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Y

The object of the present vork is the investigation into the
problems of stress and deformation of linear viscoelastic solids
under various environmental conditions, such as gravity, temperature

and inertia forces.

introduction, wvhich deals with the state of the
art p6-date, the body of the report ig divided in three chapters.

In the first chapter, the thermal stresses in viscoelastic solids
with temperature dependent properties are investigated, temperature
dependence being limited to the thermorheologically simple type. B Here
approximate methods are developed. Finally, the infinite cylinder
under & transient radial temperature field is studied and two analytic

solutions are given.

v

S‘T‘I:: ;:c-o;;mc:pter is occupied with t';e evaluation of the effects
of the acceleration terms on the stress distribution in incompresgsidle
viscoelastic solids, again under conditions of non-uniform tmcienf.
temperature.. Analytic solutions are given to the problems of the hollow
sphere and cylinder.

G The third chapter is devoted to gravitational effects’ The problem
of the horisontal slump of & viscoelastic bollow cylinder contained in
a thin elastic shell and resting on a rigid horizontal plane is solved
by the application of the Finite Fourier Transform and the Laplace
Transform. e

e B i B, e
-

{I/n- appendix I the problem of an infinite slab and a solid sphere

s e o - e

are solved numerically for the purpose of illustration and compared
vith exact solutions. The methods of the first chapter are aleo used

X



vii

for numerical solution of the problem of cylinder in connection with

digital computer programs. 5‘In Appendix II error estimates connected
with one of the analytic methods are derived. In Appendix III the

convergence of the first analytic method is establighed.

T



GENERAL INTRODUCTION

The method of analysis of the quasi-static boundary value problem
for homogeneous isotropic linear viscoelastic materials under surface
tractions, body forces and isothermal temperature conditions is now
vell established. |

The formal solution of the above problem within the scope of small
deformatiors and time independent boundaries can be effected by the
application of laplace transform thereby eliminating the time depen-
dence and thus reducing the viscoelastic problem to an "associate”
elastic one.

The introduction of a temperature field however, be it transient
or steady, introduces new difficulties that are not easily surmountable.
The temperature effects are tvo-fold, i.e. (a) Thermal strains
are set up, and (b) the mechanical properties being extremely sensitive

to temperature variations - orders of 10° C are significant - ensure
that a non-howogeneous transient temperature entails & non-homogeneous
material with mechanical properties as functions of the space variables
and time.

The mode of variation of the mechanical properties with temperature
is in itself a problem which has only been partially solved.

In the present paper, these difficulties will be formally investi-

gated and some methods for overcoming them will be given.

Review of the Isothermal Quasistatic Problem

Given a viscoelastic body B with surface 8 under surface tractions

Ti(') body forces f; and surface displacements u;(s) which may poseibly



depend on time, the object is to determine the stress and displacement
distribution within the body.
The viscoelastic constitutive relations in Cartesian coordinates

can alvays be put in the fom*

S G (t- e)"*‘ d1 (1)
t
Gk = y G (t-~)36m{ dA (2)
° X4
where
Sy = Sy -3 Gk S‘-, , g =€ _éeﬂgi‘ (3)

Gl is the relaxaticn modulus in shear and 62 is the relaxation modulus
in dilatation.

The complete solution is obtained if the following relations are
satisfied.

Equilibrium condition*‘

Gi,i +f <o “
t
Strain displacement relation
e i L. ..
€if =43 Mig Wil (5)

»* Repeated indices denote summation.
#2 A comma folloved by an index j denote differentiation with respect
to the jth co-ordinate.



and the boundary conditions:

(s)
: (6)

M h =
¢ ¢
(s,
where ’W; are prescribed on the part 8, of the boundary
(s.)
3
: - . (7
T‘ = g‘:J. "f‘

(S2) are prescribed on the remaining part S, of the boundary S.

vwhere 'I‘1
The usual approach is to remove time dependence by applying

Laplace Transform.
Then Eq. (1) and (2) become

SiG,p = PGP &GP (8)

Culr,, P = PGP € (xy, b) (9)

for an initially unstressed and unstrained state.

2. .0 (10)
Sy + g; =°

€ =3 1 My - a;,;} (1)
—_— _(g‘)

n, = U, on 8, (12)



- (5")

(t = GL."K-‘

; on 8, (13)

Eq. (8) to (13) clearly correspond to an elastic problem where
the dependent variables and elastic constants are functions of the
Laplace Transform parameter p.

The elastic equivalents of (8) and (9) are:

If a solution to the associate elastic problem can be foux{d then
the viscoelastic solution is derived by applying the inverse Laplace
Transform to the elastic solution after substitution of Glp for 2G and
02p for 3K.

The method of solution of the isothermal problem is therefore

clearly defined.

Influence of Temperature on the Mechani~al Properties

It has been established by experiments that increase in temper-
ature accentuates creep and relaxation rates. that is, strains increase
and stresses decay faster with time.

The direct experimental determination of the dependence of these
rates on the current temperature is an exceedingly difficult task. as

one can appreciate.



However, a wide class of morphous polymers obeying the linear
viscoelastic lav exhibit a simple property wvith change of temperature.
This property has been utilized to derive the dependence of the
mechanical properties on temperature for such a class. This property

is illustrated in Fig. 1.

lpﬂ..t
Figure 1
In this figure the relaxation modulus is plotted against logt for
different constant uniform temperatures.
It is seen that the effect of a temperature increase, is a shift
of the whole relaxation curve to the left, this shift being a function
of temperature.

Let

/?oat = W (14)

t - =" (15)

~
then G = 6%"’&"} is obtained from G(t) by the transformation



G*(’“-> = G(e“) (16)

the star is used to indicate the change in functional dependence.

In view of Fig. 1

¢ u ¢§(T.)

* )
G:(M)= G fuetmf = G 1e } (17)

* fr
GT‘('“> = GT. i‘fe } (18)
f0) =0 {(M>0 £ TOT,
We now put
{()
e = a(T) (19)
Then
G, ® = G_famyt} (20)

and generally

GT(?) = GTo](a(T)f‘} (21)



We now define a "reduced time" E such that

£ - amt (22)
Then finally
G_(£) = G (&) (23)
Thus knoving G at some uniform reference temperature T,, G at any
other uniform temperature can be found.
From (23)
dbr o G () (dfy dbn| am (e
dt d€ dt dt

Eq. (24) gives a relation betveen the relaxation rates at temperature
T as compared to To.

For instance at t = O, g =0

d G
dt

t=zo

dt

t=0

£
Note that g >, t for all temperature histories since a(T)= e 2 ©

because of (17).



From (22) and (23)
GT (0) = G_‘_ (o) (26)

Eq. (26) implies that the elastic (initial) response of the
material is unaffected by temperature changes. Also in view of (26)

and (23)

G,(t-t = G_(§-8) (27)

The constitutive relations at temperature T take the form:

t 1
- L _end€a .
S = g G”_u:"") 57‘_"0“5=§G'(§ e)a';‘_"d" (28)

(-4

/
vhere § - % , and G, is referred to th: reference temperature
T

1
To. Similarly,

(29)

.t
/D G
Guc = (BB
(-]
assuming a stress free field in the presence of the uniform temperature
T. Experimental observations as vell as thermodynamic corsiderations

indicate that the same shift factor applies both to Gl and 62.



Steady Non-uniform Temperature

Relations (28) and (29) can be immediately generalized to steady
non-uniform temperatures, where nov both aq and, hence § are
functions of the space varisbles

In an explicit form (28) and (29) become:

t
{G 1 () (- "c)}”‘* ¥ | (30)

and

t
m( = g G Q.T(lu)(t“t)}a?%c{é“w_guo @(1“)}d"c (31)

where
T

@ -o:—g_y(‘\dl (32)

o
‘o

»*
It is noteworthy that L.T. is still applicable to (30) and (31)

S = _'_3_ (—; —P— €
A AT " ano & , (33)

* Henceforth L.T. will signify Laplace Transfora.
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P Pt1St =
Gu- c:(—z.o Gja(m‘ ) Eyy 3% O} (39

However, in the resulting associate elastic problem the associate
"elastic constants” are now functions of the space variables. Closed
fom solution to such a problem is rather unlikely, except for the

simplest geometries, and resort to numerical procedures. is inevitable.

Temperature as Fun:tion of Space Variables and Time

The constitutive relations in the presence of transient temper-
»
ature fields, have been formulated as a generalization of Eq. (28) and

(29), and take the following form

t
S = f(z(ﬁ’?’)"?—c@"i dn (39)
' 2%

1

G S E‘E)% —%Vo@}d‘l (36)
where now

ga ST Obat - 86,8 ()

/
£ = £0u, 0 (38)

* See Ref (3]
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Relations (35) and (36) though still relatively simple are no
longer in a convolution form and L.T. is inapplicable, with respect to
t.

A transformation has been suggested that, apparently. overcomes
this difficulty.

Let
£ = £6y, 0 (39)
Ci = §; () = 2, (40)
It must be noted that since ap is non-negative E(w,e) is &

monotomically increasing function of time for any X w

Hence relation (37) may be inverted in the form:

1 =90, (b1)

Then

S:l. (—1“/\ ' e) = 9‘,‘. glK )] ﬁ(a‘(.g)}

A
FRCUN SN

and similarly for other functions.

In viev of (39), (40), (41) and (42), relations (35) and (36)

£
é‘.- = g G(§—E’)9_é"i d¢’ (43)
L] o ag/

take the form:
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t A

\ 2 %A /
/
- - £ 3e 3k, ® ? d
Con = ng(E E)'DE’ e ~3% £
o
Eq. (43) and (44) are now convolution integrals in the g
variable, and hence L.T. is again applicable in this particular
variable.

This transformation, however, modifies the field equations as well.

For the sake of argument let a function

f-feuo (45)

Then

fo = 2t (46)
In terms of the new variables

£ 21 o0 of 2f

- gl (i. summed L
»K ,D'g" ?lk 3€ > s ) ( 7)

or,

of

+a€

E) 14. (“’ 0 x

_of

SAGT IR

of

X«

2§

X,
=

(48)

t

The equilibrium relation
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AU - Ly
becomes:
A A
A ) .
of o} 1t ‘
Note that

_ A
k) L - Fap,6) = Fiy, 9e,0) = o, &) o

2%,

Since L.T. of an ordinary product of two functions is not always defined
L.T. is inapplicable to Eq. (50).

Obviously the above transformation simplifies the comstitive
relations but complicates the field equations.

This transformation, however, is useful in the case where T = T(t)

only. Then,

§ =5 (52)

and (50) reduces to

.. lg +f =0 (5)
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Now L.T. of the field equations and constitutive relation can
be taken with respect to § and the viscoelastic problem reduces to
an associate elastic problem as in the isothermal case.

We summarize as follows:

(a) Isothermal case: L.T. is applicable with respect to t and the
viscoelastic problem reduces to an associate elastic problem.

(b) Temperature space dependent but steady: L.T. applicable with
regpect to t. Viscoelastic problem reduces to an associate
elastic problem with material constants as functions of the space
variables.

(c) Temperature uniform but time dependent: L.T. applicable with
respect to the reduced variable E . Viscoelastic problem
reduces to an associate elastic problem as in case (a).

(d) Temperature both space and time dependent: L.T. inapplicable.
Associate elastic problem does not exist.

A certain amount of simplification is achieved in cases where the
dilatational response of the material is elastic. If the material is
also thermorheologically simple, then the dilatational response remains
unaffected by temperature changes (since when the function is shifted
it merely mp@uces itself).

The dilatational behavior of the material is now given in the

form

Coe =35 e, -3%0} (54)

vwhere K is now independent of time and temperature.
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An Alternative Integral Form of the Constitutive Equations

It must be emphasized that Eq. (1) and (54) are not a unique
integral representation of the viscoelastic constitutive laws. One.
for instance, may make use of the "tension modulus" E and "poissons
ratio" Vv , where from a purely formal standpoint E(t) is the stress
response of a tensile specimen to a constant axial unit strain. ard

¥ (t) is the corresponding lateral strain response to the same
strain.

Under isothermal conditions the stress-strain relations for

direct stresses and strains become,

.t-

t
( E#-9 'a_g" dr = G" - g\’(t't)a%(én *C,,) d¥  (55)
2% o

vhere suffices 1, 2, 3 are cyclically interchangcable.
For a material with elastic dilatational response the formal
equivalence of (54) and (55) can be found by taking L.T.

Then (1) and (54) become:
- b G e (56)

p _ ¢ (57)
¢, =3 K e,

wvhereas (55) now is:

Féé LG, - 5 plE, +2,,) (58)
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or

PE é, = (+vp)e, - pve, ., (59)
= L5 s 5
€, = 222 ¢ kY Z (60)
b E bE

Comparison of (56), (57) and (60) and a few algebraic manipulations

yield

IK G

mi
f

RACI (61)
CR+bG

V L 3r-PbG (62)
p 6K+P—G

G = E (63)

|+‘>\)

W - PE (64)

3(!-2':?2)

Hence in terms of E and \’> the complete stress-strain relations

are:
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E
( Eee-) 259 an

2%

¢
. )2 . =
¢, ,,5 OE-0) 2 (6 yar () (69

t
& - g G- ian (£ (e
o kA

Since all properties should obey the same shift law (65) and (66)

can be generalized for the non-isothermal case i.e.

¢
S E(E-€") & dr =

A
o

t
C;{+§\>(§—§/)3(G;‘.-¢“)M (=) (6D

o

and naturally

t
G, = gG(§-§’) 255 gn (C#j> (69
° 2%

In the subsequent analysis we shall have occasion to use both

constitutive representations.
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CHAPTER I

Thermal Stresses In Viscoelastic Solids With Material Properties

Exhibiting Thermorheologically Simple Temperature Dependence.

1.1 Introduction

It vas pointed out in the general introduction that when the
temperature field is transient and space dependent, elimination of the
time dependence from the constitutive and field equations simultaneously
has been impossible by means of L.T. or any other exact transformation.

Part of the present chapter will be devoted to developing approxe-
imate techniques by which time dependence may be eliminated, thus facil-
itating the solution of the relevant equations. In fact two such
techniques are given vhich are not dependent on the particular geometry
of the body at hand.

However, other approximations, such as material incompressibility
or effective constant Poisson's ratio, that are suited to a particular
geometry, such as the hollow cylinder, are also used wit'. _ivantage.

The inapplicability of the principle of superposition - except in a
very restricted sense - robs the analysis of a powerful tool, and

limits the chances of development of an exact general theory.

1.2 General Approximate Techniques

An approximetion rendering L.T. applicable

Consider the deviatoric constitutive relation (35) in the

presence of a transient non-uniform temperature field.
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1
Siy =.g G(§-§’)?ffid% (1.2.1)
o

2%

vhere the suffix is omitted.
Figure (1.2.1) shows the variation of § vith time for mono-

torically increasing and decreasing temperature.

3 2o
T = Constant
2T
5t <O
t
g Figure (1.2.1)
]
I ! 4~ "slope” An+1
VAN
\ l/l | |
i ¢
tl t2 tn t

Figure (1.2.2)



The present technique hinges on the piecewise linearization of
r small time intervals,

Then in any typical interval K,

E = Al t+8B, t <t t (1.2.2)

> K- «

7

vhere A is the "slope” of €  in the kP interval (Fig. 1.2.2)

We now assume that by the present procedure, we have found the
expressions for <. (t } for each interval up to 1, , and call the
expression for €., 1in the interval K by .e (!') vheref <" <.

By introducing (1.2.2) and carrying out the integration in (1.2.1)
over all intervals for {, < t €2 gna assuming that E’(ﬂ continues

as a straight line for ta St < o0 we obtain:

. 8
gc‘- (t’) = Z L G {Aun AK”‘ -+ Gna-u—SK}:_::id’t

t
' g G { AA-HH Q)} 2 a (1.2.3)
2%
Let +
I - G A (+-%) 3_‘_;3”‘,,«: 2.4
e f ady } ?e (12 )



tw

[ 4
Iv(t‘>= A G§A“,,{"A.‘Q + 8.,,'8'() :_:".Jdﬁ;

Then

sc® =L T« I
K=,

W4 )

We now make the following transformation

where now

vhere o 5*1 < =
In view of (1.2.7) and (1.2.8)

Rt gl net

e:; (1) = ey (y+t) = 2 ()
4\ LR R4+
e" (e) < €;" (‘14t.\\ = ‘S;‘ (':.)

On substitution in (1.2.4) we obtain:

21

(1.2.5)

(1.2.6)

(1.2.7)

(1.2.8)

(1.2.9)

(1.2.98)



X
I,.@ = {G{Amh “1)}“‘:1("),», (1.2.10)
2
Now taking L.T. of (1.2.10) and letting
I.¢p = LT (l _T_M,C’L)} (1.2.1)
we obtain
- - ( _an ne!
M' q’) A”' (AE"))'P: o - ecl'(1=&} (1.2.12)
But
(] (€] "
ecl~(‘7~:o) = 40‘({“\ - e‘.‘« (t») (1.2.13)

"
in view of the continuity of strain at t- t., and 'e.‘“(é.) is known

from the previous solution.

Thus (1.2.12) becomes

Au\*l .y

= S 3 B
I.p= G g,’e“ - €y ”-‘.J} (1.2.14)

The expression (1.2.4) for I, vith the change of varisble (r.2.7)

becomes :
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t«
e
In(u,) = LG g Am()« t)- Au %+ F}“ ' —B“SZ’:.:j L
ty .
= g (;‘ %Anﬂx + An~.£~ —A.(‘C .,.8“*-'-6‘&:—;:'&*0 (1.2'15)
tu-
s1nce Aue, t 4R, = € (1.2.16)

te

S “
IK (1),‘[44-\ G ).Auol +€u— 85(- A"t}:’:‘:‘ M (1'2.17)

Taking L.T. of (1.2.16) with respect tn x:

“\’ t« B ‘
- - S e
T ( e { g Gy ALx rF- B - A § ;%' onfa;
(™ « ° .‘ b b
= "_‘7:" { e GiAu> +g“_6“-Aq»¢}Ax}a»¢
? P
bt
O~
— 6,;;__6_' » P {—‘(A—.! )q .
_.l. sl P At ag_:-.' 0": .2.18
I.,.“’) - Wf G(Aw)j e < (1.2.18)

fu-r

v
Since e’ci ® tor ‘:‘t St 1s knovn from s previous step
-1

of the solution, 1 y is known function of p found from Eq. (1.2.17).
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Thus calling

S: (6)= Sef atl)= Sey () (1.2.19)

and taking L.T. of (1.2.3) and in view of (2.3.14) and (1.2.18) and

(1.2.19) we obtain:

L ¢
. - € p o -0 bl b .
3 (B :A'_ G({. )%F'PZ A § e 25_23,4« -ec‘-(f..)}
A e oot Camn kg
LN
e G(EL) Z. (P (1.2.20)

Eq. (1.2.20) is a linear relationship between the transformed

functions i;,’(P) and E:’(fa) R ¢ ¢ S.;" (D) i‘s known then %;‘ (F)
et we

is also known and thus 5 4 (») and hence ﬁ ° ) ca.n“:e found
from (1.2.20) by an inverse L.T. Therefore the strain <., t) 1
known as a function of time in the interval t <& < = |

This solution, however, is utilized only for tkS € < {..;..
For tm<f the curve g(f} is continued with a nev slope as a
straight line to infinite, and the above procedure is repeated.

Eq. (1.2.20) can be used in conjunction with the solution of the
boundary value problem in the folloving manner.

In the interval (’kg‘t <o (1.2.20) is vritten in the form:

- — - . o_ax
3, = ",—(P) +A'E'G'(£ﬂ) ey; (P (1.2.21)



25

vhere E(p is a known function. A similar expression may be derived

for the hydrostatic constitutive relation, i.e.

uw(

Cw(f’) I"(F’)"" A».{a—““'”@ I (1.2.22)

The field equations for the current interval may also be put in

the form
;‘,' -+ &‘: =0
- V¢ o= =
g i - 2 1 % 2! 4%':‘3
- .. T. ’ 1.2.2
g“‘ n' - 1—‘ Oow q‘ ( 3)
- - (5))
%c’ = '%'«.' * on ?/t

Eq. (1.2.21), (1.2.22) and (1.2.23) are necessary and sufficient for
the solution of the non-isothermal viscoelastic boundary value problem
in the transformed plane.

This technique has been used with encouraging results in the case
of the slab, see Ref. [_10] . In the same reference, the problem has
been formulated where the constitutive equations are given in the fom

of differential operators.

Reduction of the Constitutive Integral Equations to a Set of

Simultaneous Algebraic Equations

Consider the following constitutive equation of the Volterra type
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t

N =l(GI§E(1“,t)—%(m“.e)}:—; a4 (1.2.24)

(-

vhere s is the deviatoric stress tensor and e is the deviatoric strain
tensor.

For simplicity denote

Gﬁ § (Rn.t)—g(*«.'t)} = GGyt (1.2.25)

then (}.2.24) becomes

t
N 5 G(l.‘,t, t):—fc dx (1.2.26)

For % fixed, €e(t) can be approximated by a piece-wise linear

function of t (Figure 2.1.3).

el

Strain e

0 tl t2 tJ

Figure (1.2.3)
LINEAR PIECEWISE VARIATION




th

let A“ represent the "slope” in the n”" interval; and 5, , e,

the values of S and € at the end of the nth interval.

Then,
t,
S = A gG,(lu.t,t)d’t -
[-] {Y
-+ A—v g Gu(l‘hfn‘g"m o
L S
tu
+ A, S G (g, t,%) 4% (1.2.27)
('uil
Let
tv
[ Gogta =G coat, oo
61_. l, ~
vhere At, =t -t (1.2.29)
Then
su = Z G'. v a_( (1.2.30)
vhere a~ = A, A{'.r (1.2.31)

or in matrix form

ts§ = [G]{st (123
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»

Go,l.l Go,tl
vhere [G] = |Gus GG, (1.2.33)

R €
. owi '

Note that I-(;‘] is a triangular matrix.

“n

Since

a_ = €-¢€ (1.2.34)

[a ¢ i

ve have the relation

fe{ = [H] {a} (1.2.35)
where [F1J i} : . : (1.2.36)
t ] {
LI i \
From (1.2.32)
Caf = [HJ-'{§§ (1.2.37)
and

e - [H][G.]-'i‘i (1.2.38)



also

{5} - [C“.)[HJ_|1¢‘} (1.2.39)

- -
LG._] being triangular, [G, ] is very easy to find. Eq. (1.2.38) is
s numerical solution of the Volterra equation (2.3.24). However, more

will be said about this, in the closing parts of this chapter.

Application to the Non-isothermal Viscoelastic Boundary Value

Problem

Equation (1.2.32) can serve as a basis for solving the non-isother-
mal boundary value problem for all t by solving consequentively for
small finite time intervals.

In this vay the time dependence is eliminated and the problem
reduces to the solution of a related elastic problem with "initial
strains” and spatially dependent elastic properties.

In the general problem, parallel to (1.2.32) there will be a

dilatational stress-strain relation which again can be put in the form

. -3«°@} 21.2.1;0)

—~An
6\
X
x
t—v\
"
WO
| M |
| e
I
| SO
i
N
m

L

also

(1.2.11)

—
m
X
X
™™
i })
s}
I
—
—
SO
—
I
-
o
X
<
———
}
N
X
(G
e

ve call | [Gl) [H]_' - [G:J (1.2.42)



‘_G.}[H]-.';‘_G‘] (1.2.43)
-~ % - *
Where LG‘ J and L Gz] sre triangular matrices.

In the first interval the strcas-strain relations become:

S - G € (1.2.44)

¢, - Gj [€,-3% @] (1.2.45)
>N
(eeuze, ewae)
Clearly (1.2.44) and (1.2.45) together with the equilibdrium
equations, strain displacement relation, and boundary conditions consti-
tute an elastic problem with s,atially dependent elastic constants.

In the second interval we get

S. -G € + G € (1.2.46)

L3
e,- G

2

’z’[é'—ado @J -+ G’:,u [6}-5&’,@_‘] (1.2.47)

We now have an elastic problem with "initial" known strains

e .6, am 3°‘°®‘ . Therefore in any typical interval we can solve

1
for the stresses in that interval in terms of the temperature in that
same interval, and the stresses, strain & temperature in all previous

intervals. The solution for all time can be determined in this
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systematic vay.
It is interesting to note that moving boundaries can be dealt with

by means of the above method, in the light of small deformation theory.
This is simply done by determining the new boundary from the solution
in the previous interval and assuming the boundary to remain fixed in
the current interval. This naturally is only approximately true.

The above approach provides a systematic method through which the
general viscoelastic boundary value problem can be solved by numerical

means.

A Variation on the Previous Technique

An alternative approach is to consider €W) as an escalator function

of time. See Fig. (1.2.4)

e

Figure (1.2.4)

Then

€e(t) = 2_ Qa_ H({-f,,) (h,,,.,,...‘) (1.2.48)
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g—;—’ =) a_ S(4-t,) (1.2.49)

-

Substituting (1.2.49) in (1.2.26) ve obtain
t

s(e) = qu KG.'(xwt,rt) 5(‘¢-*.,W’¢ :Z_aqG.(a.,,t,tg (1.2.50)

Thus
— “
Su = Z- a. G'(X“‘f”‘f,,> :ZC(4 G’ wr (1.2.51)
vhere
6“:“” - Gl(-x‘(ntna{—r) (1.2.52)

Eq. (1.2.51) is identical in form with Eq. (1.2.30), however, the
coefficients G.,“f are novw defined differently. The advantage of
this particular formulation, at the expense of smaller time intervals,

is that

G = G, ) (1.2.52)
I,an '

for all ~n and all temperature variations, this simply being the
elastic response of the material vwhich the shift hypothesis renders

independent of temperature.
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Naturally, ve bave agsain in matrix fomm:
. ) i , ,
ts} - [G, ][ 1] §e} (1.2.53)

vhere nov the elements of the column matrices { S} and {c} are
the average values of the deviatoric stress and strainsin the corres-

ponding time intervals. Also,
{e}=[a,][n] " {e-3.®) (1.2.5)

Again, in the first _;:.im interval ve have Eq's (1.2.4L4) and
*

(1.2.45). G-,n and G

,n however, are now constants and the
viscoelastic problem is reduced to an elastic problem.

In viev of (1.2.52) the viscoelastic problem is repeatedly reduced
to an elastic problem in _nl_l the intervals except that for intervals,
subsequent to the first, known "initial strains” will also be present.

The power of this technique does not need emphasizing.

1.3 Solution By Assuming Mechanical Incompressibility

This assumption has been utilized in the past 2 to obtain
'aolutionl to viscoelastic boundary value problems. It is based on
the hypothesis that, where the dilatational response is elastic, the
bulk lod;xluo K is of exceedingly high order of magnitude so that

in the expression

e
€ - 3—;{ + 3\’,@ (1.3.1)
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the % term is negligible and hence
3

€ = 30 @ (1.3.2)

This simplification can lead in certain cases to a closed form
solution - see sections 4 and S5a - however, unless K is in fact
very large such a solution can only be approximate.

On the other hand, such a solution can serve a very good tzero'th
approximation to an iteration process.

For the sake of illustration we give an account of this process
for a plane strain problem ea:O , however, the method is quite

d = 0O . From this solution,

general. A solution is found for W

e is calculated from
3 +

G = Gu+by 4 §\>(§-§');%c(¢,. +4y )di - % SE(Q-Q’\}?«!'« (1.3.3)

- This value of (& is substituted in (1.3.1) and | 1s taken as
the actual modulus of the material. Then €& is found in terms of

a new temperature @\ vhere:

® =@~ (1.3.8)

Vo K

vhere G 1is the value found from the first solution and

€, = 306 @ (1.3.5)
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A second solution is now found in terms of @ and the process is
1

repeated to required accuracy.

1.4 Application to a Viscoelastic Cylinder Enclosed in an Elastic Case

Formulation of the Problem

Here we consider a hollow cylinder under plane strain subject
to a radial trangient temperature field. The cylinder is enclosed by
a thin elastic shell which i3 assumed to be rigidly bonded to the
cylinder (Fig. 1.4.1).

Under these conditions

T= T, b) (1.4.1)
U= =0 | M= U(v ) (b2
6,,9 = é"i :€ez = 6% =0 (1.4.3)

= M (1.4.4)
s

We now have the following compatibility relations in view of (1.4.2),
(1.4.3) and (1.b4.4).

) (1.4.5)

2 (+'eg) (1.4.6)



Viscoelastic Cylinder

Elastic Shell

Figure (1.4.1)
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é"-éﬁ - e—v"ee _?_G_e

~ ~ Tov

€ = e"’*ee , (1.‘0.7)

wvhere €., and €9 are deviatoric strains.

The equilibrium relation to be satisfied is

o6, + G~ -Ceo =0 (1.4.8)
2w ~
Making use of E(‘l?’ve get
e =% . 30 ® (1.4.9)
3K

Iteration Solution
We now empl9y the hypothesis that the material is elastically

incompressible in dilatation by mechanical forces, [2] , 1.e.:

3 - o (1.4.10)
3K
and use this assumption as the zero'th approximstion to the solution
of our problem, as in the case of the infinite slab.
Then from (1.4.6) and (1.4.9) and (1.4.10):

€ - (~"€)) = 3¢ ®+ & (1.5%.11)

12
n ° 3K



Integrating

- -

% }“—S p®dp =, S PEZ) o

+ € (7,0 G‘)z (1..12)

Making use of (1.4.10):

ol " ,,Li .
e°’3,7£,f@"f’* ee(d"ﬂ(:> (1-8-13)
or
€o = 3™, )+ € 0,.6)(2)" (1.4.24)
vhere
w q
|
= - b,

From Bq. (1.4.7) we obtain:

2_6_9 = -'(é—zée) (1.4.16)

v ~
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which in view of (1.4.9) and (1.4.10) becomes;

o _ 1 {SxQ@-zee} ' (1.5.17)

2v
or

aGo

-4
‘a'v v

faa @ - Ga, P(~ ) - ze(v,,r)(')j (1.4.18)

We now use (1.4.7), (1.4.8) and (30) to obtain

aG" (G §- E' béo)d,‘_ (1.4.19)

which in view of (1.4.18) becomes

. <
v _?&S G(§-§722 . %SG(E-Y)?,,) ot
2 - v Jo ok -~ o ¢
-t-
2 g G (-89 3€°(;"ﬂ oA (1.4.20)
’Y‘ o v
Let
+

Fev t) = (G(g €7 ) 2'\{)_@)0!".: (1.4.21)



Then
t
o O . /72 €of
‘Z_; - ‘—(1 (‘)-q- ?; gG(Q-g )ae:fcht) d (1.4.22)
and
G g "(l’ ")dr +2 S (',‘QG(E § )?G,(,, ——dr dy (1.4.23)

Obviously ¢~ = O since v=~ , is a free surface.
'
If at ~ =~, there is a rigid boundary éeév“(—) =0 and the

complete solution is

o 4

G = ( l-(r, ) clr (1.4.24)
ol

In the case of the boundary being an elastic shell G., and E_e
for both cylinder and shell must be equal at the common boundary.

Let @) () ve the temperature of the shell assumed constant
through the thickness. All parameters with guffix S refer to the
elastic shell.

Then

z
€or,,6) = (40 @ - € ()T = (1.4.25)

Es
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Also let

A,

( v Gyl t) -§ 'c)} G(t ) (1.4.26)

~ "V
{

Then (1.4.23) becomes:

.t
" R ey 2Eghn )
Qq} - g Fo E)dv + gc‘(t.*c)"’_s_:l dt  (1.u.27)

' x

(-4

Eliminating 6,,’ from (1.4.25) and (1.4.27) we get

-~

Es o ®‘ h + gr(’v' Hd+ = EiL (" 6
(- vH 7, v, (-9 Y2
.(-
(G (t /‘)3 €, 2) A (1.4.28)

o

Eq. (1.4.28) is a Volterra integral equation of the second kind.
The solution of this equation - see Appendix II - for €,6,, )
and substitution for 69(1,4-\ in (1.4.23) yields the complete solution

of the problem in the zero'th approximation.
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The circumferential stress dy 1s obtainable from (1.4.8) 1i.e.

6

e = 'Y‘aéj + C-r

oV

To determine (;, e make use of the identity

& =3 (¢,-5))
vhere
t
s,- | GE-§)2
° 2%
Now
€ Y 2to
GA': éﬁ'— 3 ::'g 1 27 Fys 4-§9§

(1.4.29)

(1.%.30)

(1.4.31)

(1.4.32)

In viev of (1.4.30), (1.4.31), (1.4.32) and (1.4.23), G, can be

deternined.

Substituting for Cg in (1.4.9) and repeating the above proce-

dure, we can find a first approximation tothe solution in terms of

some fictition temperature @, vhere

@ -®+°

ulo K

A systematic formulation of the iteration process. together with
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sufficient conditions for its convergence is given in Appendix II.

A computer program based on this theory has been developed 9
by means of vhich, the stress and strain distributions an{e:.;;du hollow
cylinder contained in a rigid shell. The results and the corresponding
temperature histories are shown in Pigs. (1.4.2), (1.4.3), (1.4.4),

(1.4.5), and (1.4.6).
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1.5 A Better Zero'th Approximation to the Solution "eb initio"

By a slightly different approach & closed form solution is obtained
which involves a less drastic approximation than the one employed in
the previous section.

Consider the following elastic relations which can be immediately

generalized to the corresponding viscoelastic relations.

€ -

1
2 E\éz 'O(G“*¢7)} % ® (1:5:1)

Since E:i:.o ve get

6, = v(e,+6,)-Ev @ (1.5.2)
and hence:

b= (1+v)(6r486) = E e ® (1.5.3)
However

(l+v ) = % { | —9%(} (1.5.4)

and the corresponding viscoelastic relation for constant K is

3 £ @)
I+ () = —{ l = 9—; (1.5.5)
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Since K is constant and E(e) varies between E ° and zero.
for uncrossed linked, and E and E vhere E X 1 E for a
o [ 4 ] R B o

real propellant,

1+%, £ 1+ V() Sg (1.5.6)

For polmethyl methacrylate \)° = .35, which is a lov value for

viscoelastic materials. However even in this case

-3¢ < 1+v() £ 1.5 (1.5.7)

1.e. [+\?(t) varies within narrov limits and thus one is justified to

make the approximation

1+ ) & "_“'zf_"‘_‘ — 1425 = 14V (1.5.8)

vhere 7 = 425 in this case.
Then by considering a constant average 2 for a viscoelastic

material ve will have an expression analogous to (1.5.3):
<

G = (+¥)(C, +¢,) -0 gf‘f‘e')?(—f At )

In view of (1.4.8) ve get
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t
G =(l—+.\_>)(2¢,,+—v3%")_ U°§E(§-$’)a-@d¢ (1.5.10)
o N
or
.‘
& = (1+¥)1 2 e ) - . YE(?-Q’)a_ e (1.5.11)
) Yy 27 " ° o -2 c
also
_ 1 7 e
é = ; ?:(’VIQQ) = ;{ -+ 30‘°@ (1-5~12)
Combining (1.5.11) and (1.5.12)
t
t @2 +¥ | Q. YR
12 (0e) - =¥ 12 ¢,)-3785(e-§'>:_?dm 4 (15.13)
° +30,®
Integrating (1.5.13)
o +
Ne, - 142 2y _fi’z E(-§/)29 4
e 3‘/\"" qtalf(ro gg)'a—lg- ’cdr

-~

4+ 30 g.,‘ 1 @dr + C'(t) (1.5.14)
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and
. 4
é:‘*‘\-’c__'g&’ £(5-§) 29 an
° 7 IK ~ T ,.3"‘?(., §-8) % 9re
30 (0 @ o L CW
+ tgﬂr@ P+ (1.5.15)
let
e +
izg r{ E (§-§) ?52@ drdp = Qo wsae

In viev of (1.5.16) and (1.4.15) we get:

2
X LR LA (1.5.17)

6
3K 7 3K ~

where _Q(/g) = ’\‘J(4‘> =0 (1.5.18)

We now differentiate (1.5.17) with respect to ¥ and denote such
differentiation by a dot, then after differentiation with respect to
/
time, multiplication by G(€—§ ) , and integration between the

limits of 0 and t ve get:
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4 ] t ]
§ G(E-§) 2o g 'ﬁge(g-;/w_@~ a
. " ok 3K ) . 2%
_ % g(,(g-ef)?_% dre Stxogé(ﬁ-&’)aﬁ)d’f

3K ), 2k o 2R

t

_z g G(§-§)2% gx =

’13 o 2%

= Gq— (1.5.19)

by (1.4.19).
let us consider now the functions:
£ - § (. &) , §' - §(. 1) (1.5.20)

For fixed ~ , g is a monotonic function of 't and hence

it can be inverted in the form

- t=90, §) (1.5.21)

Then if g is a function of v and t ,

foftmampt= £(8) (1.5.22)

Also let



5k

DN R DA

2. pendan) o
A

s 76,0 = T §)

Then substituting (1.5.23) in (1.5.19) ve obtain

+ 1

-T2 (G2 an -2 ﬂG(g g)’b‘b

+ 30, gggg)aﬂd,,_ SG(eg) — dit  (1.5.20)

Referring all quantities to the v, g plane (1.5.24) becomes

§

§ A
22 4g7 o (c-892P a§/
-Zm_ g (402, ¢ 3»&6(“)3@' 3

§ ‘ N )
£/ 3—\T / 3‘_ €/ ?C. !
AL A L ST

o
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We now take Laplace transform of (1.5.25) with respect to g

and obtain:
ry o - A N GT
Z v PG Z -; I’ (p
_— _ %
+3o(°’>6 n - .33 G t,C' (1.5.26)
¥
Now letting
G _ Qq,) (1.5.27)
[+ 'l‘ },G‘

(1.5.26) vecomes:

“|>l

Z =3:(v—: Q F Cb—%doké

_—
+2pRC (1.5.28)
3 !
Now taking the inverse Laplace transform we find

¢ s :
Zw) ge(em E,as 3w, gg(ﬁn'be“ae

!

(g R(§-§/ )aC % (1.5.29)
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Finally reverting to the ~¥, {  plane (1.5.29) takes the form.

+ +
Z(’Y 6 gﬂ'? g/)ad) - 3o, SQ(E gl) — c"c

(-

+
% g R (§- %) e o|~ (1.5.30)

Substituting for Z ' C’b , 77 from (1.5.23) and after putting

g:Q(‘é—%’);% o’\i) }ol"‘ =)((~,t) (1.5.31)

ve obtain

t

PM’" 7((" *)-*— g ?-?')?—Ec—' dx (1.5.32)

Hence:

« t

¢ - g K, *%M i:', g%—%’):—fj de dp (1.5.33)

-~
]
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since é vy =0 ~=+ being a free surface. Therefore,
AN ) !

~«, 4
d,,("', \ t’) = (%(", Eelr + (f, ge@-%’):—i' dx (1.5.35)

Also in view of (1.5.17) and (1.5.18),

69 = ’4'—‘; Q l C,“‘j (1.5.35)
z 3K T :.

c é‘ Y ' G .5.36
OL: 9(55{') 5 Gd;._ . “6 (153)

At the interface of the viscoelastic cylinder and the elastic

shell we have the relation
(1.5.37)

!
v 1=V

69; = ('*o‘)o(s ®$ - CV., h Es

where suffix S refers tothe shell and @s is the mean temperature

over the shell thickness.
from (1.5.35) and (1.5.37) we obtain:

Fliminating €,
2

2
2 LGP h @ —g, 1y B
e E,

Ky,



In view of (1.5.34) and (1.5.38)

+

-2 2 . | *
v, {'_““_‘_3+';\_>§ "_*} C(t)+§Q(€,’¢)a_£'d¢;
3K Eg bW ! A X

C® gt U (5
+('*‘>s)°’s@sL|T<+l€\: K} ‘fﬁ"ﬁd* (1.5.39)
where
i L' Rig
R(tt) = o’ fe6) ‘%f'nt)}d'f (1.5.40)

Eq. (1.5.39) is again a Volterra Integral equation of the second
kind in C'(ﬂ .

Solution of this equation and substitution in (1.5.33) solves the

problem completely.

The hoop stress can be found immediately from,

¢ = C 4oy (1.5.41)
o ad ?T



Since this solution is dependent on the aforementioned approxima-
tion one can test its accuracy by calculating d from the expres-

oion,

¢ <
¢ =c~+¢ +§ o(§-§ /)D%(C~+¢e)d?-%gde-ﬁ’)a?h(l'5"‘2)

© (]

and then use the iterative method developed in this chapter to calculate
a more exact value of G_, . Hovever, comparison of ( as
obtained from (1.5.42) as opposed to @  obtained from the approxi-
mate expression (1.5.9) will determine whether an iteration should be

necessary.



CHAPTER II

Dynamic Stresses In Thermorheologically Simple Viscoelastic

Bodies

2.1 Introduction

Dynamic stresses in linear viscoelastic elastic solids under non-
isothermal conditions are still an unexplored field. Hopes of obtain.
ing closed form solutions even for the simplest configurations are
rather small as will be appreciated from the contents of this report.

One will recall that the quasistatic problem of the slab and the
sphere vere given a closed form solution, formally at least because
the relevant equilibrium equation, in both cases, could be integrated
directly. When, however. inertia forces are taken into account this
is no longer possible.

In the present chapter progress has been made by limiting our atten-
tion to incompressible viscoelastic materials, in the sense that volu-
metric changes either due to mechanical forces or temperature fields
are zero.

Consequently the dynamic stresses examined here, arise because of
the time wise variation of the mechanical forces (stresses) applied at
the boundary.

We limit ourselves to the configurations of the sphere and the
infinite hollow cylinder, both with polar symmetry, so that dependent
variables are functions of the radius only and time. On the other
hand, within this restriction, temperature fields are both non-homo-

geneous and transient in nature.
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The solutions of both problems reduce to Volterrs integral equations
of the second kind, which can be oyltontictily solved numerically with-
out undue difficulty.

In the first part of the report we treat the viscoelastic sphere
with polar symsetry. In the second part ve treat the hollov viscoelastic
cylinder infinite in length and also with polar symmetry. In both cases
the dynamic stresses are examined in the presence of time-varying mechan-

ical forces

2.2 Dynamic Stresses in a Viscoelastic Sphere

Sphere With Infinjte External Radius

We first investigate the case of a sphere with an infinite
external radius, so that, essentially, ve have a viscoelastic continuum
with a spherical cavity, in a transient inhomogeneous temperature field
with polar symmetry. The cavity is subjected to mechanical pressure
vhich may vary with time. It is sssumed that prior to time t=O the
pressure vas constant and that any variation began at time t = O+.

The temperature field, however, may have existed prior to the
application of the pressure, the time of application of the temperature

field, relative to that of the applied pressure variation, being arbi-

trary.

Figure (2.2.1)



Let P( t) , be the pressure in the cavity, "a" the redius of the
cavity, T the radial distance from the center of the cavity, and
A the displacement along ~ .

Then in the usual notation, and in view of the assumed polar

symmetry ve have,

2 © ¢

L T A (2.2.2)
2 ~
t
-— = Gl -€7 2 -€ d‘c‘: 2.2.
6, -¢& g (§-¢12 {e-¢, | (2.2.3)
&€ = _Q__. - O (2.2.4)
129

The equilibrium relation is

e 28 -6, = p 2t (2-2:5)

2~ v r 3{"
Froa (2.1.4) and (2.2.2) ve get

2w g (2.2.6)
o Y
Hence

M= C@®)~ (2.2.7)
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vhere C(b) 1s a constant of integration.

Also in view of (2.2.1)

€, = —2Cc®) 41 (2.2.8)
€g = (OB A7
€,-€ = - 35w (2.2.9)

Hence from (2.2.3)

t
¢, -6 = - 323SG(E-§’)°-9 d% (2.2.10)
ol (>} A -aA‘:
Substituting in (2.2.5) ve get
t
v _ it 6GE-§28 e o £ 2 (2.2.11)
v o e ~* 2t

Integrating (2.2.11) and in view of the fact that G,,( 8) = — '5“')

<

t
¢+ P =6 f ,;,"{ S G(‘E-i’)g—g ) dr

a

ve get

c
L -2 'b__L (2.2.12)
a Yot
Interchanging the order of integration in (2.2.12)
+ ~
6 + p(®) =6[ 2¢ vaf*e.(g-e')ad’d«
~ 9‘:
° o (2.2.13)
2
+f (1-%) CAS
a v 2t*



Nov " . « » /
547 G§-§) ar’ = S,,/ GE-§) dn
a o

- , (2.2.14)
- f St G(§§7) dn

~

provided that the improper integrals exist, and they do, since G is

-4
bounded and -’  1is amonotonically decreasing function® Let,

( v Gfi(v,’t) -’ t)} dv' = K, 2) (2.2.15)

a

(‘( JrGiEen-telutay s Nt o (2.2.16)

Substitute (2.2.14), (2.2.15) and (2.2.16) in (2.2.13) ve get

+
. 2¢ ¢ N
o ) = 6| 2= 3 Kty - N(t,4, 0 tdk
.+ PO = La'z l )
2
¢ a\2C
+ L (=-%) (2.2.17)
a.( SARFY S
Note that
N & 7)) —=o0 (2.2.18)

as N —p0d

Also since G"oo as ~ »00 , (2.2.17) becomes

1

* AL rntegreaterthm-;.
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t

- 2C s L £ 2.2.1
bt = e.g K2 d% (2.2.19)

’C
2¢”
o
Eq. (2.2.19) completely determines C (V) , hence, formally at
least, the problem is solved.

Also in view of (2.2.19), eq. (2.2.17) becomes

G - -—Gg 'J(t “L ~) — d% - — (2.2.20)
[ Y i a 2(
G = - S —

t
_ (%)g I(G,'t):—g e =

¢
_ f NX )+ 2 K u} 2= 3t -i‘ by (2.2.21)

(-]
Hence the solution to the problem hingees on the solution of (2.2.19).

Let

CA . aj(l:) (2.2.22)

ot

Then

¢ ( IOPE (2.2.23)



since from (2.2.7), by virtue of uw,%‘_:go, st t =0+
C
C ! =o :42 =0 (2.2.24)
tzo+ =0+
Then
t t %

gl((m)a';t dh = g*”*.*’ g")“'ﬂ’“/"' ¥ (2.2.25)
o 2 e 4

However regarding (2.2.25) as & double integral we get

t ok
gg K(e";)j(e’)dé’dt -
+ t }
;S / (2.2.26)
- (¢') Kt ) du ] ot
(901

[=]

1

t

N NS

Al —a

%
Figure (2.2.2)

w:' 4

»
g Keg, v de = K (1) (2.2.27)
{/



67

Then
1 1 4
g Ka v) & 2C gk —g g K(f,‘c)"(é’)df'o"t
) ok . ). ,
. %*
:S K (¢ %)) d% (2.2.28)

-4

Substituting (2.2.22) and (2.2.28) in (2.2.19) we get

3
a b = %g Kt geat + 40 (2.2.29)
F
where
t
x* , Y,

}’< (t'h:) = S K(t’f )d{ (2.2.29a)

e

Equation (2.2.29) is a classical Volterrs Integral Equation of the

second kind wvhich can be solved numerically by various means.

2.3 Temperature Uniform But Time-Dependent

In this case eq. (2.2.11) can be directly integrated with respect

to 4 , to give,

t
¢, +po = B[ atsn 2o fi-)
2 (2.2.1)
P_&y2¢€
+a—(' ,'-\ 3*1—

Since G >0 a8 ~-» 0 ve get

py = 2 SG(EG’)“M . f 2¢ (2.3.2)
a it



or

dt* odp

(<]
let 4

K*(é,'c\ =2 (ef{:«)-ﬁa{}aw
i1

vhere G = ¢(o).
Then (2.3.3) becomes
-t

*
cJ(e)qSK(t,/c)g(«)M - ‘_l: b(+)
Also from (2.3.1) and (2.2.22)
1
-_2 ‘ 7)ol € i
c, = -:3§ G(§-§ )JE d% - q (&)

By virtue of (2.3.2) and (2.3.7)

¢, = -(®po+ 1@ fqm
~ ~ v

vhere g(t) is given from (2.3.6).

From (2.2.5) and (2.2.7)

{
| 2 (alg§)dS at =% plo)
3t +_§e($E)d7zd - b

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)



dé,
QGO =~ ; + 26, -—(r/)é)(ﬂ

OREAYIGE (ﬁ;)s 10 _ﬂglqm -2 49

| 2
N
- (5) by - f o) (t—) “') J (2.3.9)

2.4 Sphere With Finite External Radius

a. Condition of Fixity at External Radius. ~+ =Dd

If u is to vanish at r = b, c(t)= O from (2.2.7).
Hence ' u = O and all deviatoric strains and stresses vanish identically,

The equilibrium relation (2.2.5) becomes

% _ o (2.4.1)
'a‘(

or
G, = — pt) (2.4.2)

in view of the boundary condition at r = a.

Also since

6. -6 =-o (2.4.3)

= - ’5(&) (2.4.4)
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Stresses are transmitted instanecusly and there are no inertia

effects.

2.5 Free Surface at ~+ = Db

Again we quote (2.2.3), i.e.

C -4 , 2
¢ +|>(e\ :c§ "l;‘ ga' G(&-§) drdr +£('—‘?)j—t§‘ (2.5.1)

at v =D, G"SO hence b

‘ -—
b ¢ [ % (7 GIE-§)d~’ d

P, _ayd% (2.5.2)
+ U2
b
a

Then (2.5.2) becomes
4t
dc fri-2
Pl = ég L) T dr + ~(1-% )

o

d’ (2.5.4)
dt*
(2.5.4) is an equation similar to (2.2.19).

On substitution of (2.5.4) in (2.5.1) we find for ©_ ,

-y

’ b
dc § ; ,
C e T At alsenan b an
ool £
_ P (2.5.5)
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2.6 Isothermal Sphere With Infinite Radius

From equation (2.3.3)

t
dC 2 (Gau- ﬂdcd”t =4 }‘Cﬁ (2.6.1)
dt*  o'f ),

Consider G(t) to be given by a Maxwell model, i.e.

+
6o - G, 2 (2.6.2)
Taking Laplace transform of (2.6.1) and in view of (2.2.24)
s+ 2 GsC -2 Fm- (2.6.3)
a r f
From (2.6.2)
6 = G, _'_ (2.6.4)
$-‘--3-
substituting in (2.6.3) we obtain
se , 26 sc _a F(ﬂ (2.6.5)
'y ] -
a.r S+ 3 T
Let s*C :Ej(s) ana 280 . (2.6.6)

then (2.6.5) becomes



T2

- a L
3(53 + ~Fo (54%3 = .F ’3(5) (2.6.7)
or
a
’3‘(5) : (S".'.;)—r- F(S) (268
314-%- + w -6-8)
or
p— a. p—
g = T pe - 7% QE (2.6.9)
‘j r Sa_+_$_+wz

&
-1 2 2 —2-) VA
ﬁ - w e A-u(bz—:;l)lt:‘\*’(k)(?.&u)
43w \/wx_ Ny



Then (2.6.10) becomes

t

6 = -(@)po+2 - " S Ap(E-#) ple) o

vhich is the complete solution for all load cycles
Nature of '\P(t)

(a) ! ¢ w
2N

SCARN

2) +

Figure (2.6.2)
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(2.6.12)

(2.6.13)



T

(&) g5 7%
c‘u/.__l_-wzzw' PN W
45 a7
s
3 -1A
’\f) < _l:)_ £ Amt\w/t (2.6.14)
’
w

~N

|

— + 4
3 log 22 w
w1 w’

ax"”~

Figure (2.6.3)

2.7 Dynamic Stresses in an Infinite Hollow Cylinder

We finally consider the dynamic stresses arising in an infinite

cylinder in radial transient temperature fidld. As stated in the intro-

duction these are considered the result of varying interval pressure,

Under the above conditions, and in view of the assumed material

incompressibility, ve have in the usual notation:

¢ . ou € . & € =o (2.7.1)
~ > ! -] ~ ! 3
€ - € = eo = LA ) (2.7.2)

From (2.7.2)



? (ud} zo R
. al

vhere C (t) 1s a constant of integration.

Hence:
e - ow __ ! ¢c
~ 2~ - ~?
|
g =4 CWO
and
2
- -2 Ccw
€t = 1.
The equilibrium equation to be satisfied is
2_6_" + Cq—éo = ‘3_1_“
27 ~ 7 raf‘
In viev of the constitutive relation
t
S:; :S G -4) 2% Jx
o rA

and the thermorheologically simple nature of the cylinder

4
¢ -¢, _.S G(§-6) 26,6 )an

75

(2.7.3)

(2.7.4)

(2.7.5)

(2.7.6)

(2.7.7)

(2.7.8)

(2.7.9)
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Substituting for é.,-‘e from (2.7.6) 1o (2.7.9) we obtain

oy

{
G- =-2 (a&z-e');g o

As a consequence of (2.7.10) and (2.7.3), (2.7.7) becomes:
1

A
e _ 2 (G(H’) 2 4y, £2€
‘DV «3 ° 34: -~ 3-6

Free external surface

(2.7.10)

(2.7.11)

Iet the interval radius be "a", and the external radius be "b",

Consider the folloving boundary conditions G -.-_-f(ﬂ at < =a,

v
& =0 at T=d
o

In viev of (2.7.12) integrating (2.7.11) we find
t ~

e, + t(t)_zg gﬁ GE-$) an'an

+ p2eq(7)
Since at ~ =b, @_= 0, wve have from (2.7.13).

t

b = fM(w\—ow ...r&.g(“)a{‘

* C

(2.7.12)

(2.7.13)

(2.7.14)

C
This equation completely determines 2> and ?- » being analogous

t* at
to (2.2.19), vhere



b
ME ) = ( —,_'3 G(§-#)d~ (2.7.15)
Also from (2.7.13): 4 b
{

¢, op=2| & S =, GE-§)d~ at

Yac
_ 2C ("1 Ry
7{, 2% g T GEF)drar

1
- rg—-{cz { }912 -&-101%} (2.7.16)

Incorporating (2.7.14) and (2.7.15) in (2.7.16) ve obtain

.{.
G, =~2 LQ&\""') z—: +r:—:’ Req% (2.7.17)
where
5
Qlata = S ~ G§-§)d~ (2.7.18)

Cylinder contained in thin elastic shell

Let the suffix s denote quantities pertaining to the shell.
At v =D, as a consequence of the continuity of u and @ - 8t
the cylinder-shell interface we have:

¢, = -2 (k) W B v® (2.7.19)
b3 v,



Incorporating this condition in (2.7.16) at ¥ = b we find:

4
E Es W\ b g ¢ a_g-d/\-
By @b - = () L2l MEa)Ede
1~V et F {, ._os‘(h ) b* ) 2%
foq (2 ?C (2.7.20)
+ P o9(—~ i

2q. (2.7.20) can be reduced to the canonical form of the Volterra
integral equation of the second kind by the following procedure:

‘ince c, :t are zero at t = o+, we have

+ % .
C¥) = [ { 2C 44 dr (2.7.21)
° ° a’t;
or
{ 1
Ck) = g ({-t)?_f dx (2.7.22)
° A
Also
n 4
C * .2C
S Mte) 2 o = | M gr) & di (2.7.23)
o o% . ot”
t
vhere M* &t =S Mt 1) dt”
&

-~

Eq. (2.7.20) in viev of (2.7.21) and (2.7.23) becomes:
¢

3 o @ +1a(ﬂ :f{zﬁ(e“t)*'&'t)‘%;'f'(%)‘}ﬂ('cw* (2.7.24)

I~ \?



vhere
3
© _2¢ (2.7.25)
a 24"
Calling
* ' >
M (e't)a-(!-t)%‘(%‘)gx : M@ (2.7.26)
I~

ve have from (2.7.2h4):

+
* %
r/a«,(;")qm % M) qat < psEe k@ (272D

which is the ceanocnical form of a Volterra integral equation of the
second kind.
It is vorth noting that as b —ws0 1og§ >0 and g(t)> 0

hence u—~ 0.

As a consequence,

¢, -8 = —p® (2.7.28)

i.e. stress vaves propagate instantaneously, vithout any subsequent
vibrations being set up. A rigid external shell gives rise to the same

result.



CHAPTER 111

Horizontal Slump of & Viscoelastic Hollow Cylinder Contained In

a Thin Elastic Shell

Synopeis
In this chapter the problem of the horizontal slump of a visco-

elastic cylinder contained in a thin flexible shell resting on a rigid
plane, is solved. The solution is within the scope of small deformations
and clagsical shell theory.

The viscoelﬁtic stress-strain law is of the integral type, and it
is used in its most general form.

The solution is purely formal in as far as no numerical results

are given

3.1 Introduction

The problem of the horizontal slump of a viscoelastic hollow
dylinder contained in a rigid shell has been solved [15]. The solution
indicated that prohibitively large displacemsnts develop for large
times. It is reasonable to expect that a flexible shell will exert a
less restraining influence on the cylinder and will allow therefore
even larger displacements to develop.

An exact formal solution tothe problem is obtained, within the
scope of small deformations and classical shell theory, in the form of

sine and cosine series in the angular coordinate.
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.2 is

The treatment of isothermal viscoslastic boundary value problems
is facilitated at least formally by removal of time dependence by the
application of Laplace transform, and consequent reduction of the
viscoelastic problem to an associated elastic one. As a first step,
therefore, wve obtain the solution to the problem of a hollow elastic
cylinder contained in an elastic shell resting on a horizontal rigid
plane, both being deformed by virtue of the forces exerted by their
own veight.

We further asgsume that the cylinder is "long" so that plane strain
in the axial direction can be assumed.

Under the above assumptions the geometry of the cylinder-shell con-
figuration is defined by Mg. 3.k4.1.

The complete solution is obtained by solving for the cylinder and
shell separately, and satisfying continuity of radial and shear stresses
as vell as radial and circumferential displacements at the cylinder-

shell interface.

3.3) Cylinder Analysis
Satisfaction of equilibrium in the radial and circumferential

directional yields the following relations in the usual notation of

polar coordinates;

%~ 12 Gxbe | cqe0sd - (3.3.1)
Y~ 90 ~

=0 (3.3.2)



et
S—V:C-V‘G
ga =Ge-¢
T = ’C've
vhere
-4
¢ = 3

(é"+¢9 +é; }

Then (3.3.1) and (3.3.2) become,

25+ 1 2%
DY ~ 26
e , 0t
20 %8

4&«,-—89 +3—¢ +r3C¢>Se el o]

~ DY

+27 +3_6 - rﬂ«mue =0

20

82

(3.3.3a)
(3.3.3b)

(3.3.3c)

(3.3.39)

(3.3.4)

(3.3.5)

We eliminate the dependence on © by teking finite Fouries -

transform. lLet

od\l
T
¥
v/
"

|-

w

—'_ g "((—V‘B)<|uu9 dé6
1"

%
(]

g S (7, 0) Cos uO dB
~-N

N
g S (1,0 cosu®d0

-7

(3.3.6a)

(3.3.6v)

(3.3.6¢)
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n

-—

éhu“") =#§ & (v ®) cos nO dO (3.3.64)

n

In viev of the symmetry of the problem S., , Sg , G are even

functions of © but A 1s an odd function. Thus we have the con-_

ditions:
27 o) = 2 (1) = 220 (r0) =22 (a,n) =0 (3.3.7a)
Sl = ) = 2P0 =320

2% o) = 2 (1) =0 (3-3.0)
20 e

’*((4.,,) = W(ﬂ,‘n) —o

(3.3.7¢)
By virtue of (3.3.6) and (3.3.7) Eq. (3.3.4) becomes:
_ _ o,u#l
~ d S +M’-¥- +S~—S9+’76__G. -,-§ (3.3.8)
o a~
‘.‘vrﬂ ,‘\='
and Eq. (3.3.5) becomes
o, uzt!
-kE —t-"vd.._E ...1;'1:—“6 =§ (3'3-9)
®
dre L ,
Me K

We nov assume that the material is incompressible so that ¢ is



indeterminate from the stress-strain relations. BHence eliminating

@ from (3.3.8) and (3.3.9), and putting

S,-S, =¢ -¢, =% (3.3.10)

we obtain:

- _ - = 1
un 45 03 sl 304 A (3.3.12)
a~ >

d~*

The strain displacement relations in polar coordinate are:

_ou ¢ ®w L1y _1 C_n ?;EJ_‘!_."( (3.3.12)
~ Y ) © ~ ~ 206 X"O 2 1799 2v ~ §
6} =o | G‘v + ee -+ 6& -0 . €& 4« =0 (3.3.13)

In viev of the material incompressibility the stress strain relation

is
S¢ = Ge.\" (3.3.14)
vhere
. _ € uw
e = €y Yy (K summed) (3.3.15)
or putting



=G(

s=(6,-€,)6 = 26 G =-2€,G

The strain compatibility relation is

ael 'b*l

'3_2_"_' -12_@: (/76 Y= 2’a («/6)
3"

or

3 2 2
'bj: i | 3_‘:: &+ 1 2__6_9 + 2~
2e* Y v Cad

t
- 2.{4 3—! 4.8—! }
272 © 26
Novw let

Ti

n = -'_{ U ([, 0) cosue de
W -7
n
-_ |

=7 g 06,0)S uwOd0

Again in viev of the existing symmetry

'ba_ge'.o) = 'aa—-g 6,1") =0

U(’Y‘o) = 0(".113 =0

ke
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(3.3.16)

(3.3.17)

(3.3.18)

(3.3.29)

(3.3.20)

(3.3.21)

(3.3.22e)

(3.3.22v)
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Eqs. (3.3.12) through (3.3.19) in the transformed plane become,

- 2% o _ @ we . {.&a d_‘?-_?{} (3.3.120)
e~-_ e-:+;_u,x olah gy

== %
‘:2 o , é" +€e-+€% =0 E‘v +€o -0 (3.3.13a)
-&:;3‘ = G Ze',‘ (3.3.1ka)

2 = éc, .._.; € u (3.3.158)

T o= G g (3.3.16a)

s :%é -EG}G = 2€ G =26 G (3.3.17a)

P S SO K .. —15«1'14.” (3.3.198)
d~ d~* d"

Substituting for S from (3.3.16) and (3.3.17) ve get

n’-g_‘_%,’d_:g +,v’d:§ 4+ 4w ’ld..,.t _.,E}:O (3.3.23)
dv dar? a~
Egs. (3.3.11) and (3.3.23) provide two ordinary linesr simultaneous
equations in the unknowns ¢ and s.
We nov make a transformation in the independent varisble by putting

2
= x = € (3.3.24)

RAR!
)
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then
2.2 372 22 (3.3.25)
v 23 7 4> T ir 22
In view of (3.3.24) and (3.3.25) equations (3.3.11) and (3.3.20)
become :

al_g_,.w;-k-u"t +1°‘/t +d:_ff' ) (3.3.26)
d? d? d2?
W 42d8 A 4udE | 4u R (3.3.27)
di da?* d2

We first examine the case of V\Z 2 . For this range of values

of i , (3.3.26) and (3.3.27) yleld the solution

_ n-2)1 -(u+)2

% -Aw e " R € Py +C_(u-) e 4+ EMe (3.3.28)
_ @-2)2 ~n+2) 3

S = - 2AM e 4—28(&)9 -7.((-)e )+ 2E0W) e i (3.3.29)

Transforming equation (3.3.2) and in viev of (3.3.10) ve get

v\E., - wg + 4% L a7 (3.3.30)
d2



—

hence G_' is found to be

E-v

-« -2)2 {(u+2)

ud
= L Aere + 2 Be - (e L EMe (3.3.31)

Two of the unknown constants can be eliminated from the condition

that v , 3, andhence X , C, are zero at the inner

boundary i.e. at x = 1 or z = O. Putting z = O in (3.3.28) and (3.3.31)

ve get:

A +6+C+ E -0 (3'3'32.)
(%_)\)A +(—Z‘:+\)6—(_+\—:- =0 (3.3.320)

Expressing C and E in terms of A and B ve get

| \
C=-(-D)A +4 8 (3.3.32¢)

A-(=+1)13 (3.3.324)

2
N W
Substituting for C and E in (3.3.28) and (3.3.31) ve get

(n-2)2 —u+2)?
A(n){e_(l-—)eul)_v_'k e“ }+

n-2)1

C-u2
ﬁ(nyle wle T Ll (3.3.33)

-+ }

1
W



" (u-2)2 -u+r)
e A St £

-ui N —+d3
F)’(w)%___e,“-_ 2‘ —(1+1) e J\ (3.3.34)

Eq. (3.3.33) and (3.3.34) in terms of the independent variable x become

) w-2 ~0+2)
v=A {1 (-2 )" _i o }+6 Al X lj(s 3.35)

- -(“'*’L) et " ~u+
G= Aiz W +(' i) ')L “'8{2‘“’“‘&,":‘%‘*‘)’: ‘§3‘3'36)

[

also

- n- W+ - ~(w+2)
b =—2A§ —-3 ) f.. ‘;.( ﬂ}-‘-z%{'x -— z_(l-tl)x } (3.3.37)

To derive the displacements we note eq. (3.3.12) and (3.3.17)

from which:

2k _¢ - S (3.3.38)

—

2~ ~ 2&



-_I{Z-u}__L‘R -& (3.3.39)
o= —3v = — 4+ U
N e 2(z

Integration of eq. (3.3.38) will introduce a constant, however,
substitution in (3.3.12a) for X and comparison with (3.3.37) shows
that the constant must be zero.

Hence on integrating (3.3.38) we find:

w+l w-! —u+1
w=-ARy AT AT x ) -
G w—| w i+
- - —(u+1)
RESH™,
G w1 + n(u-t) T
(3.3.40)
Also (3.3.39) yields,
T = An Cuse 1u+_l. .L'li‘-'-q- 2 ;f“-”)}
G | wnrd W w =+
_ - n-? —(u+)
+8g—“21+_‘__)14_';1 &
w-1 W—t
W (3.3.b2)
Foar couvenience we write (3.3.35) in the form:
T-A@Y e+ B P e (3.3.42)
" "

and (3.3.36) as
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g =AW 0 + B ck Q) (3.3.43)
vhere
V0 =2 (- 2 g e (3.3.4ba)
—(n+2)

x}) x) = 1+_1 _(\_.._) (3.3.4ib)

w w+2)
Cb x) = -5 +("“‘)‘Jr i} 1.( (3.3.bbe)

T " W

w w-2 —~(m+2)

q) x) = 2% x - w_‘_x _(I-*-h—'-)l (3.3.h4q)

Also ve write (3.3.40) as

-—

w = — A(vq; ® 060 - R(uq U 00 (3.3.45)
and (3.3.41) as

T, —_ (S ~) " 1
v = A“é V(5 4 L. )g‘- \Lm. (3.3.46)

vhere

U e)-—x _ 1= ___ = (3.3.47a)
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1 W n-1! -(M“"\
U=« . ' «_L (3.3.470)
in h-1 w(u=-1 W
u+! ~1 ~(u+1
V) = B82S naM L (3.3.47¢)
tw n(u+" W wl+
-2 " | u-! —u+n
Vx) o - 222 x4 X4t (3.3.474)
2 w (u-1) N .

The constants A (*) and (%) cannct be evaluated since neigher

the stresses nor the displacements are known at the cylinder-shell

interface.
For the cagse of n = 1 equs. (3.3.26) and (3.3.27) become:
- = A Y -
s +ds  di% L L,d% % o (3.3.48)
dz di?* d
1" - - v -
O.‘..s' L2298 +S, +ad® 4% =0 (3.3.49)
dr* di
vhere
S, =s(®1) o= TE ) (3.3.50)

Eq. (3.3.48) and (3.3.49) yield the solution in the x variable

T, A xR 3? (3.3.51)
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— -
S, =- 2A,  + 18 134- E X (3.3.52)

Transforming (3.3.2) for vl = 1 and using (3.3.10) ve get

¢ :§,+'*-C,+a°_';(—x€,)~r3—qx (3.3.53)

and substituting for §| and 4, we get

c = A r G FS ‘1.3+ l: 1 -pq > (3.3.5%)

T

Using (3.3.38) and (3.3.39) for N = 1 ve get

I ol A < - P.) 1 + E.,Qoﬁx +D} (3.3.55)

|-—1'“

5 =7 {3ax-8 2 E ReqaanB) (3:356)

-— —

atx=1, N,=0, G,=0 (3.3.57)

hence:

A, +8 =0 (3.3.58)
A8 *&, -fp97 =© (3.3.59)

A =-R and E = Fa<, (3.3.60)



and

- A(x-x?) (3.3.61)

<71
!

)

¢, = A|(1—1’3)-rq-r. (x-3) (3.3.62)

moo= QA.f+A'iz+ra5!ogx*\>,} (3.3.63)
TR

v =

| ;—(': {A' (3+3*) - pq (142092 -8 } (3.3.64)

We finally deal with the case of n = O. We make use of (3.3.13)

i.e
u u .3.6
¢, =0 , A U g (3.3.65)
o~ ~
T o= Ao (3.3.66)
o = —
v
/
p— / —
L € = Ae (3.3.67)
Yo ~? ° 2t
- /
S, = - 2G Ae (3.3.68)
o - .’_;_;-
From (3.3.1)

dé. . S. _ o (3.3.69)
~
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hence:
dée _ 26 A/ (3.3.70)
da~  ~3 °
- V4 GAD/
- Aa - (3.3.71)
~O b3
~
at ~ =,
qu —o (3.3.72)
Let
/
GA- _ A, (3.3.73)
fvl"- -
Then
pr | .3.7h
Coo = Ao('—:}) (3.3.74)
My = Ao'é‘* ' (3.3.75)

Once A(W ) and B(w ) have been found from the stress and displace-

ment continuity conditions at the cylinder-shell interface then

oy

T = Z x (x,n) st nd (3.3.76)
nal "

G =G + Z E (x, w) Cosu® (3.3.77)

o ~0 -

u=t
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o9
M = 'u-o -+ Z a(%,u_) conruwb (3.3.78)

n=1

Q
g = Z_ —(J'(x|u\.\/nu. wb (3.3.79)
[T |

3.4 Analysis of the Containing Elastic Shell

l Figure (3.4.1)

dQ
¢ Q+S=-d©
M A7 P E@’dM
i >
NNV T T
\ g0
Y
The equilibrium relations for a shell element are:
In the tangential direction

_ dN (3.4.1)
e 'd'ée +d=-(1«
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In the normal direction

- (3.4.2)

and the moment equilibrium is
Qe = ;' ‘5'_'1.49 (3.4.3)

3 de

Eltminating (g from (3.4.1), (3.4.2) and (3.k.3) ve get
dropping the suffix ©

(ﬁ—z':l . ’*;i:—: N = t° (3.4.4)
92—

dN 4 _ 1M (3.4.5)
d0 M 8

N d""l AN b (3.4.6)
dl- de

The force displacement relati on becomes

N ‘_'_AVsA»g_sS

- AV, (3.4.7)
-2 L 7 de o N
M o= P S A dos § (3.4.8)
n': d406%* de
where
3
D - _E-_s_E__ (3.4.9)

2 (1-%)



Taking Fourier transform of (3.4.4,5a, 6) ve get

- N + VL%/ + rt] - N;E (3.4.4a)
N z;l/ _:? M (3.k.58)
- [\1 N =, }'.7 (3.4.6e)

Alx,

Also taking Fourier's transform of (3.4.7) and (3.4.8) we obtain

— * - —
N = C { nu, + Ug } (3.4.7a)
M =~ D {-—nu—mf§ (3.k.8a)
* * E
o c’ - _=s LS
where D - 3 ) - (41-)

2

Substituting for | and N 1n (3.4.58) ve get

*C _  _ * ~ —
- unC %uv‘s.u,(s}-&wo {VI}MS—+MJS}

or

- _ * Vo _ C *\
- Ms %:»\C +u3D }-Hrs%vuc—wtp j (3.4.10)

—

3imilarly substituting for M ana N 1n (3.4.6a)



* *{ —
— 2 - — -
rvlfa :KD%V‘LLM‘.;.uU‘S}-l-C MU;-l—U(‘]

or,
* MH\ —
'VzF = %“—4 D*“' Cx% ug +€“3 Daul % Yo (3h.1)

For continuity of stress at the cylinder-shell interface we must

bave (Fig. 3.4.2):

/, ©
/,
\’&. 1\
1"‘ {
|'
Figure (3.h.2)
pe) = - S () - WE) + w, cos® (3.4.12)
q(@) o w s - x(~,,8). (3.4.13)

vwhere v, is the weight of unit length of shell per unit length of arc.

Hence:
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_a"@‘)_\_’_\/ " 4

- nv, °
P - { (3.k.14)

w=l

_q _W
-¢_'(; ;‘—;z-l-ws,
AN

—‘V{ (3.4.15)

--'E("L)-ubs w=|

>
Also continuity of displacements at the interface requires that

W) = U WeEy=u (3.4.16)
ven) = 0 Uey) = U, (3.4.17)

Case of W2>9 . Lat (':':_*) = 8.
'

From (3.4.15), (3.3.42) and (3.4.10) it can be seen that

- {A'\Kn(a)-f QNP;,S”} v = as\cuc*-»u‘D*& +Gs KI(C*H;) (3.4.18)

A O X R R B

} (3.4.19)
T

Also from (3.3.45) and (3.3.46)
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- pl ! A,
U =—AZ L@ -RZ U (@ (3.4.20)
G = AZ NV + BN @) (3.4.21)

Solving for A and B from (3.4.20) and (3.4.21).

- /-
Aw = g {us\{w ~+ Y Uzu } (3.4.22)
Rw)- G S 1a\/ 43, 0’ } (3.k.23)
vhere
y; -1
\/‘ -V @iV @Ve-U (a.)\/(o.)} (3.b.24)
h e 2n la T 2
/ -
. = Uejueve-Ueve!™ g
etc.

Substituting for A and B in (3.4.18) and (3.4.19) and collecting

terms ve get:

4§ 6 [ eovd-p ] -ptec) -

g {G [/\p‘:o.) L P @ ol u‘(D'+C’)},=o(3.u.as)
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- / / < » *
e[t o]

’ »
26 wUe- g eyl Y o

From equstions (3.4.26) and (3.4.27) U, and U, mey be found.

Substitution of (3.4.26) and (3.4.27) in (3.4.22) and (3.4.23)
gives A(w ) and B(» ) respectively.

Case of n = 1
Equations (3.4.10) and (3.4.11) become:

g = C{ G ) DS a5, (3.4.26)
np = Y 5ed 40 {540, G

hence:
ZL _—_E - :4'_ { C*+D-y } %as,“—‘}s.& (3.4.30)
2

The relation 01 = h satisfies the condition of vertical equili-
1

brium, 1.e.
T

n
S%Améd@ = g lraoos(-)de (3.4.31)

- T'
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also for n = 1 from (3.3.6) and (3.3.62)
T = A {x- ig} (3.3.61)
e = A,fx-x’s} - P9, (x-2) (3.3.62)

In viev of these and also (3.4.14) and (3.4.15)

= - A (a-d)owg (3.4.32)

<O

- _A, (a-&3)+rq«.(a-i\+ws-_‘“_’ (3.5.33)

MnYq

~u!

Equations (3.3.63) and (3.3.64) can only be consistent in view of E:i
)
ir

W = 2n~, u)s+r3 n~,, (’_';’-. - 2:.) (3.k.34)

vhich is true, since the right hand side represents the combined weight
of shell and cylinder,

Also from (3.3.63) and (3.3.64) ve bhave

T ' ~ (3.4.35)
l&,' = ;_a {- A'(az’a )+ ra,»Qoia + D| \



= ~, ; 1 -~ -1
U;’ :Z—é'{3A'a+A'a—ra)£oﬁa_rc]—l/‘J
Adding these last two equations ve get:

$ - =

A -»-\_fs_ = M Aa1+A|a.z— t? }
' G ' 2

Hence:

also from(3.k.32)

A - _{i{c”»«ﬁ'}(ﬁ,l-.r&,).;ws ba-a)

!

From (3.4.38) and (3.4.39),

104

(3.5.36)

(3.4.37)

(3.4.38)

(3.4.39)

(3.4.40)

Otbervise by eliminating ( ils +Us, ) Ve can determinme A, i.e.
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or

- * * 2 -2
- A, (a-as) =°°s+5],' CG+D {A'(uwu )-—;‘_ra} (3.4.41)

Naturally, for the moment, WUg ~ U5, cannot be determined since
it represents a rigid body displacement. Finally, hovever, as. vill
be determined from the condition that WU . =0at O =o0.

Case of n = 0
From (3.4.11)

T - ¥ (3.4.42)
«lt = U, C

also in view of (3.4.14)

F --¢ _ \_/_\_'/ (3.4.43)
© - ~o T\"’z
- _ A (\~_|_ )—. \.i\../ (3.4.438)
E - e a? n,
Hence:
A CY s Av -ty (3.5.44)
‘O - o " az —ﬂ-
But from (3.3.76)
- A ) (3.3.79)
Mg, = A, & o
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or
- Qa L Ak
A, = a G L (3.4.45)
]

Substituting for A, in (3.4.4k) we get

_ x o, _L. W a

'u%iC-f-a G-, } = Y
—

U, = N ic*_‘_ G (a’_l)} (3.4.46)

S ~— ‘_'r""
also from (3.4.45)

-1
A - — QWG {C*_&. é(&z—l)} (3.4.47)

This completes the formal solution to the elastic problem.

3.5 The Associate Viscoelastic Problem

To obtain the solution to the viscoelastic problem we make use of

the integral form of the constitutive relation, i.e.

1
-\ G&-» EAIS P (3.5.1)
B X

- o0
Upon taking laplace transform with respect to time (2.3.1) becomes:

9,

3 ‘ (3.5.2)
s = PG ey



207

vbere the dash designates a transformed quantity. In view of (3.5.2)
it is evident that the solution to the viscoelastic problem can be
obtained on substitution of G_ P for G 4in the relevant equations
and taking the inverse transform (| ] .

The numerical analysis of the problem consists in calculating
the displacements of the cylinder both at the inner and outer radius.

These results will be presented at a later date.
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APPENDIX I

Rumerical Applications

Infinite Viscoelastic Slad

To test their accuracy, the methods outlined in Chapter I
vere applied to the problem of a viscoelastic slab, which has been
solved exactly, within the accuracy of the numerical computations
employed, by Muki and Sternberg .

The slab is of infinite extent and finite thickness 2a, bounded
by the planes 7 - * (1 . Initially it is at uniform temperature,
80°C, when suddenly the temperature of the faces changes to 110°C and
remains constant at that value.

The solution of the problem reduces to

€y =€, =4, =0,6 =0, & =, :g(;,ﬂ (A-1.1)

€y =€y T €1 =0, €, = €6 e =€,=0 (AL2)

vhere Gx is found from the integral equation

n +

S o b ( E(g-g’)a_‘;* AR =-24, gE(g—‘é’)?_@dz (A.1.3)
© 3K 2% ) ot

In Ref. [7]’ the problem vas solved by referring (A.1.3) to the

plane and taking Laplace transform. However, in view of the
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realistic nature of E(t), finding the analytic representation of the
latter, taking Laplace transform of (A.1.3) and inverting was a very
tedious procedure.

Here ve obtain a solution at the middle plane of the slad first
by reducing (A.1.3) to a set of linear algebraic equations by the
method described in Chapter I.

Let ©, be piecevise linear in 1  1i.e. in the interval

t <t st
Cx =Gy, + A (-t ) (A1.4)
Also let
Aclt -t ) =a, (A.1.5)

Then in matrix form (A.1.3) becomes

< U < —~
(HIfet « o [e]{at = fF (A.1.6)
vhere F is & known function.
From (A.1.6)
{af = [£] - {F} (A.1.7)
vhere EEJ = [“J "'3‘!'2 L-E.J (A.1.8)

(A.1.9)

—\
(-2}
R

L 2l
"

I
I

—
o]

e
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Referring to the data of Ref. for the material properties we
can find:
i T
2.24 .10%°
2.01 2.24

1.79 1.88 2.24
E=| 1.5 1.61 1.69 2.2k (A.1.98)
1.29 1.33 1.39 1.k 2.2k
1.00 1.0 1,08 111 1.15 2.24

.80 .80 .80 .80 .80 80 2.24

1.2933 .10
1.2632 1.2933
1.234k4 1.2462 1.2933
R=| 1.1991 1.2019 1.2213 1.2933 (A.1.90)
1.1689 1.1742 1.1820 1.1886 1.2933
1.1397 1.1362 1.1L14 1.1454 1.1506 1.2933

1.1048 1.1048 1.1048 1.1048 1.1048 1.1048 1.2933
L ;

(A.1.9) being the solution to the problem. The results obtained by this
method have been plotted for comparison against the "exact" solution
obtained in Ref. [1J - See Fig. (A.1.4)-and they compare very favorably,
in view of the fact that only a desk calculator was used for the numer-

ical computations.



The iterative method vas also used to solve (A.1l.3) again at the
middle plane Z2=0O . The zero'th approximation to the solution was

-found by putting Kzco . Then

t

G - -2« gacg—é’) 2O 4« (A.1.10)
-2

%o

Iteration wvas then carried out on the basis of the formula
1

Cx +L g E(E-§')6x,u-1t gt =
~ Vi) §-F o

t
- - z:x,g E(E—E’)?.@ ax (A.1.11)
(-] ’a’z
were in iterations subsequent to the zero'th the actual value of
vas used. In Pig. (A.1.4), it is shown that after two iterations the
solution obtained wvas practically - within error of numerical computa-
tions involved - identical with the "exact solution" cited above.
The above iteration procedure is in fact convergent as can be
seen by the following simple proef.

Write E(?-?’). = E, E(F-€) (A.1.12)

vhere E(-27) < (A.1.13)



Eo V .f %4

—2 = 1=2 = < | ov 3 >0
3K ° =

Equation (A.1.8) becomes:

t

€/)2ex gx = - ()
¢ ﬂLe(?e )2 (¢

vhere

t

Fe) = (zo«. E(g-g')z.% d*

o

(A.1.1%)

(A.1.15)

Furthermore F é&) 1 bounded in every interval,o<t S1 , sgee

Fig. (A.1.4). Bence

C|Fw | g ™
Then
léxol £ ™M
t
_enofF
¢ = - F® - §°E(€ €02 ax
and
16, | S [Fol+)lEllFe]
or
,g,‘" < 1\14)#4
also

&y | < M-;)M-t)"M

2

(A.1.16)

(A.1.17)

(A.1.18)

(A.1.19)

(A.1.20)

(A.1.21)
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3, < ,\1("")"‘)1"'""*)“3 (A.1.22)

"

The series l+"‘+.--+)‘ is convergent for } < | and equals —-l—-

-2
[ex,. | < M (A.1.23)

Hence

and the iteration is convergent. Also
"
lex -1, | S M)  —o (A.1.24)
nw —» 00

Hence solution can be approached as closely as ve please, by a

sufficient number of iterations.
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Figure (A.1.2)
TEMPERATURE AT MIDDLE PLANE OF SLAB
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Viscoelastic Sphere With a Step Rise in Surface Temperature

The same methods, under more unfavorabls circumstances of non-zero
initial conditions and rapid changes in temperature, are now used to
obtain the hoop stress at the surface of a solid viscoelastic sphere,
subjected to a step temperature rise at the surface. It is found that
in applying the first method some ceare must be taken near t = 0. Other-
wise both methods give results which are in excellent agreement with
the exact solution of Ref.[7] . | '

Muki and Sternberg [_7] obtained an exact solution for the
stresses by sssuming that the material has an elastic bulk modulus.

Using their notation, S, can be obtained by solving the follow-
ing integral equationm,

t %A tG(? €y2k gn (A.1.25)
3 €é,6) +%‘§G($-%’)a-; af = Y., i )2';;

whilst on the surface of the sphere

S ) = -3SE.0) (A.1.26)
1% - 2 7

When (A.1.25) is referred to the ( v, € ) plane it becomes

3 . § A
S wey+ 2 6125 42/ _ enak 4e7 N
Sef)+ L gpece 22 ag” - {ce(@ 922 98 (A-1.27)

vhere

.S‘ (glq\ = S:' (‘t(g"v)’d; ) i(g,-\) = l\{t(g.d)lﬂk (A.1.28)

~
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Now taking Laplace transform of (A.1.28) with respect to g ,

, one obtains:

S {l+~€éﬁ} = PGR (A-1.29)
” 3K
or
: - - A
s - 3KG PL :ﬁ'PL (A.1.30)
" 3!(+26.F

vhere K 1s then obtained by Laplace inversion.

It is shown however in the General Introduction

G . CKE (A.1.31)
9K-pE

vwhere E(t) the tension modulus of the material.

On substitution of (A.1.31) in (A.1.30) we obtain:

- - :
g (~ P\ - __2 K. ____l: _ lvk hl F) (A.1.32)
- - 3K +bpE

On taking inverse Laplace transform of (A.1.32) and reverting to

the ( v, ) plane (A.1.32) becomes:
t
S(4,£) + — g E(§-§) 22 dr -
~ 3K ), 2%
t
- g E(-§7) 2k av (A.1.33)
=Y, o



On the other hand from (A.1.30):

t
§~(n't) - S‘ R(§-¢) :_;‘ dx (A.1.3b)

Naturally, since R is known a solution for S_ can be cbtained
from (A.1.34) by simple quadratures. Such a solution provides a
basis for comparison with the two suggested methods of solution of
(A.1.33)

We proceed to solve (A.1.33) on the surface of tbe sphere.

In ChapL it vas suggested that equations similar to (A.1.33)
could be solved by assuming a pilecewise linear variation of the
unknown function with time, assuming that the function vas zero at

1 =0+ . This is not the case here, however, by virtue of the right
hand side of (A.1.33) which is different from zero at t=o+ . On
the other hand it is convenient to solve an auxiliary equation in

vhich the right hand side is % £ (§6e,,0) . e

t
«p(ru.'._(g E[%h.r)—%..ﬂ]z—;—”dn = %ﬁé(«.,r}] (A.1.35)
3

On the surface of the sphere we have from the example of Ref.
{ - |03‘6 t » and

E[f(a,,t)—g(rv,,tzs_] - E [lo"(‘(t-tﬂ - E(#-1) (A.1.36)
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If ve look at (A.1.35) in the (~, € ) plane, then, after Laplane
transform and in viev of (A.1.35), and (A.1.33) ve get
t

S"{z = § '\P({-’c)i_: o X (A.1.37)

after comparison of (A.1.37) with (A.1.30) it transpires that

Wpiey = R §en.0] (A-1.38)

Since R is known, an estimate of the accuracy of the method can

be made on the basis of solution of Eq. (A.1.35). Again, of course,

’\P(O*\ # o

Hence following Ref. 2] :
NE) = HE Pesy +apTE) (A-1.39)

vhere H(t) is the unit step function, and

Substituting (A.1.39) in (A.1.35) and in view of (A.1.36):

t »
* ~ ~
’\V(o-ﬂ HE + P ) + \ﬁbj E@M+L gf:({--‘t)??d‘t =2 EMB)  (A.1.%0)
3K 3K 2t 3
o+
Putting t=o+ we find
N(o+) = _E(f:_l_ (A.1.51)
|4 B
3K

In viev of (A.1.41), (A.1.40) becomes



t

/\"’*(H +3—LK§ EG 'C)D\Pd't ..-\ko-o-\ll— £

} (A.1.42)
E(o+)

o4

Eq. (A.1.39) 1s a necessary step and the omission of the initial
conditions would introduce significant error in the solution of (A.1.35).
The right hand side of (A.1.42) 1s now a known function which we

denote by g(t) i.e.

j(t—) = — ’\P(o+\{| _ E® L (A.1.43)
E o+ J
and (A.1.42) becomes .
t
/\P*(H +3_|v(g E(t- ﬂ’aﬂ) dn —q(t‘ (A.1.44)

Because of the nature of g(ﬂ Fig. (A.1.8) g(t) has a very high

gradient at t = o.

-g(t) |

Flgure (A.1.5)
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This is a potential source of error for a finite initial interval,
unless the first intervals are taken extremely small. To avoid such
& lengthly numerical computation we approximate here the high gradient
of g(t) at t = o, by a finite step at t = o as shown in Fig. (A.1.5).

Thus again ve write

4 =g lo++) H +97© (A.1.45)

and consequently we can write:

¥ X /
y ) = ’\P(o++) H ) 4—'\})((') (A.1.46)

Substituting (A.1.46) and (A.1l.44) ve obtain

¥* (o +) .
WP (o++) = Cjo: (A.1.47)
| + Efo+)
3K
and
*
o ‘o (t:(f *aB-l” e -%(H_’\P(o++\(l+ E‘L\ (A.1.48)

The right hand side of (A.1.48) is now a well behaved function
and {A.1.48) can be solved by piecewise linesrization of over

small finite intervals.

Raturally:

* /
Y = \.P(o-ﬂ H(F) +\Plo++) Ht-o++) 4P () (A.1.49)



124

Solution of \((e—) bas been obtained over a total time of .20 hours,

in the following intervals:
o’ M, °++’ .ol, .02, .“’ .w, .m, .m

\P(H , vhich is identical to R [ € (. ¢ )] , thus obtained is compared
against the exact solution of Ref.[7] . The agreement between the two
solutions, shown in Fig. (A.1.10) is exceedingly good.

The hoop stress Go vas then calculated from (A.1.37) and
(A.1.26) and is compared with exact G, from (A.1.3) in Fig. (A.1.11)

Again agreement is very satisfactory.

Solution of (A.1.33) by an iterstion technique.

Since \P(o-n has been fo'und,eq. (A.1.41), we sclve (A.1.Lk)
instead. In other vords in the zeroth approximstion YK 1is considered
infinite for all velues of time except at t = o+. This apparently
artificial physical consequence can be appreciated if one looks at

VvV (¢).

From (1.54)

£ ()
& (A.1.50)

= —

V() = i
L 3K

Note that W (©) _-.'4 as 1+ , See Fig. (A.1.6)
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RO R ¢
\
{

| Figure (A.1.6)

The above values of K imply that V =\ at t = o but o:'{
for 130 , in other words we have approximated \>(t) by the thick
line shown in Fig. (A.1.6).

*
'\P(t‘) is then found from the recurrence relation
.t

* ~ »*
'\P +§ E(f-t)'ai“-' At = 7(t) (A.1.51)
- ° QQ
forn =1, 2 ... vhere
*
»\_P = 0)(&) (A.1.52)

values of V() cbtained by this method are also shovn in Pig.
(A.1.10), and these too compare favorably vith the exact solution. The
hoop stress Go 1is also found and plotted in Pig. (A. 1.11), vith

good agreement.



Stresses in Viscoslastic Solids due to Cyclic Temperature Histories

The effects of cyclic temperatures on the stresses in viscoelastic
bodies are not well understood, and this is not swrprising in view of
the analytical difficulties inherent in the investigation of this
problem. The critical effect of temperature on material properties,
renders the problem non-linear in 3o far as the principle of super-
position no longer holds with regard to separate temperature histories.

%) (A\ A
That is, if [ (y ¢) produces G.. (% ‘t'\ and | (x,, ¢
“l .

8) |
produces (.

[}

"
. (xu B then:

(A (”)
T, )+ T (m“.r\

does not give rise to
(A (8)
G;“ (x . t)+ Q;l' (2,8

The superposition principle will hold only in the particular

_aY (8
T

case vhere | are simultanecusly taken to affect to material

>
properties but their effects on the strains are considered separately.
In such a context, however, superposition will be of little value,

To investigate the phenomenon at all, we take the simple case of
the viscoelastic slab, and subject its surface to cyclic temperature

changes shown in Pig. (A.1l.7).



&

g

[Va)
g

Cycle (a)

Cycle (b)

Pigure (A.1.7)




We examine the effect of the two cycles shown, on the stress at
the surface of the infinite slab, when @o = 50°C, and the datum
temperature is 70°C.

Moreover ve assume that the slab is made of LPC-543A propellant

for vhich the shift factor is a well known function of temperature,

see Ref, , P 5%
For this particular material it is found that the shift factor
te75vben (D =50°C, and 5z vhen ® = -50°C or

st ® = S0°C
§‘ - { (A.1.53)
l+ ®=-3%0C
75

In the notation of Ref. [ 7} , on the surface of the slab

§
el(a,gs = -3~°g R(‘é-@'\;—g ag’ (A.1.54)

Fig's (A.1.12) and (A.1.13) show g as a function of t and @

as a function of g . It is easily seen that @ can be expressed

in the following form.
s \
® = @).1 HIE) -2 H(E-§V+2H(§-R)- | (a1.59)

and consequently

2_%‘7 - @S- 2568455 | .<A-1-56>



vbere  (§-E) is the delte function st £ =§ . substitute
(A.1.56) 1in (A.1.54) and integrating ve get

’aif'@f“f“- BO} = R(E) -2R(E-E)+ 2R Ep) - (A1

From (A.1.57) wve can easily find éx as a function of time for
tvo temperature cycles, see Figs. (A.1l.1h4) and (A.1.15).

It can be seen that in both cases G, increases asymptotically
to values vhich are almost twice the maximum Gx for identical
temperature cycles applied to an elastic slab. This phenomenon will
take place irrespective of the period of the cyclic variation, and is
due to the difference in the relaxation rates at the lower and higher
temperatures.

Though this result is important it cannot be readily generalized
either for more complex temperature histories or for more intricate
boundary value problems. It does however bring out a phenomenon that

must be considered in the design of solid propellant configurations.



129,

2.5

Nso\aoﬁoc OA'OA x navm

.10

Pigure (A.1.8)
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Figure (A.1.9)
FUNCTION h(t) vs. TIME
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R(t) REMARKS
e ———
. — MUKT & STERNBERG
Al e MATRIX METEOD
‘ o otD TTERATION
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0.5

0.05

rigure (A.l.lo)
SPHERE R(t) vs. t AT SURFACE
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REMARKS :

— R(t) FROM MJXI & STERNBERG
o TRIX SOLUTION

a O*% ITERATION

o 18t Iteration

0.05 o.m\ t(br)
a

Pigure (A.1.11)
SPHERE TIME DEPENDENCE OF @ ' AT SURFACE '
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Figure (A.1.12)



13

§ (Ers)

7§ (Hrs)

7 Sﬂri

(sxH) §

k-0 06—

0605 —]|

Figure (A.1.13)

Cycle (D)



135

(\AE 1
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@, = 50°C, TEMPERATURE HISTORY

Figure (A.1l.1%4)
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= - 50°C, TEMPERATURE HISTORY

Figure (A.1.15)
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APPENDIX II

Error Analysis of Approximate Solutions Developed in the First

Chapter

Introduction

In Chapter I it was shown that the solution of viscoelastic
boundary value problems uséciated with thermorheologically simple
viscoelastic solids 1n.non-uniforu transient temperature fields
reduces to the solution of a Volterra integral equation of the second
kind. In some cases [ 7] the integral equation can be expressed in a
convolution form in the reduced variable and can then be solved by
taking Laplace transform.

Where this, however, is impossible or where the relaxation moduli
of the material are in the form of experimental curves, which is
invariably the case, Volterra integral equations can be solved
approximately by reduction to a set of algebraic equations as wvas
shown in Chapter I. The solution of these equations is easy because
the matrix of the coefficients is triangular.

In this report ve investigate the error inherent in this procedure
by finding first an auxiliary solution. Upper and lower bounds to this
solution are then established, and these are utilized to establish an

estimate to the aforemsentioned error.

Upper and Lower Bounds to Solutiomns of Volterra Integral Equations

Consider the integral equation
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t
Cf)'(t—)ﬂ ( K(t,m)fﬁ_@ dr = {:(t) (A.2.1)
° ol %

vhere

b
Kt ®) = f & ) Gf fo.t) -§(x,*c\} d % (A.2.2)

and 'A is a positive real number, and '?(*\ is an integrable non
negative function.
The symbol - g denotes the reduced time variable given by the

relation
.t

§ = f olx, ) dt (A.2.3)

and

fiTep)
ax £) = € (A.2.4)

vhere { (T)  1s the shift function.

Whatever the formof | X\ &) | forany %, a(x,t) 1sa

]
non-negative function of 1  and hence g(x, t)  is a monotonically
increasing function of ‘t

Eq. (A.2.2) may be written in the form
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Kt ®) = )3 R GY f6u.0)-§00Y A%, (n2es)

'?“ and X assuming appropriate values.
Examining a typical term of (A.2.5) we deduce the following
properties for K (fl £

K¢ t) = K, (A.2.6)

Forany t , K(t,%) is & monotonically incressing function
of X , since (3 (t) 1is a monotonically decreasing function of 1 ,
this being the property of the relaxation modulus of linear viscoelastic
solids. Also

Kt o) = K (A.2.7)

vhere K (t) 14 monotonically decreasing in t . Pig. (A.2.1

K(t) L((f, t)

t 4 T
Figure (A.2.1)
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Also

f@E&) = H® { (t) (A.2.8)

where H (E) 1g the Heaviside unit function. Without loss of gener-
ality ve also assume that —{(0) =0 , hence C’J@) =0 | because
the case of —FCO) %o can be reduced to the previous case as will

be shown later.
BEq. (1) can be reduced to the standard form of the Volterra inte-

gral equation of the second kind by integration by parts, i.e.

t ot
| 2 Kit,®) -
D) + ) FTt, %) da(/c)(-\[ Py P®dr = {0 (429

=4

or

.f
* /
() - }/[ K ¢, 1) b =]C(H (.2.10)
where
* ?Kﬂ'\t)
Kt 4e) = T (A.2.11)
2/ = _3\_ ‘f(i) = 5_@_ (A.2.12)



L |

Froa (k.2.5)

DK, 'c\ Z Q alk) G{g&.‘.t\ %u,,t)} (A.2.13)
CA

Now unce a('t\ is alvays pcsitive and G“’) is monotonically

decreasing, G is non-positive and hence: K(t 4) 1is non-negative.

Lemsa.  Subject to the above restrictions on K (&) CD(H is
non-negative and non-decreasing if {((’) is non-negative and non-decreas-

ing.

Proof:

Eq. (A.2.10) is the standard form of the Volterra integral
equation of the second kind.

Fron the theory of integral equations it is proved [ I1] that

b - £l gf F i o) Ll an (A.2.16)

vhere Km ﬁ'.»‘3 is defined by the recurrence relation

t

* *
K (t &)= gK?f,’]) Kmf‘].’()db) (A.2.15)

and

* »
l/\' o = K (A.2.16)
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»* »*
Km is known as themth iterated Kernel. Since l‘( ~ ('('\ "'—)

is non-negative all the iterated Kernels are non-decreasing in X .
Also since q/ is a positive member it follows that if f(/t') is a
non-decreasing function d) (t) is also non-decreasting.

We shall utilize this important fact in what follows. In general
4([’) will be an arbitrary function so we seek the solution for d)(f')
vhen —f /(ﬂ 18 a simple non-decreasing function such as H t) ana

/
use the solution to construct another solution for arbitrary { )

Reformulation of the Probdlem

Given (A.2.1) vhere -f (F) 1s an arbitrary function we seek the

solution to the equation

¢
PO [ KO dr = HE) (a.2.17)
o 2
then
+

D)= S '\p(f-‘c) Z—i dt (A.2.18)

f®

Figure (A.2.2)
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{(f) = Af' H(*"’f.)+A)(; H(+_tl)4 .....LAH{.tQ (A.2.19a)

See Pig. (A.2.2).

In view of (A.2.18)

DI = AF Pet) + A Ple-t) s+ Af APpa) (a-2.290)

In the limit
+
CD(f) =( Y@ -t) C_‘_‘F i (A.2.19¢)
o dk

However '\P(O+\¢o 80 Ve reduce the solution to the standard

case by writing

AVE) = A HE) + A7) (A.2.20)

v *
here \V(o):O

Then substituting for D) ia (A.2.18) we get

Y HIO+W B + ) KO A qu 04V - H© (a.2.21)
o ° L i ax



L

Putting 1 =0+ wve get
xl)o +9 l(a’\l)o = | (A.2.22)

hence

- ' (a.2.23)

° 1+ ) K,

and substituting for '\*/o tn (A.2.21) we find

‘t

*

’\P*(H +) g K(f't)‘;j_\f d = ’A__ §i(°— I((t)} (A.2.24)
A d% l+)v(°

and the right hand side is now a monotonically increasing function of

t

Let

A S K. - K@) —_—. (t) (A.2.25)
l+)K, 1 ° } ﬂ

then (A.2.24) becomes

-+
* *
\y(tugf KG,@%’%P dr = q(t—\ (A.2.26)

*.
and ’\Jf) is a monotonically increasing function.

Solution of (A.2.26) by Reduction to an Algebraic Set of Equations

We divide the range of integration into small intervals:
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(0,6,) (£, 6 . ... ... (e  t)

In the first interval wve get

X i d’\P* ( (A.2.27)
N+ — d't - t‘ 2.
Ay (€) ]So K, 1) T 9(t)

By the mean value theorem

<

e ¥
g K (¢, )Y gr - }((t”v])'\}’(fl) (A.2.28)
o - 4
vhere o<y < t, (A.2.29)

Vi) = Vg z 9., Klt 1)K, e

)

(A.2.27) becomes
¥ x
x){ n }}({t“ypﬂ)' = ﬂ, (A.2.31)

In view of the properties of K({‘\") (A.2.31) may be written in

terms of the inequalities



I < «p* < 4
‘+)Ka ‘ |+}(Io

In the second interval ve get

*
4+

t

vhere

We also have the inequalities

K(,,0) € Kt 1) § KM 8)

Kt t,) S Kl €

»* ¥
b-%ove

* » ¥
AKE P + 2K DW=,

Ko
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(A.2.32)

(A.2.33)

(A.2.34)

(A.2.35)

(A.2.36)

(a.2.37)

(A.2.38)

(A.2.39)
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In viev of inequalities (A.2.37), (A.2.38) and (A.2.39), (A.2.35)
becomes :

*

SIS LACE BEE N

'\": +) K50 \H*-;- ) K_'(\k*— '\P\*) < 9, (A.2.41)

or

» o
9, + MKk )V < '\P‘x N LKoY, (A.2.42)
[+ YKo z

and similarly for other intervals.

It follows that if we choose

) (A.2.43)
f\_“ = {.J

»* »*
we get a lover bound to ’\P which ve denote by '\‘Pﬂ and by

choosing

_+. (A.2.44)

» »*
ve get an upper bound to "'P vhich we denote by ’\P“
*
Hence /\P is bounded by the solutions ’\P‘ and ’\P “ or

/\P <A < r\,’) (A.2.45)

g “
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Let
+
C‘; ) gw{)u,t)cﬁaw (A.2.46)
o % dr
and
+
_ % Ol‘F T (A.Q.Ib?)
o) _(o«gu 14 4

Then since ,\PG - t> is monotomically decreasing in 44 and

making use of Bonnet's second mean value theorem

\CP*_ CP* (M* < W“-\B |N‘ [)C(')’)’wx (A.2.48)

/
vhere o < y) < -t
Hence 1if ¢ denotes the error in the solution of CP for

some V}J‘

t. <N <t (A.2.49)

then

el SH o], G
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vhere again o < VL/ <+t .

Matrix Formulation of the Problem

Consider (Fig. A.2.3) some ’\y(ﬂ vhich is a non-decreasing

function of ‘t .

Y

Figure (A.2.3)

is capable of two approximate step-wise representations.

One is the full line and the other the dotted line,i.e.

DI IS B Y. (.2.51)
or
N ) HeAL A, )

Substitutions in (A.2.27) show that in fact (A.2.51) yields the
upper bound solution for '\P and (A.2.52) the lower bound. Thus ve

get
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]
\Pu,,' + Z K,‘« A“t*, = ‘)‘- (A.2.53)

or in matrix form,

[HJ{A%}'L)['(“_]{A'\*’;‘}:IC%} (A.2.54)

- [~ . a

vhere [H] = (A.2.55)
o
1 ] 1
Lt 1 |

L
and
[K“] - Ko (A.2.56)
Kzo '(ll
K3° K‘l kll
Kho r'“_‘
=

From (A.2.54)

{A‘[’ul = {:[H] +) [K“]J-'{ 9} (A.2.57)
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RAR O] [T REYCA| K2F
(A.2.58)
i'\{'ﬂ :[H][[H]-q[_l(}]]’fj} (A.2.59)
vhere - -
[KJ Ky (A.2.60)
Kll '(12

K\t Klz '(33

L ¢ . K

Naturally a linear variation in ’\{/ as indicated in Ref. 1

will yield a solution lying between the two bounds.

Example: (From Appendix I)
Consider the sladb problem vwhere the relevant :ntegral equation

to be solved is

t t

Cx + — E(?-E’)é_‘_l‘olft :-'za(og E(%-%’)G’_@M (A.2.61)
3K ), dn o dr
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In this case x = — , and

Kt t) = E(?fﬂ-g("’) (A.2.62)

We first solve the auxiliary equation

-t
VI T'<g Ef§® -&(«)}g dy = H© (A.2.63)
3 (+]

and obtain upper and lower bounds to ’\'P , by first finding 4")
as indicated in the previous section.

It is immediately obvious from (A.2.63) that
’\P("*\ % |+ _t'_(":l} =1 (A.2.64)

A solution for ’\P is obtained in the range o £ t <7 hours
and the range of integration is divided into the following intervals
(-00,0+) (o0+,.1) (.1,24) (.24,.4) (.4,.5) (.5,.6) (.6,.7) hours.

Under the above conditions we obtain the following values for "J’}

wa A,

1 N o P, P
0 0 0 .T7321 .T7321
.1 .01801 .01845 .79122 .T9166
.24 .03591 .03676 .80913 .80997
N .05863 .06031 .83184 .83352
.5 LQT3k2 .08160 .85263 .85u81
.6 10629 .10985 .87950 .88306
7 . 12822 13197 .91043 .90518
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For numerical details of the analysis ses [12].

From the table above and from Fig. (A.2.5) it can be seen that Y
lies vithin close bounds the maximum difference between ’\-Y“ and "‘P f)

being less than 0.%.

rig. (A.2.6) shows the exact solution lying between the upper and
lover bounds. This is because of the form of );(H in (A.2.1). In
general however this may not be the case.

On the other hand "'I/ helps to bracket the error and guides the

choice of the size of the intervals of integration.
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Figure (A.2.5)
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.3 TIME (Hrs)
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APPENDIX III

Proof of Convergence of the Iteration Solution Obtained in

Chapter 1I.

We finally present a proof of the convergence of the Iteration
solution to the cylinder problem, formulated in Chapter I. The
solution is obtained by perturbation sbout the uncompressed state.

Let us expand these stresses and strains into a series of 1/K:

- |
€oun
ee = 69° -+ é' ?;.
o
é" - Gd + Z €Evu
S = E:°+ Z E:-
w2y K} (A.3.1)
o> .
¢, =6, + ) &=
wat K"
pod
c = ée -+ Z_ f:-‘~
° ° KT
S
¢ = 6 +Z e
n
wa ! ‘<
vhere G = 6 +¢& + & (A.3.1a)
~ e 2
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Since
¢ = c . 30, © (A.3.2)
3K
we obtt’;in
o o
e.n C° J Gw
€+ Z == 1Y) 22 L3 ®  (A3.3)

= O - we
n=1 K& 3K LS W ‘<

Comparing powers of 1/K:

! (A.3.4)
ék = '3- dl&—'
€, = 3019@ (A.3.5)
In general
oy
€ 3 @4ty O (A.3.6)
3 = "~
| SN
Substituting for &  in terms of 66
T e
-1
& = 4 ?- (’Yze 3 - '36(°®+-|——Z v (A.3.7)
v 2n © 3u=| K“’

Integrating (A.3.7):
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od
e = 3% g r@olr +(§)zea(q‘;t)+—;—z—l— Srcﬂ_‘ dp (A.3.8)

Substituting for €¢ from (A.3.1)

o .
} \ ,
€ +Z €oun - 30,\PG, ﬂ+€(" ﬂ(" % _'2--—1( "dr {(A.3.9)
Wat K )
Comparing coefficients of K,
1,82 .3.
€ =3 P ) + € (r,, 6)(2) (A.3.10)
~
€ - L. ¢ d (A-3.11)
On - 3 :L[ r n-t r
"L
Also from (A.3.1),
*
D6n - _ G(,'. r) *(?_E_B_) (A.3.12)
= 27 ‘n
2~
To determine 3_6_9 we make use of the expression
o

RL—'—\

v G¥{= gs\%(a gvc)}
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e _ ! { ¢- zee} (A.3.13)
w -~

which in vievw of (A.3.11) and (A.3.6) becomes

~
e _a@rp) T - ew OO
CAl e KT
~
PR
- N 2
zee(’vxat)(:) - ?L?" :"_ g rc‘-ﬂ dr (A.3.1h)
=i T

In view of (A.3.1) and equating powers of K:

(%) = 2 f@-2v)-2em a2 ()

2~ ~
e _ fé_n_-_' _ 3_( ¢ d (A.3.16)
(3« )w - ~ r w-t r

Hence from (A.3.12)
~
1 Q ‘
G - g G~ &) -)6(3___9) d~ (A.3.17)
. ~ A - - -b,‘ "
By definition and in view of (A.3.1),

¢_ =3 ;¢ —'S“} | (4.3.18)

-~ N



161

vhere

S = GO DX @) (83.19)
It can be readily shown that
. % 2+ "’ie ~ e} (A.3.20)

Therefore in view of (A.3.19) and (A.3.20),

: ) & (A.3.21
S :.__36*{2‘7(5.;-)“4€9“ )
and from (A.3.18)

e gg G *(«;?)Kd« +LG¥

' 1~'

13’“’)4 ‘ (A.3.22)

Eq. (A.3.22) formally completes the cycle of operations in as far
as, €g  1s found from (A.3.10), (%)  from (A.3.15), and G,
© D~ /0
from (A.3.17). Hence G is found from (A.3.22), and consequently
eo' and ('559)' can be found from (A.3.11) and (A.3.16) reapec-

tively. This procedure can be repeated for higher values of n

Criteria of Convergence

From (A.3.11), (A.3.16) and (A.3.22) we obtain
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~a

. 3 Gn-1 2 L A.3.23
“’»-J(G *{ S asS pe. dpfde + (8.3.23)

3

\ M G*{a o+ ge drﬂ

~

also from (A.3.23)

gg*Hu_Cﬂ,Qa.«l lg-x{ H, +-Gf-6‘ ‘ (A.3.24)

il

PRI

where
"l

H ={c: %g pe,. d\’} (.3.24a)

6(6,'1',-0 is a non-negative monotonically increasing

function of 7 for all ~ and t

Hence*
t
HGH x,4) 2H gy <G, l H MI (A.3.25)
2%
vhere
A
I H“_("'), - ‘Hk-'lmax ter ’(”l ’051 st
Also

~

£ g[ G *Hn—- ‘d" fS‘GO(CLf?'d.( (A.3.26)

' ~
\

lfG *H, _, v

* For proof see end of Appendix.



in viev of (A.3.25).

However

, C\k(:)‘ <

A

‘ éu-l\ 2

- +;;§ ple.. 1 dp

Then from (A.3.28), (A.3.25) and (A.3.24)

|6

We now write

or

oS

g{(éu- %gr‘ew"df}d‘ +

%Sr‘ .-.\dv
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(A.3.28)

(A.3.29)

(A.3.30)

(A.3.31)

(A.3.32)
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AR IR A X 4%'-1”2}:%\‘.-.\{(::‘.\1*3'} (4333

Hence a sufficient (but not necessary) condition of convergence is

that

Go 2 (A.3.34)

r—

K Vat, L
(21

A typical value of dl/,, would be 2.0.
'

In this case

Go 2 (A.3.35)
< 13
vhich in terms of \/,  becomes,
3(1-22) ¢ &
2 (1+Y%) 13
or
(A.3.36)
.3
v,y o°

It is important, however, that smaller values of \/, do not
exclude convergence although their sufficiency cannot be established.
Nevertheless we expect that for most viscoelastic materials \7, will

be much nearer 1/2, and hence (A.3.36) is sufficient for most practical

purposes.
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To Show that if G(”’c"'. ) 1s Monotonically Increasing in A

-t"

A
} gG(d,t,'ﬂ?_t‘ dﬂ:) <IH G, (A.3.30)
> r XA
where A
H = '—'max n (o,(‘B

t
g (z("'.f,ﬂ?—t-: d"ci = ‘ G‘(H'- H°)+GZ(H—H)+----+ GMH-H)
A 2 _ 2 "

:’ G, Ho+ H (G- Vs o+ H G, \

£ G, [H,I +[G1-G')|H, L+ ...+ G IH| ganGn (A.3.38)

where Gm is some value of G in the ggh; interval
In the limit G(,,,. (.)n___ 6(," t |‘t)=Go , and therefore

t

A
’ g G ("'-’C"ﬂ'a_.'i' de | <IH Go (A.3.39)
2%

o

[ n-!
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GENERAL DISCUSSION

When the critical dependence of the material properties of visco-
elastic solids on temperature vas established, it wvas realized that the
prospects of obtaining analytic solutions to the related boundary value
problem vith arbitrary geometry, were rather poor. In fact, up to the
time the present work vas undertaken, the only two problems that
yielded exact solutions in the formal sense, vere those of the infinite
state and the sphere with polar symmetry, these solutions being limited
to solids with thermorheologically simple behavior.

The purpoae of the present work was dual in th» sense that though
the infinite cylinder was initially the central problem to vhich a
solution vas sought, general approximate techniques that would apply
to any desired geomeiry were developed, and tested with very encourag-
ing results in the two cases where exact solutions were known.

The cylinder problem was also treated successfully, and two
analytic solutions were given. The perturbution solution can be viewed
as an "exact” solution, in .s far as the series expansion of the unknown
function has been proved convergent, and hence the desired degree of
accuracy may be achieved by calculating a sufficient number of terms.

Also, within the limitation of material incompressibility the
problems of the sphere and cylinder were examined and solved in the
pregence of inertia forces. It is worth noting that in the presence of
inertia forces, compressibility precludes closed form solutions even in
the case of the infinite slab, since the equilibrium equation can no

longer be integrated directly.
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A perturbation technique is indicated here as well, and will form
the basis of future work.

An interesting consequence of the material dependence on temperature,
from a structural integrity design standpoint, is the effect of a
periodic temperature history ou the stresses in a viscoelastic slab.

It vas shown in Appendix I that the maximum etress was almost
twice the value that would have occurred in an elastic slab under the
same temperature history. This is contrary to views empressed in the
literature [13] , that stresses due to a step input are likely to be the
design stresses.

In fact this phenomenon is only but one facet of the "Thermal
Cycling Problem" which is of particular concern in systems with solid
propellant configurations. 1In view of the above result it is natural
to inquire into the existence of a critical thermal cycle which will
produce the maximum possible stress at some point in the viscoelastic
body. ‘

Though the existence of such a cycle is instinctively certain, its
determination is a formidable problem, and it requires further studies.

Finally in the third Chapter, the horizontal slump problem of a
viscoelastic cylinder under isothermal conditions, contained in an
elastic shell is solved formally. Numerical computetions are under
way.

This is a problem of concern vhen solid propellant systems have

to be stored for a prolonged period of time.
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