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SUMMARY

A mathematical theory is developed for the low-speed aero-

dynamics of rectangular wings with side-edge separation. This

theory is then extended to wings with sweptback leading edges

(and straight trailing edges) by representing the actual wing

as a system of elementary rectangular wings of varying aspect

ratio. Thus, in the limit, steady separation along the entire

leading edge is approximated, and the theory leads to an iterative

computational procedure for calculating the aerodynamic charac-

teristics of sweptback wings with leading-edge separation.

The assumed vortex system of the elementary rectangular wing

consists of a lifting line with its associated trailing sheet

(lying in the plane of the wing) and a separated vortex sheet from

each side edge with an associated bound vortex system in the wing.

The Kutta condition is satisfied along the side edges, and the

boundary condition of no flow through the wing is satisfied along

a selected control line for all spanwise points by means of Fourier

analysis. The resulting theory includes the classical lifting-

line theory of PrandtJ and provides a means of calculating the

S span load distribution as well as the strength of the shed vortices

and the resulting downwash throughout the flow field. The shedding

angles of the separated vortices are found by an iterative tech-

nique in which the vortices are required to be shed at the angle

of the local flow immediately outside the side edges.

Calculations are presented which demonstrate convergence of

the method for both rectangular and delta wings, both with and

without iteration on the shedding angles of the separated vortices.

Comparisons with experiment are also presented for aspect ratios

Sup to five, and it is found that for rectangular wings the cal-

culated normal forces using one wing element are in all cases

within 10 percent of experiment but the calculated shedding angles

are unrealistically high. For delta wings, the high shedding

angles evidently cause high predicted normal forces. However,

the present theory gives very good agreement for normal force and

S~iii



center of pressure for delta wings of aspect ratios from one to

four, provided that an appropriate shedding angle is assumed and
held fixed. In this event, the present theory gives substantial

improvement over linear theory for the prediction of normal force
and center of pressure, particularly at the lower aspect ratios.

The required shedding angle is found to depend only on aspect
ratio and decreases nonlinearly with increasing aspect ratio.
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SYMBOLS

A aspect ratio

an Fourier coefficients of function defined by Equation (25)

a Fourier coefficients of a (see Eq. (70))
nj n

b. Fourier coefficients of downwash from other wing elements
(see Eq. (74))

c local wing chord

thck chord of k rectangular wing element (taken as conW)

c I local lift coefficient on chordwise strip (see Eq. (94))
N N

CN normal force coefficient, or
!2PV•2 Is PV.2So

c total chord of sweptback wing

f n downwash function associated with an (see Eq. (30))

fnj Fourier coefficients of fn (see Eqs. (30) and (40))

gj Fourier coefficients of w (see Eq. (35))

N total normal force

nh number of nonzero harmonics in the series representation
of the loading 'y(T)

N normal force acting on the lifting line

nw number of rectangular wing elements used to represent
a sweptback wing

s semispan of rectangular wing or lifting line

S planform area of rectangular wing

Ssi semispan of i th rectangular wing element

s 0semispan of swept wing

S planform area of swept wing0

ssemispan of elementary horseshoe vortex (see sketch,
vp. 25)
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u'v,w velocity components in the x, y, z directions,
respectively

Vý free-stream velocity

w vupwash in the plane of the wing due to an elementary
horseshoe vortex of unit strength lying in the plane
of the wing

x,yC at
:,)Yz Cartesian coordinates fixed in the wing (see Fig. 1)

S x distance of center of pressure behind wing leading edge

xc distance from leading edge of rectangular wing to its
control line

x. distance of ith control line behind leading edge of
* kth rectangular wing

induced by the lifting line and its trailing sheet
lying in the plane of the wing (including image systemj of separated flow)

(-) induced by the horseshoe vortices representing the
I separated flow

I I absolute value

a angle of attack

Y(rI) spanwise circulation distribution of the lifting line

Yn Fourier coefficients of y(TI) (see Eq. (13))

Yn* nrn/4vsVý sina

dP/dý circulation per unit length of vortices shed from
side edges (see Fig. 1)

*(dI/d•)c
I 4vsVý sin a

a vanishingly small distance

I e angle of vortex shedding from rectangular wing (see Fig. 1)

distance of lifting line behind leading edge of rectangular
wing (taker as 0.25 c)
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I •k distance of kth lifting line behind leading edge of

kth rectangular wing element (taken as 0.25 ck)

p fluid mass density

Scos- (- T/s)
•i Cos-. ( Y/Si)

cos- 1 ( y/s)

Subscripts

B induced by bound portion of horseshoe vortex

L induced by left trailing vortex

j R induced by right trailing vortex

S( )av average of values on opposite sides of vortex sheetI .th
)ik induced at i control line by vortex systemik associated with kth rectangular wing element

()IT iterated value

( ) due to separation (for r* - l)

() with no separation (for F* - 0)u
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II

A THEORY FOR THE LOW-SPEED AERODYNAMICS OF STRAIGHT
AND SWEPT WINGS WITH FLOW SEPARATION'

1. INTRODUCTION

I When a thin rectanqular wing is set at a small angle of attack
in a uniform incompressible stream, the flow remains attached to

IT the wing surface so that all of the shed vorticity lies in a sheet
which contains the wing planform and proceeds to roll up gradually

U after leaving the wing trailing edge (see sketch).

[
I
r

The aerodynamic behavior of such wings at low angles of attack is

well predicted by the classical lifting line theory. developed by
Prandtl. As the angle of attack is increased, the side edges
become more oblique to the free stream, the fluid can no longer

negotiate the 1800 turn at the side edges (from lower to upper
surface), and side-edge separation occurs, giving rise to two

additional vortex sheets which, at higher angles of attack, begin
to roll up even ahead of the wing trailing edge (see sketch).

I

[ 1This report supersedes Vidya Report No. 38.
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Finally, at still higher angles of attack, the flow separates from

the leading edge, giving rise to vortices whose axes are essentially

normal to the free-stream direction. For this reason, the leading-

edge vortices must pass downstream with the general flow, producing

an unsteady flow with vortex shedding in the manner of flow past

a bluff body (see sketch).

[
F The angles of attack at which the foregoing phenomena occur

and the rates of rolling up and shedding depend upon- the aspect

ratio of the wing, the sharpness of its various edges, and

upon the Reynolds number of the free stream. In the early

years of airplane flight, wings of practical design were.of rather
I high aspect ratio with well-rounded leading and side edges. Con-

sequently, separation from the side edges was negligible, and the

classical lifting line theory was applicable over practically the
entire usable angle-of-attack range up to the onset of the familiar

stall, corresponding roughly to the leading-edge reparation dis-

cussed above.

I_ More recently, however, both wing thickness and aspect ratio
have diminished (to gain high-speed performance) so that the inter-
mediate regime of side-edge separation has become increasingly

important. Furthermore, for wings with sweptback leading edges
I (e.g., delta wings) the intermediate regime of steady-state separ-

ated flow is typical of the landing condition, since such wings do

not "stall" in the usual sense. It is in this connection that the

ji present investigation has been undertaken.

Ii
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-3-F
The analytical work of the existing literature will first be

reviewed as it bears upon the physical problem discussed here, and

then a new theory will be developed for the analytical treatment
of rectangular wings with side-edge flow separation. This theory

will then be extended to the case of sweptback wings with leading-

edge separation, using the rectangular wing as an elementary build-
ing block. Convergence of the method will be demonstrated, and

numerical calculations of normal force and center of pressure for

both rectangular and delta wing planforms will be presented.

Finally, comparisons will be made with available experimental data,

including some span load distributions and vortex shedding angles

for delta wings, and the limitations of the theory will be dis-

cussed in some detail.

2. LITERATURE SURVEY - STATE OF THE ART

The fact that there exists an apparent fundamental difference

between the aerodynamic behavior of rectangular and triangular

wings at high angles of attack has been recognized for many years.

It is therefore natural that attempts at analytical treatments of
high-angle-of-attack phenomena have generally fallen into one or

the other of these two categories, and only one serious attempt has
been made to formulate a general theory which would handle wings

of arbitrary planform exhibiting steady flow separation. Further-

more, the inherent unsteady character of the flow at angles of
attack beyond the stall and the strong dependence on viscous phe-

nomena have inhibited analytical progress on the problem of stalled

rectangular wings. The first major contribution along these lines
was made in 1939 by W. Bollay, who evidently recognized that, for

rectangular wings of low aspect ratio, separation occurs mainly
along the side edges and that this type of separation produces a

Iz steady flow.

Ii
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2.1 Rectangular Wings

F 2.1.1 Small aspect ratio

The theory of W. Bollay (Ref. 1) treats rectangular wings of[ small aspect ratio under the assumption that all shed vortices lie

in two planes normal to the wing surface and containing the side

S edges. Thus, the wing is represented as a continuous distribution

of horseshoe vortices lying at some angle e to the wing surface,

as shown in the following sketch:

Iz

The angle 6 is assumed constant and the vortex strengths T are
S assumed to be constant across the span (uniform span loading) but

continuously varying in the chordwise direction. The chord load

S distribution is taken to be that of a flat plate of infinite aspect
S ratio with a singularity at the leading edge; that is,

icI M T

2
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where y is the circulation per unit length and c is the chord.

The boundary condition of no flow through the plate is satisfied

"in the mean" along the centerline of the plate. Thus,

f w dK•i) - V sin a (2)

I where w is the total velocity in the z-direction due to the
bound and trailing vortices. This procedure leads to a rather

complicated integral equation which is to be solved for the con-

stant To. Since the solution depends upon the shedding angle

e, Bollay determines this angle from the induced velocities by

imposing the condition that the free vortices must follow the
streamlines. This condition is imposed only in the vertical plane[ (which means the lateral velocity components are neglected) and

only at the surface of the plate (which assumes that the vortices

in the immediate vicinity of the plate are dominant in determining
the downwash there). Thus, the shedding angle is interpreted as

the angle at which the vortices leave the plate initially.

Two limiting cases are considered by Bollay in Reference 1.

For the case of infinite aspect ratio (which actually violates the

assumptions of the analysis), the normal force is found to be inde-
pendent of the shedding angle e and is given by

C N_ 2v sin a cos a (3)

•I. which, surprisingly enough, agrees with the Prandtl wing theory.
In the second limiting case of vanishing aspect ratio, the shedding

[ angle e is found to be just half the angle of attack (for small
a), and the resulting expression for the normal force coefficient

[ is
Ii N A-0 2sin2 a (4)

(Io. °n' ,
I-
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which is identical with the result of Newtonian impact theory.

The same result was also obtained by Betz (Ref. 2) in 1935 by

introducing the "cross-flow drag" concept and using the experi-

mental drag coefficient for a two-dimensional flat plate.

The theory of Bollay is limited to rectangular wings of small

aspect ratio in incompressible flow and is not suited to the calcu-

lation of quantities other than normal force. However, the agree-

ment between the calculated and measured normal forces is excellenti0
at very low aspect ratios up to angles of attack of about 400.
Furthermore, the predicted normal forces for high aspect ratios

j (A 6) agree with experiment within about 20 percent for angles

of attack below the stall. The stalling phenomenon for high aspect

ratios is clearly contrary to the assumed mathematical model.

A few years after the appearance of Bollay's paper, a theo-

retical analysis was published by F. Weinig (Ref. 3) whose aim was

to extend the Prandtl wing theory down to lower aspect ratios.

Weinig observed that for small-aspect-ratio wings the apparent

mass of air which is deflected downward by the wing is greater than

that which results from lifting line theory with elliptic lift dis-

tribution. According to lifting line theory, this mass would corre-
spond to the mass of a cylinder of air having a diameter equal to

the span. Weinig's innovation was twofold: first, he considered

the actual projected area of the wing (S sin a) so that the

mass of air deflected downward per unit time is given by

Ii m - pV (rs2 + S sin a) (5)

where s is the semispan and S the planform area; and second,

he introduced a novel method, based on cascade theory, for calcu-

lating the induced downwash associated with this mass.

In this manner, Weinig developed a theory for the lift and

drag of small-aspect-ratio wings which is considerably simpler

than Bollay's theory from a mathematical standpoint and which gives

Ii
Ii
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identical results (Eqs. (3) and (4)) for the limiting cases of
infinite and zero aspect ratio. The agreement with experiment
for nonvanishing aspect ratios, however, is not quite as good as
for Bollay's theory.

2.1.2 Intermediate aspect ratio

More recently, K. Gersten (Ref. 4) presented an analytical
method for extending linear lifting surface theory down to lower

I. aspect ratios by incorporating the low aspect ratio results of
Bollay. That is, Gersten allows the trailing vortices of each

elementary horseshoe vortex to be shed above the plane of the wing.
Thus, the actual wing is considered as made up of a number of

I Bollay-type wings placed side by side and it is assumed that the
shedding angle of all the horseshoe vortices remains constant at
the limiting value of a/2 found by Bollay for vanishing aspect

I ratios and angles of attack. Gersten's model therefore has
vortices shed over the entire wing surface. 2 In order to make ther problem mathematically tractable, Gersten then divided the wing
into a finite number of spanwise strips, concentrated the lifting
line of each strip at the quarter chord, and proceeded to satisfy
the boundary condition of no flow through the wing at the corre-
sponding three-quarter chord of each strip. Thus, Gersten's

mathematical model consists of a discrete number of lifting lines,
each having an unspecified spanwise loading and shedding a flat,
continuous vortex sheet at half the angle of attack, as shown

below:

I

2 This type of vortex shedding is incompatible with the physical
requirement that the vortices follow the local streamlines, which
must lie in the surface of the wing. (See discussion on page 16.)

I
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Boundary condition
applied here 1/4 chord

Lifting line 3/4 chord

�I-.-1/4 chord

V• a a/2 3/4 chord

I-

[ Mathematically, then, Gersten represents the spanwise circu-

lation distribution of each lifting line as a sine series and, by

applying the boundary condition at discrete points on each 3/4-

chord line, is led to a set of simultaneous algebraic equations

for the unknown coefficients. In arriving at these equations,

Gersten further assumed that the angle of attack is small and

neglected higher order terms in angle of attack. Then, the normal

force and the pitching moment can be represented as

N - Nlinear theory + Nsep

- k a + k a2  (6)Ii I 2

and

i M - k a + k a 2  (7)

3 4Ii
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so that the solution of Reference 4 is actually made up of the

linear theory of Scholz (Ref. 5) plus a quadratic correction term

which is determined from the analysis and stems from the fact that

the trailing vortices do not lie in the plane of the wing.

It is clear that the above model does not reduce to Bollay's

model for very low aspect ratios. In fact at aspect ratio zero,

Gersten's model yields a coefficient of 3.2 for the quadratic term

in the normal force, as compared with Bollay's value of 2.0.

Gersten's mathematical procedure is by nature restricted to small

angles of attack, but appears to give an improvement over Bollay's

theory for the aspect ratio range from 2 to 4 for angles of attack

up to about 150. In addition, Gersten's analysis is suited to the

calculation of load distribution and pitching moment in addition
V- to lift and drag.

2.1.3 High aspect ratio
For aspect ratios of the order of 5 or 6 and above, with

rounded wing tips, the flow over the wing remains attached up to

the stall. Below the stall, the classical lifting line theory
applies and the lift curve is essentially linear. The stall

itself becomes more abrupt as the aspect ratio increases and does

not'behave according to the steady-flow models proposed by Bollay

and Gersten. Instead, additional vortices which are aligned normal

to the stream direction begin shedding from the leading and trail-

ing edges, and the flow becomes unsteady. The problem then becomes

the bluff body problem, which remains one of the classical unsolved

problems of aerodynamics. There is, therefore, as yet no satis-

j factory theory for treating high-aspect-ratio wings above the stall

angle, which is well defined experimentally. However, there has

been some interesting analytical work related to this problem

(Refs. 6 and 7) which employs the classical integral-differential

equation of Prandtl lifting-line theory. The essential contri-

bution of this work is a demonstration that if the airfoil section
is assumed to have a lift curve which shows discontinuities or

F
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negative slopes (which are typical of the stall), then the Prandtl

equation yields asymmetric solutions for the span loading and

therefore predicts the possibility of large rolling moments asso-

ciated with the stall. The thesis work of Schairer (Ref. 7) treats

a specific case of a discontinuous lift curve, as shown in the

following sketch:

1.5

1 1.2

r CL

0 0
0 150

2.2 Triangular Wings
The theory of Brown and Michael (Ref. 8) contains the essential

elements of a number of recent papers (e.g., Refs. 9, 10, and 11)

which collectively represent the present status of the mathematical

analysis of highly swept wings with leading-edge separation. The

analysis is confined to triangular wings of low aspect ratio and

makes use of the slender-body approximation. With this approxi-

I mation, the total lift is given by (see Ref. 12)

IiL = -PV'O f (pdy (8)
c

where the contour c encloses the trailing-edge cross section of

I the wing and the vortex sheets. Thus, the lift is linear in the
potential 0 and is therefore composed of two parts; one being

I
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the usual slender-body lift (which is linear in a), and one being

the additional lift due to the potential associated with the sepa-

rated vortices.

The model proposed by Brown and Michael is illustrated in the

following sketch:

V

It is assumed that all of the trailing vorticity above the wing is

concentrated in two fully rolled-up vortices whose strengths vary

linearly in the chordwise direction. The contribution of the feed-

ing vortex sheets (between the wing leading edges and the rolled-up
vortices) to the complex potential in the cross-flow plane is

neglected. However, since the feeding vortices shed from the lead-
ing edge lie almost normal to the free stream (rather than along

the streamlines) they must sustain a force. The condition that the

shed vortex system be force-free everywhere is therefore approxi-

mated by requiring that the net force on the entire vortex system

be zero. In this manner, with the Kutta condition imposed at the

leading edges, Brown and Michael proceed to solve for the vortex

strengths r and the vortex positions, and thereby calculate the
3total lift and drag, as well as the spanwise load distribution

3A similar analysis has been applied by Cheng (Ref. 13) to the
corresponding problem of a rectangular wing with side-edge
separation in supersonic flow. Here the separation effects are
confined to the tip region within the Mach cone.
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The lift curve calculated by the above method agrees well

with experiment only for extremely low-aspect ratios (small apex

angles) and the predicted high peaks in the pressure distribution

are not realized because the streamwise vorticity is actually

distributed through the feeding sheet rather than being concen-

trated in two discrete vortices.

A somewhat more general treatment of the slender triangular
wing with leading-edge separation has been developed by Mangler

and Smith (Ref. 14) who consider a more realistic shape of the

vortex sheets and calculate the lateral distribution of streamwise

circulation within the sheet, accounting approximately for the

requirement of no force on the sheet and no flow through it. (See

sketch.)

However, the severe limitation on aspect ratio remains.

2.3 Sweptback Wings

In Reference 15, Pappas and Kunen treated the high-aspect-
ratio swept wing by what is essentially simple sweep theory with

a single concentrated vortex representing the leading-edge separa-

tion. Thus, the flow in planes normal to the leading edge is

treated as shown in the sketch below.
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A- \

S I

A

Section A-A

and the lift and drag of the airfoil section are calculated by the

two-dimensional Blasius theorem involving the complex potential

in the plane A-A. This treatment is similar to the slender-body

analysis of Brown and Michael (Ref. 8) for the slender delta wing

where the two-dimensional flow in the cross-flow plane is calcu-
lated. Hence, there are similar drawbacks to the analysis of Pappas

and Kunen (Ref. 15) who calculate the separation vortex strength

F from the experimentally determined vortex position over the swept

wing. That is, the separated vortex strength F must actually

vary spanwise over the sweptback wing. Therefore, there must be

a feeding vortex sheet connecting the separated vortex with the

wing leading-edge, and the force acting on this sheet plus the

separated vortex must be set to zero. This was not done in Ref-

erence 15. However, good agreement with experiment was demonstrated

for the calculated span load distribution over the inner half of

the span for the case of a 450 swept wing at 100 angle of attack.

The theory of Reference 15 is clearly restricted to high

aspect ratios and does not apply over the outboard sections of

the wing, where the flow pattern is quite different from the

assumed two-dimensional model. Pappas and Kunen suggest using

experimental stalled-airfoil data in the tip regions.
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Just in the past year, an attempt has been made to treat

sweptback wings of arbitrary aspect ratio with flow separation.

This analysis (Ref. 16) by Gersten represents a natural extension

of his rectangular wing analysis (Ref. 4) which was discussed in
Section 2.1.2. In Reference 16, however, the Bollay model is com-

bined with the lifting surface model of Truckenbrodt (Ref. 17) to

produce a wing element with side-edge separation. That is, the

ji trailing portion of the horseshoe vortices making up each chord-

wise strip in the lifting surface theory are permitted to drift
[ above the wing surface at half the angle of attack. Thus, Gersten

again permits vortex shedding over the entire wing surface. In

Reference 16, as in Reference 4, the normal force is expressed as

a linear term plus a quadratic term, the former now being given

by the lifting surface theory of Truckenbrodt. The chordwise

loading is assumed to be given by the first two terms of the
Birnbaum series, and the boundary condition of no flow through

[ the wing is satisfied at both the quarter-chord and the wing

trailing edge.

I In this manner, Gersten has built up a model of arbitrary
planform and aspect ratio with a solid wake of streamwise vorticity

forming an angle a/2 above the plane of the wing (see sketch).

Ia

2

The agreement between theory and experiment for Gersten's model

Ii appears to be satisfactory, although better agreement for swept
and delta wings of aspect ratios below unity is obtained with
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SNewtonian impact theory', and still better agreement for very low

aspect ratio rectangular wings is obtained with the theory of

I Bollay (Ref. 1).

2.4 Summary of State of the Art

to From the foregoing review of the analytical papers pertinent

to the problem of wings with separated flow, it is apparent that

the theory is lacking in several respects. With the exception of

Reference 15 (which does not give total forces) and Reference 16

(which violates a fundamental boundary condition), the analytical

[ work on sweptback wings with leading-edge separation has been

confined to delta wings of extremely low aspect ratio and shows

[ little improvement over the original slender-wing analysis of

R. T. Jones (Ref. 18) insofar as the prediction of total aerody-

I namic forces is concerned, except for aspect ratios less than one.

These theories do, however, give a more realistic prediction of

the span loading on a very slender delta wing at moderate angles

of attack, indicating the peaks under the separated vortices, as

opposed to the elliptic span load distribution of the attached-

I flow solution of Jones.
For the rectangular wing, the theory of Bollay is similarly

restricted to rather low aspect ratios but is valid up to high

angles of attack and shows excellent agreement with the experi-

mentally measured normal force on a rectangular wing of aspect

ratio A - 1/30 up to an angle of attack of about 400. If

Bollay's theory is to be properly extended to higher aspect ratios,

however, one must clearly abandon both the assumption of uniform

span loading and that of the two-dimensional form of the chord-

wise loading. These steps were both taken by Gersten in Refer-

ences 4 and 16, but the resulting mathematical model violates

certain physical requirements which are fundamental to the validity

4Vidya is publishing a separate report on this subject, Vidyar Report No. 92 by Sacks and Burnell, dated March 30, 1963.
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f of the results. The agreenent of Gersten's theory with experiment,
which extends only to moderate angles of attack, must therefore

be considered fortuitous.

The objections to Gersten's model can most easily be under-

stood if we consider the physical problem in somewhat greater

detail. Perhaps the most basic observation is that there can be

no flow of fluid through a solid surface. Thus, a boundary con-
dition on the mathematical problem is that the normal component
of velocity at the wing surface must be zeroO. In other words,

the wing is a stream surface and the streamlines must lie in the
surface of the wing except at points of flow separation. Further,

F according to Helmholtz's law of vortex motion, a free vortex must
follow the streamlines. Therefore, vortices can be shed only[ along lines of flow separation. For the sharp-edged flat plate,

the lines of flow separation coincide with the edges of the plate,
and vortex shedding can therefore occur only along the sharp

edges! It can be seen that the mathematical model postulated by

Gersten implies an arbitrary number of spanwise lines cf flow

separation over the upper surface of the wing and is evidently
unacceptable. Bollay's model, on the other hand, permits flow

separation only along the side edges. It should also be pointed
out that in both of these models it has been assumed that all of
the vorticity is shed out of the plane of the wing. This means

that there are no chordwise vortices in the plane of the wing and
hence there is no vortex sheet lying in the wing and shed at the
trailing edge! Because of this assumption, it was not necessary
in the analyses of References 1, 4, ai.1 16, to impose the Kutta

condition along the side edges, since the velocities there were
necessarily finite. However, if chordwise vortices in the plane

OThis boundary condition is ordinarily satisfied only at a finite
number of points on the wing surface (as in REf. 4) or else in
"the mean (as in Ref. 1).
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Sof the wing are permitted, as they should be, then the Kutta condi-

tion must be imposed along the side edges to insure that the

velocities there remain finite. This is equivalent to the physical

requirement that the flow must separate tangentially at all sharp

[ edges.

In the following sections, a new theory will be developed for

rectangular wings with side-edge aeparation which will in fact

satisfy these fundamental requirements and therefore will furnish
a sound basis upon which we shall be able to develop a treatment

II for other planforms as well. The flow will be considered to be

three-dimensional, so that no restriction on aspect ratio is implied.I
3. APPROACH TO THE PROBLEM[ The problem to be treated in the present analysis is that of

a sweptback wing of arbitrary aspect ratio in incompressible flow

with separation along the entire leading edge. Such flow separa-

tion is steady up to large angles of attack, depending upon the
sweep angle, but is three-dimensional in character, becoming conical
only for sweep angles near 900 (i.e., for vanishing aspect ratios).

The use of strip theory in either the chordwise or spanwise direc-

tion is therefore not appropriate. However, if the trailing edge

is straight, then we can represent a sweptback wing of arbitrary
aspect ratio and rather general planform by a number of rectangular
wing elements (see sketch), provided that each element satisfies

the appropriate boundary and side-edge conditions.

I I"..- -" "

t~

I- - - -
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I Since separation from the equivalent wing (composed of rec-

tangular elements) can occur only along its outline (i.e., along
its exposed edges), leading-edge separation can be permitted only
over the exposed portion of the span of each rectangular wing.
Furthermore, leading-edge separation from a rectangular wing occurs

at higher angles of attack and is essentially an unsteady phenomenon

in which the separated vortices are normal to the free stream and

are shed periodically. Therefore, for the purpose of treating the
present problem, flow separation will be permitted only along the
side edges of each rectangular wing element. Thus, as the number
of wing elements is increased, the mathematical approximation will

[ approach the physical problem of steady flow separation along a

sweptback leading edge (see sketch).

aif

In the present analysis, each rectangular wing element will

be treated in the manner of classical lifting line theory, except

that side-edge flow separation will be included and the Kutta
condition will be satisfied along each side edge. This latter
point is essential to the success of the basic approach, since it

automatically removes the chordwise singularity in the downwash
along each side edge, which arises in Prandtl lifting line theory.

Only by the removal of these singularities can one safely super-
pose rectangular elements in the manner sketched above.
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It should be noted that, since the rectangular wing is repre-

sented by a single lifting line (plus a separated vortex system),

one cannot expect an accurate prediction of the chordwise load

distribution or of the center of pressure. However, these details

can be obtained if desired by building up a rectangular wing with

a number of higher aspect ratio rectangular elements in the same

manner as for the swept wing (see sketch below).

ia

I \

In the following section, the theoretical analysis will

first be developed for the basic rectangular wing with side-edge

flow separation. This analysis will then be applied to swept-

back wings with straight trailing edges by superposition, using

the rectangular wing as an elementary building block in the

manner described above. In addition, the extension of the analy-

sis to incorporate the influence of the ground plane will be
outlined in an appendix.

Iz

Ii
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4. THEORY OF RECTANGULAR WINGS WITH SIDE-EDGE SEPARATION

4.1 Statement and Discussion of the Problem

The problem to be treated in this section is that of a rec-

tangular wing element of arbitrary aspect ratio in incompressible

flow with side-edge separation. Separation from the leading edge

will not be considered, since it is intended to apply the theory

later to sweptback wings, as explained in the previous paragraphs.

Thus, the rectangular wing will be represented mathematically by
(1) a lifting line of unspecif'>d spanwise circulation distribu-

tion T(rq), (2) its associated trailing vortex sheet of strength

-(dy/dj) dq lying in the plane of the wing, and (3) a continuous
system of horseshoe vortices of strength (dP/dt) de representing

the separated vortex system. This representation is shown sche-
matically in Figure 1.

It is assumed that separation occurs all along the side

edges and that all of the vortices shed from the side edges lie
in the two planes containing the free-stream direction and the

side edges, in the manner of Bollay. It is evident that the

boundary conditions of no flow through the wing can be satisfied
along a selected control line by a suitable choice of y(j) for

any given dr/de. Therefore, the Kutta condition of finite veloc-
ity at the side edges will have to be imposed to render dP/dt

(which will be assumed constant in the present analysis) unique.

Here again, the justification for this assumption stems from the

intended application to swept wings wherein df/de may vary from
one rectangular wing element to the next. Hence, the assumption

that dr/dt is constant on a given rectangular wing element is
of no consequence in the swept wing problem.

Again, it is pointed out that the representation of the rec-

tangular wing by a single lifting line (plus a separated vortex

system of constant strength per unit length) may later be improved
by the use of a number of such rectangular wing elements of higher

aspect ratio, placed one behind the other.

Ii
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Note that the above mathematical model satisfies the physical

conditions discussed in Section 2.4 and differs from the models of

Bollay (Ref. 1) and/or Gersten (Ref. 4) in the following important

respects:

(1) The span load distribution is not specified.

(2) The appropriate streamwise vorticity in the plane of
the wing is included. Thus there is a vortex sheet
shed from the trailing edge.

(3) Vortex shedding occurs only at the side and trailing
edges of the wing.

4.2 Analysis

4.2.1 Mathematical formulation of boundary-value problem

The mathematical equations to be solved for the above problem

are actually those which express the boundary condition of no flow

through the wing at each of a number of selected control points

on the wing surface. Thus, if we express the upwash due to the

lifting line and its trailing sheet in the plane of the wing as

w*(x,y) and the upwash due to the horseshoe vortices of the sepa-

rated system as w(x,y), then the boundary condition at a selected

point (Xp,yp) on the wing becomes

w*(Xp~yp) + R(xp,yp) - -V, sin a (9)

Ordinarily, this tangency condition of no flow through the
wing is satisfied at a number of discrete points, and the number

of simultaneous equations to be solved is then equal to the number

of points selected. However, in the present analysis, we shall
satisfy Equation (9) for each Fourier component. Thus, the number
of simultaneous equations to be solved is equal to the number of

terms taken in the Fourier analysis, and the boundary condition is

satisfied, approximately, for all spanwise points along the selected

control linee.

eThis method avoids the question of where control points should
be located. Also its accuracy can be assessed by examining the
size of subsequent Fourier terms.

Ii
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The following analysis will therefore consist of setting up

mathematical expressions for w*(xy) and W(x,y), performing a
Fourier analysis in a spanwise variable related to y, and sub-

stituting these expressions into Equation (9), which will then be

satisfied for each Fourier component. Finally, the resulting set

of simultaneous equations will be solved for the unknown Fourier

coefficients of the expansion representing the spanwise circula-

I" tion distribution y(TI). Once this loading is obtained, the

strength of the separated vortex system will be determined uniguely

by imposing the Kutta condition along the side edges y - ± s,
and the resulting aerodynamic forces and moments will be calculated.

[ 4.2.2 Velocity field of separated horseshoe vortex system
Each horseshoe vortex making up the separated vortex system

is composed of three parts, a bound vortex in the wing and a left

and a right trailing vortex lying at an angle 9 above the wing.
It is therefore convenient to write the corresponding upwash in the

[ plane of the wing w(x,y) in three parts as

-W(xy) - WB(xy) + FL(xy) + WR(xy) (10)

The expression for each of these components at an arbitrary point

in space has been derived in Appendix A for a single horseshoe

vortex of strength F. Thus, replacing r in the expressions
of Appendix A by (dr/de) de, setting z to zero, and integrating
over the chord c, we have for the continuous vortex distribution

Ii representing the side-edge separation (see Fig. 1)

[i
I.

fI
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WB (x'y) - - x..fd~~ [.e V(__ - + ~r.....]dt

0 (x-t) ;" aY + (s+y) 2

0c C

wL(x,y) - - (s+Y)cos e _ (dr/da) + (x-O)cos J dJ4 (x-_) 2 sin2e+ (s+y) 2 X-1) 2 +(s+y) 2 (1l

c

WR (x IY) - - (s -Y) Cos Qe __ (dr/dO)[ + (x-0 Cos e ]t
4 (X-e) 2 sin2 e+(s-y) 2 L (x-) 2+ (s-y) 2J

0

In the present analysis, we shall assume that dr/di is con-
stant along the chord, which means that vortex shedding is uniform
along the side edges. (In the case of the swept wing to be treated
in Section 5, the values of e and dP/dt will be permitted to
vary from one rectangular wing element to the next.) Thus, noting
that the integral for WB(x,y) is singular for 0 < x < c and
taking the Cauchy principal value for that integral, we find upon
integration

2B (x , y)

I.~~~~ (s lo 2Y+ a) ,c I ~~

I:
12: S +1(22a)

Ii

Ii
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wd(xy) - - Ld ctn e tan-'
w -(x L - co4v ) V)2 ] j

- t a n - " F -_
x -cos e +

;W xY ! i ) -C s1 2• + ,.,o)2
2B 6

(x~~yV in thjln ftewn u otesprtdvre (12c)These three expressions, then, represent the upwash at any point
(x,y) in the plane of the wing due to the separated vortex system

shown in Figure 1.

4.2.3 Velocity field of vortex system in wing surface

It will be convenient, as in classical lifting line theory

(e.g., Ref. 19) to represent the unknown circulation distribution

'y(T) along the lifting line as a Fourier sine series of the form

.Y -T Z 'Yn sin n*L (13)
n-l1,3,5--

II where
w e roe (_o s) (14)

II and

'Y(* -Y M.y( (15)F ,.,
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Thus, the wing lies in the interval -s < , • s which corresponds
to 0 <, V < 7r. It can be seen that the series of Equation (13)
satisfies the requirement that y be zero at the wing tips, regard-
less of how few terms are used in the series, and that the selected

series is even in n, which insures lateral symmetry.
If we consider now that the circulation distribution T(n)

can be thought of as a large number of steps as shown in the sketch,

I -s +s T
0

then it is clear that a vortex of strength -(dy/dij) dn must be

shed at each step and we can therefore construct the entire vortex

system in the plane of the wing from elementary horseshoe vortices
of semispan sv and strength -(dy/dii) drj as shown below:

z

I.?

IiYd~
s vdi
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Thus, if we represent the upwash (in the plane of the wing) due

to an elementary horseshoe vortex of unit strength as wv , we

have for the total upwash at a point (x,y) on the wing due to

the entire vortex system in the plane of the wing

S

w*(x,y) - - i,v) dr (16)
0

Upon introducing Equation (13) for y(n) and interchanging the

order of integration and summation, we have

W*(X,y) " - nWv(XYtifsv) cos n* d*

n-1,3, 7r/
(17)

Now we can employ the expressions of Appendix A for the upwash

w v due to each elementary horseshoe vortex by setting z - 0

and letting

F- 1

e- 0

ev -- s cos* (18)

Thus we find from Equations (A.15) that

w(xY,,) + s Cos- 4I• (iI- 4rL(x (x - 2) + (y + a COS *)2

+ (Y -cos ) V)2]

i (x + (y +a )

4 r +- x ti + -
(X + ~(y _ a Cog )

Ii (19)
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The total upwash w* due to y(n) is therefore given by

,* -Y+ a coon,)
n-3. •i x-i)" + (y+s corn *)"

+ )L C o 1 cor nid*

+ (x - + (y -s COB Co n

n1,3,5 V 2 y + s cos

+... tcos nW d*

I(x _- i)2 + (y + S COS p)2 C

+ TV E3 ý4V _ Y - s Cos

+ t, Cos np d•p (20)

Now it can be shown by a simple change of variable and algebraic
manipulation that for odd values of n

r cos nP d* 7r/2 coo n* d-
y - s cos y + s cos

IT2

and

7 r(x- ii) 2 + (_s COSn * + y2(1

(x - i)(-s coCos * + y) co nf dt (21)

+ r/2 ;(x -ti2 + (a Coor j + y2Csn1 (x- ti)(-S Cos -y) cosn'dW

I-
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so that Equation (20) can be collapsed into two integrals over the

larger interval of 0 to r. Thus, combining the four terms

involving the square root, and making use of Equations (21), we find

that Equation (20) can be written in the following form:

W1 coo n*
v1 (x,y,•i) = - 4• VL y + s cos

+ (x - 2+ (y + S COS 1 )2 COS n* dS+ J (x - t) +5 co COS
0

(22)

[ Both of the integrals in Equation (22) are improper (i.e.,

singular) integrals. However, if we replace the control-point

S variable y by (-s cos o) , then we recognize the first integral

as that of classical lifting-line theory. For points within the

Ii span, the value of this integral is (Ref. 19)

7 cos n* d* r sin nvo (23)
COS - COS O sin *o

where

cos *0 " -(y/s) and -1 <_ (y/s) <_ +1

The singularity of the second integral in Equation (22) can be

removed by simply adding and subtracting a term. Thus

I I (x--i)(y+s COS) cos n d

r fX~ti)2+y~ cor' 2
-I~i

"" / (x-t!i) (y+s cos 7P) ]xcos n# d y+S cos *'

Ii (24)

Ii
Ii
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where the lower sign applies if (x-ti) < 0 (i.e., for points
ahead of the lifting line) and we recognize that the last integral
is identical with that of Equation (23). The remaining integral

is non-singular and is furthermore recognizable as the integral
giving the Fourier coefficients of a certain cosine series in '.

That is, if we let

((I E s 2+ 1]

S f ,/•7o, (Cos C Jos % x •

a an s Po cos np (25)

n-o,1,2,,...

where the lower sign again applies if x - <i K 0, then

an s ' (o 7 4 f 'Po' s ) cos nP d* (26)

and the resulting relation is

(x-ei)(y+s cos )2s an w ,o - s sin #no
(27)

I Substitution of Equations (23) and (27) into Equation (22) therefore
yields the final expression for w* (for points within the span) in

I the form

I. X nin nryn [2vr sin n#1c, +-aQ! ")L)sV sin ?po 2 an~ ' •o

j for x i > 0 (28a)

Ii
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and w*c Cz 0 -c o)L
V00 's 4ir i v ,IP5s 2 a~ 0/I

for x - ti < 0 (28b)

The first term of Equation (28a) is that appertaining to a value
of (x - ti)/s which is sufficiently far behind the lifting line

that the upwash no longer depends on (x - ti)/s. This is evidently
twice the upwash at the lifting line itself.

It is instructive to look at the term n - 1 of the foregoing
equations. The circulation distribution from Equations (13) and

(14) is then

-T(•) -T, sin p - V, _ 1 2/s2 (29)

so that the corresponding span loading is elliptical. Thus letting

-t• 2v sin n* L
r fn s ' ) sin ?p 2 n (x30)

we find that the upwash behind the lifting line is

iW X) -4"' fj ( " X) (31)

Table I shows the variation of downwash (-w*/V) with longitudinal

distance behind the lifing line in semispans and with lateral

distance from the wake centerline in semispans. It is interesting
[ to note that one semispan behind the lifting line, the downwash

is still about 10 percent higher than its value infinitely far

L downstream (where f, " 2r) and that it is quite uniform across

the span.

Ii
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4.2.4 Solution of the boundary-value problem

The set of equations representing the present boundary value

problem simply express the boundary condition that there can be

no flow through the wing surface. Thus, having derived the mathe-

matical expression for the normal velocity V due to the separation

vortices and w* due to the lifting line and its trailing sheet,

we can express this condition as

S(x - y (X sy) + (x ,yp) - - sin a (32)
VW pp V pp

That is, the velocity component normal to the wing surface due to

[ all vortices must exactly cancel the normal component of the free-

stream velocity. The point (Xpyp) is the point on the wing at[ which this condition is to be satisfied, and the number of equations

to be solved for the unknown distribution y(n) is ordinarily

[ equal to the selected number of control points. However, in the

present analysis, we shall eliminate the dependence on yp by
Fourier analysis and thus satisfy Equation (32) for all yp within

the span at a specified control line x - xp. The number of equa-
tions will therefore be equal to the number of Fourier components

employed.
In order to expand w* in a Fourier series of *o1 it is

first convenient to note from the trigonometric identity (Ref. 20)

sin mx cos nx - sin(n + m)x - I sin(n - m)x

that sin nIo/sin *o can be written in the form

I. n-i
sin n*o0
sin *0  -1 + 2 L cos -w/ 0 (33)

j-2,4
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STherefore, we shall expand w* and W in the form of cosine

series in *o" Furthermore, only even multiples of Vo can

I appear because of the required symmetry about the midspan

*o0 (r/2) . Thus, we have, from Equations (28a) and (33), for

a control line lying behind the lifting line,

L (+2• n-i os
-- " -- y 27 + 2 Cos jP

n431,,5 j-214,8

+ 2 a nj cos j~o(4

mj0 9214 ,8)

The corresponding expression for W is therefore taken to be

I+ c~ Vs gcos j~0 ; , Pw~o47 s z,7r (35)
) WO 92,4

Note that these series are unique since w(Vo) - w(- 0) by the

choice of a cosine series, so that w is specified over the entire

interval -7 ý <- 0 <- w although the wing span covers only the

interval 0 < po <- V.

Substitution of Equations (34) and (35) into Equation (32)

yields the set of equations to be solved for the unknown coefficients

' 'n representing the circulation distribution

00

y Z lyn sin nip
nl,3,5

along the lifting line. The expanded form of Equation (32) thus
becomes

[i
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4•,_rs i + 0) + * (a + a cos 2* + a cos 4Vii 2 10 12 0 14 0

+ ( 43s3) [2v(1 + 2 cos 27Po)

+ 1 (a + a cos27P + a cos47P +. "]2 3 32 0• 34 0P

[ ( 4•~v) (21 + 2 cos 27P + 2 cos 47

+3 (a + a cos 2P + a cos 47P +
2 50 52 0 54,

" [ [s (gd gc COS 2?PO + g. cos 4po + ... ) + sin a

[ (36)

Now, in order that this equation be satisfied for all values of
?o it must be satisfied for each Fourier component. Therefore,

if we let

r n* = 4nrsV snC

and 1 (37)
r* ( dr/dý)c - M dr/dE4-sV sin a 2YAVS sin a

the following set of equations results:

n-1 n 3 n- 5 n- 7

j0: (2w+ ao)y* +(2v+ • a)y* +(2+ a ao>y* +(2v+ a)" +.. *+

j-: (2 a2,*y +(4v+ 12 a% J* + (4v+ 1 a2 )y* + (4+ 2. aT4* +.. *

j-4: a. a -* + (9 a + (4r+ I a)'y* +4 (4+ L as), * +. "ragr*

a-6: (! a Jy* + (2 a) (IL a.>y* + (4r+ L*

j=8: etc. (38)
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"[ These equations can now be written in the following abbreviated

form:

T- f njyn* " gjF* + 1 j - o

I 
n=1,3,5, . . . (39)

00

Z fnjyn* - gjr* ; j = 2,4,6,
n=1,3,5, ...

I where

fn 2 + Va ; j - 0
nj 2 nj

f ZF a n < j (40)

Snj 2 nj - 2,4,6,
Sfn" 4v[ + V- an n > j

nj 2 nj

The numbers denoted by fnj are, then, universal numbers

[ which can be used to obtain the loading coefficients yn* for

any specified separated flow pattern as given by the coefficients

9j The particular type of flow separation assumed here is shown

in Figure 1 and the corresponding function W(x,y) is given by

Equations (10) and (12).

In the asymptotic formulation for large distances behind the

lifting line, all the coefficients anj become zero, (see Eqs.

(25) and (26)) and the matrix of the foregoing infinite set of

equations yields the following matrix of coefficients:

n-1 3 5 _7_

j - 0 2v 2v 2v 2Y . . .

j - 2 0 4v 4v 4r . . .
j - 4 0 0 47r 4v f nj (41)

j - 6 0 0 0 4" ...
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Thus it is clear that in this case the determinant is not zero.

Numerical calculations for other locations behind the lifting line

indicate that this is in fact true in general. Therefore, there

exists no nontrivial solution to the homogeneous set of equations

iZ fnjyn* - 0, and the general solution of Equations (39) for the
loading coefficients Tn* can be represented as

!Yn* - ('yn*)u + r* (Yn*1 (42)

The first term (n *) is the solution of the equations
Ju

00 f 
(43)

Z fnj9n* 1; (j -0)

Z f njn* - 0; (j 2,4,6...) (44)

n3. , 3$,5

which corresponds to no flow separation (F* - 0). On the other

hand, n*)S is the solution of the equations

Z fnj9n* - gj ; (j - 0,2,4,6...) (45)
nmi ,3,5

I. which corresponds to the image system required for the separated

flow (r* - 1). Thus for a given value of r*, the general solu-

tion (which is unique) is given by Equation (42). The solution

of Equation (45) is therefore seen to be the basic source of the

change in the aerodynamic characteristics of the wing due to

separation.

i.
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4.2.5 Satisfying the Kutta condition

In the foregoing solution, the value of r* is a parameter

which has not been specified, and a solution exists for each

value of 1*. From this spectrum of solutions, it is desired

to select the one corresponding to the value of 1* required

on the basis of physical considerations. It turns out that it

is possible to make the determination of F* on the basis of the

Kutta condition. The particular condition is that the downwash

just off the side edges of the wing be finite rather than infinite.

Thus, the flow at the side edge of the wing seen in end view leaves

the side edges smoothly and (see sketch) does not turn around the

sharp edges with a flow singularity.

Ii I

- iI

The mathematical requirement for the Kutta condition can be

established by examining Equation (22) for points lying outside

the span of the vortex sheet. For such points, by making use of

Equations (24) and (25), we can write Equation (22) in the form

W__n** 1 [- - +i cos n7 ft
w*•--s ' O (x,Y,•i) - - -- n + 2 co •|

V00 4 sVl L2  n ('s Y- f Cos *, + Y
n-1,3 0 3

(46)
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where x - 0 >0, since we need to satisfy the Kutta condition

behind the lifting line only. Now, integration of the second term

yields, for points outside the interval of integration (Ref. 21)

SI°y I
cos nVidP [ for sl > (47)
Cos ?P + I(sZ)2 -2

0

Thus, for points lying outside the span of the vortex sheet and

behind the lifting line, the upwash w*/V. becomes

w* r- n
0(,Yi - 4- sV 2 anI nui,3

IV -, - L

+ (S)' (S.2I~ (48)

Hence, the singular part of the upwash denoted by (w*/V ) just

outside the span is given by

2rsV n- " 2'Y (49)

S)2

An examination of this result reveals several very interesting

facts. As we approach the side edges of the vortex sheet from out-

side the span of the vortex sheet, the downwash for each Fourier

component has a square root singularity. Furthermore the coeffi-

cient of the singularity is independent of x so that the singu-

larities have the same strength along the length of each side edge.

It follows, therefore, that we can satisfy the Kutta condition along

the entire lengrth of each side edge if
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Z n-0 or n n*-O (50)
n- n1,3,5 flmi, 3,5

This is, therefore, the mathematical formulation of the Kutta

condition7 .

From Equations (42) and (50), we can now determine the
[ separated vortex strength r* which is necessary to satisfy the

Kutta condition. Thus, substituting Equation (42) into Equation (50),

we have

ZTn*)+r* Z -'n*) 0
n 1, 3J5 . . .•u n=l,3,5,.•. .

or

F*~ ~ ~ (Y * '"ni)u'"(1

Sn-i1,s,5,.(.

The final solution of the complete boundary-value problem of a

[ rectangular wing with side-edge separation is therefore given by
Equations (42) and (51), so that the loading coefficients of the

I lifting line are

I 7It can easily be shown that this condition is precisely the same
as requiring that the loading T(ij) must have a zero slope at
the wing tips. But the slope of the loading is proportional to
the strength of the trailing vortex sheet, so the Kutta condition
is satisfied along the side edges if the trailing vortex sheetr has zero strength at the edges.
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Qn* ) -Y u~ (Y n S a* (52)

I n-n. ((n) j

It is clear from the foregoing analysis that there is only
one correct solution for Tn* in the given boundary-value problems.

I That is, the solution is unique (for a specified 0), and there is

only one correct value for r* which satisfies the Kutta condition.

One may well ask, then, what is the meaning of the so-called
I t"unseparated" solution with r* - 0? Clearly, this solution does

not satisfy the Kutta condition at the side edges. Mathematically,
I it simply represents a portion of the complete solution of the

stated boundary-value problem. But physically this "unseparated"

solution actually represents the solution for which there is no

side-edge separation. That is, the side edges are not sharp, and
one therefore need not impose the Kutta condition. We have a

different boundary-value problem, then, and the unseparated solu-
tion therefore corresponds to the classical wing theory of Prandtl,

which applies to high aspect ratio wings at low angles of attack.

[ 4.2.6 Determination of the shedding angle e

The orientation of the vortex lines which comprise a free

vortex sheet is determined by the average of the velocity vectors

on the two sides of the sheet. This follows from the Helmholtz

law that a free vortex must follow the local streamlines. There-

fore, we can determine the inclination, or shedding angle, e, of

the ýide-edge vortex sheets by calculating the total velocity com-

i I ponents just above the wing on either side of the sheet. Thus

(see sketch),

sNote that the determination of each loading coefficient for the
complete problem requires the determination of aU of the loading
coefficients from the homogeneous and the nonhomogeneous solutions.
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control Ua
line

S+ sin a + + (+ sin a
Wa_._ =- s+E -is-E

tan 1 - vw1 + + Cos a + + cos a

(53)

Since w and u are both functions of e, the determination of
e will require an iterative process in which a value of e is
assumed, the right-hand side of Equation (53) is calculated and
compared with the assumed value of e, the right-hand side is

recalculated using the new value of 0, and so on. The procedure
is analogous to that employed by Bollay (Ref. 1).

Since the boundary condition of no flow through the wing has
been satisfied only at one chordwise location (i.e., at the control
line), we shall solve Equation (53) for e at the control line
also. At this location, the boundary condition requires that

(1+. + + sin ca 0 (54)

Sy-s-r'
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Now, since the gingular part of w* just outside the span

has been removed by imposing the Kutta condition of Equation (50),

the value of w* at y - s + e is given by (see Eq. (28))

"( - 4rn sV an s (55)

y-S+c lnml ,3,5ys

and it is noted that a is continuous across the vortex sheet.n
The value of w just beyond the wing tip can be found simply from

Equation (12c) by noting that as we pass from y- s - C to

y - s + E the second arc tangent in that equation jumps from

0 to 2v, while the first arc tangent remains at r. That is,

the last term of Equation (12c) is discontinuous as y moves

across the vortex sheet, and we find that 'R simply changes sign
across the sheet. Therefore, we can write W just outside the

span in the form
w IW -2W

Wys+c yls-•

yl-w

B L - (56)
y=Bs y-s y-s-

Inasmuch as the vortex sheet lying in the plane of the wing

consists of a single vortex line ahead of the control line and a

system of chordwise trailing vortices, this vortex system produces

no chordwise velocity component at the control line. Therefore

(c. M-o* (57)W . --F 0 yis+rM
ys-c

Also, it can be seen from Appendix A that the chordwise components

of velocity due to the side-edge vortex sheets are direqtly related

to the corresponding upwash in the following manner:

u R - -wR tan e } (58)
u L = -WL tan e
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(Note that U changes sign with W as we cross the vortex sheet.)

The chordwise velocity component produced by the bound portion of

the separated vortices can be obtained from Appendix A. Thus,

replacing r by (dr/dý) dý and integrating over the chord, we

find that

c
-- zs dr f de 59SBv d- (x - )2 + z2 'I(x - e)2 + 4s2 + z2

Now, integrating this expression (Ref. 21) and taking the limit

as z - 0 from the positive direction, to find the induced chord-

wise velocity component immediately above the wing surface, we

obtain

u- . dF/dE u I A,*V sin a (60)UB zMo+ 4 2 0

Finally, substitution of Equations (54) through (60) into

Equation (53) yields the following expression for the shedding

angle:

sLn aV:_s - z 'n%*a + 1

tans n 3
a AI* tan e + ctn a

I Y=S

(61)

It is noted that Bollay (Ref. 1) obtained a value of e equal

to half the angle of attack for the limiting case of vanishing

aspect ratio at small angles of attack. In the more general case
(Eq. (61)), the ratio of 9/a will be a function of both aspect

ratio and angle of attack.

I.
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4.3 Normal Force and Center of Pressure

According to the Kutta-Joukowski law, the normal force acting

on the lifting line of circulation strength y(q) is given by

+s

N- PV cos af y(TI) dT) (62)
-s

so that, with the definitions of Equations (13) and (14), we find

that

SU PV cos a. -- sin n (s sin ?p d*)

n-2r aPV 002s2 cos a sin a (Y *1 (63)

Thus, only 73* contributes to the normal force, whereas the higher

harmonics affect only the span load distxibution. The load distri-

bution associated with 'y* is elliptical, but its magnitude will

be affected by the existence of the higher harmonics.

For the unseparated case (r* - 0), we have for the normal

force coefficient
N

)•CNM - 7r2A •y*) cos a sin a (64)u (1/2)pV 2 (2 sc) u

For small aspect ratios, the lifting line and the line of co,.trol

points may be separated by many semispans so that (x - ti)/s
is large. Thus, (y1 *)u approaches its asymptotic value of
1/(2r) and we have

(CN Asin a cos a (65)

"A-0
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r This result agrees with the slender-body result for the normal

force coefficient of a rectangular wing of low aspect ratio at

low angles of attack.

The total normal force acting on the wing with flow separ-

ation is the sum of the normal force on the lifting line NI

(including the image system (Tn*) S) and the normal force acting
on the bound vortices of the separated system (which have uniform

span loading). Thus, using Equations (37), (42), (62), and (63),
we have for the total normal force

+S c
N - pV cos a y(T) d• + 2s

cc 1 f y~ dde + 2--S

-27r 2pV, 00 I2 cos a sin a [Q*) + r* (Q*)j

+ 2PV sc COs a(2iAVý sin a r•*) (66)

The total normal force coefficient CN is therefore given by

IN - - V-A cos a 8])
N pV 2 (2sc) c ( sn 81+

CN + (67)

I where

CNS - A cos a sin a -I'* [27r ('Y*), + 8] (68)

represents the normal force due to the separated vortices and their

images.

The center of pressure is obtained by noting that the load-

ings due to (y *)u and to (,Y,*)S both act on the lifting line

(i.e., at the quarter chord), whereas that due to r* acts at

I.
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Sthe half chord, since dF/dt was taken as constant. Thus we can

write at once, from Equation (67)

1 .1. r~ (' + Ar4 (',*) +¼r'4+2
x *u 4 (69)

c++ Ti )* 0( 1 r

The foregoing solution also yields a precise determination

of the proper location of the control line if the present theory

is to yield results in accordance with experiment for small angles

of attack. To demonstrate this fact, let us calculate the lift-

curve slope at zero angle of attack as a function of aspect ratio

and position of the control line. By comparing these results with

those from experiment or exact theory, it can be determined where

the control line should be placed as a function of aspect ratio.

The lift-curve slope at zero angle of attack has been computed

as a function of aspect ratio using Equation (67). Note that

since there is no flow separation at zero angle of attack. The

results are shown in Figure 2 for several chordwise positions of

the control line with the lifting line placed at the quarter-

chord position. They are also compared with the mean experimental

curve of Scholz (Ref. 5). It is seen that locating the control

line at the three-quarter-chord position yields excellent agreement

between the present theory and experiment for unseparated flows.
-The use of a control line at the half-chord position yields values

of lift-curve slope about 10 percent low at an aspect ratio of

unity and 25 percent low at A - 2. These results are in substan-

tial agreement with the classical work of Weissinger (Ref. 22)
which was evidently based on his observation that the influence of
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the semi-infinite trailing vortices varies very little over the
airfoil chord, so the influence of the bound vortex is dominant

in determining the proper placement of the control line. The

present calculations take the trailing vortices fully into account

and therefore serve to substantiate Weissinger's conclusion.

4.4 Downwash at the Tail Location

In order to investigate longitudinal stability and control
characteristics of an aircraft configuration, one must determine

the downwash at the location of the horizontal tail. This is a

relatively straightforward procedure once the strengths and

positions of the vortices shed from the wing are known. Thus,

the upwash at any point in space is given by

w(x,y,z) - w* + _w + V sin a

and the expressions for w* and w for points lying in the plane

of the wing are given by Equations (12) and either (28) or (48),

depending upon whether the point in question lies inside or out-

side of the wing span.

The determination of the upwash w* and w for points lying
out of the plane of the wing is clearly not covered by Equations

(12), (28), and (48), since they were specialized by setting z - 0.
Therefore, one must start with the more general expressions of

Appendix A for the single vortex and develop expressions analogous

to Equations (12), (28), and (48) for z A 0. The procedure is

exactly parallel to that of Section 4.2 of the present report.

However, the resulting expressions are considerably more compli-

cated and do not lend themselves to the same method of evaluation. 9

sVidya has actually carried out the analysis for z ,O 0, but
that analysis has not been checked independently and has,
therefore, not been programed for computation. The analysis
can, however, be made available in its present form.

I
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4.5 Calculative Procedure

The calculation of the aerodynamic characteristics of a rec-

[ tangular wing element, using the analysis developed in the present

report, requires the solution of the set of simultaneous equations

given by either Equations (38) or (39). This solution yields the

loading coefficients, yn*, and the strength of the separated

vortices, F*, which in turn determine the normal force coefficient

and the center of pressure.

The procedure for performing the numerical calculations is

outlined below:

(a) Select the number of terms, nh) to be used in the series

representation of the loading (i.e., the number of nonzero harmonics
to be carried in the calculation). This will be discussed further

in Section 6.
(b) Calculate the Fourier coefficients, anj using Equa-

tions (25) and (26) with

n - 1, 3, ... , (2% - 1)

for

and

x - i (xe/c) - 0.25

s A/2

where x /c is the distance of the control line behind the lead-

ing edge, expressed in chord lengths.

(c) Calculate the Fourier coefficients anj where

] cos joo d~o (70)
X ~a [ (xe/c) - 0.25 ?

and

Ij - 0, 2, (2% 2)
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[ (d) Determine the coefficient matrix of the set of simul-

taneous equations (Eq. (38) or (39)) using Equation (40).

(e) Assume an initial value of the shedding angle, e, for

the separated vortex system.

(f) Calculate the Fourier coefficients, g,, from

Ss2in . Cos j* di (71)

for

j = 0, 2, ... , (2nh - 2)

and

x . xlc
s A/2

(g) D n by solving Equations (43) and (44).

(h) Determine (Yn*) by solving Equation (45).

(i) Calculate F* using Equation (51).

(j) Calculate the normal force coefficient, CN, the center

of pressure, x/c, and the new shedding angle, 0, using Equa-

tions (67), (69), and (61), respectively.

(k) Using this new value of e, repeat steps (f) through (j)

and compare the two values of CN. If the desired accuracy in CN
has not been obtained, return to step (f) and repeat until it is
obtained.
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5. AERODYNAMIC THEORY OF SWEPTBACK WINGS WITH LEADING-EDGE
SEPARATION

5.1 Construction of Mathematical Model

Having developed a theoretical analysis for the rectangular

wing element with side-edge flow separation which satisfies the

proper conditions of no flow through the wing and finite veloc-

ities at the side edges, we can now proceed to apply the theory

to a wider variety of planforms in the following manner. Since

the Kutta condition of finite velocity at the side edges is actu-

ally satisfied for all values of x (see Eq. (50)), the only

singularities in velocity in the foregoing theory are along the

lifting line itself. Therefore, other planforms can be constructed

by using rectangular wings of various aspect ratios as elementary

building blocks, provided that the trailing edge is straight. This

representation will enable us to treat rather general leading-edge

shapes, as shown in the sketch below.

- lifting line (at 1/4
- - _ -chord) of rectangular

wing element
control line of rectan-
gular wing element
(at 3/4 chord)

We shall now place a lifting line at the quarter chord of each

rectangular wing element and proceed to satisfy the boundary con-

dition of no flow through the wing surface at the corresponding

3/4-chord lines, accounting for the downwash from all of the wing

elements and their associated shed vortices. This will require

that we be able to calculate the downwash produced along the

3/4 chord of any rectangular wing element by the vortex system

associated with any other wing element. It is clear, then, from
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the foregoing sketch that for a sweptback wing we must be able to

calculate the downwash anywhere in the plane of the wing as pro-

duced by any of the rectangular wing elements. In particular,

we shall require the downwash outside the span of the lifting line

itself. For this purpose, we shall have recourse to Equation (48)

which was used in satisfying the Kutta condition.

Consider now the case of a sweptback wing which is to be made

up of nw rectangular wing elenmnts of equal chord ci - canw

and whose semispans are selected such that the area of each rectan-

gular element is equal to the area it replaces (see sketch)

c.- c

--- k 4 xV ý

Note that the distances xi and tk will be measured rearward

from the leading edge of the k wing element.

The boundary condition to be satisfied on each of the nw
rectangular wing elements is that the normal velocity, (w)ii•

due to the separation vortices of the wing itself, the ith wing,

plus the normal velocity, (w*)ii, due to the lifting line of

the ith wing and its trailing sheet must exactly cancel the
component of the free stream normal to the wing (V, sin a) plus

the sum of the normal components induced by the vortex systems

I



S~-51-

nw

of all of the other wings, E (W)MA, where

knl

kO
nw nw

Z (w) ik Z [(w*) ik + (Tk] (72)
k=i k=i

The boundary condition can, therefore, be written in the form

nw

Ssin a - (73)

I where this condition must be satisfied for all values of
i(i - 1, 2, ... , nw). Thus, a set of nw simultaneous equa-
tions is generated. Now if the loading coefficients and the
separated vortex strengths on all of the rectangular wing ele-
ments except the ihwing are known, and if the summation on

the right-hand side of Equation (73) can be replaced by an even
cosine series, then the boundary value problem can be solved in
the same manner as is presented in Section 4.2.4 for the rectan-

gular wing alone.
Initially, in the solution of the sweptback wing problem,

the vortex strengths and the loading coefficients are not known
I for any of the nw wings. However, an initial guess can be made

by treating each wing as an isolated rectangular wing and using
the method of Section 4 to obtain initial value. for the loading
coefficients, (yn*)' and the separated vortex strengths, Pi*,

1~
for each of the nw wings. Then an iterative technique can be

i used to solve the set of nw equations. Since the sweptback
wings being treated in the present analysis are restricted to

I

00 +RO20*_ ''0



II
-52-

those which are symmetrical about the midspan, the midupans of

[the rectangular elements are aligned and thus the downwash pro-

duced on any element by any other elements is symmetrical about

the midspan of the ith element. Therefore, the summation can

be represented by an even cosine series of the form

(~]"sin a~ (bj )i Cos p (4nwA

k=1 j-0,) 2,4

where k/i

Now, by a development similar to that of Section 4.2.4 the

set of simultaneous equations to be solved may be written as

zi (fnj)ii (Yn*)i (gJ )i Fi* + 1 + (bj) ij -

(75)

I fnJ i (Yn*)i (gJ i. i* +(bj) A j 2,4,...

n-2., 3,5

There are nw sets of these simultaneous equations to be solved

by the iterative technique. Equations (75) are the counterpart

of Equations (39) for the rectangular wing and may be solved in

the same manner by splitting the solution for y n * into an

unseparated solution (Fi * -0) and a solution due to separation,

as described in Section 4.2.4.

In order to obtain the coefficients b., we shall have to cal-

culate the upwash wik produced at the 3/4 chord of the ith wing

element by the vortex system associated with the kth wing element.

For this purpose, we shall need the distances from the kth lift-

ing line to the ith control line, given by
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x xi k i-k+ • (76)
sk s so2(6

k nwk ~

0 0

for the determination of Wik, and the distance from the lead-

ing edge of the kth wing element to the ith control line,

given by

x i-k+(77)
s Sk s k so0

S nw - cý
0 0

for the determination of Wik. Note that both of these distances

are expressed in semispans of the wing element whose vortex system

produces the downwash (i.e., of the kth wing element).

Now from Equation (28) we can write for points lying within

the span of the lifting line (i.e., for -1 _< (y/sk) < 1)

V sina xi n sin ak • I a no

for x.i - k > 0 (78)

G [Z2 a -Xi-'k °•
[n1, (ný nk( sk *o)

for xi - k < 0 (79)

where

PO Cs kO-

1.
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For points lying outside the span of the lifting line (i.e., for

1 <IY/SkI < _), Equation (28) is modified in accordance with
Equation (48) to yield

ik* xi - Ik 1 n_ 2kk) 1 J
V sin, :a , s . (I]

ik _• Sk_'

iV sin Cl(u ~ ~ (n*)[ nk s "Sk L)]

n~o 3

for xi -k > 0 (81)

Similarly, we obtain the required expression for Wik (the up-
wash produced at the ith control line by the separated vortex

system associated with the kth wing element) by replacing x

by xi, s by sk, and c by ck in Equation (12). With the
resulting equation and Equations (78) through (81), we are now in

a position to set up an iterative procedure for determining the

loading on the sweptback wing with leading-edge separation. The
detailed procedure will be outlined in Section 5.5.
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It should be noted that the same method may be applied to a
low or intermediate aspect ratio rectangular wing by representing

it as a chordwise distribution of higher aspect ratio rectangular

wing elements. The purpose of such a procedure in these cases
would be to extract more detailed information regarding chordwise

load distribution and center of pressure than can be obtained by

using a single wing element.

5.2 Determination of Shedding Angle, Gi, on ith Rectangular
Wing Element

The determination of the angle, 6i, at which the separated

vortices are shed from each of the rectangular wing elements is
similar to that described in Section 4.2.6 for the rectangular
wing alone. However, in addition to the velocities induced by the
ith wing itself, we must now consider the velocities induced by

all of the other wing elements making up the swept wing.
The general expression for the shedding angle on the ith

wing is given by (Eq. (53))

Wv

tan e. av
.u av

-, Ym i-6 • e(2

(82

J6(uy..8.p- +u'ysi M--

-
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5.3 Normal Force, Center of Pressure, and Span Loading

The total normal force on the sweptback wing is simply the

sum of the normal forces on all of the wing elements, so that the

total normal force coefficient is, from Equations (66) and (67),

n
w

ZN
CN 17pV 2S nw

N -v Z2 0s 2 3 3

n
I ° 3•nw os i 2o

n (87)w s

*~ 0

The center of pressure is found by summing the pitching moment

about the wing leading edge and dividing by the total normal force.

That is,
n

w

E N3Ei~
x i- 1 (88)

n
wZN

Iit

Thus, noting that the loading due to (-y*) acts at the quarter

chord of the ith wing element whereas ri* acts at the midchord

of the element, we have
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Therefore, the center of pressure for the sweptback wing is given

by
n
w 2

S i i ) IL(T3 
2r

c n(90)0 w 2,o ,
s.) [- (,y + 2r'.*]

The span loading (in, say, pounds per foot) is obtained by

expressing the quantity ctc at each spanwise station, where cl

is the section lift coefficient. Equating two expressions for

the lift on an elementary chordwise strip (see sketch),

A r

dy

we have

c c dy 1½j - pV~ dy (91)

j-pI
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where r is the total circulation on the chordwise strip. Thus

c~c - (92)
I V.

In the present mathematical model, the total circulation round

any chordwise strip is given by

r(y) - i(y) + dl. Cil (93)

where the Lummation is carried over the wing elements whose semi-

span is greater than the value of y in question. Thus, since

y(y) in the present analysis is represented by a Fourier sine

series, Equations (92) and (93) combine to yield the following

expression for the non-dimensional span loading on a swept wing.

_____) .(Yn*). 0
o V 87 C sin so i + in sin ni

c 0  VOOc 0  co 0 i, nni1 n-1 , 3

(94)

where *i - cos-1 (-y/si) and the summation over i is carried

over the wing elements whose semispan is greater than y.
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5.4 Downwash at the Tail Location

The calculation of the downwash behind a swept wing is again

a matter of collecting the appropriate expressions for w* and

7. That is, the upwash at any point is again given by

w(x, y, z) - w* + W + V sin a

just as in the rectangular wing case, but here we must account for

the contribution of every wing element comprising the swept wing.

Thus, we have

nw

jw* 37 wik*
k-i

and

nw

k-1

where the distance xi appearing in the expressions for wik*

and Wik is now the distance from the leading edge of the kth

wing element to the point in question. For points lying in the

plane of the wing, the expressions for wik* are given by Equa-

tions (78) to (81), depending upon whether the point in question

lies inside or outside of the span of the kth wing element.

The corresponding expressions for Wik are given by Equations (12)

if we replace x by xi, s by sk, and c by ck.

For points lying out of the plane of the wing, see Footnote 9,

page 46.
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5.5 Calculative Procedure

The detailed procedure for performing the numerical calcula-
tions is outlined below:

(a) Select the number of wing elements, nw, and the number

of harmonics, nh, to be carried in the calculation. This point

will be discussed in Section 6.2 where convergence with respect to

these parameters is investigated.

(b) Assume an initial value of the shedding angle,

U i U- 1, 2 ... n w), for each wing element.

(c) Calculate the (fnj)ij coefficient matrix for each wing,
treating each as an isolated wing, using the method outlined in
steps (b) through (d) of Section 4.5.

(d) Calculate the Fourier coefficients (gJ)ii as outlined

in step (f) of Section 4.5.

(e) Obtain initial values of the loading coefficients,

(Ynu*)i and (yns*) , for each wing element by treating each

wing as an isolated rectangular wing and solving Equations (43),

(44), and (45).

(f) Calculate r for each isolated wing by Equation (51).
(g) Calculate wik* for i- 1; k - 2, ... , nw using

Equation (76) and Equations (78), (79), (80), or (81) as appro-

priate with the values of (Yn*)k from step (e).

(h) Calculate Wik for i - 1; k - 2, ... , nw using Equa-
tions (12) and replacing x by xi (Eq. (77)), s by sk' and

c by ck.
(i) Determine coefficients (bj) ik from Equation (74),

using the results of steps (g) and (h).
(j) Solve Equations (75) for the unseparated loading coef-

ficients (Vnu*) by setting ri* - 0 for i - 1.

(k) Solve Equations (75) for the loading coefficients due

to separation ('ns*)i by setting fi* - 1 and omitting the

remainder of the right-hand side of Equations (75) for i - 1.
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(1) Replace results of step (e) with results of steps (j)

and (k).

(m) Determine ri* for i - 1 by using Equation (51).

This completes the first iteration on (Yn*) I

(n) Replace results of step (f) with results of step (m).

(o) Repeat steps (g) through (n) for i - 2, 3, ... , nw

with i 0 k in steps (g) and (h). This completes the first

iteration for all wing elements.

(p) Calculate normal force coefficient and center of pres-

sure using Equations (87) and (90).

(q) Repeat steps (g) through (p) until desired accuracy

on normal force is obtained.

(r) Calculate i(i - 1, 2, ... , nw) from Equation (86).

(s) Repeat steps (d) through (r) until the desired accuracy

on ei is obtained.

11
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6. NUMERICAL CALCULATIONS AND COMPARISON WITH EXPERIMENT

This section of the report will describe the results of the

calculations which were made using the analysis presented in Sec-

tion 4 for the rectangular wing and that presented in Section 5

for the swept wing. The rectangular wing calculations will be dis-

cussed first, since this wing element is the building block for the

swept wing analysis. Convergence of the rectangular wing solution

is therefore necessary if the swept wing solution is to converge.

The rectangular wing calculations were carried out on an IBM 1620

digital computer, whereas the swept wing calculations were performed

on an IBM 7094 computer.

6.1 Rectangular Wing

Two investigations were made using the rectangular wing analy-

sis presented in Section 4. The first of these was to determine

the number of terms (nonzero Fourier harmonics) required in the

series representation of the loading in order to insure convergence

on values of the normal force and center of pressure. The second

investigation was to determine the angle e at which the separated

vortices must be shed in order for the vortices to follow the local

streamlines in the vertical plane containing the wing tip. After

these studies were completed, systematic calculations of the normal-

force coefficient and center of pressure were carried out for a

range of aspect ratios and angles of attack, and the results have

been compared with available experiment. In all of these calcula-

tions, the rectangular wing is represented by a single wing element,

since we wish to investigate the convergence of the basic building

block of the theory.

6.1.1 Convergence with number of harmonics
Table II presents the results of rectangular wing calculations

in which the number of nonzero harmonics nh in the loading was

varied fron 2 to 14, for two angles of attack, over a range of

aspect ratios. For these calculations, the control line was fixed

at the 3/4-chord location and the shedding angle e was held fixed

at half the angle of attack. It can be seen that the values of
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CN, x/c, and r* converge rapidly and that 8 nonzero harmonics

evidently suffice for 1-percent accuracy in CN even at an aspect

ratio of 20. The values of x/c and r* converge somewhat more

slowly, as seen from Tables II(b) and II(c), and it can be seen

that the rate of convergence decreases as the aspect ratio is

increased. (This point is significant in regard to the swept wing

solution.) Also, it can be seen that convergence is more rapid
at the higher angles of attack, and it is evident that the solution

will have convergence difficulties at vanishing angles of attack,

since the shed vortices tend to coalesce into the wing tip.

The significance of the increase in the number of harmonics

required with increasing aspect ratio is illustrated by Figure 3,

which can be used as a guide for the swept wing solution. For the

rectangular wing itself, this feature of the solution is of little

significance, since one would logically return to linear theory at

very high aspect ratios. However, for a swept wing, even of low

aspect ratio, the aspect ratio of the trailing element increases

as the number of wing elements is increased. For example, if a

delta wing of aspect ratio 3 is represented by 10 rectangular

wing elements, the trailing element has an aspect ratio of 14.25.

Thus, Figure 3 may be used as a guide for estimating the number

of harmonics one might need to use in the swept wing solution. It

must be borne in mind, however, that the mutual interference among

wing elements may require still larger numbers of nonzero harmonics

for convergence of the swept wing solution.

6.1.2 Detailed loading coefficients for a specific case

The detailed convergence of the mathematical solution is

perhaps best illustrated by listing all of the loading coefficients

for a particular rectangular wing element. For this purpose, we

shall select a rectangular wing of aspect ratio 3.5 at 200 angle

of attack, with the shedding angle e fixed at half the angle of

attack and the control line located at the 3/4-chord position.

The reason for selecting this particular case is that it represents
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the fourth wing element of a delta wing of aspect ratio 2. We

shall, therefore, be able to compare the loading coefficients

on the isolated wing element with those in which the interference

from other elements is included.

The loading coefficients for the selected case are listed

in Table III, and it is noted that 19 nonzero harmonics have been
carried in the calculation, to correspond with the delta wing

calculations of Section 6.2.4. It can be seen from Table III

that the loading coefficients associated with the higher harmonics
(n large) are several orders of magnitude smaller than the leading

coefficients so that one need not have carried 19 harmonics for

j this case. In fact, as was pointed out in the previous section

(Fig. 3), 6 harmonics was a sufficient number for, the selected
S~case.

The separated vortex strength r* and the normal force and

center of pressure corresponding to the loading coefficients of

Table III are obtained by using Equations (51), (67), and (69).

The resulting values are

-* - 0.06307

CN - 1.4450

x/c - 0.4043

6.1.3 Shedding angle calculations
Calculations have been carried out to determine the shedding

angle e of the separation vortices by the iterative procedure

of Section 4.2.6, and the results are plotted in Figure 4. It can

be seen that the shedding angle ratio e/a increases with aspect

ratio and decreases with angle of attack. Furthermore, it is

noted that the shed vortices are found to lie above the free-stream

direction for aspect ratios above 2 for angles of attack below
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150. This result is known to be unrealistic because of the down-

wash which must be produced by a lifting wing and which must cause

the trailing-edge vortices to drift below the free-stream direction.

On the other hand, it must be borne in mind that the assumed mathe-

matical model does not permit rolling up of the side-edge vortex

sheets. This process would naturally tend to drive the shed vortices

downward and result in a smaller shedding angle of the rolled-up

vortex cores.

6.1.4 Effect of control line location

Because of the above result, and because the placement of the
control line (where e is calculated) at the 3/4-chord location

was based on matching the lift-curve slope at a - 0, it was con-

sidered worthwhile to investigate the effect of control line loca-

tion on the calculated shedding angle e. Therefore, e was

recomputed with the control line placed at the 65 and 85 percent
chord locations, and the results are presented in Figure 5. It can

be seen that the effect of control line location on the shedding

angle was rather small, and that the new control line locations

failed to yield more realistic values of e. Therefore, it was

concluded that the control line should remain at the 3/4-chord
location , in order to insure the correct lift-curve slope at small

angles of attack, but that the values of the shedding angle e
determined by the iterative technique of the present analysis

(using a single-wing element) are evidently unrealistic. This

fact is most likely associated with the use of a lifting line

rather than a lifting surface and with the fact that the shedding
angle is determined only at the location of the control line at

which the boundary condition is satisfied. This situation might

be expected to improve if one were to use a number of wing elements
of higher aspect ratio to represent the rectangular wing. This has

not been done.
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6.1.5 Normal force and center of pressure

Systematic calculations have been preformed to determine the
variations of normal force and center of pressure on rectangular

wings at various angles of attack for a wide range of aspect ratios

(using a single wing element), and these results are presented in

Figure 6. For these calculations, the control line is at the

3/4-chord location, and the value of 0 is that determined by

iteration. For a given angle of attack, the normal-force coeffi-

cient is found to increase with increasing aspect ratio while the

center of pressure moves forward. For a given aspect ratio, the

normal-force coefficient increases nonlinearly with angle of attack,[i and the center of pressure is seen to be relatively insensitive to

angle of attack.

6.1.6 Comparisons with experiment
The calculated variation of normal force with angle of attack

(for a single rectangular wing element), is compared with experi-

mental data in Figure 7(a) for rectangular wings of aspect ratios
from 0.2 to 5.0. It can be seen that the theoretical normal force

agrees with experiment within about 10 percent over the angle-of-

attack range shown. A notable exception is the aspect ratio 5

wing beyond the stall, and it is recalled that the present theoret-
ical model does not account for leading-edge stall on rectangular

wings. In a broader sense, it may be said that the theory fails

if the flow becomes unsteady. Thus, for all aspect ratios, the
theory will fail above some angle of attack, since all flat plates

at 900 angle of attack produce an unsteady wake, whether the vortices

in question arise from leading, trailing, or side edges. However,
the angle of attack for the onset of unsteady shedding will be lower
for the higher aspect ratios, because of the orientation of the

shed vortices (spanwise rather than chordwise). That is to say,

vortices which are aligned nearly normal to the free stream produce

an unsteady flow, while those aligned nearly with the free stream

produce a steady flow. Thus, as seen in Figure 7(a), the angle-of-

attack range over which the theory is valid will be larger for the
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lower aspect ratios. In Reference 1, Bollay showed that his theory

agreed with experiment for angles of attack up to 450 for an aspect

ratio of 1/30. The present theory is in close agreement with Bollay's

theory for vanishing aspect ratios, at least insofar as normal force

is concerned, despite the assumptions of a single lifting line and

a constant separated vortex strength along the chord.

In Figure 7(b), the calculated center of pressure is presented

for a variety of rectangular wing elements. It is seen that the

present theory predicts centers 6f pressure which are rather far

rearward (toward the midchord location). Experimentally (Ref. 4),
it is found that the center of pressure remains closer to the quarter

chord for rectangular wings of all aspect ratios. It is interesting
to note that Bollay's theory (Ref. 1) places the center of pressure

at the quarter chord for all aspect ratios by assuming the chordwise

load distribution to be that of a wing of infinite aspect ratio.
The present theory, on the other hand, places the lifting line at

the quarter chord but places the center of pressure of the separated

vortices at the midchord by assuming the separated vortices to be

uniformly distributed in the chordwise direction. This restriction

can be removed by employing a number of rectangular wing elements

to represent the rectangular wing and then solving for the chordwise

distribution of loading and shed vorticity.
For all of the above results using a single rectangular wing

element, the shedding angle of the separated vortices has been cal-

culated by the iterative procedure described in Section 4.2.6. It

will be recalled (see Fig. 4) that these calculated shedding angles

appear to be unrealistically high, particularly at high aspect

ratios and at low angles of attack. Nevertheless, the agreement
with experimental normal forces on rectangular wings is quite satis-

factory even in these ranges.

Comparisons with experimental values of the shedding angle

are of questionable validity, since the mathematical model is clearly

unrealistic in this detail. That is to say, the vortex sheet shed

from the side edge of a rectangular wing actually rolls up into a
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single vortex core which lies above the wing surface. It is the
position of this core which is measured experimentally. The only

known measurements of this kind (contained in Ref. 23) indicate a

considerable (nonlinear) variation in the orientation of this vortex

core, both with chordwise location and angle of attack for a rec-
tangular wing of aspect ratio 2. In any case, it would not be

reasonable to expect that the theoretical shedding angle at the
side edge which renders the mathematical solution of the problem

unique for the selected theoretical model (with no rolling up)
should agree with experimental measurements of the orientation of
the rolled-up vortex core. In fact, it is clear that rolling up
of the side-edge vortex sheets would cause the uppermost shed

vortices to be depressed toward the wing surface. Therefore, the

[ experimental angle Sc of the vortex core relative to the plate
should logically be smaller than the theoretical angle e of the

iF side-edge sheets. That is

e >

It is of some interest to note that in Bollay's theory (Ref. 1),

the theoretical values of shedding angle may well be more realistic,
since he satisfied the boundary condition (of no flow through the

wing) in the mean rather than at a specific chordwise location, and
also since he assumed a more realistic chordwise variation of shed

vorticity than the uniform distribution of the present theory for a
single-wing element. Bollay's approach yielded shedding angles not
far from half the angle of attack in all cases. In the limit of
vanishing aspect ratio, the present theory for the single rectangular
element does yield values of e which appear to be converging

toward Bollay's value of half the angle of attack.
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6.2 Triangular Wing

Calculations have been carried out for the special class of
swept wings of triangular planform (i.e., delta wings) using the

method of Section 5. Initially, the calculations were made with
a double iteration; that is, with iteration on both the loading
and the shedding angle of each wing element. However, for reasons

which will be discussed below, the final calculations were carried

out by iterating on the loading but leaving the shedding angle e

fixed. Therefore, convergence of the swept wing solution was

investigated both with and without iteration on 6.

6.2.1 Convergence with number of iterations

Perhaps the key to the success or failure of the procedure

described in Section 5.5 lies in the rate of convergence with

iteration on the loading of each wing element. Therefore, this
was investigated first using four rectangular wing elements.

Furthermore, since the rate of convergence is expected to deteri-

orate with increasing aspect ratio, the highest aspect ratio
(A - 4) to be employed here was used for the convergence investi-

gation. Figure 8 shows the convergence of the shed vorticity r*,

the first loading coefficient y1* (which determines CN and
/c o), and the normal force coefficient C N with number of itera-

tions on the loading. It can be seen that the convergence is

generally oscillatory in nature and that in this case six iterations
are adequate for the load distribution, whereas only three itera-
tions are required to converge on the normal force.

Convergence with e iterations (which are carried out after

convergence on yn*) is illustrated in Figure 9. It can be seen
that convergence is again oscillatory and that four iterations
on e suffice here to determine e within about 0.250. On the

other hand, about six iterations are required for convergence on

the normal force.
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6.2.2 Shedding angle calculations

A significant difference between the rectangular and tri-

angular wing calculations lies in the fact that the present theory

predicts a single shedding angle for the rectangular wing, as well

as a single value for the shed vorticity, which is assumed constant

over the chord, if a single wing element is used. For the delta

wing, however, the method yields a chordwise distribution of these

quantities by the use of many rectangular wing elements. The cal-

culated distribution of shedding angle e over the chord of a

delta wing of aspect ratio 4 at 200 angle of attack is shown in

Figure 10 using from two to eight wing elements to represent the

delta wing. Here we see again, as in the case of the rectangular
wing, that the predicted values of e are unrealistically high.

(in this case, they are all larger than the angle of attack.) But

even more disturbing is the observation that e is increasing as

the number of wing elements increases. This may be associated
with the increase in the predicted value of e with aspect ratio,

since the aspect ratio of the trailing element increases as the

number of elements is increased.

6.2.3 Convergence with number of harmonics
The convergence of the normal force and center of pressure

on the delta wing was next investigated using various numbers of

rectangular elements to represent the delta wings. These results
are shown in Figure 11, and it can be seen that convergence is

quite satisfactory if only two wing elements are employed. However,
if larger numbers of wing elements are employed, not only are more

harmonics required (as would be expected because of the increased

aspect ratio of the elements), but also rather large bumps are

noted in the variation with harmonics. This is believed to be

caused by the fact that there is a finite discontinuity in the

downwash at the side edge of each rectangular element. Thus, with

certain numbers of harmonics, certain spanwise points used in the
Fourier analysis fall close to these discontinuities and cause

apparent convergence difficulties. In order to check this hypothesis,
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detailed downwash calculations were carried out for one case, and

the fit obtained with the Fourier series was investigated. It was
found that by adjusting the downwash at the point nearest the dis-

continuity, the bumps in the curves of Figure 11 could be reduced.

It is also felt that with still larger numbers of wing elements

the magnitude of each bump may be reduced because of the decrease
in the magnitude of the discontinuity.

Perhaps the most significant results of Figure 11 are that
(a) the rate of convergence with number of wing elements is slow,

(b) the values of CN are unrealistically high, and (c) the value

of CN is increasing with number of wing elements. Inasmuch as
these difficulties with C N are believed to be associated with

the unrealistically high values of e and their increase with

increasing number of elements (see Fig. 10), it was decided to
investigate the behavior of the delta wing solution without

iterating on e. The results of these calculations are shown in

Figure 12, and it can be seen that (a) the convergence of CN and
X/co with number of wing elements is improved, and (b) the value

of CN is reduced, even for the rather large value of 1.0 assumed

for the ratio of O/c. It is concluded that, in applying the

present theory to swept wings, one should leave e/a as a param-

eter, because of the unrealistic predictions of e for the assumed

model.
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6.2.4 Detailed loading coefficients for a specific case

In order to give a better insight into the behavior discussed

above, detailed loading coefficients for each rectangular wing

element are presented in Table IV for a delta wing of aspect ratio

2 (soco - 0.5) at 200 angle of attack with the value of e/a
fixed at 0.5. For this calculation, 8 wings and 19 nonzero har-

monics are employed, and the characteristics of each wing element

are listed in the following table.

Wing si ci C.L. L.L.
element i - Ai - ..

No. c0 o C c0  (deg)

1 0.0625 0.125 0.5 0.09375 0.03125 10

2 .1875 .125 1.5 .21875 .15625 10

3 .3125 .125 2.5 .34375 .28125 10

4 .4375 .125 3.5 .46875 .40625 10

5 .5625 .125 4.5 .59375 .53125 10

6 .6875 .125 5.5 .71875 .65625 10

7 .8125 .125 6.5 .84375 .78125 10

8 .9375 .125 7.5 .96875 .90625 10

where C.L. is the distance from the apex of the delta wing to

the control line of each element, and L.L. is the distance from

the apex to the corresponding lifting line.

The calculated loading coefficients on each element are listed
in Table IV, and it will be recalled that the fourth element (Table

IV(d)) has the same geometry as the isolated rectangular wing
whose loading coefficients are listed in Table IlI. But, before

comparing the results of Tables III and IV(d), it is well to refer

back to Equations (75) representing the delta wing problem. It

will be noted that all of the mutual interference among the wing

elements is contained in the (bj)ik and, therefore, appears only
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in the unseparated solution n*) which is obtained by setting

i 0. Hence, the separated solution n is unaffected by
11

interference and should be the same as for an isolated rectangular

wing element of the same aspect ratio. Comparison of Tables III

and IV(d) shows that this is indeed the case.' 0

A comparison of the values of (Ynu*) from the same tables

shows that in the case of the delta wing (Table IV(d)) the mutual
interference among the wing elements severely curtails the rate of

convergence; that is, the highest harmonics are nearly the same
order of magnitude as the first harmonic. In the case of the

corresponding isolated wing element (Table III), these differed

by six or seven orders of magnitude. Looking at the other wing

elements of the delta wing (Table IV), we see that this difficulty

is typical of all the wing elements except the leading element,

which shows convergence similar to that for an isolated rectangular
wing. The apparent reason for this difference lies in the fact

that the present mathematical model produces finite discontinuities

in the downwash for all wing elements except the first.

Despite the above difficulty, which may be expected to mani-

fest itself in the calculation of such detailed quantities as span

loading and downwash, it has been shown in the previous section
and in Figure 12 that the gross quantities (CN and /c ) for

the delta wing have nevertheless converged with 8 wings and 19 har-

monics. For the calculation of these quantities and of the span

loading, we require the values of shed vorticity ri* for each

wing element. These are calculated from Equation (51) and are

listed below.

"°The small differences are attributed to the fact that the numbers
in Table III were calculated on an IBM 1620 whereas those of
Table IV were calculated on an IBM 7094.
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Wing
element ri

No.

1 0.34311

2 .17177

3 .11823

4 .09146

5 .07197

6 .05901

7 .04707
8 .03732

The total normal force coefficient and center of pressure for

the delta wing are given by Equations (87) and (90). The result-

ing values for the present case are

CN - 0.9292

X/co 0.6272

The span loading on the delta wing can be calculated from

Equation (94). The resulting span load distribution is tabulated

as a function of y/s in Table V. It will be noted that the

span loading goes to zero at y/s - 0.9375 which corresponds to
the side edge of the eighth wing element.
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6.2.5 Comparisons with experiment

The calculated variations of normal force and center of pres-

sure with angle of attack for delta wings of aspect ratio 1, 2, 3,

and 4 are compared with experiment and with linear theory in
Figures 13 through 16. As explained earlier, it was found in the

course of the calculations that iteration on the shedding angle of

the separated vortices produced unrealistically high values of

both shedding angle and normal force for delta wings. Therefore,
for the calculations presented in Figures 13 through 16, the shed-

ding angle was treated as a parameter and held fixed in each cal-

culation.

It can be seen from Figures 13 through 16 that, for each
aspect ratio investigated, there is a single value of the shedding

angle ratio e/a which yields good agreement with the experimental

normal force for all angles of attack up to the experimental fall-
ing off of the lift-curve slope. This latter phenomenon is not

predicted by the present theory and is evidently associated with

a change in the type of flow separation (as in the case of rectan-

gular wings). The calculated normal force is seen to increase

with e/a in all cases. (This effect is shown in Figure 17 for

various aspect ratios.) On the other hand, the center of pressure

is evidently insensitive to e/a and agrees well with experiment

for the cases where data are available (A - 1, 2, 4), particularly
at the higher angles of attack. It is noted that linear theory

also shows good agreement with experiment with regard to center-

of-pressure location.

It is evident from Figures 13 through 16 that the present

theory in all cases yields results which are considerably better
than linear theory, provided that the appropriate value of the

ratio e/a is selected and held fixed. The required 6/a is a

function of aspect ratio, and the resulting variation with aspect

ratio is presented in Figure 18.
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Since some limited experimental values of the shedding angle

e of the vortex cores over slender delta wings are available for

aspect ratios of 1 and 1.67 (Refs. 24 and 25), these are also

shown in Figure 18. One is again cautioned that these measure-

ments do not actually correspond to experimental values of e,
since the separated vortices of the present mathematical model
are not permitted to roll up into a single core. In keeping with
this fact, it is seen from Figure 18 that the rolled-up core forms

a much smaller angle with the plane of the wing than do the separ-
ated vortices of the assumed mathematical model which is required

to give the experimental normal force.
It should be pointed out that all of the above calculations

were performed using 8 wing elements and 19 harmonics. For the
highest aspect ratio (4.0), which corresponds to the lowest shed-

ding angle (e/a = 0.1), it is not certain that the mathematical

solution has converged, particularly at the lowest angle of attack.
As a point of interest, one calculation of span load distri-

bution was carried out for an aspect ratio 2 delta wing at 200

angle of attack, since data are available in Reference 26. The
results are shown in Figure 19, and it can be seen that discon-

tinuities are indicated in the theoretical span loading at the

side edge of each rectangular wing element employed to represent
the delta wing. It is observed that approximate agreement with

experiment would be obtained by fairing out the discontinuities,

but it is evident that a larger number of wing elements (and
harmonics) would be required for accurate prediction of the span

loading on delta wings.
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7. CONCLUSIONS

A theoretical analysis has been developed for calculating the

low-speed aerodynamic loads on rectangular wings with side-edge

separation. This theory, which includes lifting-line theory for

the case of no separation, yields the downwash everywhere in the

plane of the wing and also incorporates the Kutta condition of

finite velocity along the side edges. Because of this feature,

it has been possible to extend the theory to other planforms with

sweptback leading edges. An iterative technique has therefore

been devised for calculating the aerodynamic characteristics of

sweptback wings with leading-edge separation by representing the

wings as a system of elementary rectangular wings.

Calculations have been carried out for both rectangular and

delta wings of various aspect ratios, and the calculated normal

force, center of pressure, load distribution, and shedding angles

compared with experimental data. The following conclusions are

drawn from the calculated results.

7.1 Rectangular Wings
(1) The method appears to converge rapidly with respect to

number of harmonics, except at low angles of attack and/or high

aspect ratios. These cases, however, are well covered by lifting-

line theory and slender wing theory.

(2) A characteristic feature of the spanwise load distribu-

tion for a rectangular wing with side-edge separation is found to

be a zero slope at the side edges.

(3) For aspect ratios from zero to five, the normal force

predicted by the present theory using a single wing element agrees

with experiment within 10 percent up to the onset of leading edge

stall, which is not included in the theoretical model.

(4) The present theory evidently predicts unrealistically

high values of the shedding angle for the separated vortices,

particularly for high aspect ratios and low angles of attack.
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(5) The predicted normal force increases with shedding angle

of the separated vortices but becomes less sensitive to shedding

angle as the aspect ratio increases.

7.2 Delta Wings

(1) For delta wings, the unrealistically high shedding

angles evidently produce correspondingly high predicted values

of normal force.

(2) If the shedding angle is held fixed, the present theory

is capable of giving substantial improvement over other theories

in predicting both normal force and center of pressure for aspect

ratios from one to four over a wide range of angle of attack,

provided an appropriate shedding angle is selected. A plot of

the required shedding angle has been developed.

(3) The predicted center of pressure is relatively insensi-

tive to the shedding angle of the separated vortices.

(4) The method appears to converge with respect to number

of wing elements and harmonics, whether or not one solves for the

shedding angle by iteration. For aspect ratios up to four, it

appears that 8 wings and 19 nonzero harmonics suffice for 2 percent

precision on normal force, provided that the separated vortices
lie at least 30 above the wing surface.

(5) Convergence of the method deteriorates as the shedding

angle (and consequently the angle of attack) decreases and as the

aspect ratio increases. That is, larger numbers of harmonics are

required for convergence at low angles of attack and/or high
aspect ratios. However, linear theory suffices for those cases.

(6) The present theory affords prediction of the detailed

span loading as well as the downwash everywhere in the flow field.

However, accurate prediction of the span loading (and, hence, of

the downwash) evidently requires larger numbers of wing elements

and harmonics than does accurate prediction of the normal force

and center of pressure.
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(7) The span loading on a swept wing, as predicted by the

present method using 8 wings and 19 harmonics, exhibits sizeable

fictitious discontinuities at the side edge of each wing element.

However, when these were faired out, the resulting span load dis-

tribution compared well with experiment for the one case which

was calculated for an aspect ratio two delta wing at 200 angle of

attack.

(8) The present theory evidently does not predict the fall-

ing off of lift-curve slope near the stall. Thus, for delta wings

of aspect ratio three and higher, the theoretical normal force is

too high for angles of attack above 200.



-82-

REFERENCES

1. Bollay, W.: A Non-linear Wing Theory and Its Application to
Rectangular Wings of Small Aspect Ratio. Z. Angew., Math.
Mech. Bd. 19 Nr., 1 Feb. 1939.

2. Betz, A.: Applied Airfoil Theory. Div. J., Chap. III, vol. IV,
Aerodynamic Theory, W. F. Durand, Editor, Springer, Berlin,
1935, pp. 69-70.

3. Weinig, F.: Lift and Drag of Wings with Small Span. NACA
TM 1151, Aug. 1947.

4. Gersten, K.: Nonlinear Airfoil Theory for Rectangular Wings
in Compressible Flow. NASA RE 3-2-59W, Feb. 1959.

5. Scholz, N.: BeitrAge Zur Theorie der Tragenden FlAche.
(Contributions to the Theory of the Lifting Surface, Thesis-
in German), Ing.-Archiv, XVIII Band, 2 Heft, 1950.

6. Sears, W. R.: Some Recent Developments in Airfoil Theory.
Jour. of Aero. Sci., vol. 23, no. 5, May 1956.

7. Schairer, R. S.: Unsymmetrical Lift Distributions on a
Stalled Monoplane Wing. Calif. Inst. of Technology, Thesis,
1939.

8. Brown, C. E. and Michael, W. H.: On Slender Delta Wings with
Leading-Edge Separation. NACA TN 3430, Apr. 1955.

9. Legendre, R.: Ecoulement au Voisinage de la Pointe Avant
d'une Aile Forte Flbche Aux Incidences Moyennes. La

RechercheAdronautique (ONERA), No. 30, 1952, and No. 35,
1953.

10. Adanis, M. C.: Leading-Edge Separation from Delta Wing at
Supersonic Speeds. Readers' Forum, Jour. of Aero. Sci.,
vol. 20, no. 6, June 1953, p. 430.

11. Edwards, R. H.: Leading-Edge Separation from Slender Delta
Wing. Readers' Forum, Jour. of Aero. Sci., vol. 21, no. 2,
Feb. 1954, pp. 134-135.

12. Ward, G. N.: Linearized Theory of Steady High-Speed Flow.
Cambridge Monographs on Mechanics and Applied Mechanics,
Cambridge University Press, 1955.

13. Cheng, H. K.: Aerodynamics of a Rectangular Plate with
Vortex Separation in Supersonic Flow. Jour. of Aero. Sci.,
vol. 22, no. 4, Apr. 1955.



-83-

14. Mangler, K. W. and Smith, J. H. B.: Calculation of the Flow
Past Slender Delta Wings with Leading Edge Separation.
RAE Rep. No. Aero. 2593, May 1957.

15. Pappas, C. E. and Kunen, A. E.: An Investigation of the
Aerodynamics of Sharp Leading-Edge Swept Wings at Low Speeds.
Jour. of Aero. Sci., vol. 21, no. 10, Oct. 1954.

16. Gersten, K.: Nichtlineare Tragfllchentheorie Insbesondere fUr
Tragfligel mit Kleinem Seitenverhiltnis. Ingenieur - Archiv,
30 Band, 6 Heft, pp. 431-452, 1961.

17. Truckenbrodt, E.: Tragflchentheorie bei Inkompressibler
Strbmung. Jahrbuch 1953 der Wissenschafftlichen Gesellschaft
fUr Luftfahrt (WGL), 1955, pp. 40-65.

18. Jones, R. T.: Properties of Low-Aspect-Ratio Pointed Wings
at Speeds Below and Above the Speed of Sound. NACA Rept. 835,1946.

19. Van Karman, Th. and Burgers, J. M.: General AerodynamicTheory-Perfect Fluids. Chapt. 3, Div. E., Vol. II of Aero-dynamic Theory, W. F. Durand, Editor, Springer, Berlin, 1935.

20. Adams, E. P. and Hippisley, R. L.: Smithsonian Mathematical
Formulae and Tables of Elliptic Functions. Smithsonian
Miscellaneous Collections, vol. 74, no. 1, 1939.

21. Groebner, W. and Hofreiter, N.: Integraltofel Umbestimmte
Integrale. Vol. I, Springer-Verlag, 1958.

22. Weissinger, J.: Uber die Auftriebsverteilung von PfeilflUgeln.
Zentrale fUr Wissenschaftliches Berichtswesen der
Luftfahrtforschung des Generalluftzeugmeisters (ZWB) Berlin-
Adlershof. Forschungsbericht Nr. 1553, den 27.2, 1942.

23. Schock, D. L.: An Investigation of the Flow Characteristics
About a Low Aspect Ratio, Sharp Leading-Edge Rectangular
Wing. Princeton University, Dept. of Aeronautical Engineer-
ing, Rept. no. 574, Nov. 1961.

24. Bergesen, Andrew J. and Porter, J. D.: An Investigation of
the Flow Around Slender Delta Wings with Leading-Edge Separa-
tion. Princeton University, Dept. of Aeronautical Engineering.
Rept. no. 510, May 1960.

25. Peckham, D. H.: Low-Speed Wind-Tunnel Tests on a Series of
Uncambered Slender Pointed Wings with Sharp Edges. ARC Tech.
Rept., R&M No. 3186, 1961.



-84-

26. Wick, B. E.: Chordwise and Spanwi-iseLoadings Measured at Low
Speed on a Triangular Wing Having an Aspect Ratio of Two and
an NACA 0012 Airfoil Section. NACA TN 1650, June 1948.

27. Glauert, H.: The Elements of Aerofoil and Airscrew Theory.
The Macmillan Co., New York, 1943, pp. 127-128.

28. Reid, E. G.: Applied Wing Theory. McGraw-Hill Book Co., Inc.,
New York, 1932.

29. Winter, H.: Flow Phenomena on Plates and Airfoils of Short
Span. NACA TM 798, July 1936.

30. LaVallee, R. S.: Wind Tunnel Tests on Wedge-Shaped Wings.
Rept. R-5503-2, United Aircraft Corp., Research Dept.,
Jan. 1947.



APPENDIX A

UPWASH INDUCED BY A HORSESHOE VORTEX
LYING ABOVE THE WING

To determine the upwash w induced at an arbitrary point

(x,yz) by a horseshoe vortex which is inclined to the wing
surface, let us consider the following sketch:

z
s y

--S

Here we have a rectangular wing of semispan s lying in the xy
plane and a horseshoe vortex of strength r. This vortex consists
of three parts, a bound part, of semispan s, lying in the plane

of the wing at a distance , behind the leading edge, and a right
and left trailing vortex each of which is inclined at an angle e
to the wing as shown. Let us divide the upwash w produced at
point (x,y,z) into the components produced by each part of the

horseshoe vortex. That is, let

w(x,yz) - wB(Xylz) + wR(xyz) + wL(Xlyz) (A.1)
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The upwash induced by the bound vortex can be determined

with the aid of the following sketch:

Y

-s

Thus, the total velocity induced at point P by the bound vortex
of span 2s is (Ref. 27)

qB 4ir (co a qBo . A2

where -i'qB is the unit vector in the direction of B"Hence

the upwash in the positive z direction is given by (seea sketch)

m L•I COS • .Fcs,• (cos Ul+ cos a )2 (A.3)

where i is the unit vector in the z direction.

CL
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The preceding sketch yields the following relationships:

r 1 x - e*

COB
Cos 0

Sý(x -)2 + Z2

cos a s+ Y (A.4)

(X )2 + (s + y)2 + z2

cosas

SX 2 + (S - y) 2 + Z2

so that substitution into Equation (A.3) gives

WB r(x- s + Y
4v[(x _)2 + z2] X _xE)2 + (s + Y)2 + Z2

+ S ] (A.5)

V (X _ ) 2 + (S - y ) 2  + Z 2

The next component of the upwash at point P to be determined

is that due to the right trailing vortex. For this purpose let

us look at the next sketch.
z s Y

R

q R

x



.A-4

If we apply the relationship given by Equation (A.2) to this case,

we have

-q 4_rr (cos a + Cos a ) 1 (A.6)

where "q is the unit vector. Since the vortex we are dealing

with is semi-infinite, a approaches zero degrees and4

cos a - 1.0 (A.7)
4

Let us now write the expressions for two unit vectors, one in the

direction R to Q and the other in the direction R to P. These

are

- Cos ix + sin 0 1zIRQ x o z (A.8)

and

R (B - + %I
-P- - x !_ z (A.9)

N (X - t)2 + (S - y) 2 + Z2

From these two unit vectors we find

Cosa - (x - t)cos e + z sin l
3P V(X )2+ (s - y)2 + z2

r" I P sin a - IPI 1 - cos2 a

1/2

M s y) + (x - t)sin e - z cos 6]2 (A.11)

and
'11

1_ X I 2. R X 1P
qR sinc -s r

13
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This cross product is, from Equations (A.8) and (A.9)

"-R X -P . 1 a y)sin e 1 [(x - t)sin e - z cos 0] "-,r - y s-ysne"

- (s - y)cos e Tz (A.12)

Therefore, substitution of Equations (A.7), (A.10), (A.11), and

(A.12) into Equation (A.6) will give the expression for IR" Thus,

for the upwash induced at P (i.e., the component of qR in the

Iz direction), we find

S(s - Y)cos e
4 a - y), + [(x - t)sin 0 z cos e]'2

(x i )Cos 6 + z sin e +1 (A.13)
S•/cX t) 2 + (S, _ Y)2 + Z2

From symmetry considerations, the expression for the upwash

induced at point P by the left trailing vortex can immediately

be written as

wL --£. (Is+ Yjcos e9
w,-(-Sa + y)2 + [(x - ,sin - z Cos 912

(X - )COs6 + z Lin + (A.14)

Finally, the total upwash w due to the horseshoe vortex

of strength r shown in the first sketch of this appendix is

w 'wB + wR + wL
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where

wB m - x - + y
4rL(x -I )N + Z'] L /(x -ý)2 + (s + y) 2  + z

+ s• - 1
V(x )2 + (s - y) 2 + Zj

WR - -T(s- y) +[ -_scn e)2 +]J

L (x - •)Co e+Zsin 6 + ]1(A. 
15)

WL 4 (S + y) 2 + (s y)sO e]z}
[x -6 + z coc s Q

[~~ ~ + :::S+ zYn +
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APPENDIX B

INFLUENCE OF THE GROUND PLANE

If the wing in question is in the proximity of a ground

plane, then the upwash at the wing surface will be altered in the
same fashion as if the ground plane were replaced by an inverted

"image" wing located as shown in the sketch below (Ref. 28):

a ; °

I -s

-SS

h TE-° "

P'(x',y') oe

Ground
plane y .

/- -

Image wing

z

Z'*
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Thus, we can rewrite the boundary condition of no flow through the
wing surface (Eq. (9)) in the form

w*(xp, yp) + ;;(xp, yp) + wg *(xp yp) + ;;(Xp, yp) - -V sin a

(B.1)

where the subscript g denotes the contribution of the ground

plane or image system.

It can be seen from the above sketch that the z component
of the velocity produced at point P(x, y) on the wing by the
image system is equal to the z' component of velocity producedr at the image point P'(x', y') by the actual vortex system asso-
ciated with the real wing. Therefore, we can determine the upwash
w g*(x, y) and ; (x, y) of Equation (B.1) by writing expressions

a for the velocity component in the z' direction produced at the

-F image point P' by the actual wing. For this purpose, it can be
seen from the sketch below that we shall require both the x and

z components of velocity induced at the point P'.

z
$wg

2a' Ground plane

x

-W W

g

That is,

w wg ' -w cos 2a + u sin 2a (B.2)
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where w and u are the z and x components of velocity

induced at P'.

The coordinates xi, yi, zi (in the x, y, z system) of

the image point P' are required for use in the general expressions

for w and u. But, since the y coordinate of the image point

is the same as that for the corresponding point in the wing itself,

we have

Yi " y (B.3)

The coordinates xi and zi can be obtained from the following

sketch, which is a cut through the y - Yi plane.

z

P(xyz)
/a

ýI i
/h Ai~TE

/ "--.-- / I

P(x 1 ,yYizi)

Thus, we see that

- -2 [hTE + (c - x)sin a] cos a (B.4)

and
xi - x - zi tan a - x + 2 [h.TE + (c - x)sin ] sin a

(B.5)
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[Having the coordinates xi, Yi. zi of the image point P',

as given by Equations (B.3), (B.4), and (B.5), we can now express

the u and w velocity components at that po.Lnt by using the

results of Appendix A. Thus, the w component is given directly
by Equations (A.15) if we replace x by xi and z by zi.

Similarly, the u components at point P(x, y, z) are obtained

from Equations (A.2) and (A.6) by writing the appropriate dot

products of the velocity vectors. Thus, from Equation (A.2),

we have (see sketch, p. A-2)

UH B"qB " x

"- IqI sin r - r sin 4 b (cos a + cos ax) (B.6)
lB 4rr2

Therefore, using the relationships of Equation (A.4), we find that

4v I(x - V ]I - _)2 + (s + y)2 +

+ ] (B.7)

(x - ) + (S - y)2 + Z2

By the same procedure, we find from Equations (A.6) through

(A.12) that

m R q R" x

(( (s - Y)sin 0
"4r (S -y)2 + [(x - E)sin e - z cos 012

[I(x - ocos e + z sin e +1].8
(x - t)2 + (s - y)2 + z 2

I
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From symmetry considerations, the corresponding expression for

u L induced at P by the left trailing vortex can immediately

be written as

U ''4r (S )2+( + Y)sin e
uL (s + y)2 + [(x - •)sin e - z cos

[ x Oo sin e +1 (B.9);(X t )2 + (S + y )2 + z2

Finally, the u and w components induced at the image
point P'(xi, Yi. zi) are obtained directly from Equations (A.]5),

(B.7), (B.8), and (B.9) by simply replacing x and z by xi
and zi as given by Equations (B.4) and (B.5). Then the actual

upwash Wg produced at the point P by the image wing (i.e., by
the ground plane) is given by Equation (B.2).

It must be recalled that the above expressions give only the

velocities induced by a single vortex, whereas the additional

upwash components required in the boundary condition of Equation (B.1:

are those produced by the entire vortex system associated with the

image wing. Therefore, in order to obtain w * and !U' we must

integrate the above expressions in a manner analogous to that

employed in the main body of the present report (see Sections 4.2.2
and 4.2.3). The integrations required will, of course, be more

difficult than those of the main analysis, since they now involve
points lying out of the plane of the wing (i.e., z $ 0).

Inasmuch as the detailed analysis and programing of the

influence of the ground plane represents a formidable task, it is
well to re-examine the validity of the assumptions made in this

analysis before embarking on such an endeavor. That is, one

should perhaps first consider whether the mathematical model is

sufficiently realistic to justify this extension. In particular,

it is pointed out that the shed vortices associated with the

lifting line are assumed to extend in the chordwise direction
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while the separated vortices are assumed to be shed at an angle 6

above the wing. Even in the absence of a ground plane, this assump-

tion is of course an approximation to the real vortex system in
which the vortices roll up into two concentrated cores. But as

the wing approaches the ground, an additional complication arises
which is not accounted for in the present analysis. The shed

vortices are deflected upward by the influence of the ground plane

and are also driven outward in the manner of a vortex ring which
expands when approaching a flat surface. This latter effect has
been observed experimentally behind a delta wing model. These

effects will, of course, become increasingly important as the
ground plane is approached, but their quantitative effect upon

the calculated results is not known.



TABLE I.- DOWNWASH IN WAKE BEHIND ELLIPTICALLY LOADED
LIFTING LINE.

_ _ _ _ _ 
(- W )(*) _ _ _

0 .25 .50 .75 1.0

0 cc GG

.25 11.9556 11.7484 11.1091 10.0024 8.5199

.50 8.412 8.3407 8.1313 7.8053 7.4289

.75 7.396 7.3651 7.2766 7.1434 6.9902

1.0 6.9618 6.9446 6.9039 6.8398 6.7645

® 2- 2v 2v 2v 2v
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TABLE III.- CALCULATED LOADING COEFFICIENTS FOR AN
ISOLATED RECTANGULAR WING ELEMENT OF ASPECT RATIO 3.5
(a - 200, e - 100, nh - 19, xe/c - 0.75).

n (ySn* u 7n

1 9.7049x10- 2  -7.4834x10'- 4.9849x10-2

3 1.0241x10- 2  -4.8942X10-1 -2.0628X10-2

5 1.2764X10-4 -2.6161X10-1 -1.6374xI0-2

7 -1.3987X10-4 -1.2853xi0'- -8.2470X10-3

9 -2.5040X10-5 -5.5478X10- 2  -3.5243xI0- 3

11 4.9398X10- 7  -1.9203X10- 2  -1.2108X10- 3

13 1.3147X10-6 -3.7588X10- 3  -2.3577x10-4

15 2.9635xi0- 7  1.3218X10- 3  8.3671xi0-5

17 9.8930X10- 8  2.0750x10- 3  1.3089X10- 4

19 -2.8367x10- 1.4869x10 3  9.3786x10-
21 -3.7550xI0- 8  7.7604xI0-4 4.8911x>10-5

23 1.8738X10- 8  2.9531X10-4 1.8645x10-5

25 2.5503x10- 5.3567x10- 5  3.3813X10-5
27 -1.1670X10- 8  -3.4224xi0- 5  -2.1704X10-6

29 -6.4205xi0l- -4.7103X10- 5  -2.9774xi0 6-

31 -3.3350xi0l- -3.4346x10- 5  -2.1697X10-6
33 7.2535X10-' -1.8373x10-5 -1.1516x10-5
35 -1.4820X10- 8  -2.3315x10-8 -1.6188X10-7

37 -7.7647X10-11 2.8269X10" 1.7823X10-7



TABLE IV.- CALCULATED LOADING COEFFICIENTS FOR EACH
RECTANGULAR WING ELEMENT OF A DELTA WING OF ASPECT
RATIO 2.0 (a - 200, ei - 100, (x 0/c)i - 0.75, nh - 19).

(a) Wing element number 1.

n(y n *)u (Tn*)s 5 n

1 0.2155 -0.5293 0.3392x10-1

3 -. 1248xi0 3- -. 9414x10-1 -. 3242X10-1
5 -. 1106xl0-4 -. 5724x10- 2  -. 1975X10- 2

7 .2877X10- 6  .1199X10- 2  .4117X10- 3

9 -. 2560x10- 8  .2273xi0 3- .7798xI0-4

11 -. 2697X10- 8  -. 1943X10-4 -. 6668x105-

13 .3009X10- 8  -. 9041x10 5- -. 3099X10- 5

15 .1324xi0l- .1016xl0- 7  .362 1X0 8-

17 -. 1151XlO- 8  .3423x10 8- .1163x10 6-
19 .2171X10- 8  .1988x10- 7  .8995x10 8-
21 -. 6955x10- -. 2789>10-7 -. 1026xi0-7

23 .3579x0 8- .7980X10- 8  .3096x10- 8

25 -. 3787x10- .9309xi0- 8  .2815x10-8
27 .1605X10- 8  -. 9566x10- 8  -. 1676x10- 8

29 .2140xl0- 8  -. 8673x10- 8  -. 8358x109-

31 -. 1896xI0- 8  .6237xi0 8- .2434x10-a

33 -. 1955x10 8- .8279X10- 8  .2645x10- 8

35 -. 8298X10- 8  .1249x10 8- .3458X10-7

37 .5229x10 8- -. 1171X10-6 -. 3496x10-7



TABLE IV.- CONTINUED.

(b) Wing element number 2.

n(Yn*)u (Yn*) 'n
1 0.1584 -0.6940 0.3924X10-1

3 .6306x10' -. 3015 .1126X10-

5 -. 4885X10- 1  -. 1012 -. 6625x10'1
7 .3059x10'l -. 2411x10-' 24xO1

9 -. 1599x10'l - .1648x10 2' -. 162BX10'1

11 .6325X10- 2  .1864x1 0-2  65l
13 - .4304X10- 3  .1119X10- 2  -. 2380X10-'
15 -. 2920OX10-2  .3221x10-' -. 2865x 0-2

17 .4364x10 2  .1190x10-4  .4366X10- 2

19 -. 4204x 0-2  -. 3 980X10-4 -. 42 10X10-2

21 .2817X10- 2  -. 227 9X104 .2814x 0-2

23 - .8444x10-3  -. 620Ox1O-' -. 8454x10-3

25 -. 9381X10-3  .1882xl10 8  -. 9381X10- 3

27 .1890X10- 2  .1051x10-5 .1890X10- 2

29 -. 1766X10- 2  .5290xl10 8  -. 1766X10-2

31 .7 988X10-3  .1458x10 8' .7988x10-

33 .4269X10- 3  .1400x10 -7  .4269x 0-3

35 -. 8806x 0-3  .2557x10 6e -. 8806X10-3

37 .3724x10 -. 3111x106' .3723x10 3



TABLE IV.- CONTINUED.

(C) Wing element number 3.

n Yn *u (7 n *)s 'yn

1 0.9065xIO1 -0.7347 0.3776x1O-o

3 .1178 -. 4157 .6868X10- 1

5 -. 2504X10- -.1917 -. 4771X10-1
7 -. 4153x10'- -. 7680x10-1 -. 5061x10-1
9 .4409xI0-I -. 2399xi0-1 .4126x10'-

11 -. 1425X10-1 -. 3903X10- 2  -. 1471X10-1

13 -. 8608x10-2  .1560X10- 2  -. 8424xI0-2

15 .1121xlO- 1 .1873X10- 2  .1143x10-1
17 -. 2247x10- 2  .1060X10- 2  -. 2121X1O-2
19 -. 4651x10- 2  .3971X10-3 -. 4604x10-2

21 .3053xi0- 2  .7052X10- 4  .3061xi0-2
23 .3506xI0 2  -. 3419x10 4  .3502x10-2
25 -. 7061x10 2- -. 4214xi0-4 -. 7066x10-2

27 .3765x10- 2  -. 2472x10- 4  .3762x10-2

29 .2521X10 2- -. 9463x10-O .2520x10-2

31 -. 5000xlO 2  -. 1617x10-5 -. 5001xlO 2

33 .1624X10- 2  .7652xi0- 6  .1624xi0-2

35 .1778X10- 2  .1922X10- 5  .1778x10-2

37 -. 1139xi0- 2 .3864xi0 0- -. 1139x10-2



TABLE IV.- CONTINUED.

(d) Wing element number 4.

nn *)u ((n * )s 'n

1 0.6064x10-1 -0.7483 -0.7796xi0-2

3 .1080 -. 4894 .6326x10-1
5 .2722x10-1 -. 2616 .3293x10-2

7- .5315x10-1 -. 1285 - .6490x10-1

9 -. 1071x10-1 -. 5547xI0'- -. 1578x10- 1

11 .3937x10- -. 1920x10- .3762x10-
13 -. 4958X10-2 -. 3758x10- 2  -. 5301x10- 2

15 -. 2755x10-1 .1322x10- 2  -. 2743X10- 1

17 .1824x10-1 .2075X10- 2  .1843x10'-

19 .5509x10-2 .1486x10- 2  .5645x10- 2

21 -. 7850x10-2 .7758x10- 3  -. 7779x10-2

23 -. 3288x10-2 .2954x10- -. 3261x10-

25 .1978x10-2 .5360x10-4 .1983x10-2

27 .7397x10-2 -. 3428X10- 4  .7394x10 2-
29 -. 3141x10-2 -. 4726x10-4 -. 3146x10-2

31 -. 9005x10-2 -. 3440x10- 4  -. 9008x10-2

33 .5349x10-2 -. 1831x10-4 .5347x10-2

35 .5580x10-2 -. 1887x10- 5  .5580x10-2

37 -. 4149x10-2 .2268X10- 5 -. 4149xI0-2



TABLE IV.- CONTINUED.

(e) wing element number 5.

n o-n)u ('Yn)S ry
1 0.3559xI0 1- -0.7527 -0.1859X10-1

3 .8851x10-1 -. 5412 .4956X10-1

5 .b267xl0-l -. 3170 .3985X10-1

7 -. 3505x10l' -. 1743 -. 4760X10-1

9 -. 4086xi0-1 -. 8825xI0'- -. 4721x10-1

11 .1596X10-1 -. 3933x10'- .1312x10-1

13 .3099x10-1 -. 1406X10-1 .2998x10-1

15 -. 1223x10-1 -. 2687xi0-2 -. 1243x10-1

17 -. 2307x10-1 .1385xi0- 2  -. 2297X10-1

19 .1712x10-1 .2132xI0- 2  .1728X10-1

21 .4498X10- 2  .1682X10- 2  .4619X10- 2

23 -. 6930X10- 2  .1015X10- 2  -. 6857x10- 2

25 .3880X10- 2  .4886X10- 3  .3915X10-2

27 -. 8885x10-2  .1688X10-3 -. 8873X10-2

29 .4527x10- 2  .1365X10-4 .4528X10-2

31 .1052x10- -. 3 891X10-4 .1052X10-1

33 -. 9162X10" 2  -. 3805X10-4 -. 9165X10-2

35 -. 3712X10- 2  -. 4074X10- 4  -. 3715X10-2

37 .4023XI0 2 -. 2812Xi0-4 .40210 2



F

TABLE IV.- CONTINUED.

(f) Wing element number 6.

n(*)u (Y*)s
1 o.2618xlo-0 -0.7535 -0.1827x10-
3 .7148x10o- -. 5794 .3728xlo-1

L5 .6104x10' -. 3623 .3966x10-1

7 -. 1285x10- 2  -. 2143 -. 1393x10-1

9 -. 4052X10-1 -. 1195 -. 4757xI0-'
11 -. 2327X10-1 -. 6118X10- -. 2688X10-1

13 .3458xI0-1 -. 2744xi0- .3296X10-1

15 .1702x10-1 -. 9671X10- 2  .1645x10-1

17 -. 1744x10-1 -. 1446x10- 2  -. 1752x10- 1

19 -. 1421x10-1 .1593X10- 2  -. 1412X10-1

21 .7034x10- 2  .2156x10- 2  .7161x10-2
23 .8889x10- 2  .1756x10- 2  .8992X10-2

25 -. 1244x10- 2  .1143X10- 2  -. 1176x10- 2

27 .2460x10- 2  .6236X10- 3  .2496x10-2

29 -. 1128x10-1 .2782x10- 3  -. 1127x10-l
31 -. 1129x10- 2  .9031X10- 4  -. 1124x10-2

33 .8922X10- 2  .1318x10-4 .8923x10-2

35 .1978x10- 2  .1668X10- 3  .1988x10-2

37 -. 4042x10- 2 .1667x10- 3 -. 4032x10-2



TABLE IV.- CONTINUED.

(g) Wing element number 7.

n (n u*) (Yn* )S n*

1 0.1504X10'- -0.7527 -0.2038X10-1

3 .5024x10- 1 -. 6086 .2159x10-1

5 .6197x10-1 -. 4002 .4313x10-1

7 .2096x0- 1 -. 2494 .9227x10- 2

9 -. 3282x10- 1  -. 1487 -. 3982X10-1

11 -. 2544x101- -. 8319x10- -. 2936X10- 1

13 -. 3194x10-2 -. 4245x10-1 -. 5192X10-2

15 .3308X10-1 -. 1877xl0-l .3220x10-1

17 .1888x10-2 -. 6201X102- .1596xI0 2-

19 -. 1562x10- -. 3332xi0- -. 1564X10-1

21 -. 4374x10-2 .1826x10- 2  -. 4288X10- 2

23 .5223X10-2 .2167X10- 2  .5325x10 2-
25 .8419X10-2 .1776xi0- 2  .8503X10-2

27 -. 1442X10-1 .1213x10- -. 1436xi0'-

29 .8713X10-2 .7236X10- 3  .8747X10- 2

31 .5125xI0-2 .3795X10- 3  .5143X10- 2

33 -. 6490x10-2 .1690X10- 3  -. 6482X10-2

35 -. 3872X10-2 -. 1372X10- 3  -. 3878xi0- 2

37 .3965x10-2 -. 1861x0- .3956x10-



L

TABLE IV.- CONCLUDED.

(h) Wing element number 8.

fln (1n*)u (Tn*'S )n*

1 0.7368x10-2  -0.7512 -0.2067x10-

3 .4651x0- 1 -. 6314 .2294x10- 1

5 .5005xI0'- -. 4325 .3390xi0 1-

7 .1983xi0 - -. 2804 .9367xi0-2
9 -. 8729X10-2 -. 1755 -. 1528x10-1

11 -. 3937x10-1 -. 1046 -. 4328x10-1

13 -. 6698x10-2 -. 5815x10-1 -. 8869xi0-2

15 .1373x10 - -. 2925x10- 1  .1264x10-1

17 .3284x10-1 -. 1247x10- 1  .3237x10-1

19 -. 9760xI0- 2  -. 3561x10-2  -. 9892xi0 2-

21 -. 2146x10-1 .5685x10 3- -. 2144x10'-
23 -. 5058x10-2 .2032xi0 2- -. 4982X10-2

25 .7683xi0 2- .2172xi0- 2  .7764xi0-2

27 .1418xi0-1 .1772x10- 2  .1425x10-1

29 -. 4515X10- 2  .1246x10- 2  -. 4469xi0- 2

31 .1036XI0 2  .7753XI0- .1065x10-
33 -. 1018x10- .4086x10-3 -. 1016x10-1

35 .1435X10- 2  -. 5035xI0- 4  .1433X10-2

37 .3316x10- 2 -. 1795xi0- 3 .3310X10-2



I.

TABLE V.- CALCULATED SPAN LOAD DISTRIBUTION FOR
A DELTA WING OF ASPECT RATIO 2.0 AT 200 ANGLE
OF ATTACK (8 wings, 19 harmonics, e/a - 0.5).

Y/SO CC/Co0 Y/SO CC/C0

0.0000 0.2072 0.4625 0.1122

.0125 .2073 .4875 .1159

.0250 .2074 .5125 .1190

.0375 .2075 .5375 .1224

.0500 .2077 .5625 .0854

.0625 .1864 .5875 .0898

.0875 .1868 .6125 .0934

.1125 .1874 .6375 .0972

.1375 .1880 .6625 .0993

.1625 .1893 .6875 .0608

.1875 .1578 .7125 .0650

.2125 .1594 .7375 .0673

.2375 .1624 .7625 .0711

.2625 .1653 .7875 .0763

.2875 .1675 .8125 .0421

.3125 .1330 .8375 .0448

.3375 .1366 .8625 .0439

.3625 .1406 .8875 .0420

.3875 .1431 .9125 .0383

.4125 .1454 .9375 .0000

.4375 .1080
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Figure 2.- Dependence of lift-curve slope on location of control
line for rectangular winga, ' rozu Equation (64).
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Figure 7.- Aerodynamics of rectangular wings
of various aspect ratios.
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Figure 10.- Chordwise variation of shedding angle on aspect
ratio 4 delta wing at 200 angle of attack.



Ii r

44

0 0 -

to o

14 0 4

(,"4

) 0

w U 4 U V1.

4I 44

1.o •0 01

44 $41

4) 0 w

( '4 
1 .4, - 1.4 U•

(d 0

- . * ._ _ _ _ _ _. OD 14 '4 4 1U
H ri

u ~0z 4) U 4

'4. tit~4

014

C))
N~% Ci ~aN it-I

0U4.



F
N

N

00

w o

N O01
0~ 4.4'

44 ON

0

U
00 r-4

N s-I OD

z )

0$4

r-a

Go1 0 W0

0



'.41

(0

"44

4 0 0

$4 1. f

r. 0 r
0 44 '

44 0
$4 0 m

(0 0

$4 0q 0

14.

ý$4tr

"N4

UZ0



FN
rN

w 14

"$4
40
O 0

o OH
1.4 4 0.

O 0
r. I 4

44 4) N0 4.)

'.4 0

4.444

4to 00,. ,4 4J

$4

00

10

N CD '0 %



I

1.4

Symbol e/
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0 Experimental data
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a, deg

(a) Normal force.

Figure 13.- Aerodynamics of a delta wing of aspect ratio 1 for
various shedding angles (8 wings, 19 harmonics).
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Figure 13.- Concluded.
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Figure 14.- Aerodynamics of a delta wing of ,aspect ratio 2
for various shedding angles (8 wings, 19 harmonics).
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Figure 15.- Aerodynamics of a delta wing of aspect ratio 3
for various shedding angles (8 wings, 19 harmonics).
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Figure 16.- Aerodynamics of a delta wing of aspect ratio 4
for various shedding angles (8 wings, 19 harmonics).
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Figure 17.- Variation of calculated normal force
with shedding angle for delta wings.
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