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I - Tntroduction

The main purpose of these lec tures is to review soe atomic processes
important in recombination. The-reneral recombination problem is extremely
broad and complex, end only a few highly idealized situations are considered.
Although the choice of material has been governed by the recent renewed
interest in recombiuation, a coiplete review of the recent developments is
not attempted. The emiphasis has been placed instead on the quantum and
statistical mechanics of the fundamental processes.

As in all non-equilibrium problems, the temporal behavior cf a re-
combining system depends greatly on the initial state and on the nature of
the system under study. For simplicity, we discuss recombination in dilute,
monatomic gases which are not in any external fields. Numerical estimates
are, in fact, confined to hydrogenic plasma which, of course, has astro-
physical interest. By making such drastic limitations at the very start,
we obtain a problem which almost is amenable to theoretical treatment.

The processes which occur in such a plasma gas can be divided into
two classes, according to whether or not they involve a single, hydro-
genic system undergoing a one-photon transition. The processes in the
simple (purely hkdrogenic) class are:

(a) Bound-Bound Transitions: Spontaneous emission
Induced emission and absorption

(b) Bound-Free Transitions: Photoionization

Radiative Recombination

(c) Free-Free Transitions

Of course, the ion density must be low enough to consider these processes
as occuring for a single electron in the Coulomb field of a free proton.
Since we are mainly interested in recombination, we shall not discuss the
free-free transitions at all. In addition, we assume that the plasma is
transparent to all radiation (and that the radiation is so weak that in-
duced emission is unimportant). This means that the only radiative transi-
tions considered are:

Radiative Recombination: e + P En + ho

Spontaneous Emission: " -# B, + ',

where the subscript n means the nth bound state.

The most important processes in the second (non-simple) class involve
interactions between two or more particles. There are, of course, the very
frequent Coulomb collisions between pairs of charged particles. (We shall
not discuss these at all, but recognize that they are responsible for the
establishment of equilibrium velocity distributions for the free particles.)
The most important recombination process in this class involves the collision
of two electrons in the field of a proton, leading to a final state in which
a bound hydrogen atom is produced and a free electron. Taking into account
the inverse process and inelastic scattering, the three-body processes to
be considered are three-body recombination •n

and its inverse, electron ionizti~ one En
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I a plas atic scatterlg: e + Hn rt U, + e'

We, therefore, intend to review the role of six processes in re-
combination: rediative recombination, spontaneous emissionj three-body
recombination, and e-H collisions leading to ionization and other bound
states. *Work on these problems started about 1920, and they have recently
attracted much new interest. The early work emphasized the use of de-
tailed balance arguments to relate processes and their inverses, and
classical theories of radiative and collision processes. This situation
has hardly changed with respect to the microscopic processes since the
quantum expressions for radiative transitions bring very small corrections,
and because no reliable quantum theory for the collision processes exists.
A short list of the most important references organized according to sub-
ject matter is given at the end of these notes. References to these
articles will be made in the notes with a square bracket notation; e.g.,
[All means the standard reference book by 4as3ey and Burhop.

These notes were the basis for a series of four lectures given in the
Atomic Physics Seminar at Berkeley during the fall semster of 1962. They
contain essentially no original material and are intended to serve the
beginning student of recombination problems. The material is divided into
roughly three parts, dealing with radiative recombination, three-body re-
combination, and a short description of the physical processes in a
moderately dense plasma. Most emphasis has been placed on Section III on
three-body rec ombination.
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II - Photoionization and Recombination

A. Photolonization Cross Section

We begin with the absorption cross section for hydrogenic atoms

64 2n I 3.- ai o2 z n U,
an*-ana

0  
1b(~) gn (u)~

using familiar notation except perhaps for the Gaunt factor, gn" The

ejected electron energy is

E = -n In In R

n

where R is the ionization energy for H in its ground state. The above

expression with unit Gaunt factor was derived classically by Kramers in

1923 (BI1, i.e., before quantum mechanics. The wave mechanical calcula-

tion of Gaunt [B2] simply led to the extra factor, gn(U), which tends to

one for large n and small i i.e., in the classical limit. For example,

not more than a 20% error is incurred (for the average gn appearing here)

for u < 1, although the deviation for particular subshells can be larger.

If necessary, an asymptotic series or extensive tabulations may be used

to improve on the simple Kramers formula (Burgess, Menzel and Pekeris

[A4 and Karzus and Latter. See [A31 for references to this work.)

At threshold, the cross section for photoionization of H in its

ground state is simply

6 aI 2  - 8 x c-18M
3,r3

This value is larger by 10 than the obvious order of magnitude, a a ,2

because of the various numerical factors.



For hydrogen, the photolonization cross section is, at

least in principle, known exactly in terms of the hypergeometric

wave functions. For heavier atoms and ions, except perhaps for

Be, the situation is not anywhere as good. This is particularly

true for the energies involved in moot recombination problems,

i.e., energies rather small than a Rydberg, where good atomic

wave functions for both initial and final states are important.

The situation has been so poor that systematic studies of the

photoionization cross section in the Hartree approximation have

only recently been published (for rare gas atcms, see J. W. Cooper,

Phys. Rev. 128, 681). Also, the first work on correlation effects

in the atomic photoeffect has Just been finished by Dr. Phillip

Altick and the writer (to be published). The usual practice

in the past has, of course, been to make some kind of hydrogenic

approximation.

If we have a density of atoms, nr, in the rth level and a

directed photon beam with an energy density, I(b)d(ft) in the

interval, d(bw), then the rate of decrease in nr due to

photoionization is



dt photoion r bw ion
Ir

This defines a photoionization time, ,

11

Ir

which will appear in rate equations or will be useful in making rough

estimates. In many problems, the radiation can be represented by a

Planck distribution with an effective temperature, TO, anda reduction

factor, X, (arising from absorption)

where

e -lT

Furthermore, the radiation density may be very weak in the spectral region

of interest, i. e., I >> kTr o

- to/kTo
f =e <C< 1.

These assumptions lead to a photoionization frequency

1 4 c Z4 IrTr "C' °(•o rT k• o

where we should really put in the asymptotic value of the exponential

integral: Ei(a) -4 e a/a . Thus we obtain a useful approximate

formula
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8 e - Ir/kTo /4

Because I/kT° >> 1, the photoionization time is considerably longer

than typical fast radiative lifetimes of the order of 10-8 sec.

B. Radiative Recombination Cross Section

Radiative recombination of an electron and a proton, for example,

is just the inverse of the photoionization of the hydrogen atom. If

we know the cross section for one process, we can obtain the inverse

by detailed balancing, as was first done by Milne in 1924.

The photolonization cross section discussed above refers to the

total number of electrons with energy

E(k) - Ir - f)

(integrated over their directions) ejected by unpolarized photons of

energy, bm, incident on unpolarized H atcams in the rth level, all per

unit photon flux and for one atom. In first order perturbation theory,

the cross section is

2 -. 1

e (2n) 3td

In addition to the standard Golden Rule formula consisting of 2 xIn addtionti

square of matrix element x density of states, this expression has been

divided by the photon current, and averaged over photon and atom

polarizations.

We think of the inverse process as a beam of electrons of energy,

E(k) interacting with a (stationary) gas of protons leaving H atoms

in the rth level with the emission of photons with energy

S= Ir + E(k) .

Once again the total cross section is calculated, in that a sum is

carried out over photon directions and polarizations and over the sub-

states of the atomic level. The first-order perturbation theory
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expression is now

a (r) E~D E 2Z 1 Inzmae1H'I1k)I12 I"rj 2 drKV
rec vree tm O F- %(21t) 2d(ikD)

Taking advantage of the Hermitian nature of H', we form the ratio

of the cross sections

a(r) KE 2 dK 1

_(r) ( K2 dk 1

0ion Ob)

L12Now dE/d(ft) = 1 and .kdk cbod, so that

0 (r) 2
tec = rK d \m

rr_• kT 2r U

'ion

or (Mme'storua~ me

;2 2 2

Orec: 2 K2 2

gion 2r k' c Er k

Before taking advantage of this result of "detailed-balancing,"
we should immediately note two of its obvious consequences. First of
all, the recombination cross section becomes very large as the electron

energy approaches zero. (Of course, this means the emitted photon's
energy approaches the ionization potential, Ir, In this limit.)

"tThis elementary derivation is somewhat redundant in that an improved

and more general discussion of detailed balancing for two-body

reactions is given in Section III-A.
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Since aion is finite at threshold, the recombination cross section

has the limiting form

-re c C i o n r - -- -6 - -

SE << Ir (m ce ) E

On the other hand, one must be very close to zero energy since the ratio
2

involves the rest energy, mc , in the denominator. In particular, the

energy must be less than (I/me2 ) Ir before arec becomes larger than

I ion For Z = 1 and r = 1, this means an energy of less than 4 x l10 4eV.

More typically, we might quote the recombin.,tion cross sections to the

ground state of the H-atom at 2 x 10-2 eV and 1 eV:

a(l) (1, 2x10"2 eV) ' 4xl0 20 cm2

a(l)1(, 1eV) Z 2x10 c22m 2

The actual recanbination cross section, obtained from the previous

ionization cross section with the detailed balance result, is

(r zE) = . 32 , a 2 )r u(l1+u)_ r(u)

where u - E/Ir, gr(u) is the bound-free Gaunt factor and the ooefficient

is

32 -3io2 - 2.13x10"2 2 CM2  2a W(u -l)

3Nr3

We note that the ionization cross section is of the order x ao Xai

whereas the recombination cross section is of order it X. r0 (X anda r0

being the Compton and classical electron radii).

We are often interested in the rate at which electrons recombine to form

atoms in the various atcoic energy levels. Because of the large number

of particle-particle collisions, it is usually possible to assume that

the electrons and ions are in thermal equilibrium. Unless the effective

ion temperature is very much greater than the effective electron temp-

erature, the relative velocity is mainly due to the electrons because

of their smaller mass. Representing the electron velocity distribution
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with a Maxwell distribution with an electron temperature, T%, the number

per unit volume with speeds in the range v to v + dv is

f (v)dv - e 2 ) 3/2 e mv2/kTe v2

where ne is the electron density. Then the number of recombinations per

unit volume in which electrons in dv recombine with protons to form "H

atoms" in the level r is

ni f (v)dv v (r) (Z, )

In terms of the energy distribution, g(E)dE = f(v)dv

g(E)dE - n 2 -E/kT* ,r=

and the above recombination cross section, this rate is (take gr(u) = 1 )

2 e4'/kT e ijdE j 2E___1
n n 2• ,i (1) (u -1) "-

nine . (kT%)31 2  id'. (uec) E (1 +
w* rec

whereu _ 1 ) ,, -022 a-2.

where a (u 0 cm . Integrating over all energies, E, and

introducing the mean electronic speed

we obtain the total radiative recombination rate into the level, r,

t )rc =cine

where the recombination coefficient, s, is

1l r 2 IdkTe
ký We2 e I( )

This formula gives the rate of direct radiative recombination of

electrons and protons into the rth level. We can exemine its value in
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two limits, Ir *< kT% and Ir >» kT%, using the weLl-known behavior of

the exponential integral.

'x 0/x
E_(x) -.

in 7 - 0.5772 (EWler-Mascheroni constant). Thus, if we consider a

particular l-vel, r, the direct recombination varies for low temperatures

as

ar(1)) 2rr

SkTe << I r (F

Because v c T e 1/2 , a is inversely proportional to the square root of

the temperature. This is understandable from the I/E threshold behavior

for radiative capture and the VE dependence of the relative velocity.

As an example, consider recombination to the ground state of H at

12000 K, for which the following L"nerical estimates hold:

PS 2 x 107 cm/sec

(1) (1P42x0-15 c/e

a_ O 6 x lO"13 cn/sec

In this limit, we observe that (2) 1*rea r

The dependence of ar on r and Te can be understood in terms of the

function

1(x) - xz 1x(x)

which has the properties in the interval, 0 i. x G.o • o(O) - 0 ,

G(w) - 1, G'(x) ,0. Thus, for fixed r, the cross section is a de-

creasing function of %, going like T1 e032 log T
for large Te For fixed T%, it decreases with principal quantum number

varying like 1/r if Ir >> kTe. The latter dependence is not particularly

strong so that the higher states are appreciably populated by recombination.

The discrete lines which result give use to the recombination lines seen

in spectroscopic work.
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C. Discussion of Radiative Recombiuation

We have discussed in some detail the "total" recombination to a

particular bydrogenic level. We could go on along these lines and

discuss, for example, recanbination with complex lons, how the reccnbina-

tion rate, ar, is broken down into partial rates

and corrections due to the Gaunt factor. Very briefly, the theoretical

situation for complex Ions is very poor because of the extreme difficulty

in obtaining good wave functions for both initial and final states. At
the present time, one is restricted to using hydrogenic approximations

for reconbination to excited levels and hoping for measurements of the

photoionization cross section in the ground state. The variation of

ant with C is quite significant and for H depends on n and Te . For

large n, there is a maximum near - = n (empirical rule). Finally,

the role of the Gaunt factor has been exhaustively studied by Seaton who

has been interested in obtaining radiative reconbination coefficients to
much better than 20% [B3 and A3].

Of somewhat more interest here is the role of these recombination

coefficients in determining the distribution of electrons and atomic

energy levels in a plasma. As mentioned previously, this is an extremely

cumplicated problem which is very sensitive to the particular system

under consideration. The simplest situation is a dilute plasma, by which

we mean one transparent to radiation. In other words, the statistical

distribution of the radiation field is excluded frum consideration. (One

could be a little more general by allowing the medium to absorb one or

more particular frequencies.)

The only role of radiation in a dilute plasma is an energy loss

mechanism. The radiation will be of three kinds according to the three

radiative loss processes

(free-free (Bremstrahlung)

A free-bound (Recombination Radiation)

)bound-bound (spontaneous Decay)

We shall not discuss the free-free transitions, which, of course play a
role in determining the electron temperature. In discussing the rate at

which the population, nr of the rth level, changes, the recombination
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process gives, of course, the direct contribution, Vnine. But the

spontaneous decay of all the levels is important, too, since the level,

r, will be depleted by transitions to lower levels and populated by

transitions from higher levels:

dn

dt vine + E A(s,rms A(r,)m .GOr .9<r

The total rate of change in the density of atoms, n = •r , must be equal

to the negative of the rate of change of electrons, r

dedn dnr
dt r dt

On substituting the above expressions for dn/dt, the terms involving

bound-bound transitions cancel so that

dne
et - nine

where the total reeombination coefficient is

rl
a aZ

This quantity is of interest since it determines the decay of the electric

charge density, a quantity which can be measured experimentally. To obtain

the actual populations, we must, of course, solve this infinite set of

coupled equations. The simplest situation is the equilibrium one; every

dnr/dt - 0. This Is often of practical interest even if dnldt J 0,

since it may be smaller than all the terms on the right side of the equatior

This limit is also often of interest in astrophysical problems. For a

hydrogen plasma, 8eaton has obtained the most accurate solution of the

equilibrium distribution. Rather good agreement can be obtained in this

way with observations on planetary nebulae. It must always be remembered

that the present discussion completely ignores particle-particle collisions

(which, of course, are important in determining temperatures) and also the

details of the recombination for dense plasmas.
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Finally, we sunmarize the properties of the total radiative re-

combination coefficient. The upper limit to the summation is determined

by the particle density, since arbitrarily large Bohr orbits are readily

destroyed by collisions. Unlike the partition sum, the series converges,

so that for an infinitely dilute plasma the recoabination coefficient has

a well-defined value. * numerical values as a function of temperature are

as follows:

T (K) c

250 4.81 x 10"12 cm3/sec
500 3.12

1,000 1.99
2,000 1.26
4,000 7.05 x 1013

8,000 4.83
16,ooo 2.93
32,000 1.73
64,ooo 1.00

The temperature variation is roughly as T"O*7. If we compare

S= 5 x i0" 1 3 cm3 /sec at 1O000 K with the total, a = 2 x 10"1 2 , we

see that at -W cX; i.e., recombinatlon to higher states and their radiative

decay to lower: ces is important in obtaining the correct value of the

total a.
Seaton has also studied the rate at which electron kinetic energy is

lost by reccobination in terms of the coefficients, Or'

dUr
d t . rkT nine

He finds that the total rate, 0 E Or , is roughly a
r



III - The Microscopic Thr-ee -rody flecbination Process

Unlike the situation for radiative recombination, the microscopic

theory for three-body recombination and its inverse, ionization by

electron bombardment, is not well understood. For this reason, we begin

the discussion with what is completely general and exact, the application

of detailed balance and microscopic reversibility to these processes.
Once more, the scant experimental and theoretical information is on the

ionization cross section, not the recombination process of direct interest

here. At the same time, we will briefly discuss the inverse processes

of inelastic and superelastic collisions, the so-called collisions of

the first or second kind, which are closely related to and essential for

studying recombination.

A. Microscopic Reversibility and Detailed Balance for Inelastic and

Superelastic Collisions

In 1921, Klein and Rosseland first deduced the existence of super-

elastic collisions, in which an electron gains energy by collision with

an excited atom, from the Principle of Detailed Balancing [al]. They

argued that an ionized gas could only be in equilibrium if the rate at

which atoms were excited by electron collisions from state n to n to n'

e +• H- e'I + %n,

was equal to the rate at which they were de-excited by the inverse process

el+'I -# e +H .

A few years later, Kramers and Milne applied a similar argument to the
photodlisintegration and radiative capture problem, as we have already

discussed in detail. These kinds of arguments go back to Einstein's

famous discussion of the equilibrium between the radiation field and a

system of bound atoms, which led him to discover induced emission and to

introduce the A and B coefficients. The Kramers-Milne discussion may,

in fact, be considered as an extension of Einstein's work to radiation

equilibrium with material systems which are ionized.

Oe shall now re-derive the Klebi-Rosseland result from the more

general Principle of Microscopic Reversibility. In other words, we

wi obtain our detailed balancing frau the Invariance principles of



the quantum mechanical equations of motIon. Before the advent of the

quantum theory, the principle of detailed balancing was derived as the

sufficient, but not necessory, cc¢dittin for the preservation of thermal

equiliboiux, as we d'&cusa in some detail below.

We consider first the ge-neral reaction in which two systems in levels

1 and 2 approach with relative velocity, v, and recede in levels 1' and 2'

with relative velocity, v', viewed from the center-of-mass system. For

each system, there are g states a with the sane energy (e.g., g, states

Sand g2 states Cý for the initial state). We assume that the experi-

mental preparation and detection does not distinguiRh any of these states.

The total cross sections for the process 1 + 2 -41' + 21 and its inverse
1' + 2' -41 + 2 are

c(l+.2 -#l,+2,) wf d(,') IL E E 1(1,2_,IA1,2)I k'(2,dk,•,

a(11+2' -+i+2) =!d(-ý) • ., E. 2" _1(12J1AI2,) 12 (2dk_ V •

The quantities ('a' IAIl2) and (121All'2') are the exact amplitudes for

the process, and the last factors are the appropriate density of states

divided by the incident current for box normalization of the relative

motion. In general, we cannot say that the two amplitudes are equal,

but only that time-reversed amplitudes are the same. Nov time reversal

involves revising spins and momenta but, using rotation and parity in-

variance, we can show that the average eaplitudes are the same, i.e.,

fd~v' 1 (l'2'1A112)12  - fd(P) 4CCl' 1(12IA11121)1 2

therefore

a(1'+2' -4 1+2) glg2  k

Recognizing that (l/v)(dE/dk) - 1 for both particles and radiation, we
arrive at the result of detailed balancing
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g g2k2a(1+2 -41'+2'). gltgvkt2 (l'+2' -# 1+2)

We have already used this result for photoionization and radiative

reccmbination (photon energy 6(k) - cak and electron energy

E(k') - i2' 2 /zm) in Section II-A. For inelastic and superelastic

electron scattering from hydrogenic levels: 9, 0 2 W 91' ,

g2- 2n 2 2 1 = n' 2 ; E(k) i12k2/2n, E(k') - h 2 k' 2/2m, and. thus
the Klein-Rosseland result is obtained.

n2Ea(nE -ýn'E') - n' 2 E' a (n'E' _4 nE)

Next, let us consider the rate at which either one of the levels is

changed by the two inverse processes.

dn( r d r = I r 
aF•(E nr r,-

do •g(E' )nr'"
d rE dtr•. V, rr•)rro

+ F Etg(E' )n ýLE'a~(rIE' -* rE)
0r

Here g(E)dE is the electron density in the energy interval dE, which

we assume to be given by the equilibrium Maxwell distribution

g(E)dx - ne ' eEF/kT vE dZ

The quantity Irr, is the difference in ionization potentials, which
which arises in the equation expressing energy conservation

E -Ir = E' - Ir,

or

Z•l- + Irr, irr' a Tr - r,

Introducing this equilibrium distribution gives the rate
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-a die T214;r'ine

Go
- dEleRSATBEI00r11 -.rE)nr,
0

Incorporating the result of detailed balancin& and changing the variable

of Integration in the first integral to El leads to

((r " j(-2/--- e dieuJ'ATNZ(r'R' -. rl)

+ ( rt}

r Ir

The necessary and sufficient condition for this rate to vanish is

nr' r 12eI/r, AT gI •Er,/kT

2 reIr/kT -- /ke
r r e e

i.e., the equilibrium Maxwell-Bolt-ann distribution. The Klein-Rosseland

method proceeds the other way round; i.e., starts with atoms and electrons

in Vlaxwell-oltzmann distributions with the same temperature, and obtains
the detailed balance relation between cross sections by requiring preserva-

tion of this equilibrium. This method is typical of the way detailed
balancing was invoked before quantum mechanics. It should be mentioned

that, if more than two levels are considered, this method leads to a

somewhat weaker result than the general one.
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B. Detailed Balancing and Thxe-Body Recocbination

We now extend these ideas to the inverse processes of three-body

recombination and electron disintegration of atoas. Again we start with

the quantum mechanical microscopic reversibility and achieve a result

obtained by R. H. Fowler in 1924 as the sufficient condition for main-

taining the thermal equilibrium of an ionized gas [CII.

For single ionization processes, we have an unpolarized electron
thbeam with momentum k incident on atcms in the r level with statistical

weight E1 producing electrons with momenta kl and k and an ion in the

sth level with statistical weight gs. The cross section for producing

an electron in the solid angle d(k,) and another in the momentum space

element d(i') is

ajn(kr -+ýks)d(,)dr.

r P 8, (2%)JdE(kl) (2tj v

The energy of the electron with momentum i is, of course, determined by

energy conservation

E(k 0 ) - Ir = E(k.) + E(k 2 ) - Is

We ignore spin completely and average and sum over the states

of the atomic and ionic levels, respectively. Noting that dE/d(k 2 ) 1-?/2m,

this reduces to

^ + A A

aion(kr klk2 E28s)d(kl)d(k,)dE.

1 V ~3 1 2( 
l 2 dc ) ( )

Z E AIr ZI~~ aI )JýkR 9~d9)(2't gr arP 12

The total cross section for ionization by a beam of electrons with
energy E and the production of one electron with energy E1 and

another in the energy range dE2 is
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oe-ion (E or " E1E.s) dE2

= .(~k ) t d(Z I' I (iý920.I A I a,12dE2
0 (2) 5 1 g °rar 's

Next we turn to the three-body recombination process. Because the

initial state involves three bodies, the concept of a collision cross-

section area is not applicable, and we will be content with the total

transition rate.

g- 2 k2dg
3-e (F-"2 o% 0 T~it no As

h oI )12 (o)3r(ko0)

In addition to averaging over initial ionic states 1s and summirg over

final atomic states ar, we have averaged over all initial electron

directions and integrated over all final electron directions. Since the

electrons are normalized to unity (in a box), this is the transition

probability per unit time that two electrons with energies R, and

and an ion in level s will becone an atom in level r and a free electron

with energy E0. We might simplify this expression sonewhat, taking
A A

advantage of the fact that, after integrating over kl, k2 , the

expression is independent of

0k

W3  (EiE2 S-Eor) v2m 0

The average matrix elements which appear in %eion and W3.e are

3-rec3Erec

equal even though the original amplitudes are not (since they refer

to inverse rather than time-reversed states). Thus the two results
can be ccmbined to give
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I 3 2•m 32

Il [

fe -ion (Eo0r -, EF,2 s) 1 - o 12 ,R g~ __ V2 2 .T

_______( __2s_______ J2 m ~ gr 2 (2X k0k2
w3~0n~Es -Ej) 1 0

which now leads to the major result of detailed balancing for these

processes

grko 2 (Eo0r -4 EE 2 s) -gsklk 2 I V2(t i W 3 -e (EE 2s -4 Eor)J

We check the dimensions of this relation by noting that V2(2m/u2) 2 has

the dimensions of LO/E 2; whereas W3.rec has the dimensions of E; hence,

a has the dimensions L /E -- which is correct.
The appearance of V2 in this expression may seem a little surprising,

but the fact is that V2W3.rec is the quantity which enters into the rate
of recombinations. To calculate the rate at which the number of atoms

in the rth level changes through this process, we have to multiply
W 3rec by the number of ions and by the number of electrons in two
energy intervals: using g(E)dE as the density (number per cm3 ) of

electrons with energy dF, the number of recambinations into r frcm s

by electrons in dE and dE2 is

W3.rec (EiE2s -4Eor) Vns Vg(E)dEI Vg(E 2)dE2 2

where n is the density of ions in the sth level. Hence the rate at5
which the density of atoms in level r changes by recombination is

2[ 2X 2 r ko2)dEg(B)d

Apparently this elementary derivation of detailed balancing does

not appear in the literature. Since the results and notation of Fowler

[Cl] are very widely used, we now make connections with his results.

Fowler introduces the same ionization cross section, but calls it



-21-

r8(Z 2,E)(Eq (19) of hic 1924 eOrticle)

a((EOr -+. 1 E2s) - Sr (E2 ,Eo)

(Our use of the energy E, is, of course, redundant since it is determined

by energy conservation.) Next Fowler writes the above recombination rate

as [his Eq(22)]

n ! 2E- g( j-E) 2E g(E)dR sr(ErE2 )

We see that he introduces velocity factors in analogy to two-body

processes where a cross section would be appropriate. (The entity Ssr

has the dimensions L4T.) In any case, we can make the identification

ssr( 1 , E2 ) =
1vv 2 3-rec(lE2s E 0 ,r)

We can finally substitute these new quantities (Fowler's) into our

detailed-balancing result to obtain
PM2m

grko 2 Srs(E 2 'Eo) = gsklk 2 vlv2  2' Y, S ar(BNY2

Multiplying through by h 2 /2m and remembering that vp = 2E, this becomes

&goorE s(E 2 Eo) = g E E S r(E.E2 ),[ 44.2m

Simplifying the arithmetical bracket and utilizing energy conservation

in the forms

So Ir = E + E2 + Is,

or

E = E1 + E2 + (o h Ir " I.)

we finally achieve Fowler's result (his Eq (C)]

trEo~r'(Eýli + %2 + ýo) . BsE 1ESsr(E1 ,F~) (E )
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With the connection between the ionization cross section,

_e-ion (rE° -4 sE1 E2 )dE2 and the recombination rate, our analysis of

detailed balancing is essentially complete. Before deducing the

recombination rate ftcm our rather limited knowledge of ionization

cross sections, we note that the general form of the energy dependence

of the recombination rate is

W3-rec (EE 2 s -+E0 r) -- oe-ion(Eo -- EIE2 s)

Let us now consider the limit, B1 ,E 2 -+ 0 , which, for the inverse

process, corresponds to approaching the threshold, since

0 = (E• + E2 ) + Co. One can show that this particular ionization

cross section remains finite at threshold but that the integrated

ionization cross section vanishes. We, therefore, have

W3  (EES -Er) Constant
12 0 E1; E2 - 0 E jE2

One last general recult is the recording of the rates of change of

population of the rth atomic level by recombination from the sth ionic

level and by the inverse ionization process. Integrating our previous

rate over all electron energies gives

/dn 00 M•d%__•.)3 = (•2g sdld2g(El)g(E'2)E r--e-lon(Eor- Es

.)rec 00 oE

where, of course, EO = E1 + E2 + C0  (to r -Iis). The loss due to

ionization is

(r) - . dEg(E .ion(Eor Eo - E2 - 4ýo, Es)
0-on o o+E 2

If the electrons have a Maxwellian distribution, these rates became
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E+E

E0 0 1(t )3-rec' •e ne ns 1 JT) 3  Jd 2o okT~ ±.om(Eor- . 1 E2 s)

and
E(~) j 8o o -

idnr 8 nenr \oT jae'oo E(e 0e (Er -a E1E2 s)dt e-ion \Iw(kT)3 oCEio+74

where a factor of i/2 has been inserted in the first expression to take

into account the identity of the electrons. If we further assume the

existence of complete thermal equilibrium for the atoms and ions as well

as electrons, and consider these processes as the only ones occurring,

then we can investigate the resiult of setting

dn r (dnr )3 +( dn-•'•

= (c+ (= 0 (for equilibrium)dt- d- -rec dt~ -ion

Replacing the variable E by E in the second term (see integration region)
we obtain the condition

E0E 0 - to

ýo V--o 
E 2

, fE / E +E12

o o
Er e gr ( r 231(3k)2

e s m3/ 2 (kT) 3/ 2 '



Setting the face bracket to ze.'o and introducing the thermal dekoglie

wave length

we obtain the so-called Saha relation between the populations of the

atomic and ionic levels and the electron density

Is - I

e "
nr X3g

In general, this equation follows directly fram the application of the

Boltzmann distribution to an ideal ionized gas, the factor X3 arising, of

course, from the continuum rature of the electron states. In terms of

total numbers, the Saha equation is

NeN = V gse sk

INN X gre I/kT

Fowler's detailed bal&-icing result discussed above followed, of course,

from this relation as the starting point.



C. Thcmson's Theory of Ionization and Three-Body Recombination

In 1912, Thomson formulated a classical theory for the ionization of

an atom by an incident charged particle. In modern terms, his theory was

the first "knock-out" or "direct-interaction" model for particle disinte-

gration processes. According to Thomson, the incident particle makes a

Coulomb collision with a target electron. If the energy transferred to

the struck electron is greater than its binding energy, then the atom is

ionized; otherwise, it is simply excited.

We can easily obtain Thomson's result, which is valid if the incident

velocity is much greater than the velocities of the target electrons; in

other words, if the target electrons can be considered as stationary. We

need to recall only two simple facts from scattering theory. First of all,

if we are dealing wi Lh two particles of equal mass, then the energy Q

transferred to the sti-uck particle is

2
T sin

when 8 is the center of mras scattering angle and T is the incident kinetic

energy (Q and T are libcra~tory-system energies). Second, the center of

mass sc~t.teriig an.�;e for the classical Coulonb scattering of two electrons

is deter.mincd by tne relsation

2

cot d 2 e

6 2 a1-
Using the fact that am2  = [1 + cot g] , the energy loss or trans-

ferred energy can then be written as a function of T and a:

Q's,T) T 1

1 + (as'd)

or
Q2

This is the basic formula in Thomson's classical theory of energy loss--

with particular reference to ionization--or in slightly different form

a(T,Q)dQ - ice 1 dQ
F 727Q
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We shall adapt this formula to the particular case of the target

being in the rth level of the H-atom. Energy conservation in our

previous notation is

E0" Ir - E + E2,

where T - E° and

Q = E0 - El = E2 +Ir

so that dQ = dE• " Thus, the cross section previously introduced is

eon(Eor- I4 1 1
-ion o E2)dE2  - (E2 + Ir dE2 (E2 > O)

Measuring energies in terms of the ionization potential and lengths in

terms of the first Bohr radius, we find that

e.ion(ENor -+E1E2 ) = ne 4 (

E0(E2 + Ir)

"0 a r uo(u 2 + 1)2  1r

or

%eion(Eor -4 EJE2 ) = I(r 2 a) 2  1 I

Although this is the cross section we need, one often encounters the
total ionization cross section

T T

'ion(Er) Or %Er *E0 2 ) dE2 'e-ion(Eor -EjE 2 )

r

(rc (r2 21 f 1
o(Er)- (r~ao j•oo ( i u + oo 2

0

aioNEor) 4- I(ra2 0 ) 2 - (l 1-
Io0 0
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For very high incident energJes (uo >> 1), where one might expect these

formulae to be most appropriate, it becomes

a#43 (r 2 ao)2 1 = 4(rao ) 21
ion E»0)BO >> Ir UO "

We observe that it differs from the geometric area of the classical Bohr

orbit by the factor L - L (L). The threshold behavior is
o r o

Oion(Eor) --- 41(r 2 ao) 2 (N - 1)

which is apparently in conformity with the quantim mechanical prediction
regarding the dependence on energy. Likewise, the cross section of
interest in reccmbination seems to have the right threshold behavior

aeion(Eor -4 EJE2) -+ 1t (r2a)2 1 41a°2  •-

0
U2-_4 0

On the other hand, the classical theory disagrees with experiments near
threshold by being at least a factor of four too large, and at very high

-1
energies where quantum mechanical calculations imply an E log Eo
energy dependence.

All of these formulae are based on assuming the target electron's
velocity to be small compared with the incident velocity. The effect of
the target electron's velocity was studied by L. H. Thcmas [I2], who

obtained the result

OThomas aThonson[l + u. + 1

More recent studies of classical scattering theory by Gryzinski [D3,1]

include additional corrections. These are based on an approximation
which, though certainly valid for high incident energy, breaks down as

E° -4E. For purposes of simplicity, we will usually not include these
corrections in the following discussion and use the simple Thomson

formula. In this connection, it may be noted that the Thomson formula
does, in fact, follow/the Born approximation in the limit E >> Q >> Ir.

from 0
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The form of the Thomas correction also follows from the plane-wave

Born approximation, but not the numerical factor 4/3.

Let us now examine the ionization and recombination rates of change ofthe opuati• oftherthlevel

the populati of the rthydrogeniq/usin just the Thomson cross section

and assuming thermal equilibrium for the electron distribution. Combining

the results of the previous section with this one leads to the formulae

nn Ixr2O) r Ir 'r

(tE)e-ion 0 Te

-dnr • c ÷ne2n. X(r2ao2)2x3( k• )•r2.2 ( lr( _ 3-rec- e2 %

where t

EQC) r dt E a nd (x) " nex ?2 (x)

X

The function G%(x) has the special properties G2 (O) - 0, Gn(,*) * 1, and

Gn(x) > 0. In complete thermal equilibrium, these rates are equal in
n

conformity with the Saha relation. These equations have been written in

such a way that the dimensions can be easily checked, of course recalling

in this connection that X is the thermal de~roglie wave length and that

I,/h and kT/i have the dimensions of one over time. We have also preserved
2%)2

the characteristic classical area (r a 0 ) associated with level r. If we

use the Thomas correction, then we have ",c make the replacements

E2 (x) -, X2 (x) + i x F.(W

and

02 (x) G2 G2 (x)+ G3x)

By analogy with the radiative recombination, we can define a three-body

recombination coefficient Or such that

dt 3-rec reni ' sec

where 0r must, of course, be proportional to the electron density
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r 4r2 ( 3 n) X(r2ac)2 "k" % ( 2 )

For any given level, we can define high and low temperature limits, and

use the special forms of G2 in these limits to obtain

2(X 2 % ke << Ir
Or -# r ( X n e ) X~ ( r ) 2 7CI k T s > > I

kkT*» Ir

In the low temperature limit, ar c l/T, whereas in the high-temperature

limit, it varies as l/T . The low-temperature limit has the numerical

form

Or - 5r6 x 10"31 am6 ne
seh Te

where %' is the temperature in electron volts. If we include the Thomase
factor in the ionization cross section, this gives a correction factor

4 G(x) 4 E(x

which, for x -. ® obviously appr-oaches 1 + 4/3 + O(l/x) and, therefore,

gives a large correction and, for x -* 0, approaches unity. Neither of

these modifications changes the quoted asymptotic temperature dependence,
although the detailed form of the cross section at low energies is

obviously important.

The above recambination and ionization rates were first explicitly

written and applied by Giovanelli in 1948 [C3] using, of course, Thomson's

original results. In order to make some improvement in the Thomson cross

section, Giovanelli multiplied it by a factor of two, which should be

compared with the Thomas modification at low temperatures and gives the

simple factor 21

To get an idea of the magnitude of r , we might consider the ratio of

radiative to tbree-body recombination coefficients in the low-temperature

limit
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16 6 31 -6clr x 10 lO"1 a'•

kT- << 1- 0 W

At a temperature corresponding to T' - 1 volt, we see that 01 a. for a
density of 6 x l016/cm3. On the other hand, the seventh power of r is
very effective, so that for high states, three..body recombination will

become important at much lower densities; lower temperatures also have

the same, but not as strong, effect. For example, at 300o, i0 -•

at the rather low density of J09 /cm 3 ; however, the higher excited states
will be more easily destroyed by ionization processes, so that the

tbree-body recombination is important for large, but not arbitrarily laree,

principal quantum numbers.
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IV - Qualitative Discussion of Collisional-Radiative Recombination

We have so far given an introduction to sawo of the atomic processes

important in recombination, particularly the radiative and three-body

recombination reactions and their inverses. To study the actual time

development of the populations, one must include these as lose and gain

mechanisms--plus others, such as spontaneous decay, elastic collisions,

inelastic and superelastic collisions. As has been emphasized, our

information on most of these processes, with the exception of the radiative

ones, is quite meager, and heavy reliance is now being placed Cn classical

collision theory. The solution of the rate equations for any particular

problem is quite difficult in that it essentially involves an infinite

set of coupled equations containing many unknown reaction rates.

As far as laboratory experiments are concerned, the first interpreta-

tions involved purely radiative processes. Unfortunately, the measured
decay rates were consistently larger by two orders of magnitude than the

radiative recombination coefficients given above. It was only two years

ago that D'Angelo suggested that three-body recombination might be
responsible for the discrepancy [C4]. This idea had actually been in

circulation for some time and three-body recombination has, of course,

been considered in various astrophysical applications. (According to Dr.

W. Kunkel, the large recombination coefficients found in early experiments

are suspect because of the Important effects of diffusion to the walls.)

D'Angelo considered the following processes to occur: (a) radiative

recombination, (b) three-body recombination, (c) ionization by electron

impact, and (d) spontaneous decay. He argued that, at sufficiently high

plasma density, the dominant recambination process is three-body recombina-

tion to states of "Intermediate" principal quantum numbers which then decay

radiatively. States with very high principal quantum numbers are immediate-

ly relonized, i.e., are in so-called "Saha equilibrium", whereas states

with very low principal quantum numbers are directly populated via the

radiative recombination process. Of course, the meaning of large and

small principal quantum numbers depends on the pressure and temperature.

For example, D'Angelo found that the recombination at T - 3000°K has its

maximum contribution from r - 6 and 7 in the density range from IO1 to
lO3/cm3, which is the density range where the recombination coefficient
has just become proportional to density according to his calculations.
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It was soon pointed out by Bates, Kingston, and W-Wbirter that

D'Angelo's neglect of inelastic and superelastic collisions was actually

more important than supposed NCo1 In particular, collisional de-excitation

of excited atoms formed by three-body recombination was very effective in

preserving these neutral species. In fact, the decay of the excited states

seems to be the controlling process at intermediate densities, as has been

emphasized by Byron, Stabler, and Bortz [C7].

Without going into details of the calculations of Bates and coworkers,

we can present the following simplified picture of the recombination process
for hydrogenic plasmas which are transparent to radiation and which have

temperatures less than the excitation energy of the first excited state

of the hydrogen atom: The levels with very large principal quantum numbers

are in thermal equilibrium at the electron temperature, i.e., in "SahM

equilibrium." This equilibrium is achieved by the very rapid three-body

recombination and the inverse ionization, aided in an essential way by

elastic collisions and particularly de-excitation processes. This last

mechanism implies that there are levels with intermediate values of the
principal quantum number which are not populated appreciably by direct

recombination, but by decay from higher states. The total recombination

rate is then determined by the rate at which the population of these near-
equilibrium states can decay by de-excitation to lower states. Now this

de-excitation is made up of two parts: radiative decay which decreases
rapidly with n and collisional decay which increases rapidly with n, hence

giving a maximum at some intermediate value of r, say r., which depends on
the density. Byron et al have, in fact, been able to reproduce the work
of Bates by simply setting the recombination coefficient equal to the de-

excitation rate of the level rm, the level with the largest rate. For

r > rm (roughly speaking), we have Saha equilibrium, which provides a kind

of reservoir of recombined excited atcms. The fact that the decay of

excited states plays such a dominant role has the effect of masking the

importance of three-body recombination. For example, the transition region

from radiative to three-body recombination can occur over a very wide range

of density, e.g., from 10 to 107 at T - 16,0000 K.
These last paragraphs are meant only as a guide to the present physicrl

picture of the recombination process in moderately dense hydrogenic plasmas.

The phenomena are obviously very complex and are not only difficult to treat
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theoretically but are elusive to quantitative measurement. Recent

spectroscopic studies have proved very valuable (C5], but it is clear

that there is roan for many new techniques in this field. The great

popularity of classical collision theory for treating the three-body

reccmbination process and superelastIc collisions also indicates the

desperate need for improvements in the theory of atomic collisions.
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