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SUMMARY

A mathematical theory is developed for the low-speed aero-
dynamics of rectangular wings with side-edge separation. This
theory is then extended to wings with sweptback leading edges
(and straight trailing edges) by representing the actual wing
as a system of elementary rectangular wings of varying aspect
ratio. Thus, in the limit, steady separation along the entire
leading edge is approximated, and the theory leads to an iterative
computational procedure for calculating the aerodynamic charac-
teristics of sweptback wings with leading-edge separation.

The assumed vortex system of the elementary rectangular wing
consists of a lifting line with its associated trailing sheet
(lying in the plane of the wing) and a separated vortex sheet from
each side edge with an associated bound vortex system in the wing.
The Kutta condition is satisfied along the side edges, and the
boundary condition of no flow through the wing is satisfied along
a selected control line for all spanwise points by means of Fourier
analysis. The resulting theory includes the classical lifting-
line theory of Prandt) and provides a means of calculating the
span load distribution as well as the strength of the shed vortices
and the resulting downwash throughout the flow field. The shedding
angles of the separated vortices are found by an iterative tech-
nique in which the vortices are required to be shed at the angle
of the local flow immediately outside the sile edges.

Calculations are presented which demonstrate convergence of
the method for both rectangular and delta wings, both with and
without iteration on the shedding angles of the separated vortices.
Comparisons with experiment are also presented for aspect ratios
up to five, and it is found that for rectangular wings the cal-
culated normal forces using one wing element are in all cases
within 10 percent of experiment but the calculated shedding angles
are unrealistically high. For delta wings, the high shedding
angles evidently cause high predicted normal forces. Iowever,
the present theory gives very good agreement for normal force and
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center of pressure for delta wings of aspect ratios from one to
four, provided that an appropriate shedding angle is assumed and
held fixed. In this event, the present theory gives substantial
improvement over linear theory for the prediction of normal force
and center of pressure, particularly at the lower aspect ratios.
The required shedding angle is found to depend only on aspect

ratio and decreases nonlinearly with increasing aspect ratio.
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Fourier coefficients of downwash from other wing elements
(see Eq. (74))

local wing chord
chord of kth rectangular wing element (taken as cd/nw)
local lift coefficient on chordwise strip (see Eq. (94))
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3 pv,®s % PV, s,
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of the loading + (1)

normal force acting on the lifting line

number of rectangular wing elements used to represent
a sweptback wing

semispan of rectangular wing or lifting line
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semispan of ith rectangular wing element

semispan of swept wing
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velocity components in the x, y, z directions,
respectively

free-stream velocity
upwash in the plane of the wing due to an elementary

horseshoe vortex of unit strength lying in the plane
of the wing

Cartesian coordinates fixed in the wing (see Fig. 1)

distance of center of pressure behind wing leading edge

distance from leading edge of rectangular wing to its
control line

distance of ith control line behind leading edge of

xth rectangular wing
induced by the lifting line and its trailing sheet
lying in the plane of the wing (including image system
of separated flow)

induced by the horseshoe vortices representing the
separated flow

absolute value

angle of attack

spanwise circulation distribution of the lifting line
Fourier coefficients of «(n) (see Eg. (13))

nyn/4wsvw sin a

circulation per unit length of vortices shed from
side edges (see Fig. 1)

{d](dglc

4wst sin a

a vanishingly small distance

angle of vortex shedding from rectangular wing (see Fig. 1)

distance of lifting line behind leading edge of rectangular

wing (taker as 0.25 c)
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A THEORY FOR THE LOW-SPEED AERODYNAMICS OF STRAIGHT
AND SWEPT WINGS WITH FLOW SEPARATION?

1. INTRODUCTION

When a thin rectangular wing is set at a small angle of attack
in a uniform incompressible stream, the flow remains attached to
the wing surface so that all of the shed vorticity liies in a sheet
which contains the wing planform and proceeds to roll up gradually
after leaving the wing trailing edge (see sketch).

™~

The aerodynamic behavior of such wings at low angles of attack is
well predicted by the classical lifting line theory. developed by
Prandtl. As the angle cf attack is increased, the side edges
become more oblique to the free stream, the fluid can no longer
negotiate the 180° turn at the side edges (from lower to upper
surface), and side-edge separation occurs, giving rise to two
additional vortex sheets which, at higher angles of attack, begin
to roll up even ahead of the wing trailing edge (see sketch).

T~

l1This report supersedes Vidya Report No. 38.
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Finally, at still higher angles of attack, the flow separates from
the leading edge, giving rise to vortices whose axes are essentially
normal to the free-stream direction. For this reason, the leading-
edge vortices must pass downstream with the general flow, producing
an unsteady flow with vortex shedding in the manner of flow past

a bluff body (see sketch).

The angles of attack at which the foregoing phenomena occur
and the rates of rolling up and shedding depend upon- the aépect
ratio of the wing, the sharpness of its various edges, and '
upon the Reynolds number of the free stream. In the early
years of airplane flight, wings of practical design were.of rather
high aspect ratio with well-rounded leading and side edges. Con-
sequently, separation from the side edges was ﬁegligible, and the
classical lifting line theory was applicable over practically the
entire usable angle-of-attack range up to the onset of the familiar
stall, corresponding roughly to the leading-edge ~eparation dis-
cussed above.

More recently, however, both wing thickness and aspect ratio
have diminished (to gain high-speed performance) so that the inter-
mediate regime of side-edge separation has become increasingly
important. Furthermore, for wings with sweptback leading edges
(e.g., delta wings) the intermediate regime of steady-state separ-
ated flow is typical of the landing condition, since such wings do
not "stall" in the usual sense. It is in this connection that the
present investigation has been undertaken.
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The analytical work of the existing literature will first be
reviewed as it bears upon the physical problem discussed here, and
then a new theory will be developed for the analytical treatment
of rectangular wings with side-edge flow separation. This theory
will then be extended to the case of sweptback wings with leading-
edge separation, using the rectangular wing as an elementary build-
ing block. Convergence of the method will be demonstrated, and
numerical calculations of normal force and center of pressure for
both rectangular and delta wing planforms will be presented.
Finally, comparisons will be made with available experimental data,
including some span load distributions and vortex shedding angles
for delta wings, and the limitations of the theory will be dis-

cussed in some detail.

2. LITERATURE SURVEY - STATE OF THE ART

The fact that there exists an apparent fundamental difference
between the aerodynamic behavior of rectangular and triangular
wings at high angles of attack has been recognized for many years.
It is therefore natural that attempts at analytical treatments of
high-angle-of-attack phenomena have generally fallen into one or
the other of these two categories, and only one serious attempt has
been made to formulate a general theor& which would handle wings
of arbitrary planform exhibiting steady flow separation. Further-
more, the inherent unsteady character of the flow at angles of
attack beyond the stall and the strong dependence on viscous phe-
nomena have inhibited analytical progress on the problem of stalled
rectangular wings. The first major contribution along these lines
was made in 1939 by W. Bollay, who evidently recognized that, for
rectangular wings of low aspect ratio, separation occurs mainly
along the side edges and that this type of separation produces a
steady flow.
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2.1 Rectangular Wings
2.1.1 Small aspect ratio

The theory of W. Bollay (Ref. 1) treats rectangular wings of
small aspect ratio under the assumption that all shed vortices lie
in two planes normal to the wing surface and containing the side
edges. Thus, the wing is represented as a continuous distribution
of horseshoe vortices lying at some angle 6 to the wing surface,
as shown in the following sketch:

The angle 6 is assumed constant and the vortex strengths ¢ are
assumed to be constant across the span (uniform span loading) but
continuously varying in the chordwise direction. The chord load
distribution is taken to be that of a flat plate of infinite aspect
ratio with a singularity at the leading edge; that is,

(1)
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where <y 1is the circulation per unit length and ¢ is the chord.
The boundary condition of no flow through the plate is satisfied
"in the mean" along the centerline of the plate. Thus,

. +%

f w d<§>= -V _sina (2)
=)
where w 1is the total velocity in the z-direction due to the
bound and trailing vortices. This procedure leads to a rather
complicated integral equation which is to be solved for the con-
stant v,. Since the solution depends upon the shedding angle
6, Bollay determines this angle from the induced velocities by
imposing the condition that the free vortices must follow the
streamlines. This condition is imposed only in the vertical plane
(which means the lateral velocity components are neglected) and
only at the surface of the plate (which assumes that the vortices
in the immediate vicinity of the plate are dominant in determining
the downwash there). Thus, the shedding angle is interpreted as
the angle at which the vortices leave the plate initially.
Two limiting cases are considered by Bollay in Reference 1.
For the case of infinite aspect ratio (which actually violates the
assumptions of the analysis), the normal force is found to be inde-
pendent of the shedding angle € and is given by

CN = 27 sin a cos o (3)

A=—ro0

which, surprisingly enough, agrees with the Prandtl wing theory.
In the second limiting case of vanishing aspect ratio, the shedding
angle 6 is found to be just half the angle of attack (for small
a), and the resulting expression for the normal force coefficient
is
Cyx = 2 gin? (4)
A—0
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which is identical with the result of Newtonian impact theory.
The same result was also obtained by Betz (Ref. 2) in 1935 by
introducing the '"cross-flow drag” concept and using the experi-
mental drag coefficient for a two-dimensional flat plate.

The theory of Bollay is limited to rectangular wings of small
aspect ratio in incompressible flow and is not suited to the calcu-
lation of quantities other than normal force. However, the agree-
ment between the calculated and measured normal forces is excellent
at very low aspect ratios up to angles of attack of about 40°.
Furthermore, the predicted normal forces for high aspect ratios
(A = 6) agree with experiment within about 20 percent for angles
of attack below the stall. The stailing phenomenon for high aspect
ratios is clearly contrary to the assumed mathematical model.

A few years after the appearance of Bollay's paper, a theo-
retical analysis was published by F. Weinig (Ref. 3) whose aim was
to extend the Prandtl wing theory down to lower aspect ratios.
Weinig observed that for small-aspect-ratio wings the apparent
mass of air which is deflected downward by the wing is greater than
that which results from lifting line theory with elliptic 1lift dis-
tribution. According to lifting line theory, this mass would corre-
spond to the mass of a cylinder of air having a diameter equal to
the span. Weinig's innovation was twofold: first, he considered
the actual projected area of the wing (8 sin a) so that the
mass of air deflected downward per unit time is given by

m= pV‘w(vrs2 + 8 sin a) (5)

where s is the semispan and S the planform area; and second,
he introduced a novel method, based on cascade theory, for calcu-
lating the induced downwash associated with this mass.

In this manner, Weinig developed a theory for the lift and
drag of small-aspect-ratio wings which is considerably simpler
than Bollay's theory from a mathematical standpoint and which gives
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identical results (Egs. (3) and (4)) for the limiting cases of
infinite and zero aspect ratio. The agreement with experiment
for nonvanishing aspect ratios, however, is not quite as good as
for Bollay's theory.

2.1.2 Intermediate aspect ratio

More recently, K. Gersten (Ref. 4) presented an analytical
method for extending linear lifting surface theory down to lower
aspect ratios by incorporating the low aspect ratio results of
Bollay. That is, Gersten allows the trailing vortices of each
elementary horseshoe vortex to be shed above the plane of the wing.
Thus, the actual wing is considered as made up of a number of
Bollay-type wings placed side by side and it is assumed that the
shedding angle of all the horseshoe vortices remains constant at
the limiting value of a/2 found by Bollay for vanishing aspect
ratios and angles of attack. Gersten's model therefore has
vortices shed over the entire wing surface.® In order to make the
problem mathematically tractable, Gersten then divided the wing
into a finite number of spanwise strips, concentrated the lifting
line of each strip at the guarter chord, and proceeded to satisfy
the boundary condition of no flow through the wing at the corre-
sponding three-quarter chord of each strip. Thus, Gersten's
mathematical model consists of a discrete number of lifting lines,
each having an unspecified spanwise loading and shedding a flat,
continuous vortex sheet at half the angle of attack, as shown

below:

2This type of vortex shedding is incompatible with the physical
requirement that the vortices follow the local streamlines, which
must lie in the surface of the wing. (See discussion on page 16.)



v, (n)
Boundary condition
}f appiled here ln 1/4 chord
Liftin ine
g _ - 3/4 chord
’ S //1/4 chord
\v a/2 —
V a — -

_—3/4 chord
J

00 -
/\{

Mathematically, then, Gersten represents the spanwise circu-
lation distribution of each lifting line as a sine series and, by
applying the boundary condition at discrete points on each 3/4-
chord line, is led to a set of simultaneous algebraic equations
for the unknown coefficients. 1In arriving at these equations,
Gersten further assumed that the angle of attack is small and
neglected higher order terms in angle of attack. Then, the normal
force and the pitching moment can be represented as

N = + N

Nlinear theory sep
=k a+ k a® (6)
1 2
and

M=ka+ k a® (7)
3 4
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so that the solution of Reference 4 is actually made up of the
linear theory of Scholz (Ref. 5) plus a quadratic correction term
which is determined from the analysis and stems from the fact that
the trailing vortices do not lie in the plane of the wing.

It is clear that the above model does not reduce to Bollay's
model for very low aspect ratios. 1In fact at aspect ratio zero,
Gersten's model yields a coefficient of 3.2 for the quadratic term
in the normal force, as compared with Bollay's value of 2.0.
Gersten's mathematical procedure is by nature restricted to small
angles of attack, but appears to give an improvement over Bollay's
theory for the aspect ratio range from 2 to 4 for angles of attack
up to about 15°. 1In addition, Gersten's analysis is suited to the
calculation of load distribution and pitching moment in addition
to lift and drag.

2.1.3 High aspect ratio

For aspect ratios of the order of 5 or 6 and above, with
rounded wing tips, the flow over the wing remains attached up to
the stall. Below the stall, the classical lifting line theory
applies and the lift curve is essentially linear. The stall
itself becomes more abrupt as the aspect ratio increases and does
not\behave according to the steady-flow models proposed by Bollay
andﬁGersten. Instead, additional vortices which are aligned normal
to the stream direction begin shedding from the leading and trail-
ing edges, and the flow becomes unsteady. The problem then becomes
the bluff body problem, which remains one of the classical unsolved
problems of aerodynamics. There is, therefore, as yet no satis-
factory theory for treating high-aspect-ratio wings above the stall
angle, which is well defined experimentally. However, there has
been some interesting analytical work related to this problem
(Refs. 6 and 7) which employs the classical integral-differential
equation of Prandtl lifting-line theory. The essential contri-
bution of this work is a demonstration that if the airfoil section
is assumed to have a lift curve which shows discontinuities or
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negative slopes (which are typical of the stall), then the Prandtl
equation yields asymmetric solutions for the span loading and
therefore predicts the possibility of large rolling moments asso-~
ciated with the stall. The thesis work of Schairer (Ref. 7) treats
a specific case of a discontinuous lift curve, as shown in the
following sketch:

1.5 {
]
1.2 L
CL
0 +
0 15°

2.2 Triangular Wings

The theory of Brown and Michael (Ref. 8) contains the essential
elements of a number of recent papers (e.g., Refs. 9, 10, and 11)
which collectively represent the present status of the mathematical
analysis of highly swept wings with leading-edge separation. The
analysis is confined to triangular wings of low aspect ratio and
makes use of the slender-body approximation. With this approxi-
mation, the total lift is given by (see Ref. 12)

L= -pV §-¢ dy (8)

[~

where the contour ¢ encloses the trailing-edge cross section of
the wing and the vortex sheets. Thus, the lift is linear in the
potential ¢ and is therefore composed of two parts; one being
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the usual slender-body lift (which is linear in «a), and one being
the additional lift due to the potential associated with the sepa-
rated vortices. .

The model proposed by Brown and Michael is illustrated in the
following sketch:

v

I

o)

LN

It is assumed that all of the trailing vorticity above the wing is
concentrated in two fully rolled-up vortices whose strengths vary
linearly in the chordwise direction. The contribution of the feed-
ing vortex sheets (between the wing leading edges and the rolled-up
vortices) to the complex potential in the cross-flow plane is
neglected. However, since the feeding vortices shed from the lead-
ing edge lie almost normal to the free stream (rather than along
the streamlines) they must sustain a force. The condition that the
shed vortex system be force-free everywhere is therefore approxi-
mated by requiring that the net force on the entire vortex system
be zero. In this manner, with the Kutta condition imposed at the
leading edges, Brown and Michael proceed to solve for the vortex
strengths TI' and the vortex positions, and thereby calculate the
total lift and drag, as well as the spanwise load distribution3.

%A similar analysis has been applied by Cheng (Ref. 13) to the
corresponding problem of a rectangular wing with side-edge
separation in supersonic flow. Here the separation effects are
confined to the tip region within the Mach cone.
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The lift curve calculated by the above method agrees well
with experiment only for extremely low-aspect ratios (small apex
angles) and the predicted high peaks in the pressure distribution
are not realized because the streamwise vorticity is actually
distributed through the feeding sheet rather than being concen-
trated in two discrete vortices.

A somewhat more general treatment of the slender triangular
wing with leading-edge separation has been developed by Mangler
and Smith (Ref. 14) who consider a more realistic shape of the
vortex sheets and calculate the lateral distribution of streamwise
circulation within the sheet, accounting approximately for the

requirement. of no force on the sheet and no flow through it. (See
sketch.)

However, the severe limitation on aspect ratio remains.

2.3 Sweptback Wings

In Reference 15, Pappas and Kunen treated the high-aspect-
ratio swept wing by what is essentially simple sweep theory with
a single concentrated vortex representing the leading-edge separa-
tion. Thus, the flow in planes normal to the leading edge is
treated as shown in the sketch below.
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Section A-A

and the lift and drag of the airfoil section are calculated by the

two-dimensional Blasius theorem involving the complex potential

in the plane A~A. This treatment is similar to the slender-body

analysis of Brown and Michael (Ref. 8) for the slender delta wing

where the two-dimensional flow in the cross-flow plane is calcu-

lated. Hence, there are similar drawbacks to the analysis of Pappas

and Kunen (Ref. 15) who calculate the separation vortex strength

' from the experimentally determined vortex position over the swept

wing. That is, the separated vortex strength I’ must actually

vary spanwise over the sweptback wing. Therefore, there must be

a feeding vortex sheet connecting the separated vortex with the

wing leading-edge, and the force acting on this sheet plus the

separated vortex must be set to zero. This was not done in Ref-

erence 15. However, good agreement with experiment was demonstrated

for the calculated span load distribution over the inner half of

the span for the case of a 45° swept wing at 10° angle of attack.
The theory of Reference 15 is clearly restricted to high

aspect ratios and does not apply over the outboard sections of

the wing, where the flow pattern is quite different from the

assumed two-dimensional model. Pappas and Kunen suggest using

experimental stalled-airfoil data in the tip regions.
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Just in the past year, an attempt has been made to treat
sweptback wings of arbitrary aspect ratio with flow separation.
This analysis (Ref. 16} by Gersten represents a natural extension
of his rectangular wing analysis (Ref. 4) which was discussed in
Section 2.1.2. In Reference 16, however, the Bollay model is com-
bined with the lifting surface model of Truckenbrodt (Ref. 17) to
produce a wing element with side-edge separation. That is, the
trailing portion of the horseshoe vortices making up each chord-
wise strip in the lifting surface theory are permitted to drift
above the wing surface at half the angle of attack. Thus, Gersten
again permits vortex shedding over the entire wing surface. 1In
Reference 16, as in Reference 4, the normal force is expressed as
a linear term plus a quadratic term, the former now being given
by the lifting surface theory of Truckenbrodt. The chordwise
loading is assumed to be given by the first two terms of the
Birnbaum series, and the boundary condition of no flow through
the wing is satisfied at both the quarter-chord and the wing
trailing edge.

In this manner, Gersten has built up a model of arbitrary
planform and aspect ratio with a solid wake of streamwise vorticity
forming an angle a/2 above the plane of the wing (see sketch).

The agreement between theory and experiment for Gersten's model
appears to be satisfactory, although better agreement for swept
and delta wings of aspect ratios below unity is obtained with
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Newtonian impact theory*, and still better agreement for very low
aspect ratio rectangular wings is obtained with the theory of
Bollay (Ref. 1).

2.4 Summary of State of the Art

From the foregoing review of the analytical papers pertinent
to the problem of wings with separated flow, it is apparent that
the theory is lacking in several respects. With the exception of
Reference 15 (which does not give total forces) and Reference 16
(which violates a fundamental boundary condition), the analytical
work on sweptback wings with leading-edge separation has been
confined to delta wings of extremely low aspect ratio and shows
little improvement over the original slender-wing analysis of
R. T. Jones (Ref. 18) insofar as the prediction of total aerody-
namic forces is concerned, except for aspect ratios less than one.
These theories do, however, give a more realistic prediction of
the span loading on a very slender delta wing at moderate angles
of attack, indicating the peaks under the separated vortices, as
opposed to the elliptic span load distribution of the attached-
flow solution of Jones.

For the rectangular wing, the theory of Bollay is similarly
restricted to rather low aspect ratios but is valid up to high
angles of attack and shows excellent agreement with the experi-
mentally measured normal force on a rectangular wing of aspect
ratio A = 1/30 up to an angle of attack of about 40°. 1f
Bollay's theory is to be properly extended to higher aspect ratios,
however, one must clearly abandon both the assumption of uniform
span loading and that of the two-dimensional form of the chord-
wise loading. These steps were both taken by Gersten in Refer-
ences 4 and 16, but the resulting mathematical model violates
certain physical requirements which are fundamental to the validity

4vidya is publishing a separate report on this subject, Vidya
Report No. 92 by Sacks and Burnell, dated March 30, 1963.
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of the results. The agreenent of Gersten's theory with experiment,
which extends only to moderate angles of'attack, must therefore
be considered fortuitous.

The objections to Gersten's model can most easily be under-
stood if we consider the physical problem in somewhat greater
detail. Perhaps the most basic observation is that there can be
no flow of fluid through a solid surface. Thus, a boundary con-

- dition on the mathematical problem is that the normal component
. of velocity at the wing surface must be zero®. In other words,

| the wing is a stream surface and the streamlines must lie in the
surface of the wing except at points of flow separation. Further,
according to Helmholtz's law of vortex motion, a free vortex must
follow the streamlines. Therefore, vortices can be shed only
along lines of flow separation. For the sharp-edged flat plate,
the lines of flow separation coincide with the edges of the plate,
and vortex shedding can therefore occur only along the sharp

oy ey pow—

edges: It can be seen that the mathematical model postulated by
Gersten implies an arbitrary number of spanwise lines ¢f flow
separation over the upper surface of the wing and is evidently
unacceptable. Bollay's model, on the other hand, permits flow

separation only along the side edges. It should also be pointed
out that in both of these models it has been assumed that all of
the vorticity is shed out of the plane of the wing. This means
that there are no chordwise vortices in the plane of the wing and
hence there is no vortex sheet lying in the wing and shed at the
trailing edge: Because of this assumption, it was not necessary
in the analyses of References 1, 4, ai.i 16, to impose the Kutta
condition along the side edges, since the velocities there were
necessarily finite. However, if chordwise vortices in the plane

; $This boundary condition is ordinarily satisfied only at a finite
number of points on the wing surface (as in Ref. 4) or else in
[‘ the mean (as in Ref. 1).
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of the wing are permitted, as they should be, then the Kutta condi-
tion must be imposed along the side edges to insure that the
velocities there remain finite. This is equivalent to the physical
requirement that the flow must separate tangentially at all sharp
edges.

In the following sections, a new theory will be developed for
rectangular wings with side-edge separation which will in fact
satisfy these fundamental requirements and therefore will furnish
a sound basis upon which we shall be able to develop a treatment
for other planforms as well. The flow will be considered to be

three-dimensional, so that no restriction on aspect ratio is implied.

3. APPROACH TO THE PROBLEM

The problem to be treated in the present analysis is that of
a sweptback wing of arbitrary aspect ratio in incompressible flow
with separation along the entire leading edge. Such flow separa-
tion is steady up to large angles of attack, depending upon the
sweep angle, but is three-dimensional in character, becoming conical
only for sweep angles near 90° (i.e., for vanishing aspect ratios).
The use of strip theory in either the chordwise or spanwise direc-
tion is therefore not appropriate. However, if the trailing edge
is straight, then we can represent a sweptback wing of arbitrary
aspect ratio and rather general planform by a number of rectangular
wing elements (see sketch), provided that each element satisfies
the appropriate boundary and side-edge conditions.
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Since separation from the equivalent wing (composed of rec-
tangular elements) can occur only along its outline (i.e., along
its exposed edges), leading-edge separation can be permitted only
over the exposed portion of the span of each rectangular wing.
Furthermore, leading-edge separation frem a rectangular wing occurs
at higher angles of attack and is essentially an unsteady phenomenon
in which the separated vortices are normal to the free stream and
are shed periodically. Therefore, for the purpose of treating the
present problem, flow separation will be permitted only along the

side edges of each rectangular wing element. Thus, as the number
of wing elements is increased, the mathematical approximation will
approach the physical problem of steady flow separation along a
sweptback leading edje (see sketch).

a

In the present analysis, each rectangular wing element will
be treated in the manner of classical lifting line theory, except
that side-edge flow separation will be included and the Kutta
condition will be satisfied along each side edge. This latter
point is essential to the success of the basic approach, since it
automatically removes the chordwise singularity in the downwash
along each side edge, which arises in Prandtl lifting line theory.
Only by the removal of these singularities can one safely super-
pose rectangular elements in the manner sketched above.



-19-

It should be noted that, since the rectangular wing is repre-
sented by a single lifting line (plus a separated vortex system),
one cannot expect an accurate prediction of the chordwise load
distribution or of the center of pressure. However, these details
can be obtained if desired by building up a rectangular wing with
a number of higher aspect ratio rectangular elements in the same

manner as for the swept wing (see sketch below).

In the following section, the theoretical analysis will
first be developed for the basic rectangular wing with side-edge
flow separation. This analysis will then be applied to swept-
back wings with straight trailing edges by superposition, using
the rectangular wing as an elementary building block in the
manner described above. In addition, the extension of the analy-
sis to incorporate the influence of the ground plane will be
outlined in an appendix.
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4. THEORY OF RECTANGULAR WINGS WITH SIDE-EDGE SEPARATION
4.1 Statement and Discussion of the Problem

The problem to be treated in this section is that of a rec-
tangular wing element of arbitrary aspect ratio in incompressible
flow with side-edge separation. Separation from the leading edge
will not be considered, since it is intvended to apply the theory
later to sweptback wings, as explained in the previous paragraphs.
Thus, the rectangular wing will be represented mathematically by
(1) a lifting line of unspecif’' :d spanwise circulation distribu-
tion vy(n), (2) its associated trailing vortex sheet of strength
-(dy/dn) dn lying in the plane of the wing, and (3) a continuous
system of horseshoe vortices of strength (dIr/dé) dé representing

the separated vortex system. This representation is shown sche-
matically in Figure 1.

It is assumed that separation occurs all along the side
edges and that all of the vortices shed from the side edges lie
in the two planes containing the free-stream direction and the
side edges, in the manner of Bollay. It is evident that the
boundary conditions of no flow through the wing can be satisfied
along a selected control line by a suitable choice of +vy(n) for
any given dI'/dé. Therefore, the Kutta condition of finite veloc~
ity at the side edges will have to be imposed to render dr/d¢
(which will be assumed constant in the present analysis) uniqgue.
Here again, the justification for this assumption stems from the
intended application to swept wings wherein dI/d¢ may vary from
one rectangular wing element to the next. Hence, the assumption
that dI'/dé is constant on a given rectangular wing element is
of no consequence in the sw¢pt wing problem,

Again, it is pointed out that the representation of the rec-
tangular wing by a single lifting line (plus a separated vortex
system of constant strength per unit length) may later be improved
by the use of a number of such rectangular wing elements of higher
aspect ratio, placed one behind the other.
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Note that the above mathematical model satisfies the physical
conditions discussed in Section 2.4 and differs from the models of
Bollay (Ref. 1) and/or Gersten (Ref. 4) in the following important
respects:

(1) The span load distribution is not specified.

(2) The appropriate streamwise vorticity in the plane of
the wing is included. Thus there is a vortex sheet
shed from the trailing edge.

(3) Vortex shedding occurs only at the side and trailing
edges of the wing.

4.2 Analysis
4.2.1 Mathematical formulation of boundary-valué problem

The mathematical equations to be solved for the above problem
are actually those which express the boundary condition of no flow
through the wing at each of a number of selected control points
on the wing surface. Thus, if we express the upwash due to the
lifting line and its trailing sheet in the plane of the wing as
w*(x,y) and the upwash due to the horseshoe vortices of the sepa-
rated system as Ww(x,y), then the boundary condition at a selected
point (xp,yp) on the wing becomes

W*(xp,yp) + W(xp,yp) = -V, sin a (9)

Ordinarily, this tangency condition of no flow through the
wing is satisfied at a number of discrete points, and the number
of simultaneous equations to be solved is then equal to the number
of points selected. However, in the present analysis, we shall
satisfy Equation (9) for each Fourier component. Thus, the number .
of simultaneous equations to be solved is equal to the number of
terms taken in the Fourier analysis, and the boundary condition is

satisfied, approximately, for all spanwise points along the selected

control line®.

®This method avoids the question of where control points should
be located. Also its accuracy can be assessed by examining the
size of subsequent Fourier terms.



P p— P

-22-

The following analysis will therefore consist of setting up
mathematical expressions for w*(x,y) and W(x,y), performing a
Fourier analysis in a spanwise variable related to y, and sub-
stituting these expressions into Equation (9), which will then be
satisfied for each Fourier component. Finally, the resulting set
of simultaneous equations wil} be solved for the unknown Fourier
coefficients of the expansion representing the spanwise circula-
tion distribution +v(n). Once this loading is obtained, the
strength of the separated vortex system will be determined uniquely
by imposing the Kutta condition along the side edges y = + s,
and the resulting aerodynamic forces and moments will be calculated.

4.2.2 Velocity field of separated horseshoe vortex system

Each horseshoe vortex making up the separated vortex system
is composed of three parts, a bound vortex in the wing and a left
and a right trailing vortex lying at an angle & above the wing.
It is therefore convenient to write the corresponding upwash in the
plane of the wing w(x,y) in three parts as

w(ix,y) = Wb(x,y) + W (x,y) + Wh(x,y) (10)

The expression for each of these components at an arbitrary point
in space has been derived in Appendix A for a single horseshoe
vortex of strength [I'. Thus, replacing ' in the expressions

of Appendix A by (dr/d¢) dé, setting =z to zero, and integrating
over the chord ¢, we have for the continuous vortex distribution
representing the side-edge separation (see Fig. 1)
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In the present analysis, we shall assume that ar/d¢ is con-
stant along the chord, which means that vortex shedding is uniform
along the side edges. (In the case of the swept wing to be treated
in Section 5, the values of 6 and dIr/d¢ will be permitted to
vary from one rectangular wing element to the next.) Thus, noting
that the integral for Wg(x,y) is singular for 0< x { ¢ and
taking the Cauchy principal value for that integral, we find upon

integration
Wy (x,y)
2 2 2 2 2
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- - log{ & _ 8 J
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8 8 -] 8 '2
£X 5in 6
- tan™? = = =
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8 s 8 (12¢)

These three expressions, then, represent the upwash at any point
(x,y) in the plane of the wing due to the separated vortex system
shown in Figure 1.

4.2.3 Velocity field of vortex system in wing surface

It will be convenient, as in classical lifting line theory
(e.g., Ref. 19) to represent the unknown circulation distribution
v(n) along the lifting line as a Fourier sine series of the form

v(n) = E: Y, 8in ny (13)
n=1,3,5-- ‘
where
¥ = cos * (— -2) (14)
and

Y(=y) = ~y(y) (15)
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Thus, the wing lies in the interval =-s { n { s which corresponds
to 0 Ly £T. It can be seen that the series of Equation (13)
satisfies the requirement that +y be zero at the wing tips, regard-
less of how few terms are used in the series, and that the selected
series is even in 1, which insures lateral symmetry.

l If we consider now that the circulation distribution v (n)

can be thought of as a large number of steps as shown in the sketch,

!
!x _ ﬂ
dn dn
-s +s n
0 T '/

then it is clear that a vortex of strength -(dy/dn) dn must be
shed at each step and we can therefore construct the entire vortex

system in the plane of the wing from elementary horseshoe vortices
! of semispan s and strength -(dy/dn) dn as shown below:
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Thus, if we represent the upwash (in the plane of the wing) due
to an elementary horseshoe vortex of unit strength as w,, we
have for the total upwash at a point (x,y) on the wing due to
the entire vortex system in the plane of the wing

n (16)

8
w*(x,y) = - f Wv(xiy’gissv) d?; a
o

Upon introducing Equation (13) for v (n) and interchanging the
order of integration and summation, we have '

o T
w*(x,y) = = Z ny, f v, (x,y,e )8, ) cos ny Ay
n=1,3,5-= T/2

(17)
Now we can employ the expressions of Appendix A for the upwash

v, due to each elementary horseshoe vortex by setting z = Q

and letting
=1
6 =0

s, = -8 cos ¥ . (18)

Thus we find from Equations (A.15) that

- cos ¥) )
Wy (X,y,6,,9) = - &= ——% s cop
v i ar  (x - €;) [ \/(x - gi)z + (y + 8 cos y)2

Y -~ 8 cos_y)

-\/(x-g ¥ + (y-scosw)a:l

Jh

) x-ii = —
v - s cos ¢ \/(x -&, ) + (y+scosy?

x ~ &
1+ —h
(; -8 cos y \/z; -6, + (y -~ s cos ¥)2
(19)
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The total upwash w* due to v(n) is therefore given by

<q£

Y - 8 cos ¥

Y _*_f__; [1

-y + 8

2 T
= (x,y,8;) = +4—1' Z ﬂ?‘%f
o T b * TS L (VO e con ®

o] ]

cos ny dy
-\/(x - g.i)a + (y - 8 cos w)e]

4 vV, y + 8 cos ¥
n=1,3,5 /2
x - £,
+ = cos ny dy
Wl(x - €, + (y + s cos y)2

00

1

4T
n=1,3,%

+
<|%

T

N N—
-]. y - 8 cos ¥ [
/2

x - €
/(x - ¢, )2 + (y - s cos )2

] cos ny dy (20)

Now it can be shown by a simple change of variable and algebraic

manipulation that for odd values of n

T T/2
f.@s_ﬂ_df_.b[__qgs_nﬂ_ﬂ/_

y — 8 cos y y + 8 cos ¢

and

]T -\Kx - 1)2 + (-s cos v+ y)2

(x - e ) (-8 cos ¥ + y)

cos ny Ay
/%

/2 \/(x - gi)a + (8 cos ¥y + y)?2
(x - gi)(—s cos ¥ - y)

-+

cos ny dy

f (21)
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so that Equation (20) can be collapsed into two integrals over the
larger interval of O to 7. Thus, combining the four terms

) involving the square root, and making use of Equations (21), we find
! that Equation (20) can be written in the following form:

<|£

y + s cos ¥

> (x,y,8;) = - & J’ —cos n¥ 4

n-:.as

(x - & )(y ¥ s cos §) cos ny 4y

. j- \/(x - gl)a + (y + 8 cos y)2
5

(22)

- Both of the integrals in Equation (22) are improper (i.e.,
_ singular) integrals. However, if we replace the control-pcint
variable y by (-s cos wo), then we recognize the first integral
as that of classical lifting-line theory. For points within the
span, the value of this integral is (Ref. 19)

s

os ny¥ ay - T 8in nwg
cos y = cos ¥, sin Yo

(23)

where

cos Y, = -(y/s) and -1 < (y/s) £ +1

The singularity of the second integral in Equation (22) can be
removed by simply adding and subtracting a term. Thus

JF W/(x-ﬁi)2+(y+s cos ¥)2

(x-ﬁi)(y+s cos ¥) cos ny dy

[

x-ﬁi)(y+s cos V) cos ny dy i'gf y+s cos y

(24)
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where the lower sign applies if (x-ei) <0 (i.e., for points
ahead of the lifting line) and we recognize that the last integral
is identical with that of Equation (23). The remaining integral
is non-singular and is furthermore recognizable as the integral
giving the Fourier coefficients of a certain cosine series in .
That is, if we let

_Jx_gi 2
-€, + - )E
f<'n/fo, - el)' : <§ ) Y

1
s (cos y - cos wo) (x - €.>
)
x - £,
- i a“<----;-—l , %) cos ny (25)
n=o,1,2,.

where the lower sign again applies if x - gi < 0, then

X - £, T x - £,
—_— -2 — i
an< 5 s gl/°> "j f@,wo, s > cos ny Ay (26)
<)

and the resulting relation is

T x-£. 2+(y+s cos y)?2 x-£; T sin ny
f .J( l) cos ny dw - ils ( , '¢/ >
5

(x-g;)(y+s cos ¢) s siny_ Yo

(27)

Substitution of Equations (23) and (27) into Equation (22) therefore
yields the final expression for w* (for points within the span) in

the form
-]
w* x-gi N, _ 1 ny, 27 sin Y, LI, x-gi
Ve s '’ 8 4T sV 8in ¥ 2 'n\ s ! wo
o
n=1,3,s

for x - ¢, >0 (28a)
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and
x:("_'i}. £)- - 2 Z E"Zn[ma<*'€i >J
v, 8 ’ g 4 sV, /2 'n -] » Yo
n=1,3,5
for - x -~ £, <0 : (28b)

The first term of Equation (28a) is that appertaining to a value
of (x - gi)/s which is sufficiently far behind the lifting line
that the upwash no longer depends on (x =~ gi)/s. This is evidently
twice the upwash at the lifting line itself.

It is instructive to look at the term n = 1 of the foregoing
equations. The circulation distribution from Equations (13) and
(14) is then

v(n) = v, sin y =y, V1 - n2/s® (29)

so that the corresponding span loading is elliptical. Thus letting

x - gi Y 27 sin nw
fn< s ’ s>- sin Yo < ) (30)

we find that the upwash behind the lifting line is

we(* =&y Yy X -'ei
t ) ’ ;)- T 4rsV ) f1< ) ’ §> (31)

Table I shows the variation of downwash (-w*/wp) with longitudinal
distance behind the lifing line in semispans and with lateral
distance from the wake centerline in semispans. It is interesting
to note that one semispan behind the lifting line, the downwash

is still about 10 percent higher than its value infinitely far
downstream (where fl = 27) and that it is quite uniform across
the span.
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4.2.4 Solution of the boundary-value problem

The set of equations representing the present boundary value
problem simply express the boundary condition that there can be
no flow through the wing surface. Thus, having derived the mathe~
matical expression for the normal velocity W due to the separation
vortices and w* due to the lifting line and its trailing sheet,

we can express this condition as

N -
%: (xp,yp) + %& (xp,yp) = -~ gin a (32)

That is, the velocity component normal to the wing surface due to
all vortices must exactly cancel the normal component of the free-
stream velocity. The point (xp,yp) is the point on the wing at
which this condition is to be satisfied, and the number of equations
to be solved for the unknown distribution < (n) is ordinarily
equal to the selected number of control points. However, in the
present analysis, we shall eliminate the dependence on yp by
Fourier analysis and thus satisfy Equation (32) for all yp within
the span at a specified control line x = xp. The number of equa-~
tions will therefore be equal to the number of Fourier components
employed.

In order to expand w* in a Fourier series of wo, it is
first convenient to note from the trigonometric identity (Ref. 20)

sin mx cos nx = % sin{(n + m)x - % sin(n - m)x

that sin nwo/sin ¥, ¢can be written in the form

n-i
sin ny

sin ¢

o)

=14+ 2 :E: cos8 Y, i =T S Y, ST (33)

° j=2,s,0
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Therefore, we shall expand w* and W in the form of cosine
series in Yo Furthermore, only even multiples of ¥, can
appear because of the required symmetry about the midspan

Wo = (7/2) . Thus, we have, from Equations (28a) and (33), for
a control line lying behind the lifting line,

o0 n-i
wt 1 il W P O
v " T ar sV T 2 cos ¥,
[ ] o« .
n=1,s3,5s J=2,s,8
3,4 08 ¥, (34)

j=o, 2,4,5

The corresponding expression for W 1is therefore taken to be

gi - 4+ j%- iggégﬁlg- zld g4 cos v, T ¥ ST (35)

J-O 24

Note that these series are unique since w(wo) = w(-wo) by the
choice of a cosine series, so that w is specified over the entire
interval -7 £ Yo < 7 although the wing span covers only the
interval 0 < Yo LT

Substitution of Equations (34) and (35) into Equation (32)
yields the set of equations to be solved for the unknown coefficients
Yn representing the circulation distribution

o0
Y= 2: Yn sin ny
n=1,3,s

along the lifting line. The expanded form of Equation (32) thus
becomes
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lyl
Ir
<41rsvw> [2”(1 +0) + 2 (alo + 312 cos 2wo + a“ cos 4wo +...):]

3y,
+ 4TSV, 2r(l + 2 cos Zwo)

+ L + + vy + ... l
(a a32 cos 2y a:34 cos 4y )

2 30

S5y
S
+ <41rsvw> [21r(l + 2 cos 2y  + 2 cos 4w°)

I
+ 5 (a -t-a52 cos 2y/°+a54 cos 4¢o+..-)]+

so
1 (dar/dt)c .
-[:41T v, s ](go+g2 cos 2y, + g cos 4y, + ...) + sin a
(36)

Now, in order that this equation be satisfied for all values of
% it must be satisfied for each Fourier component. Therefore,

if we let
ny
Yo* = Frev. sin
and (37)

1"* = - - S
47rsV°° sin a 21nTW°° sin a

the following set of equations results:

n=1 n=3 n=>5 n = 7
1201 art § o, ) (ors o, ot (o B 2, g oo B o, ot oo
1=2: <12L %12 'Y:;. +@1r+ JZL aaz.>'Y; +<47T+ IZL as?.)Y; +@7r+ g- a72>'y; teeomg I
e Fa v+ Gan ol Fa vy ol To, oz voimg re
j=6: (12‘- am)ylt + G‘;— a vt + <12£ a“)'y; +G}1r+ 1{- a")'y_f; *+...=g T*

j=8: etc. (38)
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form:
0
* = *
) Fagtn™ = 95T
n=1,3,5,...
o0
r
* = *
L E: fa3'n 957
n=1,3,5,...
I where
= L ;
[ fhy T 2T Y 3 3y 7
= L i
[ fnj 2 anj n <)
= I i
[ fnj 4T + 2 anj n>j
r The numbers denoted by fnj are,

which can be used to obtain the loading coefficients yn*

These equations can now be written in the following abbreviated

> (39)

~

j = 2,4,6, ...

(40)
j = 2,4,6, ...

then, universal numbers
for

any specified separated flow pattern as given by the coefficients

| 95

in Figure 1 and the corresponding function W(x,y)

! Equations (10) and (12).
In the asymptotic formulation for

i lifting line, all the coefficients a,

The particular type of flow separation assumed here is shown

is given by

large distances behind the

become zero, (see Egs.

(25) and (26)) and the matrix of the foregoing infinite set of

| equations yields the following matrix of coefficients:

n=1 3 3 1

i j=20 2T 2T 2T 2r
j=2 0 4T 4T 4T

ji=4 0 0 4T 4T

)= 6 0 0 0 4T

nj (41)
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Thus it is clear that in this case the determinant is not zero.
Numerical calculations for other locations behind the lifting line
indicate that this is in fact true in ygeneral. Therefore, there
exists no nontrivial solution to the homogeneous set of equations
z fnjyn* = 0, and the general solution of Equations (39) for the
loading coefficients yn* can be represented as

ry*=<ry* +r‘* IY* (42)
n n )u <11 %
The first term (?n*> is the solution of the equations
u
-]
* = . 1 =
Z Eag¥p* = 17 (3 =0) (43)
n=1,3,5
-]
* = . 1 =
§: Eosn® = 07 (= 2,4,6..0) (44)
n=1,3,s

which corresponds to no flow separation (I'* = 0). On the other
hand, <¥n*) is the solution of the equations
S

-]

2: £a5n* = 95 5 (3 = 0,2,4,6...) (45)

n=),3,s
which corresponds to the image system required for the separated
flow (I'* = 1). Thus for a given value of TI'*, the general solu-
tion (which is unique) is given by Equation (42). The solution
of Eguation (45) is therefore seen to be the basic source of the

change in the aerodynamic characteristics of the wing due to
separation.
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4.2.5 Satisfying the Kutta condition

In the foregoing solution, the value of TI'* is a parameter
which has not been specified, and a solution exists for each
value of TI'*. From this spectrum of solutions, it is desired
to select the one corresponding to the value of TI'* required
on the basis of physical considerations. It turns out that it
is possible to make the determination of TI'* on the basis of the
Kutta condition. The particular condition is that the downwash
just off the side edges of the wing be finite rather than infinite.
Thus, the flow at the side edge of the wing seen in end view leaves
the side edges smoothly and (see sketch) does not turn around the
sharp edges with a flow singularity.

The mathematical requirement for the Kutta condition can be
established by examining Equation (22) for points lying outside
the span of the vortex sheet. For such points, by making use of
Equations (24) and (25), we can write Equation (22) in the form

T
" 1 Mnl g x - & Y cos_ny dy
v (X,Y,Qi) =< ar Z sVn[Z an< 8 v 8) " 2 .[ cos ¥ + L
n=1,3 °© s
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where x - 51 > 0, since we need to satisfy the Kutta condition
behind the lifting line only. Now, integration of the second term
yields, for points outside the interval of integration (Ref. 21)

f_c_o_gmydw [Vgx)’l"l_n_

Thus, for points lying outside the span of the vortex sheet and
behind the lifting line, the upwash w*/Voo becomes

for

> 1 (47)

-]
ny x - £,
w* - - L —n/L —2i X
v, (x,y,&i) 4T Z sV, )2 an( s ’ s>
n=1i,3

VET -]

Hence, the singular part of the upwash denoted by (w*/V;)m just

(48)

outside the span is given by

<£> = - Z ——————I—J—' (Y.) ] (49)
o) 21rsV g <§> .

An examination of this result reveals several very interesting
facts. As we approach the side edges of the vortex sheet from out-
side the span of the vortex sheet, the downwash for each Fourier
component has a square root singularity. Furthermore the coeffi-
cient of the singularity is independent of x so that the singu-~
larities have the same strength along the length of each side edge.
It follows, therefore, that we can satisfy the Kutta condition along
the entire length of each side edge if
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E: ny, = 0 or E: Yp* = 0 (50)
n-lgags n’l,3,5

This is, therefore, the mathematical formulation of the Kutta
condition’.

From Equations (42) and (50), we can now determine the
separated vortex strength [I'* which is necessary to satisfy the
Kutta condition. Thus, substituting Equation (42) into Equation (50),
we have

o0 00
ORI CORE
n=1,3,5,... v n=1,3,5,... s

or

- E: (Yn*>u
n-l.:é.--- (51)

T )

N®1,3,5,...

r‘*s

The final solution of the complete boundary-value problem of a
rectangular wing with side-edge separation is therefore given by
Equations (42) and (51), so that the loading coefficients of the
lifting line are

7It can easily be shown that this condition is precisely the same
as requiring that the loading (1) must have a zero slope at
the wing tips. But the slope of the loading is proportional to
the strength of the trailing vortex sheet, so the Kutta condition
is satisfied along the side edges if the trailing vortex sheet
has zero strength at the edges.
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i
'Yn* = <'Yn*>u = <'Yn*>s n-le: 2 (52)

)

L_n-l’S’S _

It is clear from the foregoing analysis that there is only
one correct solution for yn* in the given boundary-value problem®.
That is, the solution is unique (for a specified €), and there is
only one correct value for TI'* which satisfies the Kutta condition.
One may well ask, then, what is the meaning of the so-called
"unseparated" solution with TI'* = 0? Clearly, this solution does
not satisfy the Kutta condition at the side edges. Mathematically,
it simply represents a portion of the complete solution of the
stated boundary-~value problem. But physically this "unseparated"
solution actually represents the solution for which there is no
side-edge separation. That is, the side edges are not sharp, and
one therefore need not impose the Kutta condition. We have a
different boundary~value problem, then, and the unseparated solu-
tion therefore corresponds to the classical wing theory of Prandtl,
which applies to high aspect ratio wings at low angles of attack.

4.2.6 Determination of the shedding angle 6

The orientation of the vortex lines which comprise a free
vortex sheet is determined by the average of the velocity vectors
on the two sides of the sheet. This follows from the Helmholtz
law that a free vortex must follow the local streamlines. There-
fore, we can determine the inclination, or shedding angle, &, of
the .ide-edge vortex sheets by calculating the total velocity com-
ponents juét above the wing on either side of the sheet. Thus
(see sketch),

®Note that the determination of each loading coefficient for the
complete problem requires the determination of all of the loading
coefficients from the homogeneous and the nonhomogeneous solutions.

S AN R X P e = e et < -
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Since w and u are both functions of 6, the determination of
6 will require an iterative process in which a value of 6 is
assumed, the right-hand side of Equation (53) is calculated and
compared with the assumed value of 6, the right-hand side is
recalculated using the new value of €6, and so on. The procedure
is analogous to that employed by Bollay (Ref. 1l).

Since the boundary condition of no flow through the wing has
been satisfied only at one chordwise location (i.e., at the control
line), we shall solve Equation (53) for 6 at the control line
also. At this location, the boundary condition requires that

<-—- + X 4 gin a.) = 0 (54)

y=8-€
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Now, since the sdingular part of w* Jjust outside the span
has been removed by imposing the Kutta condition of Equation (50),
the value of w* at y = s + ¢ 1is given by (see Eq. (28))

-4
ﬂ - - .L Z m IL a <f_-__€l> (55)
V; 41 st 2 'n s
y=s+e¢ n=1,3,s y=s

and it is noted that a, is continuous across the vortex sheet.
The value of W 3just beyond the wing tip can be found simply from
Equation (12c) by noting that as we pass from y= s - ¢ to

y = s + ¢ the second arc tangent in that equation jumps from

0 to 27, while the first arc tangent remains at 7. That is,
the last term of Equation (l2c) is discontinuous as y moves
across the vortex sheet, and we find that Wﬁ simply changes sign
across the sheet. Therefore, we can write W Jjust outside the

span in the form

w =W - 2%
y=s+e y=s~¢ Ry-s-e
- Wb + v, - Wh (56)
y=s y=s y=8-¢

Inasmuch as the vortex sheet lying in the plane of the wing
consists of a single vortex line ahead of the control line and a
system of chordwise trailing vortices, this vortex system produces
no chordwise velocity component at the control line. Therefore

u¥* = u* -
g ) (}, ) 0 (57)
-] -
y®=S—¢ y=s+e¢
Also, it can be seen from Appendix A that the chordwise components
of velocity due to the side-edge vortex sheets are directly related

to the correspording upwash in the following manner: A

u, = -w_, tan 0

R R
(58)

up = -wp tan 6
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(Note that u changes sign with W as we cross the vortex sheet.)
The chordwise velocity component produced by the bound portion of
the separated vortices can be obtained from Appendix A. Thus,

replacing ' by (dr'/dé) d¢ and integrating over the chord, we
find that

- Z8

(59)
“B 27 d f [(x 5)2 + 21 V—(ﬁ

Now, integrating this expression (Ref. 21) and taking the limit

as z =0 from the positive direction, to find the induced chord-
wise velocity component immediately above the wing surface, we
obtain

T, = 828 - T arev, sin a (60)
z=ot¢
Finally, substitution of Equations (54) through (60) into
Equation (53) yields the following expression for the shedding

angle:
[+]
wB+w
*
Vw sin a <V sin a) Z 'Yn an+ 1
tan 6 = %- Y=s n¥a
.- * o — e
5 Al <:v.ao sin a:> tan 6 + ctn a
y*"s

(61)

It is noted that Bollay (Ref. 1) obtained a value of 6 equal
to half the angle of attack for the limiting case of vanishing
aspect ratio at small angles of attack. In the more general case
(Eq. (61)), the ratio of 6/a will be a function of both aspect
ratio and angle of attack.
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4.3 Normal Force and Center of Pressure
According to the Kutta-~Joukowski law, the normal force acting
on the lifting line of circulation strength < (n) is given by

+s
N, = pV, cos o J[ v(n) dn (62)
=s
so that, with the definitions of Equations (13) and (14), we find
that

T o

N, = pV, cos a f Z Yn sin mp> (s sin y dy)

(] n=1,3,s

= pV, 8 cos a(%)yl

= szpvwasz cos a sin a (71*) (63)
Thus, only yl* contributes to the normal force, whereas the higher
harmonics affect only the span load distribution. The load distri-
‘bution associated with yl* is elliptical, but its magnitude will
be affected by the existence of the higher harmonics.

For the unseparated case (I'* = 0), we have for the normal
force coefficient

(cn )u B

For small aspect ratios, the lifting line and the line of co..trol
points may be separated by many semispans so that (x - &i)/s

is large. Thus, ('yl*)u approaches its asymptotic value of
1/(2r) and we have

N
u

(1/2)pv_2(2 sc)

= 72 ('y *) cos a sin a (64)
1 A

- L i
(CN)‘J 2 A sin a cos a (65)
A=—0
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This result agrees with the slender-body result for the normal
force coefficient of a rectangular wing of low aspect ratio at
low angles of attack.

The total normal force acting on the wing with flow separ-
ation is the sum of the normal force on the lifting line Nl
(including the image system (vn*)s) and the normal force acting
on the bound vortices of the separated system (which have uniform
span loading). Thus, using Equations (37), (42), (62), and (63),
we have for the total normal force

+s
N = pV_ cos a ,[ v(n) dn + 28 - %E -
<s
- 2 2.2 1 * + I* < *
2m=pV_“8° cos a sin ‘a [(fyl >u r Y, >S:|
+ 2pV_sc cos a(27AV, sin a * T'¥) (66)
The total normal force coefficient CN is therefore given by
c, = -2l acosasina 2w<% *) o+ P*[?v(& *) + é]
N % pv_2(28c) 2 N )u 1 /s
=Cy +Cy (67)
u S
where
c, =LA cos asina * I'* |27 (y *) + 8 (68)
NS 2 1 /g

represents the normal force due to the separated vortices and their

images.

The center of pressure is obtained by noting that the load-
ings due to ('yl*)u and to (y,*)g both act on the lifting line
(i.e., at the gquarter chord), whereas that due to I'* acts at
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the half chord, since dI'/dé¢ was taken as constant. Thus we can
write at once, from Equation (67)

-]-'- * l *( * l‘-(i *
: (, )u+41" Yy >s+2 Sk o)
OEEOET
1 u 1 S T

The foregoing solution also yields a precise determination

(e R H]|

of the proper location of the control line if the present theory
is to yield results in accordance with experiment for small angles
of attack. To demonstrate this fact, let us calculate the lift-
curve slope at zero angle of attack as a function of aspect ratio
and position of the control line. By comparing these results with
those from experiment or exact theory, it can be determined where
the control line should be placed as a function of aspect ratio.
The lift-curve slope at zero angle of attack has been computed

as a function of aspect ratio using Equation (67). Note that
. oC
| Ng

! -y = 0

a=0

since there is no flow separation at zero angle of attack. The
results are shown in Figure 2 for several chordwise positions of
the control line with the lifting line placed at the quarter-
chord position. They are also compared with the mean experimental
curve of Scholz (Ref. 5). It is seen that locating the control
line at the three-quarter-chord position yields excellent agreement
between the present theory and experiment for unseparated flows.
-The use of a control line at the half-chord position yields values
of lift-curve slope about 10 percent low at an aspect ratio of
unity and 25 percent low at A = 2. These results are in substan-
tial agreement with the classical work of Weissinger (Ref. 22)
which was evidently based on his observation that the influence of
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the semi-infinite trailing vortices varies very little over the
airfoil chord, so the influence of the bound vortex is dominant
in determining the proper placement of the control line. The
present calculations take the trailing vortices fully into account
and therefore serve to substantiate Weissinger's conclusion.

4.4 Downwash at the Tail Location

In order to investigate longitudinal stability and control
characteristics of an aircraft configuration, one must determine
the downwash at the location of the horizontal tail. This is a
relatively straightforward procedure once the strengths and
positions of the vortices shed from the wing are known. Thus,
the upwash at any point in space is given by

W(X,¥,2) = w* + w + V_ sin a

and the expressions for w* and w for points lying in the plane

of the wing are given by Equations (12) and either (28) or (48),
depending upon whether the point in question lies inside or out-
side of the wing span.

The determination of the upwash w* and w for points lying
out of the plane of the wing is clearly not covered by Equations

(12), (28), and (48), since they were specialized by setting 2z = 0,
Therefore, one must start with the more general expressions of
Appendix A for the single vortex and develop expressions analogous
to Equations (12), (28), and (48) for 2z 2 0. The procedure is
exactly parallel to that of Section 4.2 of the present report.
However, the resulting expressions are considerably more compli-

cated and do not lend themselves to the same method of evaluation.®

aVidya has actually carried out the analysis for 2z »# 0, but
that analysis has not been checked independently and has,
therefore, not been programed for computation. The analysis
can, however, be made available in its present form.
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4.5 Calculative Procedure

The calculation of the aerodynamic characteristics of a rec-
tangular wing element, using the analysis developed in the present
report, requires the solution of the set of simultaneous equations
given by either Equations (38) or (39). This solution yields the
loading coefficients, yn*, and the strength of the separated
vortices, TI'*, which in turn determine the normal force ccefficient
and the center of pressure.

The procedure for performing the numerical calculations is
outlined below:

(a) select the number of terms, n, to be used in the series
representation of the loading (i.e., the number of nonzero harmonics
to be carried in the calculation). This will be discussed further
in Section 6.

(b) Calculate the Fourier coefficients, a.s using Equa-
tions (25) and (26) with

n=1, 3, ..., (2nh - 1)

for

and

X - gi (xc/c) - 0.25
s A/2

where xc/c is the distance of the control line behind the lead-
ing edge, expressed in chord lengths.

(c) Calculate the Fourier coefficients a nj where

(xc/c) - 0.25
%nj - "'j’ 2 » Vo | co8 3¥, ¥,  (70)

and

j=0,2, ..., (20, - 2)
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(d) Determine the coefficient matrix of the set of simul-
taneous equations (Eg. (38) or (39)) using Equation (40).

(e) Assume an initial value of the shedding angle, 6, for
the separated vortex system.

(f) cCalculate the Fourier coefficients, gj, from
’n’ —
w(x/s, ¥ )
X\ a2 () .
35 (§> T j r*_"sin o cos Jy, I, (71)
o
for
3 =0, 2, ..., (2nh ~ 2)
and
X . xc/c
s A/2

(g) Determine (&nt> by solving Equations (43) and (44).
u

(h} Determine <?nf) by solving Equation (45).
)

(i) calculate TI'* using Equation (51).

(j) cCalculate the normal force coefficient, C the center

’
of pressure, x/c, and the new shedding angle, 6, Nusing Equa-
tions (67), (69), and (61), respectively.

(k) Using this new value of 6, repeat steps (f) through (j)
and compare the two values of CN' If the desired accuracy in cN
has not been obtained, return to step (f) and repeat until it is

obtained.
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5. AERODYNAMIC THEORY OF SWEPTBACK WINGS WITH LEADING-EDGE
SEPARATION

5.1 Construction of Mathematical Model

Having developed a theoretical analysis for the rectangular
wing element with side-edge flow separation which satisfies the
proper conditions of no flow through the wing and finite veloc-
ities at the side edges, we can now proceed to apply the theory
to a wider variety of planforms in the following manner. Since
the Kutta condition of finite velocity at the side edges is actu-
ally satisfied for all values of x (see Eq. (50)), the only
singularities in velocity in the foregoing theory are along the
lifting line itself. Therefore, other planforms can be constructed
by using rectangular wings of various aspect ratios as elementary
building blocks, provided that the trailing edge is straight. This
representation will enable us to treat rather general leading-edge
shapes, as shown in the sketch below.

rl\
A\ lifting line (at 1/4
— —-——\ chord) of rectangular
X wing element
A — - — — = — — — — control line of rectan-
e e —— \ gular wing element

(at 3/4 chord)

We shall now place a lifting line at the quarter chord of each
rectangular wing element and proceed to satisfy the boundary con-
dition of no flow through the wing surface at the corresponding
3/4-chord lines, accounting for the downwash from all of the wing
elements and their associated shed vortices. This will require
that we be able to calculate the downwash produced along the

3/4 chord of any rectangular wing element by the vortex system‘
associated with any other wing element. It is clear, then, from
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the foregoing sketch that for a sweptback wing we must be able to
calculate the downwash anywhere in the plane of the wing as pro-
duced by any of the rectangular wing elements. 1In particular,

we shall require the downwash’outside the span of the lifting line

itself. For this purpose, we shall have recourse to Equation (48)
which was used in satisfying the Kutta condition.

Consider now the case of a sweptback wing which is to be made
up of n, rectangular wing elem#nts of equal chord c; = co/nw
and whose semispans are selected such that the area of each rectan-
gular element is equal to the area it replaces (see sketch)

VAN

/. N

\ Xy €k

Note that the distances Xy and &k will be measured rearward
from the leading edge of the kth wing element.

The boundary condition to be satisfied on each of the n,
rectangular wing elements is that the normal velocity, (W)ii,
due to the separation vortices of the wing itself, the ith wing,
plus ttg normal velocity, (w*)ii, due to the lifting line of
the i

component of the free stream normal to the wing (V°° sin a) plus

wing and its trailing sheet must exactly cancel the

the sum of the normal components induced by the vortex systems
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nw
of all of the other wings, }E (w)ik’ where
k=1
ki
Ny Ny
Y W=y [(w*)ik + (W) ik] (72)
k=1 k=,
ki ki

The boundary condition can, therefore, be written in the form

n
w
w¥ w - : w¥ W
(£), (&), ~-wne- L&), ()| o
ii ii k=1 ik ik
kpi

where this condition must be satisfied for all values of
i(i=1, 2, ..., nw). Thus, a set of n, simultaneous equa-
tions is generated. Now if the loading coefficients and the
separated vortex strengths on all of the rectangular wing ele-
ments except the ith wing are known, and if the summation on
the right-hand side of Equation (73) can be replaced by an even
cosine series, then the boundary value problem can be solved in
the same manner as is presented in Section 4.2.4 for the rectan-
gular wing alone.

Initially, in the solution of the sweptback wing problem,
the vortéx strengths and the loading coefficients are not known
for any of the n, wings. However, an initial guess can be made
by treating each wing as an isolated rectangular wing and using
the method of Section 4 to obtain initial values for the loading

coefficients, (yn*) and the separated vortex strengths, Pi*,
for each of the n, 1wings. Then an iterative technique can be
used to solve the set of n, equations. Since the sweptback

wings being treated in the present analysis are restricted to

-
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those which are symmetrical about the midspan, the midspans of
the rectangular elements are aligned and thus the downwash pro-
duced on any element by any other elements is symmetrical about
the midspan of the ith element. Therefore, the summation can
be represented by an even cosine series of the form

n
W _ o
w¥ +{ X = gin q (b ) cos jy (74)
v v 3/, I¥o
® ik ® ik . ik
k=1 J®0,2,4
k#1
where
TS Y ST

Now, by a development similar to that of Section 4.2.4 the
set of simultaneous equations to be solved may be written as

) N
Z (Eng);; (%), = (O3), Tt vt r (), 5 370
n=,,3,s
> (75)
-]
Z (fnj )ii (Yn*)i - (gj )ii Fi_* +(bj)ik b3 24,
n=1,3,5 /

There are n, sets of these simultaneous equations to be solved
by the iterative technique. Equations (75) are the counterpart
of Equations (39) for the rectangular wing and may be solved in
the same manner by splitting the solution for yn* into an
unseparated solution (Fi*-(n -and a solution due to separation,
as described in Section 4.2.4.

In order to obtain the coefficients bj’ we shall have to cal-
culate the upwash w;, produced at the 3/4 chord of the ith wing
element by the vortex system associated with the kth wing element.
For this purpose, we shall need the distances from the kth 1lift-
ing line to the ith control line, given by
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(76)

for the determination of w, k , and the distance from the lead-

ing edge of the kth wing element to the :i.th control line,
given by
, 3
:(-.i— - ________..l “k+ -4- (77)
o,k S
w8 c
o o©

for the determination of -‘;ik' Note that both of these distances
are expressed in semispans of the wing element whose vortex system
produces the downwash (i.e., of the xth wing element).

Now from Equation (28) we can write for points lying within
the span of the lifting line (i.e., for -1 < (y/sk) <1)

wik* xi-e 27 sin ny T xi—ek
vm?i—ﬁa(sk (Y s:mq[/ +5ank 8, » Yo

for x, - €, >0 (78)
. T x;-€x

- Z Gni 2 ank< O Yo

n®,,s

for x, - €, <O (79)

where

wo = cos™? <— -Bxl:>
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For points lying outside the span of the lifting line (i.e., for
1« y/skl< w), Equation (28) is modified in accordance with
Equation (48) to yield

, n
P £
ar | (XY -1 -| & ]
Yk (% b oy ). . L ®x x|
V s8in a 8y ’ 8, - Yn X ]
o0 2
n-l,S <-SL> - 1
Y k
x, - &
+ %'an <: ls k’ ﬁL
k k k
for x; - £, >0 (80)
OO
Wik (%18 oy ). (7 *‘) T x; - €y 1_>
q ’ H
Vu° sin a sk sk n X 2 nk sk sk
n*®,,a
for x, - &, <0 (81)

Similarly, we obtain the required expression for ';ik (the up-

wash produced at the ith control line by the separated vortex

system associated with the kth

wing element) by replacing x
by x;, s by s, and c by S in Equation (12). With the
resulting equation and Equations (78) through (8l1), we are now in
a position to set up an iterative procedure for determining the
loading on the sweptback wing with leading-edge separation. The

detailed procedure will be outlined in Section 5.5.
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It should be noted that the same method may be applied to a
low or intermediate aspect ratio rectangular wing by representing
it as a chordwise distribution of higher aspect ratio rectangular
wing elements. The purpose of such a procedure in these cases
would be to extract more detailed information regarding chordwise
load distribution and center of pressure than can be obtained by
using a single wing element.

5.2 De;ermination of Shedding Angle, Gi, on ith Rectangular
Wing Element

The determination of the angle, Gi, at which the separated
vortices are shed from each of the rectangular wing elements is
similar to that described in Section 4.2.6 for the rectangular
wing alone. However, in addition to the velocities induced by the
ith wing itself, we must now consider the velocities induced by
all of the other wing elements making up the swept wing.

The general expression for the shedding angle on the ith
wing is given by (Eq. (53))

an
tan 6, = ——
1 u

av

- 2 ( y=s,-€ y-si+e) (82)
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5.3 Normal Force, Center of Pressure, and Span Loading

The total normal force on the sweptback wing is simply the
sum of the normal forces on all of the wing elements, sc that the
total normal force coefficient is, from Equations (66) and (67),

n
w

T,

i

- N imy
NI e n
2pooo w

n
w 2
8 S.
: o L \|L
4rn, sin a cos a N Z <s°>[2 (’Vl*> + 20 *]
im1
= (87)
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(o]

[ 8
|
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The center of pressure is found by summing the pitching moment
about the wing leading edge and dividing by the total normal force.
That is,

X = S—— (88)

Thus, noting that the loading due to ('yl*) acts at the quarter
chord of the ith wing element whereas TI'j* acts at the midchord
of the element, we have
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Therefore, the center of pressure for the sweptback wing is given
by

LRI E oy
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(90)
o

c
imy

The span loading (in, say, pounds per foot) is obtained by
expressing the quantity c¢;c at each spanwise station, where ¢,
is the section lift coefficient. Equating two expressions for
the lift on an elementary chordwise strip (see sketch),

dy

we have

N

clc'dy » 5 pV % = pV T dy (91)
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where TI' is the total circulation on the chordwise strip. Thus

- 2L :
ch Vw (92)
In the present mathematical model, the total circulation round
any chordwise strip is given by

ar,
F(Y) - Z[}Yi(Y) + Egl * ci] (93)
i

where the summation is carried over the wing elements whose semi-
span is greater than the value of y in question. Thus, since
v(y) in the present analysis is represented by a Fourier sine
series, Equations (92) and (93) combine to yield the following
expression for the non-dimensional span loading on a swept wing.

cO © O

® *
c cly) s 5, <'Yn )
° i © n=1,s
(94)

where y, = cos'l(-y/si) and the summation over i is carried
over the wing elements whose semispan is greater than vy.
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5.4 Downwash at the Tail Location

The calculation of the downwash behind a swept wing is again
a matter of collecting the appropriate expressions for w* and
W. That is, the upwash at any point is again given by

P .
wix, vy, 2) = w* + W + vV, sin o

just as in the rectangular wing case, but here we must account for
the contribution of every wing element comprising the swept wing.
Thus, we have

*

Ny
* =
v Z Yik
k=1
and

where the distance Xy appearing in the expressions for wik*

and W, is now the distance from the leading edge of the kxth
wing element to the point in question. For points lying in the
plane of the wing, the expressions for wik* are given by Equa-
tions (78) to (8l), depending upon whether the point in question

lies inside or outside of the span of the kth

wing element.

The corresponding expressions for Wik are given by Equations (12)
if we replace x by X;, 8 by 8y and ¢ by Cy -
For points lying out of the plane of the wing, see Footnote 9,

page 46.
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5.5 Calculative Procedure

The detailed procedure for performing the numerical calcula-
tions is outlined below:

(a) Select the number of wing elements, n,, and the number
of harmonics, n,, to be carried in the calculation. This point
will be discussed in Section 6.2 where convergence with respect to
these parameters is investigated.

(b) Assume an initial value of the shedding angle,

Gi(i =1, 2 ... nw), for each wing element.

(c) calculate the (fnj)ii coefficient matrix for each wing,
treating each as an isolated wing, using the method outlined in
steps (b) through (d) of Section 4.5.

(d) cCalculate the Fourier coefficients (gj)ii as outlined
in step (f) of Section 4.5,

(e) Obtain initial values of the loading coefficients,
('ynu*)i and (wns*)., for each wing element by treating each
wing as an isolated ;ectangular wing and solving Equations (43),
(44), and (45).

(£) Calculate ry* for each isolated wing by Equation (51).

(g) calculate wik* for i=1; k=2, ..., n, using
Equation (76) and Equations (78), (79), (80), or (8l) as appro-
priate with the values of ('Yn*)k from step (e).

(h) cCalculate Wik for i=1; k=2, ..., n, using Equa-

tions (12) and replacing x by x, (BEq. (77)), 8 by 8,, and

i
¢ by Cy -

(i) Determine coefficients (b from Equation (74),

3) 3%
using the results of steps (g) and (h).
() Ssolve Equations (75) for the unseparated loading coef~-

ficients ('Ynu*)i by setting Pi* =0 for i= 1],

(k) Solve Equations (75) for the loading coefficients due
to separation (Yns*)‘ by setting TI;* = 1 and omitting the
i

remainder of the right-hand side of Equations (75) for i = ],



-63-

(1) Replace results of step (e) with results of steps (j)
and (k).

(m) Determine Pi* for i = 1 by using Equation (51).
This completes the first iteration on (wn*)l.

(n) Replace results of step (f) with results of step (m).

(o) Repeat steps (g) through (n) for i =2, 3, ..., n,
with i # k in steps (g) and (h). This completes the first
iteration for all wing elements.

(p) Calculate normal force coefficient and center of pres-
sure using Equations (87) and (90).

(d) Repeat steps (g) through (p) until desired accuracy
on normal force is obtained.

(r) cCalculate Gi(i = 1, 2, ce.y nw) from Equation (86).

(s) Repeat steps (d) through (r) until the desired accuracy
on Gi is obtained.
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6. NUMERICAL CALCULATIONS AND COMPARISON WITH EXPERIMENT

This section of the report will describe the results of the
calculations wﬁich were made using the analysis presented in Sec-
tion 4 for the rectangular wing and that presented in Section 5
for the swept wing. The rectangular wing calculations will be dis-
cussed first, since this wing element is the building block for the
swept wing analysis. Convergence of the rectangular wing solution
is therefore necessary if the swept wing solution is to converge.
The rectangular wing calculations were carried out on an IBM 1620
digital computer, whereas the swept wing calculations were performed
on an IBM 7094 computer.

6.1 Rectangular Wing

Two invéstigations were made using the rectangular wing analy-
sis presented in Section 4. The first of these was to determine
the number of terms (nonzero Fourier harmonics) required in the
series representation of the loading in order to insure convergence
on values of the normal force and center of pressure. The second
investigation was to determine the angle € at which the separated
vortices must be shed in order for the vortices to follow the local
streamlines in the vertical plane containing the wing tip. After
these studies were completed, systematic calculations of the normal-
force coefficient and center of pressure were carried out for a
range of aspect ratios and angles of attack, and the results have
been compared with available experiment. 1In all of these calcula-~
tions, the rectangular wing is represented by a single wing element,
since we wish to investigate the convergence of the basic building
block of the theory.

6.1.1 Convergence with number of harmonics

Table II presents the results of rectangular wing calculations
in which the number of nonzero harmonics n in the loading was
varied from 2 to 14, for two angles of attack, over a range of
aspect ratios. For these calculations, the control line was fixed
at the 3/4-chord location and the shedding angle 6 was held fixed
at half the angle of attack. It can be seen that the values of
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CN’ x/c, and T* converge rapidly and that 8 nonzero harmonics
evidently suffice for l-percent accuracy in cN even at an aspect
ratio of 20. The values of X/c and T* converge somewhat more
slowly, as seen from Tables II(b) and II(c), and it can be seen
that the rate of convergence decreases as the aspect ratio is
increased. (This point is significant in regard to the swept wing
solution.) Also, it can be seen that convergence is more rapid

at the higher angles of attack, and it is evident that the solution
will have convergence difficulties at vanishing angles of attack,
since the shed vortices tend to coalesce into the wing tip.

The significance of the increase in the number of harmonics
required with increasing aspect ratio is illustrated by Figure 3,
which can be used as a guide for the swept wing solution. For the
rectangular wing itself, this feature of the solution is of little
significance, since one would logically return to linear theory at
very high aspect ratios. However, for a swept wing, even of low
aspect ratio, the aspect ratio of the trailing element increases
as the number of wing elements is increased. For example, if a
delta wing of aspect ratio 3 is represented by 10 rectangular
wing elements, the trailing element has an aspect ratio of 14.25.
Thus, Figure 3 may be used as a guide for estimating the number
of harmonics one might need to use in the swept wing solution. It
must be borne in mind, however, that the mutual interference among
wing elements may require still larger numbers of nonzero harmonics
for convergence of the swept wing solution.

6.1.2 Detailed loading coefficients for a specific case

The detailed convergence of the mathematical solution is
perhaps best illustrated by listing all of the loading coefficients
for a particular rectangular wing element. For this purpose, we
shall select a rectangular wing of aspect ratio 3.5 at 20° angle
of attack, with the shedding angle 6 fixed at half the angle of
attack and the control line located at the 3/4-chord position.
The reason for selecting this particular case is that it represents
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the fourth wing element of a delta wing of aspect ratio 2. We
shall, therefore, be able to compare the loading coefficients

on the isolated wing element with those in which the interference
from other elements is included.

The loading coefficients for the selected case are listed
in Table III, and it is noted that 19 nonzero harmonics have been
carried in the calculation, to correspond with the delta wing
calculations of Section 6.2.4. It can be seen from Table I1II
that the loading coefficients associated with the higher harmonics
(n large) are several orders of magnitude smaller than the leading
coefficients so that one need not have carried 19 harmonics for
this case. 1In fact, as was pointed out in:the previous section
(Fig. 3), 6 harmonics was a sufficient number for, the selected
case.

The separated vortex strength I'* and the normal force and
center of pressure corresponding to the loading coefficients of
Table 1II are obtained by using Equations (51), (67), and (69).
The resulting values are

* = 0.06307

CNA- 1.4450

x/c = 0.4043

6.1.3 Shedding angle calculations

Calculations have been carried out to determine the shedding
angle € of the separation vortices by the iterative procedure
of Section 4.2.6, and the results are plotted in Figure 4., It can:
be seen that the shedding angle ratio 6/a increases with aspect
ratio and decreases with angle of attack. Furthermore, it is
noted that the shed vortices are found to lie above the free-stream
direction for aspect ratios above 2 for angles of attack below
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15°. This result is known to be unrealistic because of the down~-
wash which must be produced by a lifting wing and which must cause
the trailing-edge vortices to drift below the free-stream direction.
On the other hand, it must be borne in mind that the assumed mathe-
matical model does not permit rolling up of the side-edge vortex
sheets. This process would naturally tend to drive the shed vortices
downward and result in a smaller shedding angle of the rolled-up

vortex cores.

6.1.4 Effect of control line location

Because of the above result, and because the placement of the
control line (where 6 is calculated) at the 3/4-chord location
was based on matching the lift-curve slope at o = 0, it was con-
sidered worthwhile to investigate the effect of control line loca-
tion on the calculated shedding angle 6. Therefore, 6 was
recomputed with the control line placed at the 65 and 85 percent
chord locations, and the results are presented in Figure 5. It can
be seen that the effect of control line location on the shedding
angle was rather small, and that the new control line locations
failed to yield more realistic values of 6. Therefore, it was
concluded that the control line should remain at the 3/4-chord
location , in order to insure the correct lift-curve slope at small
angles of attack, but that the values of the shedding angle 6
determined by the iterative technique of the present analysis
(using a single-wing element) are evidently unrealistic. This
fact is most likely associated with the use of a lifting line
rather than a lifting surface and with the fact that the shedding
angle is determined only at the location of the control line at
which the boundary condition is satisfied. This situation might
be expected to improve if one were to use a number of wing elements
of higher aspect ratio to represent the rectangular wing. This has
not been done.
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6.1.5 Normal force and center of pressure

Systematic calculations have been preformed to determine the
variations of normal force and center of pressure on rectangular
wings at various angles of attack for a wide range of aspect ratios
(using a single wing element), and these results are presented in
Figure 6. For these calculations, the control line is at the
3/4-chord location, and the value of &8 is that determined by
iteration. For a given angle of attack, the normal-force coeffi-
cient is found to increase with increasing aspect ratio while the
center of pressure moves forward. For a given aspect ratio, the
normal-force coefficient increases nonlinearly with angle of attack,
and the center of pressure is seen to be relatively insensitive to
angle of attack.

6.1.6 Comparisons with experiment

The calculated variation of normal force with angle of attack
(for a single rectangular wing element), is compared with experi-
mental data in Figure 7(a) for rectangular wings of aspect ratios
from 0.2 to 5.0. It can be seen that the theoretical normal force
agrees with experiment within about 10 percent over the angle-of-
attack range shown. A notable exception is the aspect ratio 5
wing beyond the stall, and it is recalled that the present theoret-
ical model does not account for leading-edge stall on rectangular
wings. In a broader sense, it may be said that the theory fails
if the flow becomes unsteady. Thus, for all aspect ratios, the
theory will fail above some angle of attack, since all flat plates
at 90° angle of attack produce an unsteady wake, whether the vortices
in question arise from leading, trailing, or side edges. However,
the angle of attack for the onset of unsteady shedding will be lower
for the higher aspect ratios, because of the orientation of the
shed vortices (spanwise rather than chordwise). That is to say,
vortices which are aligned nearly normal to the free stream produce
an unsteady flow, while those aligned nearly with the free stream
produce a steady flow. Thus, as seen in Figure 7(a), the angle-of-
attack range over which the theory is valid will be larger for the
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lower aspect ratics. In Reference 1, Bollay showed that his theory
agreed with experiment for angles of attack up to 45° for an aspect
ratio of 1/30. The present theory is in close agreement with Bollay's
theory for vanishing aspect ratios, at least insofar as normal force
is concerned, despite the assumptions of a single lifting line and

a constant separated vortex strength along the chord.

In Figure 7(b), the calculated center of pressure is presented
for a variety of rectangular wing elements. It is seen that the
present theory predicts centers 6f pressure which are rather far
rearward (toward the midchord location). Experimentally (Ref. 4),
it is founa that the center of pressure remains closer to the quarter
chord for rectangular wings of all aspect ratios. It is interesting
to note that Bollay's theory (Ref. 1) places the center of pressure
at the quarter chord for all aspect ratios by assuming the chordwise
load distribution to be that of a wing of infinite aspect ratio.

The present theory, on the other hand, places the lifting line at
the quarter chord but places the center of pressure of the separated
vortices at the midchord by assuming the separated vortices to be
uniformly distributed in the chordwise direction. This restriction
can be removed by employing a number of rectangular wing elements

to represent the rectangular wing and then solving for the chordwise
distribution of loading and shed vorticity.

For all of the above results using a single rectangular wing
element, the shedding angle of the separated vortices has been cal-
culated by the iterative procedure described in Section 4.2.6. It
will be recalled (see Fig. 4) that these calculated shedding angles
appear to be unrealistically high, particularly at high aspect
ratios and at low angles of attack. Nevertheless, the agreement
with experimental normal forces on rectangular wings is quite satis-
factory even in these ranges.

Comparisons with experimental values of the shedding angle
are of questionable validity, since the mathematical model is clearly
unrealistic in this detail. That is to say, the vortex sheet shed
from the side edge of a rectangular wing actually rolls up into a
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single vortex core which lies above the wing surface. It is the
position of this core which is measured experimentally. The only
known measurements of this kind (contained in Ref. 23) indicate a
considerable (nonlinear) variation in the orientation of this vortex
core, both with chordwise location and angle of attack for a rec-
tangular wing of aspect ratio 2. In any case, it would not be
reasonable to expect that the theoretical shedding angle at the
side edge which renders the mathematical solution of the problem
unique for the selected theoretical model (with no rolling up)
should agree with experimental measurements of the orientation of
the rolled-up vortex core. In fact, it is clear that rolling up
of the side-edge vortex sheets would cause the uppermost shed
vortices to be depressed toward the wing surface. Therefore, the
experimental angle Gc of the vortex core relative to the plate
should logically be smaller than the theoretical angle 6 of the
side-edge sheets. That is

8 > Gc
It is of some interest to note that in Bollay's theory (Ref. 1),
the theoretical values of shedding angle may well be more realistic,
since he satisfied the boundary condition (of no flow through the
wing) in the mean rather than at a specific chordwise location, and
also since he assumed a more realistic chordwise variation of shed
vorticity than the uniform distribution of the present theory for a
single-wing element. Bollay's approach yielded shedding angles not
far from half the angle of attack in all cases. In the limit of
vanishing aspect ratio, the present theory for the single rectangular
element does yield values of 6 which appear to be converging
toward Bollay's value of half the angle of attack.
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6.2 Triangular Wing

Calculations have been carried out for the special class of
swept wings of triangular planform (i.e., delta wings) using the
method of Section 5. Initially, the calculations were made with
a double iteration; that is, with iteration on both the loading
and the shedding angle of each wing element. However, for reasons
which will be discussed below, the final calculations were carried
out by iterating on the loading but leaving the shedding angle 6
fixed. Therefore, convergence of the swept wing solution was
investigated both with and without iteration on 6.

6.2.1 Convergence with number of iterations

Perhaps the key to the success or failure of the procedure
described in Section 5.5 lies in the rate of convergence with
iteration on the loading of each wing element. Therefore, this
was investigated first using four rectangular wing elements.
Furthermore, since the rate of convergence is expected to deteri-
orate with increasing aspect ratio, the highest aspect ratio
(A =4) to be employed here was used for the convergence investi-
gation. Figure 8 shows the convergence of the shed vorticity TI'¥,
the first loading coefficient v, * (which determines Cy and
N with number of itera-
tions on the loading. It can be seen that the convergence is

§7co), and the normal force coefficient ¢C

generally oscillatory in nature and that in this case six iterations
are adequate for the load distribution, whereas only three itera-
tions are required to converge on the normal force.

Convergence with 6 iterations (which are carried out after
convergence on yn*) is illustrated in Figure 9. It can be seen
that convergence is again oscillatory and that four iterations
on 6 suffice here to determine 6 within about 0.25°. On the
other hand, about six iterations are required for convergence on
the normal force.
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6.2.2 Shedding angle calculations

A significant difference between the rectangular and tri-
angular wing calculations lies in the fact that the present theory
predicts a single shedding angle for the rectangular wing, as well
as a single value for the shed vorticity, which is assumed constant
over the chord, if a single wing element is used. For the delta
wing, however, the method yields a chordwise distribution of these
quantities by the use of many rectangular wing elements. The cal-~
culated distribution of shedding angle 6 over the chord of a
delta wing of aspect ratio 4 at 20° angle of attack is shown in
Figure 10 using from two to eight wing elements to represent the
delta wing. Here we see again, as in the case of the rectangular
wing, that the predicted values of 6 are unrealistically high.
(in this case, they are all larger than the angle of attack.) But
even more disturbing is the observation that 6 1is increasing as
the number of wing elements increases. This may be associated
with the increase in the predicted value of 6 with aspect ratio,
since the aspect ratio of the trailing element increases as the
number of elements is increased.

6.2.3 Convergence with number of harmonics

The convergence of the normal force and center of pressure
on the delta wing was next investigated using various numbers of
rectangular elements to represent the delta wings. These results
are shown in Figure 11, and it can be seen that convergence is
quite satisfactory if only two wing elements are employed. However,
if larger numbers of wing elements are employed, not only are more
harmonics required (as would be expected because of the increased
aspect ratio of the elements), but also rather large bumps are
noted in the variation with harmonics. This is believed to be
caused by the fact that there is a finite discontinuity in the
downwash at the side edge of each rectangular element. Thus, with
certain numbers of harmonics, certain spanwise points used in the
Fourier analysis fall close to these discontinuities and cause
apparent convergence difficulties. In order to check this hypothesis,
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detailed downwash calculations were carried out for one case, and
the fit obtained with the Fourier series was investigated. It was
found Ehat by adjusting the downwash at the point nearest the dis-
continuity, the bumps in the curves of Figure 11 could be reduced.
It is also felt that with still larger numbers of wing elements
the magnitude of each bump may be reduced because of the decrease
in the magnitude of the discontinuity.

Perhaps the most significant results of Figure 1l are that
(a) the rate of convergence with number of wing elements is slow,
(b) the values of CN
of CN is increasing with number of wing elements. Inasmuch as
these difficulties with C are believed to be associated with

N
the unrealistically high values of 6 and their increase with

are unrealistically high, and (c) the value

increasing number of elements (see Fig. 10), it was decided to
investigate the behavior of the delta wing solution without
iterating on 6. The results of these calculations are shown in

Figure 12, and it can be seen that (a) the convergence of C and

N

§7co with number of wing elements is improved, and (b) the value

of CN is reduced, even for the rather large value of 1.0 assumed
for the ratio of 6/a. It is concluded that, in applying the
present theory to swept wings, one should leave 6/a as a param-
eter, because of the unrealistic predictions of 6 for the assumed
model.
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6.2.4 Detailed loading coefficients for a specific case

In order to give a better insight into the behavior discussed
above, detailed loading coefficients for each rectangular wing
element are presented in Table IV for a delta wing of aspect ratio
2 (so/co = 0.5) at 20° angle of attack with the value of 6/q
fixed at 0.5. For this calculation, 8 wings and 19 nonzero har-
monics are employed, and the characteristics of each wing element
are listed in the following table.

elomont | b | b | A | Sbe | LL. | o8
No. o o o o (deq)

1 0.0625 0.125 0.5 0.09375 0.03125 10

2 .1875 .125 1.5 .21875 .15625 10

3 .3125 .125 2.5 .34375 .28125 10

4 .4375 .125 3. .46875 .40625 10

5 .5625 .125 4. .59375 .53125 10

6 .6875 .125 5. .71875 .65625 10

7 .8125 .125 6.5 .84375 .78125 10

8 .9375 .125 7.5 .96875 .90625 10

where C.L. is the distance from the apex of the delta wing to

the control line of each element, and L.L. is the distance from
the apex to the corresponding lifting line.

The calculated loading coefficients on each element are listed
in Table IV, and it will be recalled that the fourth element (Table
Iv(d)) has the éame geometry as the isolated rectangular wing
whose loading coefficients are listed in Table I1III. But, before
comparing the results of Tables III and IV(d), it is well to refer
back to Equations (75) representing the delta wing problem. It
will be noted that all of the mutual interference among the wing

elements is contained in the (bj)ik and, therefore, appears only
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in the unseparated solution (&n *) which is obtained by setting
u .

i
Fi* = 0, Hence, the separated solution (yns*> is unaffected by

interference and should be the same as for an isolated rectangular
wing element of the same aspect ratio. Comparison of Tables III
‘and IV(d) shows that this is indeed the case,1©

A comparison of the values of <ynu*>‘ from the same tables

shows that in the case of the delta wing (Table IV(d)) the mutual
interference among the wing elements severely curtails the rate of
convergence; that is, the highest harmonics are nearly the same
order of magnitude as the first harmonic. 1In the case of the
corresponding isolated wing element (Table III), these differed

by six or seven orders of magnitude. Looking at the other wihg
elements of the delta wing (Table IV), we see that this difficulty
is typical of all the wing elements except the leading element,
which shows convergence similar to that for an isolated rectangular
wing. The apparent reason for this difference lies in the fact
that the present mathematical model produces finite discontinuities
in the downwash for all wing elements except the first.

Despite the above difficulty, which may be expected to mani-
fest itself in the calculation of such detailed quantities as span
loading and downwash, it has been shown in the previous section
y and E/co) for
the delta wing have nevertheless converged with 8 wings and 19 har-

and in Figure 12 that the gross guantities (C

monics. For the calculation of these quantities and of the span
loading, we require the values of shed vorticity Fi* for each
wing eiement. These are calculated from Equation (51) and are
listed below.

lorhe small differences are attributed to the fact that the numbers
in Table III were calculated on an IBM 1620 whereas those of
Table 1V were calculated on an IBM 7094.
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Wing
element Fi*
No.
1 0.34311
2 17177
3 .11823
4 .09146
5 .07197
6 .05901
7 .04707
8 .03732

The total normal force coefficient and center of pressure for
the delta wing are given by Equations (87) and (90). The result-
ing values for the present case are

CN = 0,9292

x/co = 0.6272

The span loading on the delta wing can be calculated from
Equation (94). The resulting span load distribution is tabulated
as a function of y/so in Table v. It will be noted that the
span loading goes to zero at y/so = 0.9375 which corresponds to
the side edge of the eighth wing element.
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6.2.5 Comparisons with experiment

The calculated variations of normal force and center of pres-
sure with angle of attack for delta wings of aspect ratio 1, 2, 3,
and 4 are compared with experiment and with linear theory in
Figures 13 through 16. As explained earlier, it was found in the
course of the calculations that iteration on the shedding angle of
the separated vortices produced unrealistically high values of
both shedding angle and normal force for delta wings. Therefore,
for the calculations presented in Figures 13 through 16, the shed-
ding angle was treated as a parameter and held fixed in each cal-
culation.

It can be seen from Figures 13 through 16 that, for each
aspect ratio investigated, there is a single value of the shedding
angle ratio 6/a which yields good agreement with the experimental
normal force for all angles of attack up to the experimental fall-
ing off of the lift-curve slope. This latter phenomenon is not
predicted by the present theory and is evidently associated with
a change in the type of flow separation (as in the case of rectan-
gular wings). The calculated normal force is seen to increase
with 6/a in all cases. (This effect is shown in Figure 17 for
various aspect ratios.) On the other hand, the center of pressure
is evidently insensitive to 6/a and agrees well with experiment
for the cases where data are available (A = 1, 2, 4), particularly
at the higher angles of attack. It is noted that linear theory
also shows good agreement with experiment with regard to center-
of-pressure location.

It is evident from Figures 13 through 16 that the present
theory in all cases yields results which are considerably better
than linear theory, provided that the appropriate value of the
ratio 6/a is selected and held fixed. The required 6/a is a
function of aspect ratio, and the resulting variation with aspect
ratio is presented in Figure 18.
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Since some limited experimental values of the shedding angle
ec of the vortex cores over slender delta wings are available for
aspect ratios of 1 and 1.67 (Refs. 24 and 25), these are also
shown in Figure 18. One is again cautioned that these measure-
ments do not actually correspond to experimental values of 6,
since the separated vortices of the present mathematical model
are not permitted to roll up into a single core. In keeping with
this fact, it is seen from Figure 18 that the rolled-up core forms
a much smaller angle with the plane of the wing than do the separ-
ated vortices of the assumed mathematical model which is required
to giQe the experimental normal force.

It should be pointed out that all of the above calculations
were performed using 8 wing elements and 19 harmonics. For the
highest aspect ratio (4.0), which corresponds to the lowest shed-
ding angle (6/a = 0.1), it is not certain that the mathematical
solution has converged, particularly at the lowest angle of attack.

As a point of interest, one calculation of span load distri-
bution was carried out for an aspect ratio 2 delta wing at 20°
angle of attack, since data are available in Reference 26. The
results are shown in Figure 19, and it can be seen that discon-
tinuities are indicated in the theoretical span loading at the
side edge of each rectangular wing element employed to represent
the delta wing. It is observed that approximate agreement with
experiment would be obtained by fairing out the discontinuities,
but it is evident that a larger number of wing elements (and

.harmonics) would be required for accurate prediction of the span

loading on delta wings.
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7. CONCLUSIONS

A theoretical analysis has been developed for calculating the
low-speed aerodynamic loads on rectangular wings with side-edge
separation. This theory, which includes lifting-line theory for
the case of no separation, yields the downwash everywhere in the
plane of the wing and also incorporates the Kutta condition of
finite velocity along the side edges. Because of this feature,
it has been possible to extend the theory to other planforms with
sweptback leading edges. An iterative technique has therefore
been devised for calculating the aerodynamic characteristics of
sweptback wings with leading-edge separation by representing the
wings as a system of elementary rectangular wings.

Calculations have been carried out for both rectangular and
delta wings of various aspect ratios, and the calculated normal
force, center of pressure, load distribution, and shedding angles
compared with experimental data. The following conclusions are
drawn from the calculated results.

7.1 Rectangular Wings

(1) The method appears to converge rapidly with respect to
number of harmonics, except at low angles of attack and/or high
aspect ratios. These cases, however, are well covered by lifting-
line theory and slender wing theory.

(2) A characteristic feature of the spanwise load distribu-
tion for a rectangular wing with side-edge separation is found to
be a zero slope at the side edges.

(3) For aspect ratios from zero to five, the normal force
predicted by the present theory using a single wing element agrees
with experiment within 10 percent up to the onset of leading edge
stall, which is not included in the theoretical model.

(4) The present theory evidently predicts unrealistically
high values of the shedding angle for the separated vortices,
particularly for high aspect ratios and low angles of attack.
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(5) The predicted normal force increases with shedding angle
of the separated vortices but becomes less sensitive to shedding
angle as the aspect ratio increases,

7.2 Delta Wings

(1) For delta wings, the unrealistically high shedding
angles evidently produce correspondingly high predicted values
of normal force.

(2) If the shedding angle is held fixed, the present theory
is capable of giving substantial improvement over other theories
in predicting both normal force and center of pressure for aspect
ratios from one to four over a wide range of angle of attack,
provided an appropriate shedding angle is selected. A plot of
the required shedding angle has been developed. A

(3) The predicted center of pressure is relatively insensi-
tive to the shedding angle of the separated vortices.

(4) The method appears to converge with respect to number
of wing elements and harmonics, whether or not one solves for the
shedding angle by iteration. For aspect ratios up to four, it
appears that 8 wings and 19 nonzero harmonics suffice for 2 percent
precision on normal force, provided that the separated vortices
lie at least 3° above the wing surface.

(5) Convergence of the method deteriorates as the shedding
angle (and consequently the angle of attack) decreases and as the
aspect ratio increases. That is, larger numbers of harmonics are
required for convergence at low angles of attack and/or high
aspect ratios. However, linear theory suffices for those cases.

(6) The present theory affords prediction of the detailed
span loading as well as the downwash everywhere in the flow field.
However, accurate prediction of the span loading (and, hence, of
the downwash) evidently requires larger numbers of wing elements
and harmonics than does accurate prediction of the normal force
and center of pressure.
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(7) The span loading on a swept wing, as predicted by the
present method using 8 wings and 19 harmonics, exhibits sizeable
fictitious discontinuities at the side edge of each wing element.
However, when these were faired out, the resulting span load dis-
tribution compared well with experiment for the one case which
was calculated for an aspect ratio two delta wing at 20° angle of
attack.

(8) The present theory evidently does not predict the fall=-
ing off of lift-curve slope near the stall. Thus, for delta wings
of aspect ratio three and higher, the theoretical normal force is
too high for angles of attack above 20°.
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APPENDIX A

UPWASH INDUCED BY A HORSESHOE VORTEX
LYING ABOVE THE WING

To determine the upwash w induced at an arbitrary point
(x,Y,2) by a horseshoe vortex which is inclined to the wing
surface, let us consider the following sketch:

Here we have a rectangular wing of semispan s 1lying in the X,y
plane and a horseshoe vortex of strength [I'. This vortex consists
of three parts, a bound part, of semispan s, lying in the plane
of the wing at a distance ¢ behind the leading edge, and a right
and left trailing vortex each of which is inclined at an angle 6
to the wing as shown. Let us divide the upwash w produced at
point (x,y,2) into the components produced by each part of the
horseshoe vortex. That is, let

W(x,y,Z) '- wB(x’Y)z) + WR(X,Y,Z) + WL(x,y,z) (A-l)
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The upwash induced by the bound vortex can be determined
with the aid of the following sketch:

Yy

-8 P(x’ygz)

Thus, the total velocity induced at point P by the bound vortex
of span 28 is (Ref. 27)

- I -
dg " (cos al + cos a2) i (r.2)

where EQB is the unit vector in the direction of ‘as. Hence
the upwash in the positive 2z direction is given by (see sketch)

-_’o-’
wB qB J'z
- -l - - Lco8 ¢
|q8| cos ¢ prpm (cos a1 + cos az) (A.3)

where T; is the unit vector in the =z direction.
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The preceding sketch yields the following relationships:

r=x=F£ R

cos ¢
cos ¢ = x =&
‘\/(x—§)2+22
cos a = s + Y (aA.4)

Vix-€2+ (s +y)2+ 22
cos a_ = — 4
(x ~£)2 + (s - y)® + 27

so that substitution into Equation (A.3) gives

_ I{x -§€) s +Yy

B 41r[(x- £)2 +z‘?:| \/7x- E)2 + (s + y)2 + 2°

+ s - Y
'\/(x-€)2+(s-—y)2+z

(A.5)

2

The next component of the upwash at point P to be determined
is that due to the right trailing vortex. For this purpose let
us look at the next sketch.

\
P(X,Y:Zri
l
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1f we apply the relationship given by Equation (A.2) to this case,
we have

#
1

aq (A.6)

- I
R anc (cos as + cos a4)

where TqR is the unit vector. Since the vortex we are dealing
with is semi-infinite, a" approaches zero degrees and

cos a = 1.0 (A.7)
4

Let us now write the expressions for two unit vectors, one in the
direction R to Q@ and the other in the direction R to P. These
are

YRQ = cos 6 'J'.'x + gin 6 Tz (A.8)
and
- - -
- (x - ﬁ)lxﬁ- (s - y)1y_+ z:.E
iep (A.9)

Vix-07+(s-y9°+2°

From these two unit vectors we find

cos a_ = ?RQ . TRP - —ix-flcos 0 + z sin 6 (A.10)
‘\/(x - &)2 + (s -y)% + 2%

r = |'I3.’P| sin a = I'ﬁPl 4/ 1 - cos? a
3 3

1/2
2
- {(s -y)Z + [(x - £)sin 6 -~ z cos 6] } (A.11)

and
- -rh - -
_; _lRQX1&P_:EQXRP
9 sin a, r



A-5

This cross product is, from Equations (A.8) and (A.9)

-

.. xRp
.—RQ-?—-. %’{(s - y)sin 6 'J'.’x + [(x ~ £)sin 6 ~ z cos 9] Ty

- (8 - y)cos 6 Tz} (A.12)

Therefore, substitution of Equations (A.7), (A.10), (A.1ll), and
(A.12) into Equation (A.6) will give the expression for ER' Thus,
for the upwash induced at P (i.e., the component of ER in the
'Yé direction), we find

--' .7
Wp " 9g " 1,
I (s - os 6
aTr

(s - y)2 + [(x - £)sin 8 - z cos 6]2

(x - €)cos 6 + z8in 6 . , (A.13)
W 2 2 2
(x -€) + (s ~-y) +z

From symmetry considerations, the expression for the upwash

induced at point P Dby the left trailing vortex can immediately
be written as

. - - (s + Ylcog ©
6]°

L 4T (s +y)2 + [(x ~ €)sin 6 ~ z cos

—{x - f)cog 6 + 2 8in 8 ., (3.14)
"/(—x-€)2+ (s +y)° +2°

Finally, the total upwash w due to the horseshoe vortex
of strength ' shown in the first sketch of this appendix is

W= w, + W

B R+W

L



where

we m - —fx =€) 8 + YV
B 41r[(x -£)2 + za]

+ 8§ = XY
'\/(x-g)z + (s —y)2 +22

Vix-6)2+ (s +y)° + 2

2

R 4T

w. = - (s - Y)cos 6
(s-y)2+[

(x - 8)cos 6 + z sin 6 + 1
Vix -8+ (s - 9)° + 2

r (s + Y)cos 8

(x ~ £)sin 6 - z cos 6]2}

—

W, = o= =—
L 4”{(S+y)2+ [(x-&)sine-zcose

(x ~ €)cos 6 + z sin 6 ‘1
Vix-62+ (s +9)2 +2°

r)

(r.15)



APPENDIX B

INFLUENCE OF THE GROUND PLANE

If the wing in question is in the proximity of a ground
Plane, then the upwash at the wing surface will be altered in the
same fashion as if the ground plane were replaced by an inverted
"image" wing located as shown in the sketch below (Ref. 28):

I
/
- -~
Ground . ,/ 7 P
. /7 -
plane Y g & ’/x"’ —)'
/- —

- Image wing
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Thus, we can rewrite the boundary condition of no flow through the
wing surface (Eq. (9)) in the form

w*(xp, yp) + W(xp, yp) + wg*(xp’yb) + wg(xp, yp) = -V sina
(8.1)

where the subscript g denotes the contribution of the ground
plane or image system.

It can be seen from the above sketch that the 2z component
of the velocity produced at point P(x, y) on the wing by the
image system is equal to the 2z' component of velocity produced
at the image point P'(x', y') by the actual vortex system asso-
ciated with the real wing. Therefore, we can determine the upwash
wg*(x, y) and Wé(x, y) of Equation (B.l) by writing expressions
for the velocity component in the z' direction produced at the
image point P' by the actual wing. For this purpose, it can be
seen from the sketch below that we shall require both the x and
z components of velocity induced at the point P'.

z
4 Vg
/
P
Wﬁ% Ground plane
P’ p” \\\\\\ ‘
-~ . X
2a
- '
w
9

That is,

wg = wg'- -Ww cos 2a + u sin 2a (B.2)
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where w and u are the 2z and x components of velocity
induced at P'. ,

The coordinates Xis Yy 25 (in the x, y, 2z system) of
the image point P' are required for use in the general expressions
for w and u. But, since the y coordinate of the image point
is the same as that for the corresponding point in the wing itself,
we have

Yy =Y (B.3)

The coordinates x5 and z; can be obtained from the following

sketch, which is a cut through the y = Y; plane.

2
P(an:z)
/ a
/
/ >
/ y \:hTE
77'7‘77""7‘7‘7‘7”%’7‘"’77’”‘7’7
7 O
;o S~ /)

/ TS
/ /;(xi’yi’zi)

Thus, we see that
z, = -2 [hTE + (¢ - x)sin a] cos a (B.4)

and
X, = x -2 tan o = x + 2 [hTE + (¢ - x)sin a] sin a

(B.S)
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Having the coordinates Xir ¥y 24 of the image point P',
as given by Equations (B.3), (B.4), and (B.5), we can now express
the u and w velocity components at that po.nt by using the
results of Appendix A. Thus, the w component is given directly
by Equations (A.15) if we replace x by x; and z by z;.
Similarly, the u components at point P(x, y, 2z) are obtained
from Equations (A.2) and (A.6) by writing the appropriate dot
products of the velocity vectors. Thus, from Equation (A.2),

we have (see sketch, p. A-2)

uw. =q, - I
B qB X
> . - L.8in ¢
dg | 8in ¢ e (cos a + cos a2) (B.6)

Therefore, using the relationships of Equation (A.4), we find that

u. = I'z s + Y
B
4"[(x - €)% + z%] \/(x -£)2 + (s +y)2 + 2%

(B.7)

+ s - Y
\/kx -£)2 4+ (s - y)2 + 27

By the same procedure, we find from Equations (A.6) through
(A.12) that

- -
Up " AR ° Iy
- A (s - Y)sin 6
AT V(s - y)2 + Bx - ¢)sin 6 - 2z cos 6]2
—{x-6)cos & + 2z 8in 6 (5.8)

\/?x -€)2 + (s - y)2 + 2%
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From symmetry considerations, the corresponding expression for

u, induced at P by the left trailing vortex can immediately

L
be written as

a. = L (s + y)sin 6
L 4r (s +y)2 + [(x - £)sin 6 - z cos 6]2
(x - €E)cos B + z sin 6 + 1

\/(x -£)2 + (s +y)2 + 27

(B.9)

Finally, the u and w components induced at the image
point P'(xi, Yi» zi) are obtained directly from Equations (A.15),
(B.7), (B.8), and (B.9) by simply replacing x and 2z by 9
and z; as given by Equations (B.4) and (B.5). Then the actual
upwash Vg produced at the point P Dby the image wing (i.e., by
the ground plane) is given by Equation (B.2).

It must be recalled that the above expressions give only the
velocities induced by a single vortex, whereas the additional
upwash components required in the boundary condition of Equation (B.1,
are those produced by the entire vortex system associated with the
image wing. Therefore, in order to obtain wé* and W%, we must
integrate the above expressions in a manner analogous to that
employed in the main body of the present report (see Sections 4.2.2
and 4.2.3). The integrations required will, of course, be more
difficult than those of the main analysis, since they now involve
points lying out of the plane of the wing (i.e., 2z # 0).

Inasmuch as the detailed analysis and programing of the
influence of the ground plane represents a formidable task, it is
well to re-examine the validity of the assumptions made in this
analysis before embarking on such an endeavor. That is, one
should perhaps first consider whether the mathematical model is
sufficiently realistic to justify this extension. In particular,
it is pointed out that the shed vortices associated with the
lifting line are assumed to extend in the chordwise direction
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while the separated vortices are assumed to be shed at an angle 6
above the wing. Even in the absance of a ground plane, this assump-
tion is of course an approximation to the real vortex system in
which the vortices roll up into two concentrated cores. But as
the wing approaches the ground, an additional complication arises
which is not accounted for in the present analysis. The shed
vortices are deflected upward by the influence of the ground plane
and are also driven outward in the manner of a vortex ring which
expands when approaching a flat surface. This latter effect has
been observed experimentally behind a delta wing model. These
effects will, of course, become increasingly important as the
ground plane is approached, but their quantitative effect upon

the calculated results is not known.



TABLE I.- DOWNWASH IN WAKE BEHIND ELLIPTICALLY LOADED
LIFTING LINE.

b4 _ W Ya
8 Vg 4wsv;
x-gi
po 0 .25 .50 .75 1.0
0 © oo © ™Y '
.25 11.9556 11.7484 11.1091 10.0024 8.5199
.50 8.412 8.3407 8.1313 7.8053 7.4289
.75 7.396 7.3651 7.2766 7.1434 6.9902
1.0 6.9618 6.9446 6.9039 6.8398 6.7645
o 2T 2T 2T Vi 27
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TABLE III.- CALCULATED LOADING COEFFICIENTS FOR AN

ISOLATED RECTANGULAR WING ELEMENT OF ASPECT RATIO 3.5

(@ = 20°, 6 = 10°, n, = 19, x/c = 0.75).

n CYn *>u (Yn *>S 'Yn*

1 9.7049%1072 -7.4834x107! 4.9849x1072
3 1.0241x10°2 -4.8942x10" 1 -2.0628x10"2
5 1.2764x107* -2.6161x107* -1.6374x10"2
7 -1.3987x10"¢ -1.2853x107? -8.2470x1072
9 -2.5040x107° -5.5478x10"2 -3.5243x107°2
11 4.9398x1077 -1.9203x1072 -1.2108x1073
13 1.3147x107¢ -3.7588x10"° -2.3577x107¢
15 2.9635x10°" 1.3218x107° 8.3671x107°
17 9.8930%x10™° 2.0750x1072 1.3089x10™*
19 -2.8367x107° 1.4869x1072 9.3786x10™°
21 -3.7550%x10™° 7.7604x10™* 4.8911x107°
23 1.8738x10"° 2.9531x107* 1.8645x107°
25 2.5503x10°° 5.3567x10°° 3.3813x107°
27 -1.1670x10"° -3.4224x107° -2.1704x10°°
29 -6.4205x10"° -4.7103x10°° -2.9774x107°
31 -3.3350x10"° -3.4346x10"° -2.1697x107°
33 7.2535x10°° -1.8373x107° -1.1516x10°
35 -1.4820x10"° -2.3315x10"° -1.6188x107"
37 -7.7647x107 1% 2.8269x107° 1.7823x10°7




TABLE IV.- CALCULATED LOADING COEFFICIENTS FOR EACH
RECTANGULAR WING ELEMENT OF A DELTA WING OF ASPECT
RATIO 2.0 (a = 20°, 6, = 10°, (xo/e); = 0.75, n, = 19).

{(a) Wing element number 1.

n (?“*)u (&"*>s "

1 0.2155 -0.5293 0.3392x107*

3 -.1248x107% -.9414x1071 -.3242x107?

5 -.1106x10"* -.5724x107% -.1975x1072

7 .2877x10"° .1199%x1072 .4117x1072

9 -.2560x10"% .2273x10°° .7798x10"*
11 -.2697x107° -.1943x10"* -.6668x10°°
13 .3009%x10°8 -.9041x10°° -.3099x107°
15 .1324x107° .1016x1077 .3621x10"8
17 -.1151x1078 .3423x10°° .1163x107°®
19 .2171x1078 .1988x10°7 .8995x1078
21 -.6955x10"° -.2789>10°7 -.1026x10" 7
23 .3579x10”° .7980x10" 8 .3096x10" 8
25 -.3787x10"° .9309x10°8 .2815x10” 8
27 .1605x10"° -.9566x10"° -.1676x10" 8
29 .2140x1078 -.8673x10°° -.8358x10"°
31 -.1896x10°° .6237x10"° .2434x10°°
33 -.1955x10"° .8279x10™° .2645x10~°
35 -.8298x107° .1249%107° .3458x1077
37 .5229x10”° -.1171x107® -.3496x10"7




TABLE IV.- CONTINUED.

(b) Wing element number 2.

n ('Yn* )u <7n*)s 'Yn*

1 0.1584 -0.6940 0.3924x107*
3 .6306x1071 -.3015 .1126x107*
5 -.4885x10"* -.1012 -.6625x107 !
7 .3059x1071 -.2411x107* .2645x107 %
9 -.1599x107? -.1648x1072 -.1628x107*
11 .6325%1072 .1864x1072 .6645x10™2
13 -.4304x1073 .1119x1072 -.2380x1072
15 -.2920%x1072 .3221x1072 -.2B65x10"2
17 .4364x1072 .1190x10"* .4366x10°2
19 -.4204%x1072 -.3980x107* -.4210x1072
21 .2817x10°2 -.2279x10°* .2814x1072
23 -.8444x107° -.6200x107° -.8454x107°
25 -.9381x1073 .1882x107° -.9381x10°2
27 .1890x1072 .1051x107° .1890x10"2
29 -.1766x1072 .5290x10°° -.1766x10"2
31 .7988x10™ 3 .1458x107° .7988x10"°
33 .4269x1073 .1400x10""7 .4269%10°2
35 -.8806x1072 .2557x10"° -.8806x10"2
37 .3724x1072 -.3111x107° .3723x1072




TABLE IV.- CONTINUED.

(¢) Wing element number 3.

n ('Yn*>u ('Yn*)s 'Yn*

1 0.9065x107* -0.7347 0.3776x10°%
3 .1178 -.4157 .6868x10°?
5 -.2504x107* -.1917 -.4771x107*
7 -.4153x107* -.7680x107* -.5061x10"*
9 .4409x107* -.2399x107* .4126x107!
11 -.1425%x107* -.3903x10°% -.1471x107*
13 -.8608x107% .1560x10"% -.8424%x107%
15 .1121x107* .1873x10°2 .1143x107?
17 -.2247x1072 .1060x10°2 -.2121x107%
19 -.4651x1072 .3971x107° -.4604%x10°2
21 .3053x107% .7052x10"* .3061x1072
23 .3506x10°2 -.3419x107* .3502x1072
25 -.7061x1072 -.4214%x107* -.7066x10"%
27 .3765x1072 ~.2472x107* .3762x1072
29 .2521x1072 -.9463%x10°° .2520%x1072
31 -.5000x1072 -.1617x107° -.5001%x10"2
33 .1624%x1072 .7652x107° .1624x107%
35 .1778x1072 .1922x107° .1778x1072
37 -.1139x1072 .3864x10°° -.1139x10°2
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TABLE IV.- CONTINUED.

(d) Wing element number 4,

. G, (1),
1 0.6064x10~* -0.7483 ~0.7796x10"2
3 .1080 -.4894 .6326x107*
5 .2722x107* -.2616 .3293x1072
7 -.5315x107* ~.1285 -.6490x107*
9 -.1071x10"* -.5547%x107* -.1578x107*
11 .3937x107* -.1920x107* .3762x107*
13 ~.4958%x1072 -.3758x10°2 -.5301x1072
15 -.2755x107? .1322x1072 -.2743x107!
17 .1824x1071 .2075x1072 .1843x107?
19 .5509%x10"2 .1486x1072 .5645x10°2
21 -.7850x10™2 .7758x10°3 -.7779%1072
23 -.3288x1072 .2954x10°2 -.3261x1072
25 .1978x107% .5360x10"* .1983x10°2
27 .7397x10°2 -.3428x107* .7394x1072
29 -.3141x1072 -.4726x107* -.3146x107°
31 -.9005%x10"2 -.3440x107¢ -.9008x1072
33 .5349%x107% -.1831x107* .5347x1072
35 .5580x1072 -.1887x107° .5580%x1072
37 -.4149x1072 .2268x107° ~.4149x1072




TABLE IV.- CONTINUED.

(e) Wing element number 5.

n <'Yn*) u ('Yn*)s 'Yn‘lr

1 0.3559x107* -0.7527 -0.1859%x107*

3 .8851x107! -.5412 .4956x10" 1
5 .6267x107* -.3170 .3985x10"?

7 -.3505x107* -.1743 -.4760x10 %

9 -.4086x107* -.8825x10"* -.4721x107?
11 .1596x107* -.3933x10°* .1312x1071
13 .3099x107? -.1406x10"* .2998x107*
15 -.1223x107* -.2687x107% -.1243x1071
17 -.2307x10°* .1385%10"2 -.2297x1071
19 .1712x107¢ .2132x10°2 .1728x107?
21 .4498%10°2 .1682x1072 .4619x1072
23 -.6930x10°2 .1015x107% ~.6857x1072
25 .3880%x1072 .4886x107° .3915x1072
27 -.8885%x10°2 .1688x10°° -.8873x1072
29 .4527x10°2 .1365x107* .4528x1072
31 .1052x107* -.3891x10"* .1052x107*
33 -.9162x1072 ~.3805x107* -.9165x1072
35 -.3712x107% -.4074%x107* -.3715x10°%
37 .4023x107% -.2812x107* .4021x1072




TABLE IV.- CONTINUED.

(f) Wing element number 6.

(),

(),

Yn*

O 9 0O w -

11
13
15
17
19
21
23
25
27
29
31
33
{ 35
| 37

0.2618x107*
.7148x10™*
.6104x107*
-.1285%10"2
-.4052x107?
-.2327x107*
.3458x107*
.1702x10™*
-.1744x10°%
-.1421x107*
.7034x107%2
.8889%x10°2
-.1244x107%
.2460%x10°2
-.1l128x1071
-.1129x1072
.8922x1072
.1978x1072
-.4042x1072

-0.7535
-.5794
-.3623
-.2143
-.1195
-.6118x107*
-.2744x107*
-.9671x10°%
-.1446x1072

.1593x10°2
.2156x10°2
.1756%x10"2
.1143x10°2
.6236x107°
.2782x107°
.9031x10™*
.1318x10"*
.1668x107°
.1667x10°°

-0.1827x107*
.3728x1071
.3966x10*

-.1393x107?
-.4757x107?
-.2688x107*
.3296x107*
.1645x107*
-.1752x107?
-.1412x107*
.7161x10°2
.8992x1072
-.1176x1072
.2496x1072
-.1127x107?
-.1124x1072
.8923x1072
.1988x10°2
-.4032x107%




TABLE IV.- CONTINUED.

(g) Wing element number 7.

n (Yn*)u ('Yn* )S 'Yn*

1 0.1504x107* -0.7527 -0.2038x107*

3 .5024x107? -.6086 .2159x107?

5 .6197x107* -.4002 .4313x107*

7 .2096x10°* -.2494 .9227x1072

9 -.3282x107 % -.1487 -.3982x107?
11 -.2544x107% -.8319x107% -.2936x107?
13 -.3194x1072 -.4245x1071 -.5192x1072
15 .3308x107* . -.1877x107? .3220x107*
17 .1888x10°2 -.6201x10"2 .1596x107%
19 -.1562x107* -.3332x107° -.1564x10"*
21 -.4374x1072 .1826x1072 -.4288%x10"2
23 .5223x1072 .2167x1072 .5325x%1072
25 .8419x10°% .1776x10°2 .8503x1072
27 -.1442x1071 .1213x1072 -.1436x10°1
29 .8713x1072 .7236%x10"2 .8747x107%
31 .5125x1072 .3795%x10”° .5143x1072
33 -.6490x1072 .1690x1072 -.6482x10"%
35 -.3872x1072 -.1372x10"2 -.3878x10°2
37 .3965%x107% -.1861x107° .3956x10°2
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TABLE IV.- CONCLUDED.

(h) Wing element number 8.

(=),

(%)s

Yn*

O N 0B W

11
13
15
17
19
21
23
25
27
29
31
33
35
37

0.7368x10"%

.4651x107*

.5005%x10"*

.1983x107?
-.8729%10°2
-.3937x107%
-.6698x107°2
.1373x107?
.3284x107*
.9760x1072
.2146x10°*
.5058x107%
.7683x10°2
.1418x107*
.4515x1072
.1036x1072
-.1018x107*

.1435x1072

.3316x107%

-0.7512
-.6314
-.4325
~.2804
-.1755
-.1046
-.5815x10"*

.2925x10*

.1247x107*

.3561x10° 2

.5685x10"°

.2032x1072

.2172x107%

.1772x107%

.1246x1072

.7753%x1072

.4086x10"2

-.5035x107*

-.1795x1072

1

-0.2067x10"*
.2294x107%
.3390x10°*
.9367x10°2

-.1528x1071
-.4328x10"?
-.8869x107%
.1264x10"*
.3237x10°*
-.9892x10"2
-.2144x107*
-.4982x107%
.7764x10° 2
.1425x10"*
-.4469x1072
.1065x10"%
-.1016x10"*
.1433x1072
.3310x10°2




TABLE V.- CALCULATED SPAN LOAD DISTRIBUTION FOR
A DELTA WING OF ASPECT RATIO 2.0 AT 20° ANGLE
OF ATTACK (8 wings, 19 harmonics, 8/a = 0.5).

y/so clc/c° y/s° clc/c°

0.0000 0.2072 0.4625 0.1122
.0125 .2073 .4875 .1159
.0250 .2074 .5125 .1190
.0375 .2075 .5375 1224
.0500 .2077 .5625 .0854
.0625 .1864 .5875 .0898
.0875 . .1868 .6125 .0934
.1125 .1874 .6375 .0972
.1375 .1880 .6625 .0993
.1625 .1893 .6875 .0608
.1875 .1578 .7125 .0650
.2125 .1594 .7375 .0673
.2375 .1624 .7625 .0711
.2625 .1653 .7875 .0763
.2875 .1675 .8125 .0421
.3125 .1330 .8375 .0448
.3375 .1366 .8625 .0439
.3625 .1406 .8875 .0420
.3875 .1431 .9125 .0383
.4125 .1454 .9375 .0000
.4375 .1080
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Figure 2.- Dependence of lift-curve slope on location of control
‘line for rectangular wings, from Equation (64).
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Figure 7.- Aerodynamics of rectangular wings
of various aspect ratios.
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Figure 7.- Concluded.
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Figure 10.- Chordwise variation of shedding angle on aspect
ratio 4 delta wing at 20° angle of attack.
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(a) Normal force.

! Figure 13.- Aerodynamics of a delta wing of aspect ratio 1 for
various shedding angles (8 wings, 19 harmonics).
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Figure 14.- Aerodynamics of a delta wing of .aspect ratio 2
for various shedding angles (8 wings, 19 harmonics).
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Figure 15.- Aerodynamics of a delta wing of aspect ratio 3

for various shedding angles (8 wings, 19 harmonics).
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Figure 16.- Aerodynamics of a delta wing of aspect ratio 4

for various shedding angles (8 wings, 19 harmonics).
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Figure 17.- Variation of calculated normal force
with shedding angle for delta wings.
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Figure 19.- Span loading on delta wing of aspect ratio 2
at a = 20° for 6/a = 0.5 (8 wings, 19 harmonics).
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