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I - Totroduction

The main purpose of these lectures is to review some atamic processes
important in recombination. The~general recombination problem is extremely
broad and complex, end only a few highly idealized situations are considered.
Although the choice of material has been governed by the recent renewed
interest in recombination, a couplete review of the recent developments is
not attempted. The emphasis has been placed instead on the quantum and
statistical mechanics of the fundamental processes.

As in all nom-equilibrium problems, the temporal behavior cf a re-
cambining system depends greatly on the initial state and on the nature cf
the system under study. For simplicity, we discuss recombination in &ilute,
monatomic gases which are not in any external fields. Numerical estimates
are, in fact, confined to hydrogenic plasma which, of course, has astro-
physical interest. By making such drastic limitaticns at the very start,
we obtain a problem which almost is amenable to theoretical treatment.

The processes which occur in such & plasma gas can be divided into
two classes, according to whether or not they involve a single hydro-
genic cystem undergoing a one-photon transition. The processes in the
simple (purely hydrogenic) class are:

(a) Bound-Bound Transitions: Sponteneous emission
Induced emission and absorption

(b) Bound-Free Transitions: Fhotoionization
Radiative Recambination

(c) Free-Free Transitions

Of course, the ion density must be low enough to consider these processes
a8 occuring for a single electron in the Coulomb field of a free proton.
Since we are mainly interested in recombination, we shall not discuss the
free-free transitions at all. In addition, we assume that the plasma is
transparent to all radiation (and that the radiation is so weak that in-
duced emission 1s unimportent). This means that the only radiative transi-
tions considered are:

Radiative Reccombination: e+ P Hn +

Spontanecus Emission: B - H, + W,

where the subscript n means the nth bound state.

The most important processes in the second (non-simple) class involve
interactions between two or more particles. There are, of course, the very
frequent Coulomb collisions between pairs of charged particles. (We shall
not discuss these at all, but recognize that they are responsible for the
establishment of equilibrium velocity distributions for the free particles.)
The most important recombination process in this class involves the collision
of two electrons in the field of a protcn, leading to a final state in which
a bound hydrogen atom is produced and a free electron. Taking into account
the inverse process end inelastic scattering, the three-body processes to
be considered are three-body recombination - .

and its inverse, electron ionization} ete+P < % te
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inelastic and superelestic scattering: e+ H o L, +e'

We, therefore, intend to review the role of six processes in re-
combinetion: rediestive recambination, spontaneous emission, three-body
recombination, end e-H collieions leading to ionization and other bound
states. Vork on these problems started about 1920, and they have recently
attracted much new interest. The early work emphasized the use of de-
tailed balance arguments to relate processes ard their inverses, and
classical theories of radiative and collision processes. This situation
has heardly chenged with respect to the microscopic processes since the
Guentum expressions for radiative transitions bring very smsll corrections,
and because no reliable quantum theory Tor the collision processes exists.
A short list of the most importent references orgenized according to sub-
Ject matter is given at the end of these notes. References to these
articles will be made in the notes with a square bracket notation; e.g.,
[Al] means the standard reference book by Macsey and Burhop.

These notes were the basis for a series of four lectures given in the
Atomic Physics Seminar at Berkeley during the fall semster of 1962. They
contain essentielly no original material and are intended to serve the
beginning student of recombination problems. The material is divided into
roughly three parts, dealing with radiative reccmbination, three-body re-
combinetion, and a short description of the physical processes in a
moderately dense plesma. Most emphasis has been placed on Section III on
three-body recombination.
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II - Photoionlzation and Recumbination
A. Photoionization Cross Section

We begin with the absorption cross section for hydrogenic atoms

3
& 2 L
o (zMm) = —ana ;’7 (;—3) g, (v)

3

using familier notation except perhaps for the Gaunt factor, 8y,° The
ejJected electron energy is

Zz
E = ﬁn-In In = <—2>R
n
and _E
u T
n

where R is the ionization energy for H in its ground state. The above
expression with unit Gaunt factor was derived classically by Kramers in
1923 {Bl], i.e., before quantum mechanics. The wave mechanical calcula-
tion of Geunt [B2) simply led to the extra factor, 8:1(“)’ vhich tends to
one for large n and small u, i.e., in the classical limit. For example,
not more than a 20% error is incurred (for the average &, 8ppearing bere)
for 4y < 1, although the deviation for particular subshells can be larger.
If necessary, an asymptotic series or extensive tabulations may be used
to improve on the simple Kramers formula (Burgess, Menzel and Pekeris
[Ah], and Karzus and Latter. See [A3] for references to this work.)

At threshold, the cross section for photoionization of H in its
ground state is simply

al(l,R) = -ﬁ*-axa.2 = Bxlo"lecm2

N3 ° )
2

This value is larger by 10 than the obvious order of magnitude, a x L
because of the various numerical factors.



For hydrogen, the photoionization cross section is, at
least in prineiple, known exactly in terms of the hypergeometric
wave functions. For heavier atoms and ions, except perhaps for
He, the situation is not anywhere as good. This is particulerly
true for the energies involved in most recombiration problems,
i.e., energies rather small than a Rydberg, where good atomic
wave functions for both initial and final states ere importent.
The situation has been so poor that systematic studies of the
photoionization cross section in the Hartree approximation have
only recently been publisked (for rare gas atams, see J. W. Cooper,
Phys. Rev. }gg, 681). Also, the first work on correlation effects
in the atomic photoeffect has just been finished by Dr. Phillip
Altick and the writer (to be published). The usual practice
in the past has, of course, been to make some kind of hydrogenic
approximation.

If we have a density of atams, n., in the rth level and a
directed photon beam with an energy density, I(fmw)d(fw) in the
interval, d(#w), then the rate of decrease in n, due to

photoionization is



dn

r

o (Bt)

B~

This defines a photoionization time, "';-. .

l "
Gl BPTCSESETAE SPRURTSI

I

which will appear in rate equations or will be useful in meking rough
estimates. In many probleus, the radiation can be represented by a
Plenck distribution with an effective temperature, To’ anda reduction
factor, A, (arising fram aebsorption)

3 .
I = A8 ¢ i-*"--) ,

kT o
where
f i‘.l_)— = 1
kT o m?fTo
e -1

mfthemore, the radistion density may be very week in the spectral region
of interest, i. e., Ir >> kTo

-m/kmo
£f = e < 1.

These assumptions lead to a photoionization frequency

CAHMOERTC]

vhere we should really put in the asymptotic value of the exponential

integral: Ei(a) - e'a/ ® . Thus ve obtain a useful approximate
formula
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—I r/k'r
L o ¢x 108 sec
1’1 7ﬁ 5)

Because I x/k'l‘0 >> 1, the photoionization time is considerably longer
than typical fast radiative lifetimes of the order of lo"8 sec.

B. Radiative Recombination Cross Section

Radiative recaombination of an electron and a proton, for example,
is just the inverse of the photoionization of the hydrogen atam. If
we know the cross section for one process, we can obtain the inverse
by detailed balancing, as was first done by Milne in 1924,

The photoionization cross section discussed above refers to the
total number of electrons with energy

E(k) = I -to,

(integrated over their directions) ejected by unpolarized photons of
energy, 4o, incident on unpolarized H atcms in the rth level, all per
unit photon flux and for one atom. 1In first order perturbation theory,

the cross section is

(f) () = Ly Ly 2n ,n&bezhnkzdkv eyt
Oy om (10) 53 ZfF | (@im | ) (2 )

In addition to the standard Golden Rule formula consisting of 521 b4
square of matrix element x density of states, this expression has been
divided by the photon current, and averaged over photon and atom
polarizations.

We think of the inverse process as a beam of electrons of energy,
E(k) interacting with a (stationary) gas of protons leaving H atoms
in the r'® level with the emission of photons with emergy

W o= I+ E(kx) .
Once ageain the total cross section is calculated, in that a sum is

carried out over photon directions and polarizations and over the sub-
states of the atomic level. The first-order perturbation theory



expression is now
-1

2 , !
off) () = 2L listnele lxnz% @)

Taking adventage of the Hermitian nature of H', we form the ratio
of the cross sections

Now dE/d(#w) = 1 and — kdk = c#dk, so that

c(r) 2

rec _ r2n 2 dr \ o
Fore (&)
ion

SO0

or (Milne's formla)'iBZ]

orec - 2r2 na - rz hmz
g ;i ) :

me E(k)

Before taking acdvantage of this result of "detailed balancing,"
we should immediately note two of its obvious comsequences. First of
all, the recombination cross section becames very large as the electron
energy approaches zero. (Of course, this means the emitted photon's
energy approaches the ionization potential, 1., in this limit.)

*This elementary derivation is scomevhat redundant in that an improved
and more general discussion of detailed balancing for two-body
reactions is given in Section III-A.
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Since %on is finite at threshold, the recombination cross secticn

has the limiting form

ion (me®) E

On the other hand, ome must be very cloese to zero energy since the ratio
involves the rest energy, mcz, in the denaminator. In perticular, the
energy must be less then (I x/mcz) I, before g becomes larger than X
9yop FOr 2=1andr =1, this means en energy of less than 4 x 10 ‘eV.

More typically, we might quote the recambinution cross sections to the

ground state of the H-atom at 2 x 1072 eV end 1 ev:

u(l) (1, 2 x 10°2 ev) = bx 10720 o

o) @, 1ev) ¥ 2x1202 w? .

The actual recambination cross section, obtalned from the previous
ionization cross section with the detailed balance result, is

°z(-:3 (z,E) -(%énaf)r ﬂil?-_u')' gr(u) ,

vhere u = E/Ir’ gr(u) is the bound-free Gaunt factor and the goefficient
is

22 P« aoa = 2.13 x 10722 cp? = 20(1)(11 =1) .
343

We note that the ionization cross section 1s of the order x &, )'c’
whereas the recombination cross section is of order = xc r, (kc and T,
being the Compton and classical electron radii).

Ve are often interested in the rate at which electrons recombine to form
atoms in the various atomic energy levels. DBecause of the large number
of perticle-particle collisions, it 1s usuelly possible to assume that
the electrons and ions are in thermal equilibrium. Unless the effective
ion temperature is very much greater than the effective electron temp-
erature, the relative velocity is mainly due to the electrons because

of their smaller mass. Representing the electron velocity distribution
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with a Maxwell distribution with an electron temperature, Te’ the mumber
per unit volume with speeds in the range v to v + av is

32 - &/t

n .. e 2
f(vldv = n, ﬁ—k—,i,-e—-) e b x v© av

where n, is the electron demsity. Then the mumber of recombinations per
unit volume in which electrons in dv recambine with protoms to form "H
atome" in the level r is

n, f(v)av v °1(.:<), (z,E) .
In terms of the energy distribution, g(EME = f£(v)dv
2 -E/kTe VEdE
E)E = =
g(E) neJ;t € (—k’.[':)?ﬁ- p)

and the above recombination cross section, this rate is  (take gr(u) =1)

-B/KT
n,n -2 & ® Jpaz \{?_E 20(t) (W =1) ¥ o
P T - “/-2 (kTe) 2 DR i I reec ':'EI';(]""%-)
r

where o(l) (u=1) % 10722 cm'z. Integrating over all energles, E, and

introducing the mean electronic speed

Y

MR

we obtain the total radiative recombination rate into the level, r,
dn
(& ) = w0 -
dt rec 1e
where the recombination coefficient, ar, is

@ ilwa(i) M n(F) -

This formula gives the rate of direct radiative recombination of
electrons and protons into the rth level. We can examine its value in
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two limits, Ir < k'].‘e and Ir > kTe’ using the well-known behavior of
the exponential integral.

[ ¥/x X » ®

E (x) -

In y = 0.5772 (Buler-Mascheroni constant). Thus, if we comsider a
particular lavel, r, the direct recombination varies for low temperatures
as

7o) )2 TN
arkTez<Ir[v°rec() r(kTe

Because Vv « '.l'el/2 > @, is inversely proportional to the square root of
the temperature. This is understendsble from the 1/E threshold behavior
for radiative capture and the 'ﬁ: dependence of the relative velocity.
As an exemple, consider reccmbination to the ground state of H at
1200°K, for which the following iL.merical estimates hold:

% 2 x10' cm/sec

dz('tz (1)®s 2x 107 cm/sec

@ % 6x 10713 em/sec

<

<t

1

(2)
In this limit, we observe that arec «Z

The dependence of ar on r and Te can be understood in terms of the

function
(x)
Gl(x) = xexnl ’

vhich has the properties in the intervel, 0 < x <« : G(0) = O,
G(») = 1, G'(x) 3-0. Thus, for fixed r, the cross section is a de-
ereasing function of T_, going like 'rel/ 2 for emell T, end 're3/ %108 1,
for large Te' For fixed Te’ it decreases with principal quantum number
varying like l/r ir Ir >> kTe' The latter dependence is not particularly
strong so that the higher states are appreciably populated by recombination.

The discrete lines vhich result give use to the recombination lines seen
in spectroscopic work.
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C. Discussion of Radiative Recombiuation

We have discussed in some detail the "total" recombination to a
particular hydrogenic level. We could go on along these lines and
discuss, for example, recambination with complex ions, how the recombina-
tion rate, ai, i8 broken down into partial rates

a = %ar&

and corrections due to the Gaunt factor. Very briefly, the theoretical
situation for complex ions i1s very poor because of the extreme difficulty
in obtaining good wave functions for both initial and final states. At
the present time, one is restricted to using hydrogenic approximations
for recombination to excited levels and hoping for measurements of the
photoionization cross section in the ground state. The variation of
e with 4 1s quite significant and for K depends on n and '1‘ . For
large n, there is a maximum near 4 = -3- n (empirical rule). Fina.lly,

the role of the Gaunt factor hess been exhaustively studied by Seaton who
has been interested in obtaining radiative recombination coefficients to
much better than 20% [B3 and A3].

Of somevwhat more interest here is the role of these recambination
coefficients in determining the distribution of electrons and atomic
energy levels in a plasma. As mentioned previously, this is an extremely
complicated problem which is very sensitive to the particular system
under consideration. The simplest situation is & dilute plasma, by which
ve mean one transparent to radiation. In other words, the statistical
distribution of thé raediation field is excluded from consideration. (One
could be a little more general by allowing the medium to absorb ome or
more particular frequencies.)

The only role of radiation in a dilute plasme is an energy loss
mechanism. The radiation will be of three kinds according to the three
radiative loss processes

/' free-free (Bremstrahlung)
| free-bound (Recombination Radiation)
| bound-~bound (Sponteneous Decay)

Ve shall not discuss the free-free transitions, which, of course play a
role in determining the electron temperature. In dfecussing the rate at
which the population, n, of the rth level, changes, the recombination
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process gives, of course, the dlrect comtribution, arnine' But the
spontanecus decay of all the levels is important, too, since the level,
r, will be depleted by transitions to lower levels and populated by
trensitions from higher levels:

dn
33?!' = ann, + e§r A(a,r)ma -g§r A(r,&)mr .

The total rate of change in the density of atams, n = z nr » mst be equal
to the negative of the rate of change of electroms,

d_ns,.s‘.e,-zi‘fr_
at & F at

On substituting the above expressions for dn l/d:t.,. the terms involving
bound-bound transitions cencel so that

an
e

I~ -oenn
where the total recombination coefficient 1is
;_;m
a = .
r=l ar

This qudntity 4s of interest since it determines the decey of the electric
charge density, a quantity which can be measured experimentally. To obtain
the actual populations, we must, of course, solve this infinite set of
coupled equations. The simplest situation is the equilibrium one; every
dn /dt = O. This ie often of practical inmterest even if dn fat £ O,
since it may be smaller than all the terms on the right side of the equatior
This 1imit 1s also often of interest in astrophysical probleme. For a
bydrogen plesme, Seaton has obtained the most accurate solution of the
equilibrium distribution. Rather good sgreement can be obtained in this
vay with observations on planetary nebulae. It must always be remembered
that the present discussion completely ignores particle-particle collisions
(which, of course, are important in determining temperatures) and also the
details of the recombination for dense plasmas.
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Finally, we summarize the properties of the total radiative re-
combination coefficient. The upper limit to the summation is determined
by the particle density, since arbitrarily large Bohr orbits are readily
destroyed by collisions. Unlike the partition sum, the series converges,
so that for en infinitely dilute plasma the recambination coefficient has
a8 well-defined value. Numerical values as a function of temperature are
as follows:

T (%) o
250 .8k x 10712 em>/sec
500 3.12
1,000 1.99
2,000 126,
L4, 000 T.85 x 10
8, 000 4.83
16, 000 2.93
32,000 1.73
, 000 1.00

The temperature variation is roughly as =0T, 1¢ we compare
o =5x 1o'l3lcm3/sec at 1000°K with the total, & = 2 x 10722, ve
see that al ] T & i.e., recambination to higher states and their rediative
decay to lower ones 1s important in obtalaing the correct value of the
total .

Seaton hes also studied the rate at which electron kinetic energy is
lost by recombination in terms of the coefficients, sr’

T " CBXnR

ine .

He finds thet the total rate, B "?51- , is roughly g.
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III - The Microscopic Three -Eody Reconbination Frocess

Unlike the situation for radiastive recombination, the microscopic
theory for three-body recombination and its inverse, ionization by
electron bombardment, is not well understood. For this reason, we begin
the discussion with what is completely general and exact, the epplication
of detalled talance and microscopic reversibility to these processes.
Once more, the scant experimentel and theoretical information is on the
ionization cross section, not the recombination process of direct interest
here. At the seme time, we will briefly discuss the inverse processes
of inelastic and superelastic collisicns, the so-called collisions of
the first or second kxind, which are closely related to and essgential for
studying recombination.

A. Microscopic Reversibility and Detailed Balance for Inelastic and
Superelastic Collisions
In 1921, Klein and Rosseland first deduced the existence of super-
elastic collisions, in which an electron gains energy by collision with
an excited atom, from the Principle of Detailed Balancing [Cl]. They
argued that an ionized gas could oanly be in equilibrium if the rate at
vhich atoms were excited by electron collisions from state n to n to n!

e+H - e' + H Lt
was equal to the rate at which they were de-excited by the inverse process
e' + H, » e+H.

A few years later, Kramers and Milne applied a similar argument to the
‘photodisintegration and radiative capture problem, as we have already
discussed in detail. These kinds of arguments go back to Einstein's
famous discussion of the equilibrium between the radiation field and a
system of bound atoms, which led him to discover induced emission and to
iotroduce the A end B coefficients. The Kramers-Milne diecussion may,
in fact, be considered as an extension of Einstein's work to radiastion
equilibrium with material systems which are ionized.

we shall now re-derive the Klein-Rosseland result from the more
general Principle of Microscopic Reversidility. In other words, we
will obtain our detalled balancing from the invariance principles of
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the quantum mechanical equations of motion. Before the advent of the
quantum thecory, the principle of detailed balancing was derived as the
sufficiert, but not necessary, condition for the preservation of thermal
equiliboium, ar we discusa in some detail below.

We consider first the general reaction in which two systems in levels
1 and 2 approach with relative velocity, v, and recede in levels 1' and 2'
with relative velocity, v', viewed from the center-of-mass system. For
each system, there are g states o with the same eneirgy (e.g., & states
o and g, states a, for the initial state). We assume that the experi-
mental preparation and detection does not distinguish eny of these states.
The total cross sections for the process 1 + 2 - 1' + 2' and ite inverse
1' +2' 21 + 2 are

o(z »11420) = [ a(@) 2 '8g oafa2 012"2 2 |z lat] kz«?l;;:: (3 >

o(l'+2' = 1+2) = [d(?)

-1
oo 01202 a}i%z" |(12|A|l'2')l ﬂ’?ﬁ- "')

The quantities (1'2'|A[12) and (12]A{1'2%) are the exact amplitudes for
the process, and the last factors are the appropriate density of states
divided by the incident current for box normalization of the relsative

motion. In general, we cannot say that the two emplitudes are equal,

but only that time-reversed amplitudes are the same. Now time reversal
involves revising spins and momenta but, using rotation and parity in-
variance, we can show that the average emplitudes are the same, i.e., '

fd(v') QE%aL,az,“l'z'“'lz”z - fd(’w‘) ogazal'%'l(lzllxll'z')lz

therefore

()
1 ]
o(lsz »1'e2t) _ &8 (f_}k aE

o(l'+2' »142) 8182 W4 &)

Recognizing that (1/v)(dE/dk) = 1 for both particles and radiation, we
arrive at the result of deteiled balancing
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8 &K 0(142 1'42") = g (8, k' (142" » 142) o

We have already used this result for photoionization and radiative
reconbination (photon energy é(k) = cofik and electron energy
B(k') = #%'%/am) in Section II-A. For inelastic end superelastic
electron scattering from hydrogenic levels: =2=g"',
g =2’ &' =2’ B) » t2/om, B(e') = 8%x'%/om, and thus
the Klein-Rosseland result is obtained.

ana(nE -n'E') = n'2p g (n'E' - nE) .

Next, let us consider the rate at which either one of the levels is
changed by the two inverse processes.

<dt 2 ( ) dEg(E)n \} a(rE - 1Er)
P3N

+ U[ dE'g(E! )nr E—;@—o(r'E' - rE) .
o

Bere g(E)AE is the electron density in the energy interval dE, which
we aseume to be given by the equilibrium Mexwell distribution

st - o, 2 oW RGs

The quantity Irr' is the difference in ionization potentials, which
which arises in the equation expressing energy conservation

- = ' .
E-I B -1,

or
E = E'+1I, I

et = Ip o T

Introducing this equilibrium distribution gives the rate
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(;r-)m. * ( ;:Tl: >r'-¢' - ié (Z/Jm, { f aE e E/u!a(r! ~r'E')n,

- [ ' 'E'/kT ' 1t
v dg'e E'o(r'E -»rE)nr. }

Incorporating the result of detailed balancing, and changing the variable
of integration in the first integral to E' leads to

(I'E_ ),_,r. (r )L»r (z/ﬁ)nef‘m' "'/t E'o(r'R' »rE)

"B p) Ve

{58 =" 0}

The necessary and sufficient condition for this rate to vanish is

n 2 Ir'/kT 8p1 e-Er’/kT

i.e., the equilibrium Maxwell-Boltzmann distribution. The Klein-Rosseland
method proceeds the other way round; i.e., starts with atoms and electrons
in Maxwell-Boltzmann distributions with the same temperature, and obtains
the detailed balance relation between cross sections by requiring preserva-
tion of this equilibrium. This method is typical of the way detailed
balancing was invoked before quantum mechanics. It should be mentioned
that, if more than two levels are considered, this method leads to a
somevhat weaker result than the general one.
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B. Detailed Balancing and Three-Body Recaubination

We now extend these ideas to the inverse processes of three-body
recombination and electron disintegration of atams. Agein we start with
the quantum mechanical microscopic reversibility and achieve a result
obteined by R. H. Fowler in 192k as the sufficient condition for main-
taining the thermal equilibrium of an ionized gas [C1].

For single ionization processes, we have an unpolarized electron
beam with momentum 1':’ incident on atoms in the rth level with statistical
weight - & producing electrona with momenta kl and k2 and an ion in the
th level with statistical weight 83' The cross section for producing
an electron in the solid angle dd;l) and another in the momentum space
element d(i’z) is

%on (ﬁor —yfli’as) a (ﬁl) a ('1?2)
|2 kledkld(i?.l)v a(E, )V v
(2x)3dE(kl) (2u)3 Yo

1 2 = N
= g Erg's EEI (flkzsslA‘koas)

The energy of the electron with momentum l't'l is, of course, determined by
energy conservation

E(ko) -1, = E(kl) + E(kz) -1, .

We ignore spin completely and average and sum over the states
of the atamic and ionic levels, respectively. Noting that dE/d(ka) = hz/z:n,
this reduces to

% on (?or - §1§2E23 )d(lzl ) (ﬁz )&'IE2

" va(-f)

f1kp
5 @ & L LG g 12 ) 4k ke,

The total cross section for ionization by a beam of electrons with
energy Eo and the production of ome electron with energy El and
another in the energy range dE2 is



“e-ion(Eor —+E1Ezs) dE,

e

1 klkz v3£f§i>f f a1 5 = P 2
$(F2) T hek@ T 1 g ke e,

r s

Next we turn to the three-body recombination process. Because the
initial state involves three bodies, the concept of a collision cross-
section area is not applicable, and we will be content with the total
transition rete.

-2
21 l(_, I ‘_)__, )|2 kozdkov
— |[(ka jAlk Kk B R SR SO
X5 or 172"s (21\')3dE(ko)

In addition to averaging over initial ionic states ss end summipg over
final atamic states ar, ve have averaged over all initial electron
directions and integrated over all final electron directions. Since the
electrons are normalized to unity (in a box), this is the transition
probability per unit time that two electrons with energies El and ]E:2

and an ion in level s will becane an atom in level r and a free electron
with energy Eo' We might simplify this expression iomexhat, taking
advantage of the fact that, after integrating over kl, k2, the
expression is independent of ko

k
1 Zm (=]
w3'1!‘ec(ElE2s - Eor) = h(2x)3 V( hﬁ ) A

x Jady) - L@ g algEs,)I”
r 8

The average matrix elements which appear in % _1on and w3-rec are
equal even though the original amplitudes are not (since they refer
to inverse rather than time-reversed states), Thus the two results
can be combined to give
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1l1% .._Ls_lna L 202N
%.10n'Eo” *E.I._E?s) . 8 ks (ex) & . & h 1 E_ll_‘g
n g 2
W (E,E.8 »Er) = r  2(an) Kk
3-rec El 2 0 1 ko ﬁ2 1 o

PE e’ &

vhich now leads to the major result of deteiled balancing for these
processes

2
2p
v(z :
gk ozo(EOr SEES) = gk, [ -—M BWy oo (ByEs Eor)J

2(2x)°

We check the dimensions of this relation by noting that VZ(Zm/iiz)2 has
the dimensions of La/Ez; whereas w3-re e has the dimensions of E; hence,
o has the dimensions LZ/E --which is correct.-

The appearance of Vz in this expression mey seem a little surprising,
but the fact is that V2w3-rec is the quantity which enters into the rate
of recombinations. To calculate the rate at which the number of atoms
in the rth level changes through this process, we have to multiply
w3-rec by the number of iocns and by the number of electroms in two
energy intervals: using g(E)dE as the density (number per cm3) of
electrons with energy dE, the number of recombinations into r from s

by electrons in dEl and d.E2 is

w3-rec(ElE2s -'Eor) Vns VE;(E::l.)d'El Vg(Ez)dEz !

th
level. Hence the rate at

vwhich the density of atoms in level r changes by recombination is

where n is the density of ions in the s
2 g.  k 2
2 fzﬂ r "0
i[ Y ] 8 EE o(Er +E)Ey8) 048(E, JE, 8(E, )4E,
(%)

Apperently this elementary derivation of detailed balancing does
not appear in the literature. Since the results and notation of Fowler
[C1] are very widely used, we now make comnections with his results.
Fowler introduces the same ionization cross section, but calls it
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sr"(zz,r:o)(nq (19) of hic 192k erticle)
- 8
U(Eor - ElEZB) = Sr (E2, EO) .
(Our use of the energy El is, of couree, redundant since it is determined

by energy conservafion.) Next Fowler writes the above recombination rate
as [his Bq(22)]

i 2 éf-—
% | 'Til e(E, Jag, \[7113 8(E, )aE, .7 (B, E,)

We see that he introduces velocity factors in analogy to two-body
processes where a croes section would be appropriaste. (The entity SSr
hes the dimensions LhT.) In any case, we can meke the ideutification

v2

r
5¢ (El’Ez) = ;IV; w3-rec(ElE2s - Eo’r) *

We can finelly substitute these new quantities (Fowler's) imto our

detailed-balancing result to obtain
2

2m
2.8 _ (""2) r
grko 5 (EZ’EO) = gk V1V2 L 5 88, (EIEZ)

2(2n)

Multiplying through by hz/am and remembering that vp = 2E, this becomes

42m ]

s r
8,5,y (EpE) = gF B8, (EEy) [ 2(2)%8

Simplifying the arithmetical bracket and utilizing energy conservation
in the forms

Eo - Ir = E1 + E2 + Is ’
or

E, = B +E, +C (Coulr-zs) ,

we finally achieve Fowler's result [his Eq (C)]

8
g E S *(EyE +E, + () = gBEST(E,E) ( -h-3->
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With the connection between the ionization cross section,
Oy on(rEo - sE,E, )clI‘:2 and the recombination rate, our analysis of
detailed balancing is essentially complete. Before deducing the
recomt:ination rate from our rather limited knowledge of ionization
cross sections, we note that the general form of the energy dependence
of the recombination rate is

o]
s-»Eor) « — (Fr--» Ezs) .

w3-rec (ElEZ Oe-1on
B
Iet us now consider the limit, El’ E2 — 0 , which, for the inverse
process, corresponds to approaching the threshcld, since
E = (F‘_I. +E,)) + Co' One can show that this particular ionization
cross section remains finite at threshold but that the integrated
ionization cross section vanishes. We, therefore, have

(E,E,s > Er) « Constant

1:Ep 0 \f_E_l-E—;

w3-rec

One last general result is the recording of the rates of change of
population of the rth th
level and by the inverse ionization process. Integrating our previous

atamic level by recombinetion from the s~ ionic

rate over all electron energies gives

2

E
(:: > -rec - g, 2ﬂ> Jgr fd-E dEzg(El)g(Ez)\jﬁ_;—_; ce-ion(Eor —bElEas) ,

where, of course, E =E +E,+ Co (Co =1 - Is)' The loss due to

ionization is
[+ -]
E
r (o) N
Ci:> , 'nn[dEZ /d'Eog(Eoi m °e-1on(Eor »E, - E; - Co’ Ezs)
e-ton o 5 +E
(I

If the electrons have a Maxwellian distribution, these rates become
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E1 +E2

kT,
ce-ion(Eor -»ElEas)

<dt 3-rec (:m) % % (k’I‘)3 2‘/&‘1[632

and

(&) -

e-ion \!m:t(kT)3

kT
de é[dE Ee O ion(E r - F Eas)

where a factor of 1/2 has been inserted in the first expression to take
into account the identity of the electromns. If we further assume the
existence of complete thermal equilibrium for the atoms and ions as well
as electrons, and consider these processes as the only ones occurring,
then we can investigate the result of setting

d.nr ( d.nr ( dnr>
— == + | == = 0 (for equilibrium)
3t T &/ son

Replacing the variable E_ by E, in the second term (see integration region)
we obtain the condition

A ”’/7,
‘/-/.A
—
o o~ G = B
V/
-
EZ
o o El+E2 .
o1 © XT i 8
0 = 2y dEll/d.Ez e O e 1OH(E ¥ —’ElE S) m(kT)§

o o]

T & 323,32
x {nr e - g, n.n, ;72———7-3 (kT)3 7 |
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Setting the face bracket to ze.o and introducing the thermal deBroglie
vave length

x = "m ’

we obtain the so-called Saha relation between the populations of the
atomic and ionic levels and the electron density

L -1,

In general, this equation follows directly from the application of the
Boltzmann distribution to an ideal ionized gas, the factor k3 arising, of
course, from the continuum rnature of the electron states. In terms of
total numbers, the Seha equation 1s

1 a/1:'1‘
Y% _ oy &° .

Fowler's detailed balaacing result discussed above followed, of course,
from this relation as the starting point.
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C. Thomson's Theory of Ionizaticn and Three-Body Recombination

In 1912, Thomson formilated a classical theory for the ionization of
an atom by an incident charged particle. In modern terms, his theory vas
the first "knock-out" or "direct-interaction” model for particle disinte-
gration processes. According to Thomson, the incident particle makes a
Coulomb collision with a target electron. If the energy treansferred to
the struck electron is greater than its bLinding energy, then the atom is
+ lonized; otherwise, it is simply excited.

We can easily obtain Thomson's result, which is valid if the incident
velocity is muclh greater than the velocities of the target electroms; in
other words, if the target electrons cen be considered as stationary. Ve
need to recall only two simple facts from scatiering theory. First of ell,
if we are dealing with two particles of equal mass, then the energy Q
transferred to the stiuck particle is

Q =T s:l.n2

N[
-

vhen 6 is the center of mess scattering angle and T 1s the incident kinetic
energy (Q and T are labcratory-system energies). Second, the center of
mass scetterirg angle for the clessical Coulomd scattering of two electrons
is deteruirced by the reletion

3 d-,-;-z-.

20 1

Using the fact that em 7 = [1+ cot » the energy loss or trans-
ferred energy can then be written as a function of T and 8:

cot

oD

26,
51

1
Qs,T) = T ———sz
’ 1+ (s/d) ’
or
o(1,Q)aq = wd’ -T%‘i
Q

This 1s the basic formula in Thomson's classical theory of energy loss--
with particular reference to ionization--or in slightly different form

L

[+

Q.

o(T,Q)AQ = e

3=
O
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We shall adapt this formula to the particular case of the target
being in the rt’h level of the H-atom. Energy conservation in our
previous notation is

Eo - Ir = El + Ez ’
where T = Eo and
Q = Eo - El = E2 + Ir

so that dQ = dEz. Thus, the cross section previously introduced is

41
(Eor -4E1E2)d.Ez = ne E; E, 7 I dE, (E2> 0)

ae-ion

Measuring energies in terms of the ionization potential and lengths in
terms of the first Bohr resdius, we find that
g (Er -E.E,) = ue" 1
e-ion'"o 172 PS—
EO(Ea + Ir)

2
S (BY o b
r uo(u2 +1) r
or

g, _ (Er-» E)=lh((r2a)2—__l___.l_
e-lon‘ 0 Elz (o] uo(u2+l)2<1r>

Although this is the cross section we need, one often encounters the
total lonization cross section

by T )

aion(Eor) = fdQ oe(Eor -»ElEz) = fcmz ae_ion(Eor quEz)
I °
r

uo-l

bx (rza )2 i [ Sp——
of wu, J. (u+1)2

o

lm(rza)zl—(l--l—) .
of g u,

°1on(Eor)
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For very high incident energies ("‘o >> 1), where one might expect these
formulae to be most appropriate, it becomes
1

2 2 2 1
(Exr) = lUn(r®a) = Un(ra ) - .
o Eo > Ir °o" u, o/ E 7§

%on
We obsgerve that it differs from the geometric area of the classical Bohr

orbit by the factor ‘-lr - 5 (g—). The threshold behavior is
[ r (o]

2 2
aion(Eor) — ba(r ao) (uo -1),
u°—¢l

which is apparently in conformity with the quantum mechanical prediction
regarding the dependence on energy. Likewise, the cross section of
interest in recombination seems to have the right threshold behavior

2 21 2 , r?
oe-ion(Eor -aElEa) —  lUn(r a,o) F - lmao ( T )
uo-ol T

uz—-> 0

On the other hand, the classical theory disagrees with experiments near
threshold by being at least a factor of four too large, and at very high
energies where quantum mechanical calculations imply an Ec'l log Eo
energy dependence.

All of these formulae are based on assuming the target electron's
velocity to be small compared with the incident velocity. The effect of
the target electron's velocity was studied by L. H. Thoamas [D2], who
obtained the result

1+£’- -—l—] .

aThomas = °Thomson[ 3 u, + 1

More recent studies of classical scattering theory by Gryzinski [D3,4]
include additional corrections. These are based on an approximastion
which, though certainly valid for high incident energy, breaks down as
E<> - El For purposes of simplicity, we will usually not include these
corrections in the following discussion and use the simple Thomson
formula. In this connection, it may be noted that the Thomson formula

does, in fact, follc;y/the Born approximation in the limit E  >> Q>> I.
rom



-28-

The form of the Thomas correction also follows fram the plane-wave
Born approximation, but not the mmerical factor 4/3.

1et us now examine the ionization and reccmbination rates of change of
the populatima of the r.t"h hydrogeni%??s]ing Just the Thomson crosgs section
and assuming thermel equilibrium for the electron distribution. Combining
the results of the previous section wvith this one leads to the formulae

(), ™ e {0 () ()2 ()

(8), - onin [ () ()

where -t

®

e nx

En(_x) = fdt :n— and Gn(x) - Xe Ez(x) .
X

The function Gn(x) has the special properties Ga(o) = 0, Gn(w) =1, and
GA(x) > 0. In complete thermal equilibrium, these rates are equal in
conformity with the Saha relation. These equations have been written in
such a way that the dimensions can be easily checked, of course recalling
in this connection that A is the thermel deBroglie wave length and that

I z/n and kT/h have the dimensions of one over time. We have also preserved
the characteristic classical area (r’s ) sssocisted with level r. If we
use the Thomas correction, then we have * ¢ make the replacements

Ea(x) - Ez(x) + % x E3(x)

Gz(x) - Gz(x) + % G3(x) .

By analogy with the radiative recombination, we can define a three-body
recambination coefficient Br such that

dt 3-rec rei ’ sec

vhere Br mst, of course, be proportional to the electron density
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B, = by (x3 )k.(z-a.)2 < >

For any given level, we can define high &nd low temperature limits, and
use the special forms of G2 in these limits to obtain

1 k‘I‘e << Ir

( kT ) k'Zl'e > Ir

In the low temperature 11m1t, B = 1/T, vhereas in the high-temperature
limit, it varies as l/T . The low-tempera+ure limit has the numerical
form

B, »42(3 ) A(r%a, ) -E-

6 n
6 -31 em” e
Br =50 x 107 Bec '1‘

-

where Té is the temperature in electron volts. If we include the Thomas
factor in the ionization cross section, this gives a correction factor

L L © (x) L E,(x)

+ g ag-(;‘—)' = 1+ -3- X i,-gm >

which, for x — = , obviously approaches 1 + 4/3 + 0(1/x) and, therefore,
gives a large correction and, for x — O, approeches unity. Neither of
these modifications changes the quoted asymptotic temperature dependence,
although the detailed form of the cross section at low energles is
cbviously important.

The ahove recambination and ionization rates were first explicitly
written and applied by Giovanelli in 1948 [C3] using, of course, Thomson's
original results. In order to make some improvement in the Thoamson cross
section, Giovanelli multiplied it by a factor of two, which should be
compared with the Thomas modification at low temperatures and gives the
gimple factor 2;

To get an idea of the magnitude of Br, we might consider the ratio of

radiative to three-body recombination coefficients in the low-temperature
limit



At a temperature corresponding to T' = 1 volt, we see that Bl =  for a
density of 6 x 1016/cm3 « On the other hand, the seventh power of r is
very effective, so that for high states, three-body recambination will
become important at much lower densities; lower temperatures also have
the same, but not as strong, effect.  For example, at 3000, Blo = alo

at the rather low density of ]D9 /cm3; however, the higher excited states
will be more easily destroyed by ionization processes, so that the
three-body recambination is important for large, but not arbitrarily larse,
principal quantum numbers.
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IV - Qualitative Discussion of Collisicnsl-Radiative Recombination

We have so far given an introduction to some of the atomic processes
important in recombination, particularly the radietive and three-body
recombination reactions and their inverses. To study the actual time
development of the populations, one must include these as loss and gain
mechanisms--plus others, such as spontaneous decay, elastic collisions,
inelastic and superelastic collisions. As has been emphasized, our
information on most of these processes, with the exception of the radiative
ones, is quite meager, and heavy reliance is now being placed cn classical
collision theory. The solution of the rate equations for any particular
problem is quite difficult in that it essentially involves an infinite
set of coupled equations containing meny unknown reaction rates.

As far as laboratory experiments are concerned, the first interpreta-
tions involved purely radiative processes. Unfortunately, the measured
decay rates were consistently larger by two orders of magnitude than the
radiative recombination coefficients given sbove. It was only two years
ago that D'Angelo suggested that three-body recombinstion might be
responsible for the discrepancy [Ck]. This idea had ectually been in
circulation for some time and three-body recombination has, of course,
been considered in varicus astrophysical applications. ( According to Dr.

W. Kunkel, the le.rgé recombination coefficients found in early experiments
ere suspect because of the important effects of diffusion to the walls. )
D'Angelo considered the following processes to occur: (a) radiative
recombination, (b) three-body recombination, (c) ionization by electrom
impact, and (d) spontanecus decay. He argued that, at sufficiently high
plasma density, the dominant recombination process is three-body recombina-
tion to states of "intermediate" principel quantum numbers which then decay
radiatively. States with very high principal quantum numbers are immediate-
1y reionized, i.e., are in so-called "Saha equilibrium”, whereas states
with very low principal quantum numbers are directly populated via the
radjative recoubination process. Of course, the meeaning of large and
small principal quentum numbers depends on the pressure and temperature.
For exemple, D'Angelo found that the recombination st T = 3000°K hes its
maximum contribution from r = 6 and 7 in the density range from 10:"2 to
1013/cm3, which 18 the density range where the recombination coefficient
has Just become proportional to density according to his calculations.
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It wes soon pointed out by Bates, Kingston, and MeWhirter that
D'Angelo's neglect of inelastic and superelastic collisions was actually
more important than supposed [Coj. In particular, collisional de-excitation
of excited atoms formed by three-body recambination was very effective in
preserving these neutral species. In fact, the decay of the excited states
seems to be the controlling process at intermediate densities, as has been
emphasized by Byron, Stabler, and Bortz [C7].

Without going into details of the calculations of Bates end coworkers,
we can present the following simplified picture of the recambination process
for hydrogenic plasmes which are transparent to radiation and which have
temperatures less than the excitation emergy of the first excited state
of the hydrogen atom: The levels with very large principel quantum numbers
are in thermal equilibrium at the electron temperature, i.e., in "Seha
equilibrium." This equilibrium is achieved by the very rapid three-body
recombination and the inverse ionization, aided in an essential way by
elastic collisions and particularly de-excltation processes. This last
mechenlism implies that there ere levels with in‘ermediate values of the
principal quantum number which are not populated appreciably by direct
recawbination, but by decay from higher states. The total recombination
rate 18 then determined by the rate at which the population of these near-
equilibrium states cen decay by de-exciteation to lower states. Now this
de-excitation is made up of two parts: radiative decay which decreases
rapidly with n and collisional decay which increases rapidly with n, hence
giving a maximum at some intermediate value of r, say T which depends on
the density. Byron et al have, in fact, been able to reproduce the work
of Bates by simply setting the recombination coefficient equal to the de-
excitation rate of the level Ty the level with the largest rate. For
r> L (roughly speaking), we have Saha equilibrium, which provides a kind
of reservoir of recombined excited atams. The fact that the decay of
excited states plays such a dominant role has the effect of masking the
importance of three-body recombination. For example, the transition region
from radiative to three-body recambination can occur over a very wide range
of density, e.g., from 10° to 107 at T = 16, 000° K.

These last paragraphs are meant only as a guide to the present physical
picture of the recambination process in moderately dense hydrogenic plasmas.
The phencmena are obviously very complex and are not only difficult to treat
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theoretically but ere elusive to quantitative measurement. Recent
spectroscopic studies have proved very valuable [C5], but it is clear
that there is room for many new techuiques in this field. The great
vopularity of classical collision theory for treating the three-body
recombination process and superelastic collisions also indicates the
desparate need for improvements in the theory of atomic collisions.
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