q(x) is increasing and

®
f xf(x)dx = u, then
0

e-at' t

IA

1
-5 log(l - an) = ty

1-F(t) < (3.25)

A . t

v

to ,

where y is determined by (1 - e Yt)/y - ¥

ot/n t<p,
L
1 - F(t) > e"(“"‘*l), <t < ty (3,26)
o, w2 to ’

where 2z is determined by l-ap=[1-alt - z)]e'az,

Proof of (3,25), For t< ty s (3,25) follows from (3,21); for

t 2ty , (3.25) follows from (3,10) with r = 1, ||

e
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Proof of (3.26) , For t <4y, (3,26) follows from (3,8) with r =1,

To obtain the bound for p < t < tgy, note first that qa(x) > a
implies log[l - F(x)] < - ax, Since log[l - F(x)] is concave,

there exists 2z, 0 <z < t, such that

log[l - F(x)] <

az - (at + A)

— (x - 2) —az, x>z,

where log[l - F(t)] = = (at + A),
z t
0| i ; x
! !
{ I
! }
|
]
-t~ ———————— —_—— N — I -ax
log 1=F(x ] |
: az-(at+A)
i = {x~z)-az
]
j
~(Adtatl e e
Figure 3,1
Thus for some 2z, 0<z <t,
D z ® oz - (at + A)
B = zE[l - F(x)Jax < g exp(- ax)dx + J‘ exp[—-—t-_—z-— (x - 2)= az]dx =
z
= 1~ e %2 t -2 -0z

« “ez - (at + A) !
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or

b - a7t - ¢ 1
(t - 2)e 02 - A+alt=-2)"°

—az) >0 and

Since z<t< to , B o- a-l(l -e

(t - 2)e*?

As - alt - 2) = o(2) |
- B - a-l(l - e-az) ®
0'(z) = a - (o - cL-l(l - e **)J[a(t -~ 2)e™*? 4+ e %] - (¢ - z)e-Raz

(u - a-l(l - e_az)]2

and ©'(2) = O if and only if 1 - ap = [1 - alt - z)]e % = ¥(z)

¥(z) 1is increasing in 2z ; §(0) = 1 - at <1 -on since t > y;

y(t) = et s ap  since t <ty , Thus for some 2

0<zy<t, o'(zy) =0, Since 9(zp) > o(z), 0<z<t,
A< w(zo), or

-az
(t - zo)e

= az
"l - ™% 0

(0]

A+at <az, +

0
B -

Theorem 3,19°', Equality is attained in (3,25) uniquely by the

distribution
-aX
e ® . 0<x<g to ’
l-G(X)= tstoi
0, x>t
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e, x<t,
1-06(x) = t>t, .
o, x>t ,
Equality is attained in (3,26), uniquely when t < ty s by the
distribution
l-G(x):e_x/u, x20, t<u;
e-ax’ O<x<zo,
1 - G(x) = : Bt <ty
e -x-zo-az
*p t- 2, o) x> zq
e-“x, 0<x5to,
1 - 6(x) = t>t, .
o, x>ty ,

Proof, For equality in (3,25) and t > tgs G has hazard rate

qG(x) =
To see that y>a , let ©(y,t) = (1 - e-yt)/y. Then

39/3y <0, 39/dt >0, and t = t, implies y = a, Therefore

if o(y,t) =p and t2t y>a,

e

AR A

s -
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For equality in (3,26) and u<t <t G has hazard rate

O 9

a, x<z,
qG(x)=

(t-z)-l, x>z,

Since ap <1, (1 - au)e®*® =1 = alt - z) >0, or (t-z)-lza, |

Theorem 3,20, If F(0-)=0, g(x) <B<® forall x>0, and

®
J‘ xf(x)dx = u, then
0

1-F(t) < (3.27)

- -1
where z is the unique solution of (t - z)e Bz _ »-p satisfying

0

O<z, <t

0

1-Ft) >e P, (3,28)

t
Proof of (3,28). q(x) < B implies fq(x)dx < Bt  implies
0

t
1-F(t) o expl- gq(x)dx) >e Pt |

Proof of (3,27). From (3,28), it follows that if z > 0 ,

z Z
i - s 2 [ ePax - - PRy

@
Since q(x)<p, 1 - F(x)> B-lf(x), and ‘r[l - F(x)]ax > B-l[l - F(t)],
t
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Thus for O0<z< t,

h =
]

] t ®
fr1 - FGxhx + [T - FlxBix + [T1 - F(x)lax >
0 2 t

L1 - eP2y 4 (t - 200 - FE)] 4 B7IL - F(£)], or

1v

B

1-F(t)<[pr-1+ e-Bz]/[p(t - 2z) +1] = o(z), Setting ¢'(z) = 0

in order to minimize the bound, we obtain

p-pts(t-2)eP%= 42,

-

From the facts that ¢(z) is decreasing in 0<z <t, ¥(t) =0,

4(0) = t, it follows that for t > - B°L the equation

#Wz) = p - B-l has a unique solution zZ4 satisfying 0 < 2, <t, To
-Bzg -1

complete the proof, note that since (t - zo)e =p-p ,

, -Bz Bz -Bz
Kz = (Bu-l+e O)/[Bu-1e C+1l=e O |

Theorem 3,20', Equality is attained in (3,27), uniquely when

t>un - s'l , by the distribution

e-Bx, 0<x<zy,

~Bzg -1
1-G(x)=(e , Zp<x<t, t>un-8

-B(x-t+zo)

e y X2t

1, x<t
1l - G(X) =

e-a(x-t)' x>t
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Thus for 0<z < t,

v
il

Z t (-}
‘r[l - F(x)Bx + f[l - F(xXx + J‘[l - F(x)lax >
0 z t

1 - e'Bz) + (t - 2)1 - F(t)] + 3'1[1 - F(t)], or

v

p

1-F(t)<[pp-1+ e-Bz]/[B(t - z) +1] = o(z), Setting o'(z) =
in order to minimize the bound, we obtain

p-B Tt (t-2)eP% = y(2),

1)
(o]

From the facts that ¥(z) is decreasingin 0<z < t, ¥(t)

¥(0)

t, it follows that for t >u - 8™l the equation

- B-l has a unique solution =z, satisfying 0 <z,<t,
~Pzg -1
complete the proof, note that since (t - zo)e =w-p",
, Bz, Bz, -Bz,
¢(zo)=(Bn-1+e )/ [(pu - Lde +1] =e .l

¥(z)

Theorem 3,20', Equality is attained in (3,27), uniquely when

t >p = p L, by the distribution

e PX, 0Ogx<zy,

-Bzg -1
1-6(x)=(e , zp<x<t, t>n -8

-B(x—t+zo)

e y X 2%,

1, x<t
1l- G(X) =

e-a(x-t), x>t

o

To

v GRS

it s e b 5k o -

S NN

et Ao At s AT G et o1




kYl

vhere a™t 2 B-t> B-l, Equality is attained in (3,28) by the

distribution
e, O<x<t

e—t(B-a)-ax’ x>t

where a = e-Bt/[u - B-l(l - e-Bt)].
We omit a proof of this thebrem,

1f t>p-pt , then (3,23) yields

_Bzo
£f(t) < B[l - F(t)] < Be . (3.29)

In place of (3,27), it is possible to give an explicit upper bound for

1 - F(t) ;

1 - F(t) < W/t + BT, (3.30)

To obtain (3,30), note that

t D ®_,
p= 01 - F(x)lax + { [1 - F(x)Jax > (1 - F(t)] + [p t(x)dx =
o t

= (¢ + gL - F(E)I.

This improvement of Markov's inequality is of course not sharp,

e A S

b b 4 et R a1

R T




The hypotheses of Theorem 3,20 yields the moment inequality,

B S Br Ly /(x4 1), r>-1 (3.31)

which is to be compared with (3,23),

Theorem 3,21, If F(0-)=0, q(x)< B, 4 1is increasing and

®
£ xf(x)dx = u, then

1, tsu'B-ls
1-R(t) < (3.32)

t>p - g,

where w. is the unique solution of # = -[t(1l - w)/log w] + w/B ;

e—t/'p. ' tsw,

1 - F(t) > (3.33)

e'p(t"‘)'l, t>qu .

Proof of (3,32). If L= 1logll - F(t)] then since 1log[l ~ F(x)]
Lx/t

is concave, 1 -Fx)>e x<t, Since q(x) € B,

1 - F(x) > £(x)/B, so thst

@® t m_l -1 L -1
B = g (1 - F(x)Jax > ,g exp(Lx/t)dx + J; B™ (x)dx = L™ t(e =1) + B [1 - F(t)]

o tF(t) 1 - F(¢t)
T Tgll-FRY T P

= (1 - F(t)),
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Since lim of(w) = 0, lim olw) = B'l +t and ¢(w) is increasing
w=0 W=l

in w, there exists a unique w,. satisfyi o(w.) = 4 whenever
' 0 ne @l

t>u - B-l. Furthermore, 1 - F(t) <w

o |

Proof of (3,23) , Again let

L = logll - F(t)], Since gq(x)

is increasing, there exists 2z

X -2
t -2z

x >z, Since q(x) < B, and

such that log[l - F(xJ < L

-8 (x-t)+L

log [1-F{x))

t

I

|

I

|

|

|

:

F(O =) = 0, it follows that }
0<z<t + La'l, Thus for )
- - I.(x-zl

t~z

some z, 0<z<t+ Le'l,

1-Fx) <

2
Z

exp(L: —), x> z,

Figure 3.2

and

X =

-1
e z - (t -2z)L~,

® ®
o= £ (1 -Fx)ldx <z + I‘ exp(L :)dz
P

Since t >z , ¥(z) = (u - 2)/(t - 2) < - t . 9 (z2) = (p - t)/ (¢ - z)z,
so that if t > q ¥(z) is decreasing and min _  ¥(z) =
O<z<t+Lp

v+ <-17, or L>pu-t) -1, Incase t<p the

bound follows from (3,8) with r = 1,]||

i




Theorem 3,21', Equality is attained in (3.,32), uniquely for

t >y - L, by the distribution

1, O<xgt
1-G(x) = tSu-B'l
x ~ t
exp(-‘p,—t)’ x>t,
WOX/t, O<x<t
l-G(x): t>u_B-l.
we-ﬁ(x-t), x> t,

1~-6(x)=e , t<u

1, x<w-pt

1 - G(x) t >y,

exp[- B(x - p) -11, =x21u - B,

In the case of (3,32), t>u - B-l, G has hazard rate

and we note that -~ gt log wy = - wo)(}l = v / B)-l <B

since Pu 212w, .
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3.4 BOUNDS IN TERMS OF PERCENTILES,

From the general results of Section 3, bounds for expectations of
monotone functions can be obtained in terms of percentiles. In particular,
it follows from (3.2) that if F 4is IHR with F(0) =0 end if ¢ 1is a
function incressing on [0,o), then

[>]

§ Y(x)ar(x) < sup § &(x)dG (x) (3.34)
0 0Kzt 0
where
1, X

6,(x) =
(1 - F(t_)](x-z)/(t—z), x> z.

IN
N

Since GZ has a density that is a P§lya frequency function of order
2 (PF2) (see Section 5 for a definition), (3.34) is also sharp with

this strengthened hypothesis.

With ¢(x) = X[s °<))(x), the characteristic function of [s,»),
J
it follows from (3.34) that
[1 - F(91%, s>t
1-7F(s) < (3.35)
1, s < t;
this bound is slso given by Barlow Marshall and Proschan (1963). Here

the exponential and degenerate distributions achieve equality.

By interchanging s and t in (3.35) it follows that

1-F01%t sgt

1~ Fs) > (3.36)
o, s>t

aSarvenin s sohetoab e bR ttnth 0T



More generally, let

- r0 I, x gt
1 - H(x)
0, x > t.

Then by (3.35), 1 - H(x) <1 -F(x), x<t, so that if ¢ is

increasing,

-]

t+ t+ o
éC(X)dF(X) Zé ¥(x)aF(x) 2(5) ¢(x)dH(x) = é ¢(x)aH(x) . (3.37)

with &(x) = X[g,0), (3.37) reduces to (3.36).

Note that equali;cy in (3.37) is attained by the distribution function
H which does not have a PF2 density, so that (3.37) can be improved

in case F has a PF2 density. Such an improvement is given by (5.5).

e
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4, BOUNDS FOR .1 - F GIVEN TWO MOMENTS,

In this section we confine our attention to '"power moments",

although the methods used are more generally applicable,

In order to illustrate these methods, we give a heuristic
discussion of the following problem: obtain sharp upper and lower
bounds for 1 - F(t) when FeF, the class of IHR distributions

m
satisfying FO0) = 0, F(m) =1 and [ xdF(x) =

5 'p,l ( =1 for
convenience), Let ll = wa: 0< w<1}, where
1, xX<w
1- G'w(x) = e-a(x-w)’ w<x<m (4,1)
o, x>m

and a is determined by

at - e-a(m-w)) =1-w,

Let )]2 = {Cw: 1<w<m}, where

e-bx, Osx<-b-llog(l-b)=w
1-6/0) = (4,2)
o, x 2w,
Note that ’”i cF If we show that

{(x, 1 - a(x)): GcﬁlU ,52 }={(x,1-Fx)): FeF},



by

then for FeF and fixed te[O,m],

inf 1-06(t)<l-Ft)< sup 1~ G(t), (4,3)

where the extremums are taken over & 1U,d .

Let the FeF - (§,UM,). Since F and G  have the same mean,
they cross at least once; since F is IHR, they cross at most twice
in (O,m), If there are two such crossings, say at u and v > u,
then 1 - F(x) >1-6G(x) for u<x<v, If w21, thereis exactly
one crossing for x<w, sayat v, and 1 - F(x) >1 - Gw(x),

O < x<v, Weremark that since F is IHR, it is continuous except

possibly for a jump at the right-hand endpoint of its support,

ff——_—————_————
cb——m———————

i
Figure 4,1
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Let v be the crossing from above of 1 - Gw(x) by 1 - F(x)

if it exists; otherwise let vw =m, Then vm <m, and

a8 w=-blt log(l - b) decreases from m to 1, b
decreases to O, and heurstically, Vo decreases to O,

Again consider v = VO(Gm = Go) and increase w from O to 1,
Then Vo increases to m as W increases to 1, This shows that
for fixed FeF |, (x,1-TF(x))e {(x,1 - G, (x)),0 < w < m}

for all x, O0<x<m,

The bound up (1 - G(t)] is a special case of (3.9).
Ge/i A

U "2
Incase m=®, a = (1 - W andif t<1 inf [1-aG(t)] =
G€;gl V) 2
t - w -t
= min exp(- 1= w) = e , whichis (3,8) with r =1,

Ogwsl
Note that for G, in 4 and m=w,
(2]

B, =2 g x[1 - Gw(x)]dx =1+ (- W)Z,

and as w ranges over [O,1], ranges over [1,2], But for any

2
LHR distribution, 2 < p, < 2 and since 1 - G (1) = e-l

v b SRS W
for «ll w, we see that e ~ is a sharp lower bound for 1 - F(ul =)

whenever F is IHR with mean By = 1, regardless of the specified

value of u2 R

Sk et e e SN IR



4L, BOUNDS FOR ) - F WHEN F IS IHR

Retain the assumption that By o= 1, fix L)) and let

- 1)1/2 y To=- aal log(l - ao) where &, in

To=1-(112 1=

[0,1] satisfies

1

2 - a
p(a) 2 S [1 +=—1log(l - all=14n, .

Such a solution exists since ¢(a) is continuous in a, lim o(a) =1,

a-0
and limo(a) =2 (F 1IHR implies 1<, <2),
a—l
Let Aj = {GT: T > Tl}, where
1, x<A4
1- g (x) = | e780x8) T >T (4.4)
- G’I‘ x)={ e y 4<x<T, T 1 0 (&,
o, x>t
1=a+dn -8 (4.5)
and
Y2 . ﬁ _8aT +1 -a(T-A) ap+1 (4.6)
2 T2 2 T .
a a
Let ﬂh = {GT: ToST< Tl} , where
-a. x
e E ’ x<T
l-GT(x)= v TosT<T, 4,7
-4, T-a_(x-T)
e R ’ x2>T
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-a. T
1= -l(l-eal

1 ) + ag e . (4,8)

and

m -8, -a. T
?5 = a{a[; -1+ alT)e lf] + aga(l + aZT)e 1 . (4,9)

We defer the proof that solutions of (4,5),(4,6), and (4,8) exist .

A principal result of this section is

Theorem 4,1, Let F,  be the class of IHR distributions F such

a D
that F(0) = O, [ xdF(x) =1 and [ %°dF(x) = p,.  Then
0 0

{(x, 1 - Fx):FeFE) = {(x,1 - 6(x)):Ge 115 U ﬂk} ,

and hence

inf{1 - G(t)] <1 - F(t) < sup [1 - G(¢)], (4,10)

where the extremums are taken over /6% u jy# .

Equations (4,5),(4,6), and (4,7),(4,8) guarantee that Gy has
mean p, = 1, and second moment B, sO that ﬂ} U,ﬂh C s -
Hence it is clear that (4,10) is sharp, although it is not clear that

equality is attainable,

We defer the proof of Theorem 4,1,

=b_x
Remark, We use repeatedly the fact that the functions cqe 1 s
-b_x
c e are identical or have at most a single crossing (simple inter-

section),

o At

b a5 S o i o 9 TR 1 a3 S Rt s b R R o e

oratin, e

b e bt s R




Corollary 4,2, Let F be IHR, F(0) =0, and let F have

first and second moments p, =1, and W, £1, Then

omalt-8) 4 o (4,11)

1-F(t) > inf [1 - G(t)] = inf

ce B3 =N

where a and A are determined by (4,5) and (4,6) as functions of

T3
-1
1-F(t)>e ", t=1,
-a, T-a, (¢t-T)
1-F(t)>inf, [1-G(t)] = inf e y 1<t <1, (412) .
Gc/.{‘ T SI<t

where a, and a are determined by (4,8) and (4,9) as functions of

1-Ft)20 t271.

The bounds are sharp,

The restriction wu, #1 is required in order that 1 - F(t) > e-l,
t = 1 ; otherwise, 1 - F(t) must be replaced by 1 - F(t -),
Proof, For To<T<T , amd xgT, 1- GT(x) >1- GT§X)’ .
since otherwise GT and GTl, cannot cross twice, If T<1,
then since 1 - qr(x) and 1 - GTO(x) must cross twice,
1 -Gy 21 -G (1), Tuis together vith 1- Gy(1) 2 et.1- Gy (1) ;

(Theorem 3,8) implies 1 - Gp(x) >1 -G, (x), T<x<l. But
0

=G _, and thus (4,11) follows from (4,10),
Gy, =%

T
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1l

If I, <T«< ®, then G’! and GTO = Gm can cross only once
in (0,T). Since 1 - Gy(1) 21 =Gy (1) = ¢™", and since
0

1~ G’I‘(TO) <1~ GTO(TO) =1, this crossing must occur in (T,,1l.
Hence 1 - GT(x) >1 -Gy (x) for 1 <x<t, and we conclude from
0

(4,10) that 1 - F(t) > dinf [1-G(t)], T, >2t>1, The

remainder of (4,12) follows® from the fact that for x< T < Tl'

1- GT(x) >1 -Gy (x) (otherwise G, and Gy cannot cross twice), ||
1 1

Theorem 4,3, Let F be IHR, F(O) = O, and let F have first and second

moments By o= 1l and Bse Then
1-F) <1, OgtgTy =1-(n,-1Y3 (4.13)

_51t
1-Ft)<ge y Tp<tgTy, (4,14)

"
t
-e

where  a; is determined by (4,8) and (4,9) with T

~a(t-
a( A)’ £>

1-Ft)<e (4,15)

where a and A are determined by (4,5) and (4,6) with T = t,

These bounds are sharp,

Proof. Let us first assume that (4,8), (4,9) and (4,5)(4,6) have the
required solutions, It is easily verfied from (4,5) and (4,6) that

lim A=1 - (uz—l)l/a, and sharpness of &,13) follows, Let
Tum
-alt -alx

? < t<T and suppose 1 = F(t) > ; then 1 - F(x) >

0 £t y 0<x<t,

o s A e e ¢ 8

R ——
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If T1‘< T<®, then GT and GTo = Gcn can cross only once

in (0,1). Since 1-Gy(1) 21 -Gy (1) = e, and since
o]
1- GT(TO) <1 - GTO(TO) = 1, this crossing must occur in (Ty1l.
Hence 1 - GT(x) >1 -G (x) for l<x<t, and we conclude from
0

(4,10) that 1 - F(t) > inf [1 - G(t)], T, 2t>1, The
remainder of (4,12) follows'from the fact that for x < T <7,

1~ GT(x) >1 - G, (x)  (otherwise Gp and G, cannot cross twice), ||
1l 1

Theorem 4,3, Let F be IHR, F(O) = O, and let F have first and second

moments By = 1l and By, Then

1-Ft)<c1 , 0<t<T —1-(u2-1)1/2; (4,13)

-ﬁt
1-Flt)ge °, Ty<tgT, (4,14)

]
o
-e

where &) is determined by (4,8) and (4,9) with T

1-TF(t) < e'a(t'A), t> T (4,15)

where a and A are determined by (4.,5) and (4,6) with T = t,

These bounds are sharp,

Proof, Let us first assume that (4,8), (4,9) and (4,5)(4,6) have the

required solutions, It is easily verfied from (4,5) and (4,6) that

lim A=1 - (v.a-l)l/a, and sharpness of &,13) follows, Let
Tem
'ﬁt -alx
T.<t<T. and suppose 1 - F(t) > § then 1 - F(x) > y 0<x<t,

] -1

e e ki e
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e e Y

Since F and G, cross at least twice, this would force 1 - F(t) ;

~-a_t-a_ (x-t)
3‘12

and to intersect three times which is impossible, If

t 27T, them 1-F(t)>1- Gt(t) together with the fact that F

-a(x=a)

and Gt cross at least twice would force F(x) and e to

cross three times and again we obtain a contradiction,

Theorem 4,3 also follows as a corollary of Theorem 4,1, since from
Theorem 4,1, we need only show that 1 - Gt(t) >1 - Gs(t) for all
s £t $ but this follows from the fact that Gt and Gs must cross

twice,

To complete the proof of Theorem 4,3, it is necessary to show that
(4,8), (4,9) and (4,5), (4,6) have the required solutionms, This proof

is given in

Lemma 4,4, For every T, T > Tl, there is a unique solution of (4,5)

and (4,6), For every T, T,<T<T,, there is a unique solution of

0 1’
(4.8), and (4,9), Furthermore, these solutions are continuous in T,

fix T >1T., Ae [0,1],

Proof, Consider fi.st the case that T > Tl; 10

and let

a(a,T,d) = a1 - e-a(T-A)) +4 -1,

Then lim a(a,T,A) = A -1, lima(a,P,4) =T -1>0 (T, 21) and
a~® a=0

QE%E*E*A) <0 for all &, Therefore a(a,T,A) =0, i,e, (4,5) has
a unique solution a(T,A) for each fixed 4 and T; furthermore
a(a,T,A)(; 0 for a(z‘ a(?,a), Let >0, Then

a(a(T,s) - 6,7,A) >0, a(a(T,s) + 6,T,4) < O, By continuity of a,

there exists e, >0, ¢, >0 (possibly depending on &,6,T and A)
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such that |T - T{<e,,]8 - &' < ¢, implies a(a(T,s) - 6,I',4') >0,

o
o(a(?,A) + 6,T,A') < O, Hence there exists a(T',A'),

o e o et e e R NG

a(T,A) - 6 < a(?',A') < a(T,A) + & , such that a(a(T',A'),T',A"= 0,
This proves that a(T,A) is continuous in T and A,

Let

—a(T-A)

K(A,T) = 82 - 2a72(aT + 1)e + 2a”%(ap + 1)

where a = a(T,A) is determined by (4,5), We want to show that

K(A,T) = L) i,e, (4,6), has a unique solution A(T) continuous in T,

If A =0, (4,5) implies e 1 - a, so that

_1(

K(0,1) = 2a -aTy

l-Te y @and

3K(0,T) / T = 2a™2[(1 - T)3a/31 - a(l - a)] > 0

where da/dT = ae-aT(l - Te-&T)-l =a(l - a)(1l - Te-&ﬂ‘)-1 if
1 -ma@ - ) - e )™ > a1 - a),
which is clear if O < a <1, But this follows from e-aT =1 -a and

T > 1. Therefore T >T, implies

k(o,T) > K(O,Tl) By 21 = lim K(A,T),

A=l

n

This implies that K(A,T) B, has a solution A(T), TUniqueness of
A(T) follows from the fact that for given T, there is at most one
element of }93 ; two distributions in /?; are identical, or cross
exactly twice, and the latter is impossible if they correspond to the

same T,

Continuity of A(T) follows in the same manner as continuity

of a( T,A)., This completes the proof of Lemma 4,4 in case T > Tl'

e R
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Let T,<T<T Solving (4.,8) for a, as a function of

o] 1 2
a1 and T , Wwe obtain
-alT -alT -1
az(al,T) =a e (a =1 +e ),

and substitution in (4,9) yields

-alT 2 > -alT ,
h(al,T) = {e [1+ (2 + alT)(a1 -1)] + (a1 - 1) }/al e = 1,72

It is easily verified that h(1,T) =1 and 1lim h(al,T) = (1+ Q- T)a)/?,

al*o
Ve o .. 2 .
Now T 2> TO =1 - (u2 -1 implies (1 + (1 - T)")/2 < u,/2< 1,
Since h is continuous, there exists a, = al(T) satisfying

1
h(arT) = u2/2, Furthermore, by arguments previously usedy it can be

shown that al(T) is unigue and continuous, ||

If F is IHR, there can be at most two crossings of 1 - F

and an exiponential, Furthermore, the crossing points must be well defined,

since if 1 - F(x) and ceP® coincide for all x in some internal,

then 1 - F(x) < ce™™  for all x, and there can be no crossing, This

is a simple consequence of the log concavity of 1 - F,

Proof of Theorem 4,1, Let FeF - (A5 Hp. Fr 121,

let r(T) be the point in (A,T) that 1 - F crosses 1 - Gqp

from below if such a crossing exists ; otherwise, let r(T) = A,

Let s(T) be the crossing in (A,T) from above of 1 =~ Gp by 1-F
if such a crossing exists; otherwise, let s(T) =T, Note that

r(T) < s(T),

For T,<T<T , let u(T) be the crossing in (T,m from

e
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below of 1-G, by 1-F; u(T) always exists, Let v(T)
be the crossing in (T,® ) from above of 1 - Gn by 1-TF if
such a crossing exits; otherwise let v(T) be the right-hand endpoint

of the support of F,

In order to show that r,s,u, and v are continuous in the
interior of their range suppose that F and GT cross at x = X,

(in case T >T let xo £ T). Choose e > 0 sufficiently

l’
small that [GT(xO -€) - F(xO - e)][GT(xO + €)= F(xO +¢€)] <O
(and Xy + €< T when T > Tl)‘ By Lemma &k, GT(x) is continuous

in T forall x (x<T incase T > Tl)‘ Hence there exists

&>0 such that |T'-7| <5 implies

(6 (x, ~-¢€) = F(xo - e)]la (xO +e) - F(xo + ¢)] <0, This means

rr O T
that G and F cross in the internal (xO =€, Xy ¥ e),
T'
To show that for all x < Tl , there exists T such that F and
Gp cross at x, it suffices to show that lim r(T) =0,
TIT
1
lim r(T) = u(T,.), and lim u(T) =T, . The second two limits are
0 1
T-® T~Tl
clear frum the definitions, Proof that lim r(T) = © is similar to

TlTl

the proof of continuity,

To show that for all x> T there exists T such that F

l 1
and G, cross at x, we note that S(Tl) < Ty, lim s(T) = v(TO) ,
T-w
lim v(T) = right-hand endpoint of the support of F,||

T--Tl

RS
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4,2, BOUNDS FOR 1 - F WHEN F IS DHR,

Let
-a,x
ae , 0<xgT
1 - Gy, (x) = 0<T<® (4,16)
1% I
-a_x+(a_ -a )T
ae 21 y X2,
where
-a T -a,T
etoata-e Yy az-le . . (4,17)
-2 R L -7
1 /20 = a, (1 - (a,T + l)e 1+, (aaT + e . (4.18)

Following the proof of Lemma 4,4, we conclude that for every T >0

and every a, 2u2'1 <o <1, there exists ay and a5 satisfying

(4,17) and (4,18), Note that

-2x/p
1-a =2z, 2
CES

’ x>0,

Equations(4,17) and (4,18) insure that ql"a has the first moment
9
By = 1 and second moment }).2 . Furthermore, GT;a is DHR if

By22 .

Theorem 4,5, If F is DHR, F(0-)=0 and if F has first and

second moments v.2 =1 and LY then

1 - F(t) > (4,19)

o Kb it e w1 84 e
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where a is determined by (4,17) and (4,18) with ¢ =1 and

1
T = t., The bound is sharp,

Note that since F is DHR, ua >2,

Proof, Since F and G have the same first two moments,

-1
® ;211.2
they cross at least twice, Since F is DHR there are exactly
two crossings, and the first crossing of 1 - G -1 by 1-F

® 2,
must be from above, Hence 1 - F(0) > Zua-l. Now let t >0 and

suppose that 1 - F(t) <1 - Gt,l(t). Then since 1 - F(0) <1 - G, , (0,
s L

1

F and G can cross at most once in [0,t], and it follows from

tsl
1 -Ft)<1l- Gt'l(t) that there are no crossings in [0,t], Since
H

1-Ft)<l- Gt;l(t)’ there can be at most one crossing of F and

G in (t,@), Hence F and G cross at most once in [0,®) |,

t;l t;1

contradicting the assumption that they have the same first two mcments.”

27"
'-G-ﬂp;' (‘,

il e wea Flaues ey




57

Theorem 4,6, If F is DHR, F(0-)=0 and F has first and

second moments ul =1 and ua, then

et 0<t<1
-1
(te) lgtsn, /2
1-F(t) < (4,20)
. -2t/ uy
2u, e y By /25t <n,

sup 1 - G,,,(t), t >, .,
o<T<t ! 2

These bounds are sharyp,

Proof, Recall from (3,13) that

1-F(t) <

(te)’l, t>1,

We wish to show these bounds are sharp for t < By /2. Let a,,8,

and o be determined by (4,17) and (4,18) , and assume that

v, >2 (so that F 1is not exponential), Then since F is DHR,

>1>a,, Hence by (4,17) lim a_ =
8 2 ' oem 2
-1 8T -1
lim a,[(aja” -1)e ™ +11J7 =0, By (418),
T
-a_T -a. T
lim aa-le "1 <uy/2a < ®, so that lim az-le E! = 0, Hence
T-mo T-®
from (4,7) and & >1 we conclude lim a, =a, This means

T-®

[V

PR RN YR Y P
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that lim 1 - G, (x) = ae **,  Since lim1 - Gp.q (t) = e-t,
T i% Tem H
(4,20) is sharp for t <1, Since 1lim 1 = GT’l/t(t) = (t:e)-1 .
T-® !

(4,20) is sharp for 1<t < By /2 . Note that for t = B, /2,

equality is attained by the distribution 1 - G a1 e
® ;Zua

Next , recall from (3,13) that

- 2
1 -F(t) <2e sz /t5, L2 2u21/2 ;

this proves (4,20) for t = Bae Equality is attained in (4,20) for

t = By again by the distribution 1 - G 1
m;ZuZ
We have shown that 1 - F(t) <1 -G _l(t) for t = s /2
m;2u2
and t =w, . Since F is DHR, this implies 1 - F(t) <1-G 4

for a11 t in [u2 /2,u2], so that (4,20) holds for
Wy /2t S, .
Finally, we consider the case t > By . Since 1 ~FO0)<1 - GT;l(o)’
there is at most onme crossing of 1 - GT;l by 1 -F in (0,T],
and hence there is a first crossing u(T) to the right of T, Since

1 - GT'I(T) <1 - F(T) by (4,19), this crossing is from above, Since
i

w(T) > 7, lim w(l) = @, Since 1lim1l -Gy, (x)=1-G 2,
T— T-0 ! ® 2,

lim 1 - qr.l(uz) = sz-le-2 >1 - F(uz), and hence lim u(T) < By .

T-0 ! T-0

By arguments similar to those of section 4,1, it follows that u(T)

is continuous in T, so that for every t > Boy there exists T < t

[ERRIUA—
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such that u(T) = t, that is, 1 - Gy ,(t) =1 - F(t).]|
)

We remark that the bounds of (4,20) are sharp with the additional
assumption that F(0) = O, However, it may be that the bound can

only be approximated, and equality is unattainable,

Remarks on Generalizations, We conjecture that in case the first

n moments are given that the family of extremal distributions again
consists of piecewise exponentials with n pieces, and the
possibility of truncation on the right, Indeed, it is possible to
show that such distributions are extremal by arguments essentially the
same as used to prove Theorems 4,3 and 4,5, However, one requires a
generalization of Lemma 4,4 (or its DHR anslog), Here, one would like

to know the solution to the moment problem for IHR (DHR) distributions,

< i

A s ) e e B
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5. UPPER BOUNDS FOR 1 - F WHEN f IS PFz.

In this section, we obtain a sharp upper bouni for 1 - F(t), given

a single expectation §”C(x)dF(x) = v (¢ monotone), when F(0) = 0
and F has a density of that is a PSlya frequency function of order 2
(PF2). Briefly, f 4is PF, if log f(x) 1s concave on the support of
F, an interval (see Schoenberg (1951) for a precise definition). The

condition that f 4is PF, implies that F is IHR (Barlow, Marshall,

2
Proschan (1963)), so that the result here is a sharpening of inequality

(3.5).

Under the condition that f 1s PF2, no sharpening of (3.1) is ,

possible, since the extremal distributions of (3.1) are exponential,

and therefore have FF, (indeed, PF,) densities,

Let
(1- e'bx)/(l -, o <x<m
Gm(x;b) =
1, x>m,
for m>0 and b # 0; let Gm(x;O) = lim Gm(x;b). This distribution
b-+0
has a density
be™/(1 - &™), 0¢x<m '
gn(x3b) =
o, elsewhere, !

vhich is obtained by truncating an exponential density. Hence €n is

PFé.

Theorem 5.1. ILet f bhe a PF2

Let { be a function continuous and strictly incressing on [0,%) such

0

that § ¥(x)dF(x) = v exists finitely. Then for each m > (-l(v),
0

density such that f(x) = 0 for x< 0.
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o s AR

there exists a unique bm satisfying !

-]

E() &(x)dG (x50 ) = v. (5.1)

Furthermore, for all t > 0,

l, t < C—l(\))

1 -F(t) (5.2)
sup(1 - G (t50)], ¢ 27w,
mpt

In the case that &(x) = x, this bound has been computed numerically,

and is graphed in Figure 6.1.

Before proving Theorem 5.1, we prove some useful lemmas.
o

Lemma 5.2. § C(x)dGm(x;b) = o(b,m) is continuous in b for fixed m
st .

and continuous in m for fixed b.

Proof. Since 1imG_(x;b) = G (x,b*), and 1imG_(x;b) = G_,(x;b) for
- ob* n mom* o
all m* >0 and all b¥*, the theorem follows from the Helly-Bray lemma

(Lodve, 1960, p. 182). ||

Lemma 5.3. For all m >0 and ve[£(0),4(m)] there exists a unique b,

satisfying (5.1).

Proof. We first show that Gm(x;b) is strictly increasing in b for each
x<m. If b#O, 6Gm(x;b)/ab >0 if and only if o(x) > o(m) where

o(z) = ze-bz/(l - e—bz). But o'{z) = e_bz(l - bz - e‘bz)/(l - e-bz)2 <0
for all bz # 0. Hence for x<m and b #0, o(x) > e(m). If b =0,

then aGm(x;b)/ab =x(m - x)/2m > 0 for x < m. Thus Gm(x;b) is
b=0
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strictly increasing in b for each x < m, and hence &(b,m) SC(x)dGm(x,b)

is strictly decreasing in b (since { is increasing). Since &(b,m) is
continuous in b by Lemms 5.2, it remains only to show that lim SC(x)dGm(x;b)
o
= ¢(0) and 1lim SC(x)dGm(x;b) = ¢(m). But this follows by the Helly-Bray
b+ =

lemma, since
0, x<0 0, x<m

lim G _(x3b) = and lim G _(x3b) =
b O b+ oo
1, x>0, 1, x>m ||

\
For conveniencs, we introduce the notation

g (%) =g (x3b ).
Lemma 5.4, gm(t) is continuous in m > t.

Proof. It is sufficient to show that b = is continuous in m, where

b~ 1s determined by (5.1). Let € >0 and fix m. Since &(b,m) is
decreasing in b (see the proof of Lemma 5.3), and since ® is continuous
in b (Lemma 5.2), there exists n > 0 such that <D(bm +e,m D>v -1

and <I>(bm -e,m) < v+ 1. Nowsince & is continuous in m, there exists
8 >0 such that |m -m'| <3 dimplies <I>(bm +e,m') Dv - 2q,¢(bm - e,m')
< v + 2n. Then by monotonicity and continuity of o, bm,c(bm - &b + £).

That is, Ibm - m'l < ¢ whenever |m -m'| < &.]

Suppose that for all m, f % 8n* Then g, Ccrosses f exactly
once from below; since log f(x) is concave and log gm(x) is linear
in xe[0,m), there is at most one such crossing (see Xarlin, Proschan

and Barlow (1961)). By (5.1), F and G, mst cross at least once

i o B AR BNt S T

, v‘*_wwnw‘
i “=%'§¥§maw~
o i

(f and g, mst cross twice) so that there exists at least one such

crossing. Denote the unique such crossing point by x*(m).



63

Lemma 5.5. x*(m) is continuous in m.

Proof. Fix m and let x*(m) = x*. Since g, crosses f from below
at x*, there exists € > 0 such that

> 0, x* - 28 { x < x*
£(x) - g (x)
<o, x* {x  x* + 2e,

Let 2n = min{[f(x* - €) + g (x* - €)],[g (x* + &) - £(x* + e)]}. Since
gm(x) is continuous in m > x for fixed x, there exists & > 0 such
that |m - m']| < & implies Igm(x) - gm,(x)l {n for x=x*+e. Then
[£(x*+ €)= g (x*+ €) | > |£(x*+ €)- g (x*+ €)| - |g (x*+ €)- g ,(x*+ €)| > 0,

|£(x*- €)= g (x*- €) | > |£(x*- €)- g (x*- €)| - |g (x*- €)- g ,(x*- €)]| > 1.

By continuity (in x) of f(x) and gm,(x), x*(m?) e(x*(m) - e, x*(m) + €);

i.e., |m-m'| <& implies |x*(m) - x*(m?!)| < e. |

Proof of Theorem 5.1. We suppose without loss of generality that f 2 -

for all m > O and consider the case that t > C_l(v). Since §{(x)dF(x) = v,
it follows that ¢(0) < v, and for m >t > C—l(v), v £ &(m). Thus b
satisfying (5.1) exists uniquely by Lemma 5.3 for all m 2 t. Now assume

that t < x*(x) (otherwise the theorem is obvious). Clearly x*(t) < t.

Hence by Lemma 5.5 there exists m, such that x*(mo) =t. Since g
0
is logarithmically linear in x < Dy f and g, can cross at most twice
0
in (O,mo). If there are two such crossings, then since gm crosses f

0
from below at t, the other crossing point x satisfies x <t. If

there is only one such crossing (at t by choice of mo), let x = 0.

et e st e ey RS

et e vh AT A e T 1 1ot m e s e e s b s e
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Then in elther case,

<gmo(x), 0<x<x or t<x<m g
£(x) (5.3) |
ngo(x), xl<x<t or x>mo. !

Let 4(x) = a + pY(x), where B = [C(mo) - C(xl)]_:L and @ = - C(xl)B.

Then X[ t’m)(x) - 4(x) changes sign with f(x) - gmo(x), and consequently

(X740 (0) = UD]EG) - gmo(x)] < 0. (5.2) ‘

Integration on x from 0 to o« ylelds

[~ co

§ £(x)ax < § g (Nax. || ’
t t Mo

=

Figure 5.2
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Theorem 5.5. Inequality (5.2) is sharp.

Proof. In case v < {(t) the theorem is obvious; in case v > {(t),
equality is attained by the distribution degenerate at v. This degenerate
distribution can occur in many ways as a limit of distributions with PF2

densities. ||

Corollary 5.6. Let f bea PF, density such that f(x) =0, x<0,
t

and such that § f(x)dx = p. If ¢ is a function continuous and strictly
0

increasing on [0,®), then

SMC(x)f(x)dx > inf Sak(X)g olxse )dx, (5.5)
0 m>t 0

where for each m > t, ch is uniquely determined by

t
é gm(x;cn)dx = p. (5.6)

Proof. G (t;c) is strictly increasing in c (see the proof of Lemma 5.3),

lim G (t ¢) =1 and for t<m, 1lim G (t ¢) = 0. Hence (5.6) has a
c* o fend® )
unique solution c =~ for each m >t and pe(0,1} .,

0
as defined in the proof of Theorem 5.1. Then by (5.4), G (t;bm ) < F(t)
0 0

[ ]
Consider now the case that &(t) > v = § {(x)f(x)dx. Let m_ be
0

=G (tjc_) so that G_(x;b ) <G (xje_) for all x. This together
Bo Mo o M T "o " To
with monotonicity of ¥ yields

S (x)f(x)dx = S C(x)gmo(x-bmo)dx > g“k(xﬁgmo(x;cmo)dx

> inf S g xjc )dx.
m>t 0

s s o 4



Next suppose that &(t) < v. Since, for fixed c, 1lim G (tje) =1,

mbt . :

it follows that limc = -, Since ¥ is contimuous at t, i
o mt © ;

linm § C(x)gm(x;cm)dx = (1) < § Ux)f(x)dx. || !
mét O 0 :

Theorem 5.1 remains true if & is strictly decreasing rather than
increasing. In this case, the statements of the lemmas remain unchanged
and the proofs require only minor modifications. Inequality (5.4) is

replaced by

[xpo,4)(®) - AN - gmo(X)] 20,

where A x) = a +p¢(x) and B = [((xl) - C(mo)]'l, a = - C(mo)ﬁ' If
¢ 1is decreasing rather than increasing, the direction of inequality (5.5)

is reversed, and the infimum is replaced by supremum.

For Theorem 5.1, the continuity of ¢ was used only for the applica-
tions of the Helly-Bray lemma in Lemmas 5.2 and 5.3. This condition can
be relaxed, as can the condition that ¢ be strictly monotone. In parti-
cular, (5.2) holds if for some s > t, &(x) = X[s,aﬁ(x) (i.e., if v 1is

a percentile).

We remark that for t > v, .

£(t) 2 g, (t). (5.7)

This inequality follows from arguments similar to those advanced in the
discussion preceding Lemma 5.5. Further bounds for densities will appear

in s forthcoming peper by the authors.

Note that g~ 1s not FF This means that in case f is PF

3.
inequality (5.2) is not sharp, but can be improved.

3,
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6. SQME NUMERICAL COMPARISONS.

Extensive tables for various bounds of Sections 3, 4, and 5 that

have no explicit expressions are given in Barlow and Marshall (1963).

We present here some numerical results in the form of graphs, and make

comparisons with several other bounds, which are listed below:

(1) 1f F(0-) = 0, F 1is concave on [0,®)

(i.e., the density f

is decreasing on [0,®)), and Wy =1, then an upper bound for 1 - F(t)

due to Camp (1922) and Meidell (1922) is given by

(2) If f is unimodal (more generally, if

and concave on [m,o) for some unknown m), and

1, 0<t<1
1-8t) <{ 20 -1, 1¢t<3p
1/2t, t > 3/2.

(2.7).

F is convex on [O,m]

By = 1, then

(6.1)

This bound follows from the general theory given by Mallows (1962) and was

commmnicated to us by Prof. Mallows. Inequality (6.1) may be proved using

an appropriate modification of the method illustrated by Example 2.2

assuming first that the location of the mode is known.

(3) In case F(0-) = 0, by =1 and p, is also known, the following

upper and lower bounds for 1 - F(t) are consequences of results given

by Chebyshev (1874):
1,

1-8t) <{ t73,

(by - D/[by -1+ (¢ - D3, ¢

<t <, (6.2)

)

e oM e 4
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S

(1- 0%k, -0+ -1%, o0gtgl
1-KY 2 (6.3) j
0, t21. .

(4) By incorporating the hypothesis of (1) that F 4is concave
on [0,¢), Chebyshev's results (6.2) and (6.3) have been improved by
Royden (1953), as follows:

1-1t/2, 0t
(2t)7t 1<t < p/k
1 - F(t) € ) 4 (6.4)
3, - 4 2
— where t = lg“ (a-1) 4 Bos i
4(30% - 4a) + 3p, 430" - 4o) + 3,
(2- %3, - 2t), 0<tg2

0, t > 2.

Assuming that u, =1, the graphs of Figure 6.1 give upper bounds
on 1 - F(t) in the cases of: general F(1.1); unimodal £(6.1);
IHR F(3.10); PF2 £(5.4). Recall that f is FF, implies both that
F 1is IHR (Barlow, Marshall, and Proschan, 1963), and that f is unimodal
{Schoenberg, 1951). However, IHR distributions need not have unimodal '

densities (Barlow, Marshall, and Proschan, 1963).

Figure 6.2 again gives upper bounds for 1 - F(t) with By = 1.

kb e

Here Markov's inequality (1.1) is given together with the improvements i
in case f 1is decreasing (2.7), and in case F is DHR (3.13). We

recall that F is DHR implies that F 1s concave (f is decreasing).

e
13
#
§,f
i
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Figures 6.3 (a,b, and ¢) show the upper and lower bounds of Chebyshev
(6.2), (6.3) together with their IHR improvements given in Corollary 4.2
and Theorem 4.3. The striking improvement in the IHR case with by = 1.8
is partially explained by the fact that if F is IHR with Wy T 1 and

Bo = 2, then F 1is exponential.

Figure 6.4 for By = 1, Hy & 3 shows the sharp upper and lower bounds
of Chebyshev ((6.2),(6.3)), their improvements in case f is decreasing
(F is councave) on  [0,0), ((6.4){6.5)), and their further improvements

in casz © is DHR, given in Theorems 4.5 and 4.6.

T 1
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Figure 6.1 Upper bounds for 1 - F(t) (pl =1)
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Figure 6.4 Upper and lower bounds for 1 - F(t) (ul = lop, = 3)
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7.  SOME REMARKS ON GENERALIZATIONS.

~ The arguments of this paper which depend on convexity properties
of log[l - F(x)] have been in several instances 1llustrated in Section 2
assuming convexity properties of F itself. This suggests that the two
theories can be unified by appropriate generalizations, and in this

section we indicate how this can be done.

A central role in the theory of distributions with monotone hazard
rate is played by the exponential distribution. The simultaneous
importance of the exponential function and the log function (which appears

in the definition of IHR) suggests the following

Theorem 7.1. Let G be a distribution function with G(0-) = 0,

oo

suppose that the support of G is an interval, and let § [1 - G(x)]dx = 1.
0-
Then H(x) = (1 - G)_l(x) is defined for all x satisfying 0 < G(x) < 1.
[ <]

If H(1 - M{(x)) is convex, F(0-) =0, and 1t < By = § [1 - F(x)]dx, then

1-Rt) >1 - C-(t/y.l). (7.1)

The inequality is reversed if H(1 - F(x)) 41is concave.

Similar results can be obtained in case Ky is replaced by the
expectation of an arbitrary increasing function. Inequality (7.1) can
be proved using the method of Example 2.2; it is sharp, with equality

attained by the distribution G(x/p.l) .

Inequality (7.1) is to be compared with (3.8), in which case

G(x) =1 - X, Choosing G(x) = x/2, 0 { x <2, end assuming

e ek S b s i T
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i, Gk - MR

H(1 - F(x)) 1s concave, one obtains the first bound of (2.7) with

T

r=1, ] i

The direct proof given for (3.10) actually utilized only the

1 logll - F(x)] > 7 logll - F(t)], x {t, which

condition that x
is satisfied, e.g., by IHR distributions. Let ¢x(-) be a strictly
decreasing continuous function on [0,1] (in particular, we may take
wx(u) = x1 log u), and suppose that o(z) = Stwikz)dx is continuous.
Let ¥(x) =¥ (1 - F(x)). °
- _
Theorem 7.2, If § xdF(x) = By <o, if ¥(x) <¥(t), 0¢x<t, and
if o(0) > By 2 w(gf, then there exists a unique =z, satisfying w(zo) = g

For zg SO defined,

-1
- | . .
1 -F(t) Svt (zo) (7.2)
The proof of (7.2) is essentially the same as the direct proof given
for (3.10).
I 1b51(z0) {1 end d);l(zo) is decreasing in x, the distribution

0z, x<t

1-G(x) =
o, x>t

attains equality in (7.2).

As previously indicated, (7.2) reduces to (3.10) with r =1 in
case ¥ (u) = - x™" log u; the condition 0(0) 2, 20(=) 1is satisfied

when t > e If ¢x(u) = $(u) for all x, (7.2) reduces to (1.1) with
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r=1. wth ﬂ’x(u) = (1 -u)/x, ¥x) £ «t) becomes x'lF(x) < t'lF(t),
x {t, which is true if F is convex in x £ t, and (7.2) reduces to
(2.4) with r = 1. Again the condition o(0) > B 2 o() is satisfied

when t > By
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