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Th object of the present vork is the investigation into the

problem of stress and deformation of linear viscoelastic solids

under various environmntal conditions, such as gravity, temperature

and inertis forces.

Apart introduction, vhich deals with the state of the

art date, the bo~dy of the report is divided in three chapters.

In the first chapter, the themal stresses in viscoelastic solids

vith temperature dependent properties are investigated, temperature

dependence being limited to the thermorheologically simple type. Nere

approximate methods are developed. Finally, the infinite cylinder

under a transient radial temperature field is studied and two analytic

solutions are given.

second chapter is occupied with the evaluation of the effects

of the acceleration terms on the stress distribution in incompressible

viscoelastic solids, again under conditions of non-uniform transient

temperature. Analytic solutions are given to the problems of the hollov

sphere and cylinder.

-t"ird cl~hapter is devoted to gravitational effects. The problem

of the horizontal slump of a viscoelastic bollov cylinder eontained in

thin elastic shell and resting on a rigid horizontal plane is solved

by the application of the Finite Fourier Transform and the Laplace

Trasform.

01n 'appendix I the problem of an infinite slab and a solid sphere

are solved numerically for the purpose of Illustration and compared

vith exact solutions. The methods of the first chapter are also used
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for numerical solution of the problem of cylinder in connection with

digital computer progams. In Appendix II error estimate@ connected

with one of the analytic methods are derived. In Appendix III the

convergence of the first analytic method is established.



GERIRAL ITROIDUCTION

The method of analysis of the quasi-static boundary value problem

for homogeneous isotropic linear viscoelastic materials under surface

tractions, body forces and isothermal temperature conditions is now

well established.

The formal solution of the above problem within the scope of small

deformatiors and time independent boundaries can be effected by the

application of Laplace transform thereby eliminating the time depen-

dence and thus reducing the viscoelastic problem to an "associate"

elastic one.

The introduction of a temperature field however, be it transient

or steady, introduces new difficulties that are not easily surmountable.

The temperature effects are two-fold, i.e. (a) Thermal strains

are set up, and (b) the mechanical properties being extremely sensitive

to temperature variations - orders of 100 C are significant - ensure

that a non-homogeneous transient temperature entails a non-homogeneous

material with mechanical properties as functions of the space variables

and time.

The mode of variation of the mechanical properties with temperature

is in itself a problem which has only been partially solved.

In the present paper, these difficulties will be formally investi-

gated and some methods for overcoming them will be given.

Review of the Isothermal Quasistatic Problem

Given a viscoelastic body B with surface S under surface tractions

Ti(s) body forces fi and surface displacements ui(s) which may possibly
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depend on time, the object is to determine the stress and displacement

distribution within the body.

The viscoelastic constitutive relations in Cartesian coordinates

can always be put in the form

sii : o G,c-t-ee)"a i ,L't(l

o "

where

G1 is the relaxation modulus in shear and G2 is the relaxation modulus

in dilatation.

The complete solution is obtained if the following relations are

satisfied.
**

Equilibrium condition

Strain displacement relation

1 { ,l+(5)

* Repeated indices denote susiation.

* A coma followed by an index j denote differentiation with respect
to the jth co-ordinate.



3

and the boundary conditions:

IA(6)

where , are prescribed on the part 91 of the boundary

" (7)

re T1(S2) are prescribed on the remaining part S2 of the boundary S.

The usual approach is to remove time dependence by applying

Laplace Transform.

Then Eq. (i) and (2) become

K (-X"(8)

for an initially unstressed and unstrained state.

(10)

d 4- 0,4(1

14 - ', onS 1 (12)
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Kon s9 (13)

Eq. (8) to (13) clearly correspond to an elastic problem where

the dependent variables and elastic constants are functions of the

Laplace Transform parameter p.

The elastic equivalents of (8) and (9) are:

2Ge.

If a solution to the associate elastic problem can be found then

the viscoelastic solution is derived by applying the inverse Laplace

Transform to the elastic solution after substitution of GIp for 2G and

G2P for 3K.

The method of solution of the isothermal problem is therefore

clearly defined.

Influence of Temperature on the Mechani-al Properties

It has been established by experiments that increase in temper-

ature accentuates creep and relaxation rates. that is, strains increase

and stresses decay faster with time.

The direct experimental determination of the dependence of these

rates on the current temperature is an exceedingly difficult task, as

one can appreciate.
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However, a wide class of morphous polymers obeying the linear

viscoelastic law exhibit a simple property with change of temperature.

This property has been utilized to derive the dependence of the

mechanical properties on temperature for such a class. This property

is illustrated in Fig. 1.

G
T T

Figure. 1

In this figure the relaxation modulus is plotted against logt for

different constant uniform temperatures.

It is seen that the effect of a temperature increase, is a shift

of the whole relaxation curve to the left, this shift being a function

of temperature.

let

te t(15)

then G (4-) =Glio.ti is obtained from G(t) by the transformation
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G ('') G (.e)(16)

the star is used to indicate the change in functional dependence.

In view of Fig. 1

GT To '0

G T,T.I '

GT(7,) =. f(T) > 8 -T

We now put

e - O (T, (-9)

Then

G= G - CA.(r') t. (2o)

10

and generally

= GTO (T "j (21)
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We nov define a "reduced time" such that

S= a(r) t (22)

Then finally

T() G (23)

Thus knowing G at some uniform reference temperature To, G at any

other uniform temperature can be found.

From (23)

S.GT _ TGr.( CA)( '&. C(T) (24)

Eq. (24) gives a relation between the relaxation rates at temperature

T as compared to To.

For instance at t =O, 0

d.GT jý r/ I AL) (25)

Note that • t for all temperature histories since r))= e 0 0

because of (17).



From (22) and (23)

GT (o) = G (o) (26)

Eq. (26) implies that the elastic (initial) response of the

material is unaffected by temperature changes. Also in view of (26)

and (23)

GT (f-t TO (27)

The constitutive relations at temperature T take the form:

t

G (28)

/

where a 'A , and G1 is referred to th. reference temperature

To. Similarly,

G -(29)
0

assuming a stress free field in the presence of the uniform temperature

T. Experimental observations as well as thermodynamic considerations

indicate that the same shift factor applies both to 01 and G2 .
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Steady Non-uniform Temperature

Relations (28) and (29) can be immediately generalized to steady

non-uniform temperatures, where now both aT and, hence are

functions of the space variables

In an explicit form (28) and (29) become:

t

-Z (L (XG)(- AkIt (30)

and

t

where

T

: = o N (T') a.T (32)

It is noteworthy that L.T. is still applicable to (30) and (31)

i.e.

Hcft T l i L Tan(33)

* Henceforth L.T. will signify Laplace Transform.
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T

However, in the resulting associate elastic problem the associate

"elastic constants" are now functions of the space variables. Closed

form solution to such a problem is rather unlikely, except for the

simplest geometries, and resort to numerical procedures. is inevitable.

Temperature as Fun •tion of Space Variables and Time

The constitutive relations in the presence of transient temper-

ature fields, have been formulated as a generalization of Eq. (28) and

(29), and take the following form

-t

(;i W IA (36)
0

where now

! (37)

(- (38)

seRef E33
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Relations (35) and (36) though still relatively simple are no

longer in a convolution form and L.T. is inapplicable, vith respect to

t.

A transformtion has been suggested that, apparently, overcomes

this difficulty.

Let

(39)

(o40)

It must be noted that since ST is non-negative is a

monotomically increasing function of time for any x

Hence relation (37) may be inverted in the form:

Then

S;A (142)AA.. (

and similarly for other functions.

In view of (39), (40), (41) and (42), relations (35) and (36)

take the form:

0. C,(43)
0 q v '1e
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G (44)

Eq. (43) and (44) are now convolution integrals in the

variable, and hence L.T. is again applicable in this particular

variable.

This transformation, however, modifies the field equations as well.

For the sake of argument let a function

f (45)

Then

ltL((I(#L)(46)

In term of the new variables

7K+D (i. sunned) (47)

or,

A A

The equilibrium relation
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=0 (149)

becomes:

4.

I0 ±i zo (50)

Note that

A

Ax, I (51)

Since L.T. of an ordinary product of two functions is not always defined

L.T. is inapplicable to Eq. (50).

Obviously the above transformation simplifies the corstitive

relations but ccoplicates the field equations.

This transformation, however, is useful in the case where T = T(t)

only. Then,

~ (52)

and (50) reduces to

A
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Now L.T. of the field equations and constitutive relation can

be taken with respect to f and the viscoelastic problem reduces to

an associate elastic problem as in the isothermal case.

We summarize as follows:

(a) Isothermal case: L.T. is applicable with respect to t and the

viscoelastic problem reduces to an associate elastic problem.

(b) Temperature space dependent but steady: L.T. applicable with

respect to t. Viscoelastic problem reduces to an associate

elastic problem with material constants as functions of the space

variables.

(c) Temperature uniform but time dependent- L.T. applicable with

respect to the reduced variable . Viscoelastic problem

reduces to an associate elastic problem as in case (a).

(d) Temperature both space and time dependent: L.T. inapplicable.

Associate elastic problem does not exist.

A certain amount of simplification is achieved in cases where the

dilatational response of the material is elastic. If the material is

also thermorheologically simple, then the dilatational response remains

unaffected by temperature changes (since when the function is shifted

it merely reproduces itself).

The dilatational behavior of the material is now given in the

form

dr . (54)

where K is now independent of time and temperature.
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An Alternative Integral Form of the Constitutive Equations

It must be emphasized that Eq. (1) and (54) are not a unique

integral representation of the viscoelastic constitutive laws. One.

for instance, may make use of the "tension modulus" E and "poissons

ratio" V , where from a purely formal standpoint E(t) is the stress

response of a tensile specimen to a constant axial unit strain. ard

V (t) is the corresponding lateral strain response to the same

strain.

Under isothermal conditions the stress-strain relations for

direct stresses and strains become,

t -
(

where suffices 1, 2, 3 are cyclically interchangeable.

For a material with elastic dilatational response the formal

equivalence of (54) and (55) can be round by taking L.T.

Then (1) and (54) become:

(56)

-K (57)

whereas (55) now is:

= ,. ( "(- (58)
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or

fE 7,, (59)

It• • -- I (60)
___-- I -. 1( I

Comparison of (56), (57) and (60) and a few algebraic manipulations

yield

E - ____ (61)

9 ______(62)

(63)

_ _ _ (64)

Bence in terms of E and V the complete stress-strain relations

are:
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t

Since all properties should obey the same shift low (65) and (66)

can be generalized for the non-isothermal case i.e.

It

•J"~ ~ ~~e +i t*••)-(fi¢•a i (67)

and naturally

Jo~'- ~ ~ At; (68)

In the subsequent analysis we shall have occasion to use both

constitutive representations.
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CHATER I

Thermal Stresses In Viscoelastic Solids With +aterial Properties

Exhibiting Thermorheologically Simple Temperature Dependence.

1.1 Introduction

It was pointed out in the general introduction that when the

temperature field is transient and space dependent, elimination of the

time dependence from the constitutive and field equations simultaneously

has been impossible by means of L.T. or any other exact transformation.

Part of the present chapter will be devoted to developing approx-

imate techniques by which time dependence may be eliminated, thus facil-

itating the solution of the relevant equations. In fact two such

techniques are given which are not dependent on the particular geometry

of the body at hand.

However, other approximations, such as material incompressibility

or effective constant Poisson's ratio, that are suited to a particular

geometry, such as the hollow cylinder, are also used vi+'. Avantage.

The inapplicability of the principle of superposition - except in a

very restricted sense - robe the analysis of a powerful tool, and

limits the chances of development of an exact general theory.

1.2 General Approximate Techniques

An approximation rendering L.T. applicable

Consider the deviatoric constitutive relation (35) in the

presence of a transient non-uniform temperature field.
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0

where the suffix is omitted.

Figure (1.2.1) shows the variation of with time for mono-

torically increasing and decreasing temperature.

T = Constant

2 <o0

t

Figure (1.2.1)

I +f''slope" An+"

t1 t 2  tn t

Figure (1.2.2)
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The present technique hinges on the piecewise linearization of

over small time intervals,

Then in any typical interval K,

: ("•4< t - (1.2.2)
k• t<-

where A,, is the "slope" of in the kth interval (Fig. 1.2.2)

We now assume that by the present procedure, we have found the

expressions for e-, (t) for each interval up to f , and call theK

. where texpression for e,' in the interval K by -e (t h

By introducing (1.2.2) and carrying out the integration in (1.2.1)

over all intervals for tt ' - 0 and assuming that F(O continues

as a straight line for : 5 • < O we obtain:

Let-
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9() (1.2-5)

Then

•.;(•)_~ k.+(. , l) (1.2.6)
Kr-ii

We now make the following transformation

') f-ý (1.2.7)

where now o0 .

and in the last integral T

(1.2.8)

where o .< I -<

In view of (1.2.7) and (1.2.8)

$%• !l--& $% I ,-I

e•, Ct) - e•,. (,p•+L. -4 . ('i') (1.2.9)

u eu (t) ) e obta(n:

On substitution in (1.2.4) we obtain:
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Nov taking L.T. of (1.2.10) and letting

L.T. • T cx) (.2.)

we obtain

But

+k+1

in view of the continuity of strain at t and (t.) is knovn

from the previous solution.

nes (1.2.12) becomes

AT(6-1 4 %-, ,i P eC& - _ - (t.Qd (1.2.14)

The expression (1.2.4) for IK with the chanp of variable (1.2.7)

becomes:
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bI(

{'4

Taking L.T. of (1.2.16) vith respect t~n x:

).."

Since e,.. (8) for t A <. &,( iS knovn from a previous step
W-1

of the solution, T is knovJ function of p found from Eq. (1.2.17).

TakingL.T. f (1..16) i thrset x



Thus calling

and taking L.T. of (1.2.3) and in view of (2.3.14) and (1.2.18) and

(1.2.19) we obtain:

A1 a n .T .Thre r th (1.2.20)

Eq. (1.2.20) is a linear relationship between the transformed

functions ouoand h C is u f S,:ite is known then .

is also known and thus t n ,.h and hence dur (e ' can be found

from (1.2.20) by an inverse L.T. Therefore the strain 4is

known as a function of time in the interval t<

This solution, however, is utilized only for <~b~ {.~g

For t l< t the curve ý (t) is continued with a new slope as a

straigh1t line to infinite, and the above procedure is repeated.

Eq. (1.2.20) can be used in conjunction with the solution of the

boundary value problem in the following manner.

In the interval 0.4 -<0 (1.2.20) is written in the form:

I A.+,I A- e
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vhere is a knmrn function. A similar expression my be derived

for the hydrostatic constitutive relation, i.e.

S~ .i)

IN 2- A., C4( - (1.2.22)

The field equations for the current interval may also be put in

the form

_;¢

(1.2.23)

Eq. (1.2.21), (1.2.22) and (1.2.23) are necessary and sufficient for

the solution of the non-isotberml viscoelastic boundary value problem

in the transforued plane.

This technique has been used vith encouraging results in the case

of the slab, see Ref. L10] In the same reference, the problem has

been formulated where the constitutive equations are given in the form

of differential operators.

Reduction of the Constitutive Integral Equations to a Set of

Simultaneous Algebraic Equations

Consider the following constitutive equation of the Volterra type
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tS 1I (1-2.24)

where s is the deviatoric stress tensor and e is the deviatoric strain

tensor.

For simplicity denote

then (1.2.24) becomes

1;

G (Ae• (1.2.26)

For A. fixed, e(O can be approximated by a piece-vise linear

function of t (Figure 2.1.3).

4, . 1 I

I I I
~i l Ii

O t1 t t2

Figure (0 1. 3)
LINWAP PIECEWI1E VARIATION
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Lost A,. represent the "slope" in the nth interval; and 5 ,e

the values of S and -e at the end of the nth interval.

Then,
it.

SSW A G

A4 '¾. G(,ti o4' (1.2.2T)

Let

(-xG(,tt 0 J~ =A (1.2.28)

where (1.2.29)

Then

04.

(1.2.30)

where (Av A~ (1.231)

or in matrix form

[G J C& (1.2.32)
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G,,11 CM "ILI
vhere [Cx...•.,, % ., (1.2.33)

Note that is a triangular matrix.

Since

at z C (1.2.314)
-y -r -V-I

ve have the relation

vhere I (1.2.36)[HJ ,

I I I .... I

From (1.2.32)

S(1.2.37)

and

e LHJGJ~ ~(1.2.38)
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also

D.]. being triangular, G ] is very easy to find. Eq. (1.2.38)• is

a numerical solution of the Volterra equation (2.3.24). Eowevermore

will be said about this, in the closing parts of this chapter.

Application to the Non-isothermal Viscoelastic Boundary Value

Problem

Equation (1.2.32) can serve as a basis for solving the non-isother-

mal boundary value problem for all t by solving consequentively for

small finite time intervals.

In this way the time dependence is eliminated and the problem

reduces to the solution of a related elastic problem with "initial

strains" and spatially dependent elastic properties.

In the general problem, parallel to (1.2.32) there will be a

dilatational stress-strain relation which again can be put in the form

also

we call Ici[ -'J -: GaJ (1.2.42)
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and

(G, H) = ,C~ (1.2.43)

SL,=1GB LY'-
Where j_ and Gj are triangular matrices.

In the first interval the streas-strain relations become:

( 0 -e (1.2.-44)

GILe 3ot aoc !j (1.2.45)

Clearly (1.2.44) and (1.2.45) together with the equilibrium

equations, strain displacement relation, and boundary conditions consti-

tute an elastic problem with spatially dependent elastic constants.

In the second interval we get

We now have an elastic problem vith "initial" knovn strains

G, , and 101, . Therefore in any typical interval we can solve

for the stresses in that interval in term of the temperature in that

same interval, and the stresses, strain & temperature in all previous

intervals. The solution for all time can be determined in this
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systamtic way.

It is interesting to note that moving boundaries can be dealt vith

by means of the above method, in the light or smel deformation theory.

This is simply done by determining the new boundary from the solution

in the previous interval and assuming the boundary to remain fixed in

the current interval. This naturally is only approximately true.

The above approach provides a systematic method through vhich the

general viscoelastic boundary value problem can be solved by numerical

means.

A Variation on the Previous Technique

An alternative approach is to consider eM) as an escalator function

of time. See Fig. (1.2.4)

C I

t

Figure (1.2.4)

Then

H0
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and

-v

Substituting (1.2.49) in (1.2.26) we obtain

13W:

Thus

¾C4. C3. . (1.2.51)• 0 , -v1 I A•t4

where

Eq. (1.2.51) is identical in form with Eq. (1.2.30), however, the

coefficients are now defined differently. The advantage of

this particular formulation, at the expense of smaller time Intervals,

is that

S ()(1.252)

for all ki and all temperature variations, this simply being the

elastic response of the material which the shift hypothesis renders

independent of temperature.
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Naturally, we have again in matrix form:

js~ ~ aJ[~iY~eY(1.2.53)

where now the elements of the column matrices L S and 4 are

the average values of the deviatoric stress and strainsin the corres-

ponding time intervals. Also,

Again, in the first time interval ye have Eq's (1.2.44) and
-X

(1.2.45). (tii and G1,, , however, are now constants and the

viscoelastic problem is reduced to an elastic problem.

In view of (1.2.52) the viscoelastic problem is repeatedly reduced

to an elastic problem in all the intervals except that for intervals,

subsequent to the first, known "initial strains" will also be present.

The power of this technique does not need emphasizing.

1.3 Solution By Assuming Mechanical Incompressibility

This assumption has been utilized in the past 2 to obtain

solutions to viscoelastic boundary value problems. It is based on

the hypothesis that, where the dilatational response is elastic, the

bulk modulus K Is of exceedingly high order of magnitude so that

in the expression

+ 5~ 3ae()(131
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the term is negligible and hence

& = ••'o @(1.3.2)

This simplification can lead in certain cases to a closed form

solution - see sections 4 and 5a - however, unless K is in fact

very large such a solution can only be approximate.

On the other hand, such a solution can serve a very good tero'th

approximation to an iteration process.

For the sake of illustration ve give an account of this process

for a plane strain problem =0 , however, the method is quite

general. A solution is found for 09 . From this solution,

is calculated from

=~l §'d(~rk (1.3.3)

This value of • is substituted in (1.3.1) and I- is taken as

the actual modulus of the material. Then 2 is found in terms of

a nev temperature w vhere:

where G, is the value found from the first solution and

= (1.3.5)
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A second solution is now found in terms of 0 , and the process is

repeated to required accuracy.

1.4 Application to a Viscoelastic Cylinder Enclosed in an Elastic Case

Forsmlation of the Problem

Here we consider a hollow cylinder under plane strain subject

to a radial transient temperature field. The cylinder in enclosed by

a thin elastic shell which is assumed to be rigidly bonded to the

cylinder (Fig. 1.4.1).

Under these conditions

0= , ' AA A .(,y,,) (1.•.2)

t C- = (1.4.3)

- _AA (1.14.4)

We now have the following compatibility relations in view of (1.4.2),

(1.-.3) and (1.4.4).

" (i (1.1.6,

?:±9 (,,YLeG)(..6
"r ?"Y
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r 2h

Elastic Shell

Figure (1..1)
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•-,• e _ .--e9  _'r~ 6 =~ •-,6 (1.1,.7)

ly-v Q

where e, and £ are deviatoric strains.

The equilibrium relation to be satisfied is

4- * o (1.1.8)
-- f

Making use of Eq. we get

= .- 3WJ@9 (1.-.9)
•K

Iteration Solution

We nov empl9y the hypothesis that the material is elastically

incompressible in dilatation by mechanical forces,C2] , i.e.:

(1.4.10)

and use this assumption as the zero'th approximation to the solution

of our problem, as in the case of the infinite slab.

Then from (1.4.6) and (1-4.9) and (1.4.10):

6 ~ C OeP~ ) ~ ~ ,(..1
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Integrating
,4"

S- •. r' r v-- ) -L ) cj

+C(--i I~)1)(..2

Making use of (1.4.10):

-11

or

where

From Eq. (1.4.7) we obtain:

V _ ( (C- .. 16)
-v-
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which in view of (1.4.9) and (1.4.10) become;

or

We nov use (1.4.7), (1.4.8) and (30) to obtain

which in view of (1.4.18) become

eT

-4- (1.4.20)

Lat

, .) a t (1.4.21)
0d
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Then

Vi T (1.14.22)

and

,2 F (1.4.23)

Obviously e, C> since -y-r , is a free surface.

If at -Y =,vl there is a rigid boundary =E0.t)-- and the

complete solution is

F r (1.4.214)

In the case of the boundary being an elastic shell C, and Ce

for both cylinder and shell mst be equal at the common boundary.

Let (I (f< be the temperature of the shell assumed constant

through the thickness. All parameters vith suffix 5 refer to the

elastic shell.

Then

(1-),d S -2 SZ (1.14.25)
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Also let

-1 - t t (1.4.26)

I,

Then (1.4.23) becomes:

-tat

Eliminating G from (1.4.25) and (1.4.27) we get

Io" I

'Ta.

E c4s 4. L ('v, C1 EL

. G I~~t. )If A,e) 01(..,•

Eq. (1.4.28) is a Volterra integral equation of the second kind.

The solution of this equation - see Appendix II - for •W(-,, •

and substitution for E(.,t in (1.4.23) yields the complete solution

of the problem in the zero'th approximation.
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The circumferential stress 4 is obtainable from (i.4.8) i.e.

"-Y ?4 - (1.4.29)

To determine w ye make use of the identity

= 3 ~-~)(1.4.30)

where

+

-Y~ 3 3 L Y (1.4.32)

In viev of (1.4.30), (1.4.31), (1.4.32) and (1.4.23), d. can be

determined.

Substituting for in (1.4.9) and repeating the above proce-

dure, we can find a first approximation tothe solution in terms of

some fictition temperature where

A systematic formulation of the iteration process. together with
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sufficient conditions for its convergence is given in Appendix II.

A computer program based on this theory has been developed 9
fOG&L~CI

by means of which, the stress and strain distributions areA in a hollow

cylinder contained in a rigid shell. The results and the corresponding

temperature histories are shown in Figs. (1.4.2), (1.4.3), (1.4.4),

(1.•4.5), and (1.4.6).
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1.5 A Better Zero'th Approximation to the Solution "ab initio"

By a slightly different approach a closed form solution is obtained

which involves a less drastic approximation than the one employed in

the previous section.

Consider the following elastic relations which can be immediately

generalized to the corresponding viscoelastic relations.

*EI IL

Since 6 ;: we get

\ ,- Ew (1.5.2)

and hence:

However

and the corresponding viscoelastic relation for constant K is

3 t (1.5.5)
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Since K is constant and E () varies between .and zero.

for uncrossed linked, and E and E where E F- for a

real propellant,

z

For polmethyl methacrylate Q = .35, which is a low value for0

viscoelastic materials. However even in this case

I.S < 14 I \>(7) • ' (1.5.7)

i.e. 14'() varies within narrow limits and thus one is Justified to

make the approximation

1-= .4-25- 1.4 ?_ (1.5.8)z

where k - .425 in this case.

Then by considering a constant average '2 for a viscoelastic

material we will have an expression analogous to (1.5.3):

S:t

n ieofI..)(1.5e9)

In view of (1.4.8) we get
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01"

~ (1.5.11)

lor

also

'- (1..12

Combining (1.5.11) and (1.5.12)

Integrating (1.5.13)

Y L- f J ot

KI

__ a.(
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and

-,,-

-w C) d Y i

Let

-( +

r E ,Jt (1.5.16)

In view of (1.5.16) and (1-.415) we get:

S_. ._+ (1.5.17)

where X2 -C)+(v' (1.5-18)

We now differentiate (1.5.17) with respect to P and denote such

differentiation by a dot, then after differentiation with respect to

time, multiplication by G -•/) , and integration between the

limits of 0 and t we get:
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- (1.519)

by (1.4.1 9 ).

Let us consider now the functions:

S= ý (,.() & =ý(Y (1.5.20)

For fixed Y , is a monotonic function of t and hence

it can be inverted in the form

. ý = I (-Y ý )(1.5.21)

Then if ý is a function of 'Y and

Also let
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= 7 _-

A

Then substituting (1.5.23) in (1.5.19) we obtain

-
-(f, ) 'Z Ž G6 ( ý -ý ' ' Ir - ý -

+

Referring all quantities to the P, plane (1.5.24) becomes

AA A+Y- (" = gR'+-GcIf "'):-, 0• •,' (-:)+ •

4 3o' •C(-4')4. , A+ c-' (1•g .5.25)

0"
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We now take Laplace transform of (1.5.25) with respect to

and obtain:

A A

A

Now letting

________(1.5.27)
'-4-

(1.5.26) become:

C a(1.5.2B)

Now taking the inverse Laplace transform we find

A A

K 0

2_ (15-29
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Finally reverting to the -' t plane (1.5.29) takes the form.

3Kal

+

+ . r 0 ( -•/) C , (1.5.•30)

-Y

Substituting for T, from (1.5.23) and after putting

3V
0

we obtain

~ (1.5.32)

Hence:

01 (
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since e(v= )=C., being a fret surface. Therefore,

S (..rj,) e)~C1 -) + C •_'))' dPC (1.5.•34)

"fv Y, 0

Also in viev of (1.5.17) and (1.5.18),

6 = ~C1(& (1.5.35)

-Y2.

& -,- , (1.5.36)

At the interface of the viscoelastic cylinder and the elastic

shell we have the relation

- , -y (1.5.37)

where suffix 5 refers tothe shell and S is the mean temperature

over the shell thickness.

Eliminating e from (1.5.35) and (1.5.37) we obtain:
a-

L+ _f C (L-on , , -fS (1.5.38)

a.
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in viev of (1.5.-4) and (1.5.38)

2

-4- L -- ÷C -,

S5Es ( 39)

vhere

Eq. (1.5.39) is again a Volterra Integral equation of the second

kind in C ( .

Solution of this equation and substitution in (1.5.33) solves the

problem completely.

The hoop stress can be found iiediately from,

d = T +•"e.-1 (1.5.41)
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Since this solution is dependent on the aforementioned approxima-

tion one can test its accuracy by calculating from the expres-

Sion)

e

and then use the iterative method developed in this chapter to calculate

a more exact value of d.- . Hovever, comparison of G as

obtained from (1.5.42) as opposed to d obtained from the approxi-

mate expression (1.5.9) will determine vhether an iteration should be

necessary.



60

CHAPTER II

Dynamic Stresses In Thermorheologically Simple Viscoelastic

Bodies

2.1 Introduction

Dynamic stresses in linear viscoelastic elastic solids under non-

isothermal conditions are still an unexplored field. Hopes of obtain-

ing closed form solutions even for the simplest configurations are

rather small as will be appreciated from the contents of this report.

One will recall that the quasistatic problem of the slab and the

sphere were given a closed form solution, formlly at least because

the relevant equilibrium equation, in both cases, could be integrated

directly. When, however. inertia forces are taken into account this

is no longer possible.

In the present chapter progress has been made by limiting our atten-

tion to incompressible viscoelastic materials, in the sense that volu-

metric changes either due to mechanical forces or temperature fields

are zero.

Consequently the dynamic stresses examined here, arise because of

the time vise variation of the mechanical forces (stresses) applied at

the boundary.

We limit ourselves to the configurations of the sphere and the

infinite hollow cylinder, both with polar sysetry, so that dependent

variables are functions of the radius only and time. On the other

hand, within this restriction, temperature fields are both non-homo-

geneous and transient in nature.
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The solutions of both problem reduce to Volterra integral equations

of the second kind, which can be systematically solved namsrically vith-

out undue difficulty.

In the first part of the report ve treat the viscoelastic sphere

with polar symetry. In the second part we treat the hollow viscoelastic

cylinder infinite in length and also vith polar symetry. In both cases

the dynamic stresses are examined in the presence of tine-varying mechan-

ical, forces

2.2 Dy•nmic Stresses in a Viscoelastic Sphere

Sphere With Infinite External Radius

We first investigate the case of a sphere with an infinite

external radius, so that, essentially, we have a viscoelastic continuum

with a spherical cavity, in a transient inhomogeneous temperature field

with polar symetry. The cavity is subjected to mechanical pressure

which may vary with time. It is assumed that prior to tize t-O the

pressure was constant and that any variation began at time t - 0+.

The temperature field, however, my have existed prior to the

application of the pressure, the time of application of the temperature

field, relative to that of the applied pressure variation, being arbi-

trary.

Figure (2.2.1)
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Let •(() , be the pressure in the cavity, "a" the radius of the

cavity, -r the radial distance from the center of the cavity, and

4k the displacement along -f

Then in the usual notation, and in view of the assumed polar

symetry we have,

e £='a( 6 -=4 (2.2.1)

=(4 - + (2.2.2)

G 'a -~S (2.2.3)

6 (2.2.4)

The equilibrium relation is

2. (-~ ~'~ =(2.2.5)

From (2.1.4) and (2.2.2) ve get

""&Z" 0 (2.2.6)

Hence

-U (2.2T)
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vbere C(f) is a constant of integration.

Also in view of (2.2.1)

z- - 2. C(t) 43 (2.2.8)

-] C (0 (2.2.9)

Hence from (2.2.3)

-fL

cj (2.2.10)
0A

Substituting in (2.2.5) we get

t4, % •* Gt- '•c l er -t- •c (2.2. U)

Integrmting (2.2.11) and in viev of the fact that 8(a) - -

we get V

r •(2.2.12)

Interchanging the order of integration in (2.2.12)

(2.2.13)
- -

+ !L)ý
Cl
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NOW

• / (2.2.14)

provided that the improper integrals exist, &nd they do, since G is
-4

bounded and -' is Monotonically decreasing function. Let,

06

and

S --4  2.16

Substitute (2.2.14), (2.2.15) and (2.2.16) in (2.2.13) ve get

Note that

) 0 (2.2.18)

Also since -sm- o as -Y.,*0 , (2.2.17) become

* At rate greater than-.
r
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=7 K t d (2.2.19)

Eq. (2.2.19) cpletely determines C () , hence, torm1ly at

least, the problem is solved.

Also in view of (2.2.19), eq. (2.2.17) becomes

C 2ý , c (2.2.20)

-t

or (C- C (I

j (2.2.21)

0

Hence the solution to the problem hinges on the solution of (2.2.19).

Let

(2.2.22)

Then

.(2.2.23)

m00
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since from (2.2.7), by virtue at uo ,t o fo

C 0 0 (2.2.24)

S=0-so

Then

t)J 0 ') 1,4 (2.2.25.)

However regarding (2.2.25) as a doubie integral- we gt

* S

- ~('4 Kt'0J~d (2.2.26)

0

to
tt

Figure (2.2.2)

Let 4
( - (*-') (2.2.27)

-t
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K I a t __C * * t) 1 (fe)cI tod

o , ) .a t
0

Substituting (2.2.22) and (2.2.28) in (2.2.19) ve get

a K"M' - (2.2.29)

vhere

K R(tI ~ke(t I) (2.2.29a)

Equation (2.2.29) is a classical Volterra Integral Equation of the

second kind vhich can be solved numerically by various means.

2.3 Tewperature Uniform But Time-Dependent

In this case eq. (2.2.11) can be directly integrated vith respect

to - , to give,

4-I

Since d -po as --Y O we get

( ,) c-• d ft + (2.3.2)
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or

d..4 - G(•_•,)dC o'( = - (2.3.3)

Let

2Go (2.3.5)

vhere 0° - (o).

Then (2.3.3) bcomes

-4 (2.3.6)

Also tram (2.3.1) and (2.2.22)

2v -37

By virtue of (2.3.2) and (2.3.7)

where g(t) is given from (2.3.6).

From (2.2.5) and (2.2.7)
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!2e 6.• 4- 2 4, •,•• (Q -)
d7

-! ~c~) 2.(2.3.9)

2.4 Sphere With Finite External Radius

a. Condition of Fixity at External Radius. • = b

If u is to vanish at r - b, c(t) = 0 from (2.2.7).

Hence u = 0 and all deviatoric strains and stresses vanish identically,

The equilibrium relation (2.2.5) becoms

" 0 (2.4.1)

or

-ýI (2.14.2)

in view of the boundary condition at r - a.

Also since

-¢ - (2.4.3)

-(2.4.4)
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Stresses are trmnsmitted instaneously and there are no inertia

effects.

2.-5 Free Surface at -r = b

Again we quote (2.2.3), i.e.

+.0 ., c (2.5.1)

at -%fob, 4 -0 hence b

W d' (x (f-t"d'
Cf t

f 4-) ý (2.5.2)

Let (2.5.3)

Then (2.5.2) bec so

-t

WV 6. (t (,et (2.5.14)
a.L b

(2.5.4) is an equation similar to (2.2.19).

On substitution of (2.5.-4) in (2.5.1) we find for G,

_ 01_e (2.5.5)
l 44
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2.6 Isotherml Sphere With Infinite Radius

Fros equation (2.3.3)

CI_..C G (A.-t)' - d C (2.6.1)

Consider G(t) to be given by a Nmxvell model, i.e.

G (:E) -e- (2.6.2)

Taking Laplace transform of (2.6.1) and in view of (2.2.24)

5 2 C 4 ..2z.GSc (2.6.3)

From (2.6.2)

Go (2.6.4i)

substituting in (2.6.3) we obtain

S- (2.6-5)

Let S'C = and (2.6.6)

then (2.6.5) beccmms
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S(S4!) .~(2.6.7)

or

2+ (2.6.8)

or

Substituting (2.6.9) in (2.3.8) we find

-- l

2),

- -la_

44X
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Tba (2.6.1o) become

4~~~O ' (4t-Y' (2.6.12)
p

vhich is the complete solution for all load cycles

Mature of "~t

(a)

/

Figure (2.6.1)

(b) I

+
(2.6.13)

Figure (2.6.2)
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(c)

Call W/ r t  I
4 ) -> 1

4

''0

Figure (2.6.3)

2.7 Dynamic Stresses in an Infinite Hollow Cylinder

We finally consider the dynamic stresses arising in an infinite

cylinder in radial transient temperature fidld. As stated in the intro-

duction these are considered the result of varying interval pressure.

Under the above conditions, and in view of the assumed material

incompressibility, we have In the usual notation:

S ,,L : _ _ .- -o (2.7.1)

'L ~t I A 1(

6 - + (- = 0 (2.7.2)

From (2.7.2)
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_ ) ( = 0X Lk .. W (2.7.3)

vhere C (t) is a constant of integration.

Hence:

0 ___ C(•) (2.7.4)

-(2.7.5)

and

-_- _ C (o (2.7.6)

The equilibrium equation to be satisfied is

do r (2.7.7)

In view of the constitutive relation

G -t

and the the iuorheologicall~y simple nature of the cylinder

.4

z C- (-a)CI(2.7.9)
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Substituting for i from (2.7.6) in (2.7.9) we obtain

6(ý-o 1c(2.7.10)

As a consequence of (2.7.10) and (2.7.3), (2.7.7) becomes:

2 •-') •~c 1 •(2_7._)-v

Free external surface

Let the interval radius be "a", and the external radius be "b".

Consider the folloving boundary conditions • - at -C - a

- o at - b (2-.7.•12)

In view of (2.7.12) integrating (2.7.11) we find

t -Y

Lc ý, ( , A -/) 01j,
+ j04t) = 2 b- -C

-+r~ )a (2.7.13)

Since at -- b, o,. a, we have from (2.7.13).

This equation completely determines n d - , being analogous

to (2.2.19), where
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' (ti t)) -"(2.7.15)

Also froim (2.7.13): :

Cf m S -(~"d d/t-
f ý&

- b - (~-")d,-r. •JA

A-

Incorporating (2.7.14) and (2.7.15) in (2.7.16) ve obtain

where

O ',t, (2. T 718)

Cylinder contained in thin elastic shell

Let the suffix a denote quantities pertaining to the shell.

At -f - b, as a consequence of the continuity of u andi :,, at

the cylinder-shell interface we have:

E- W_ E l (2.7.19)
se
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Incorporating this condition in (2.7.16) at -f * b we find-

f~~0(..' ~S(2.7.20)

Eq. (2.7.20) can be reduced to the canonical form of the Volterra

integral equation of the second kind by the following procedure:

de"ince C, dt are zero at t w 0+, ye have

.t 4

C(• W oI •_c j, (27.21.2)

or

Also

A& A

R LC•) 2ý C t (2-.2••3)

where ' (to ,t) " M ' /

Eq. (2-.7.20) in view of (2.7.21) and (2.7.23) becoms:

E.:
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vhere

C_ (2.7.25)

Calling 'I(,)(.2)
C(2-7-26)

we have from (2.7.24):

which is the canonical form of a Volterra integral equation of the

second kind.

It is worth noting that as b _ lo io -o and g(t)-• o

hence u --v O.

An a consequence,

g, ý d = - t- 0) (2.7.28)

i.e. stress waves propagate instantaneously, without any subsequent

vibrations being set up. A rigid external shell gives rise to the sem

result.



80

CRAFTE III

Sorizontal Slump of a Viscoelastic Hollw Cylinder Contained In

a Thin Elastic Shell

Synop•si

In this chapter the problem of the horizontal slump of a visco-

elastic cylinder contained in a thin flexible shell resting on a rigid

plane, is solved. The solution is within the scope of small deformations

and classical shell theory.

The viscoelastic stress-strain lur is of the integral type, and it

is used in Its most general form.

The solution is purely formal in as far as no numerical results

are given

3.1 Introduction

The problem of the horizontal slump of a viscoelastic hollow

dylinder contained in a rigid shell has been solved LIT] . The solution

indicated that prohibitively large displacements develop for large

times. It is reasonable to expect that a flexible shell will exert a

less restraining influence an the cylinder and will allow therefore

even larger displacements to develop.

An exact formal solution totbe problem is obtained, within the

scope of small deformations and classical shell theory, in the form of

sine and cosine series in the angular coordinate.'
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The treatment of isothermal viscoelastic boundary value problems

is facilitated at least formally by removal of time dependence by the

application of Laplace transform, and consequent reduction of the

viscoelastic problem to an associated elastic one. As a first step,

therefore, we obtain the solution to the problem of a hollow elastic

cylinder contained in an elastic shell resting on a horizontal rigid

plane, both being deformed by virtue of the forces exerted by their

own veight.

We further assume that the cylinder is "long" so that plane strain

in the axial direction can be assumed.

Under the above assumptions the geometry of the cylinder-shell con-

figuration is defined by Pig. 3.14.1.

The complete solution is obtained by solving for the cylinder and

shell separately, and satisfying continuity of radial and shear stresses

as well as radial and circumferential displacements at the cylinder-

shell interface.

3.3) Cylinder Analysis

Satisfaction of equilibrium in the radial and circumferential

directional yields the foflwing relations in the usual notation of

polar coordinates;

+ 1 -''e • - E (3.3.1)
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Let

SIT (3.3.-3a)

Sg _• (3.3.3b)
*e

"C = •',O(3.3.3c)

vhere

4 ( (3.3. 3d)

Then (3.3.1) and (3.3.2) become,

4- -' c =0 (3.3.4)

- -4_-'- +2_ 4+- -+'=o•*3
"2.e t% 4o It I =O (3.3.5)

We eliminate the dependence on G by taking finite Fouries m

transform. Let

'0&3tA.3 690
'I

-fl

S(-Y, wA'

oA
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17

Jfd 9 (3.3.6d)

-11

In view of the uymetry of the problem ax.,, ' , re own

functions of Q but AC is an odd function. Thus ve have the con-.,

ditions:

2 -",,o) = -- ((. so =0 (3.3.7a)

BY virtue of (3.3.6) and (3.3.7) Eq. ( 3. 3. 4 ) beeoms:

S-eG (3.3.8)

and Fq. (3.3-5) becmes

CP, 14 ý l

-We no t

We nou asumSUe that the materia is inaccpressible so that • isl
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indeterminate from the stress-strain relations. Hence eliminating

Sfrom (3.3.8) and (3.3.9), and Putting

$ -~ ~ -~ ='V(3.3.10)

we obtain:

- IV L- -o (3.3.11)

The strain displacement relations in polar coordinate are:

= u. C ' -. -, ý I ?L_ " ( (3.3.12)

)0 4-6 6 :o - -0 (3.3.13)

In view of the mterial incompressibility the stress strain relation

is

-' :(3"3.14.)

where

-'- (K sed) (3.3.15)

or putting

L'G
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r e (3.3.16)

- _ -= 2-G4 =-26 G (3.3.1T)

The strain compatibility relation is

_ , _ , = 2 C2 (3.3.18)

or

_ - 1 -i-2-~

2 (3.3.19)

NOW let

f -- (',V 0)eCoi.ede (3.3.20)

T,

LT IAn~~e 14u e C (3.3.21.)

Again in view of the existing symmetry

-6 L(, )= -n 0 (3.3.22a)

a (-Yf 0)0 (3-3-22b)
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Eqs. (3.3.12) through (3.3.19) in the transformu plane becem,

0 )~ ., I;(3-.3-2a)

IV IVY

(3-3.15a)

((3.3.156)

S { -•o = 2( G* =-•-G (3.3.17a)

K -Y 4- 2E d-V- (3.3-19.)

-y y d- jCY d.&v

Substituting for i from (3.3.16) and (3.3.17) ye get

Y± -4- 141 4- 1 (3.3.23)

Eqs. (3.3.11) and (3.3.23) provide two ordinary linear simmitaneovaa

equations in the unknowna r and a.

We now ke a transfomrtion in the independent variable by putting

" e =(3.3.-12)
"-v
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then

2ý
_,? .'z • ) (3.3.25)

In viev of (3.3.2I+) and (3.3.25) equation. (3.3.11) an (3.3.20)

become:

--• C, (3.3.26)

CcA?2

Vt. ..4 - - -.- 4  4 (3.3.27)

We first examine the case of K > 2. . For this range of values

of L , (3.3.26) and (3.3.27) yield the solution

- 2A('-) e A-213 .P) e-CI .6-) -e -z "E(-) 4e (3.3.29)

Transforming equation (3.3.2) and in view of (3.3.10) we get

, + -1 7C •(3.3.30)"•~ d-2
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hence Z-V is found to be

0(u-+iV.

TWo of the unknown constants can be eliminated from the condition

that ' and hence ' , are zero at the inner

boundary i.e. at x - 1 or z = 0. Putting z 0 in (3.3.28) and (3.3.31)

ye get:

A C) + +-(3.3.32)

Expressing C and 9 in terms of A and B we get

C 0-• A 4 1 (3.3.32c)

F- A -( +5 (3.3.32d)

Substituting for C and Z in (3.3.28) and (3.3.31) we get

A e 0C- e

•;•C' 4 -e • • (3.3.33)
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Eq. (3.3.33) and (3.3.34) in terms of the independent variable x become

=A to*..x.~L

""A- 3.3.36)

also

=,-2A .- ( . 4 4 _., .4- 2.3 -2, -, (33.3T)

To derive the displacements we note eq. (3.3.12) and (3.3.1T)

from which:

T _ -_ s (3..338)

and
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1 (3.3.39)

Integration of eq. (3.3.38) wini introduce a constant, however,

substitution in (3.3.12a) for and comparison with (3.3.37) shows

that the constant mAst be zero.

Hence on integrating (3.3.38) we find:

g4-I)

(3.3.-40)

Also (3.3.39) yields,

_ A~' (7 14+I I

G4 l&(I&+") LA

(..2 I-I'.

(3.3.41)

For convenience we write (3.3.35) in the form:

4- (3(3.342)

and (3.3.36) as
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vhere

4-)2-( (3.3.44a)

- k- ..- L ,•+z
-•2 ", t.- I )L _I- I ''t (3.3.41b)

(X) 3 X.3. 3.. as

W. KA( -2 (()& U(,A ) (335

_C;÷ '--- G _ I-

ando (33.1 as(33•o

(-A X3-- - (3.3.46)

vhere

(" ->' I --A (3 344c)

Zm4 L^.A.
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Uk- ( 1 (3.3.4Th)---- -.-- "A. -4- • - - - 3

2 14+ Li-I I _ (÷LA4

V(i ' _ - i, (3.3.47c)

1(V1 k~4I

W-1 -4L4+I)V/ ('-A) X. -4 X -4,L ý (3.3.1+7d)

The constants A (s-) and 9 (•C) cannot be evaluated since neiter

the stresses nor the displacewnts ae known at the cylinder-shell

interface.

For the case of n - 1 equs. (3.3.26) and (3.3.27) become:

+ _•, - -, o (3.3"48)

S--. -4- 4+ - -•- 4 33.9

where

s S g ,, " •, ( ,(3.3.50)

Eq. (3.3.48) and (3.3.49) yield the solution in the x variable

A- , (3.3.51)



93

s - 2, A 1 2 - E ' (3.3.52)

Transforming (3.3.2) for v - 1 and using (3.3.10) we get

S: ,. C, L¢•r, • (3.3.53)

and substituting for S, and v1 we get

A X -4- --A,- E (3.3.54)

Using (3.3.38) and (3.3.39) for K - 1 we get

41- d A' A +-'- ,x- - ,.-ol.- , + (3.3.55)
2C 2 .

L (3.3.%1)

hence:

A , 0 (3.3.58)

• .E(3.3.59)

Al and E(3.360)
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and

- Al ( -x" (3.3.61.)

A. 2 (3.3.63)

' 2G 1

We finally deal vith the case of n - O. we -•ke use of (3.3.13)

i.e.

(C4- 0 ao 0 (3.3.65)

-A 
(3.3.66)

AA A

cl -! (3.3.67)

/

From (3-3.1)

. (333369)
--Y
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hence:

d e 2- G A: (3.3.70)

GAD' (3.3.71)

at -Vy"

o 0 (3.3.72)

Let

_ _ A (3.3.73)

Then

Ac,

Once A(K a. nd nBa- have been found from the stress and displace-

mint continuity conditions at the cylinder-sheli interface then

"C' 21 -(-,..) sLA. K, (3.3.76)

S+ 1 XW( ) C. I (3-3-T7)

140
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0'-

U- -z (3.3.78)

V•=1

3.4, ZAa~l~is of the Containing Elastic sb&L

Figure (3.14.1)

G Q+ doo,-

M irI ttt IdM d

r- -I

The equilibrium relations for a shell element m:

In the tangential directionQdNJ, (3.14.1)
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In the normal direction

and the moment equilibrium is

Q) me~ (3.4:3)

IMinating from (3.-.1), (3.4.2) and (3.4-.3) ve get

dropping the suffix G

CI-,___ I.- ,%• -Y "2 (3.4.4)
d902 dO1

dCI d, - I (3.-45)

"") M (3.4.6)

The force displacement relati on becomes

E 9l '_. . , ý 1 4 -, ! , s ý( 3 .4 .4 )

\; >I ' Y -Yb.

1 2,v S C Lrs (3.4.8)
'•.t i•dOl d

vhere

p _ E, • (3.-.9)

12 .- •"



98

Taking Fourier transform of (34.4.,5a, 6) ve pet

4- (3.4.5a)

Also taking Fourier's transform of (3.4.7) and (3 .4.8) we obtain

-J 2C { LIZ (31.4.a)

where c * k)

Substituting for NI and r`4 in (3.14.5a) we get

or

-iIi k + fO (3.4.10)

Similarl substituting for and ,• i• n (3.4..6a)
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or,

-Y,.9 C~U 4~V ~ (3-4-11)

For continuity of stress at the cylinder-shell interface we mast

have (rig. 3.4.2):

Figuare (3.14.2)

,()4 - W - c(A) 4 .w ; (3.,4.12)

where v is the veiaht of unit length of shell per unit length of arc.

Hence:
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• ' Y '(3.•1..15)

Also continuity of displacements at the interface requires that

& (11) LI Lk. = (3)4.16)

Case of W~ Lost -a.
Y ,

Fro (3.4.15), (3.3.42) and (3.•0.lo) it can be seen that

, (&.3.•) -, ((. *+ (3.4.18)

Also from (3.3.4.5) and (3.3.146)
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(3.14-20)

c~ -& V \/ (.)(3.14.21)C ', IiG 2&,.

Solving for A and B frm (3.4.20) and (3.4.21).

G _ 7 U (3.4.23)

, 0,
ll.y I •,,,. L.- Sl• kwhere

/ /(a-) U a a)U(L (314.214)

1U U, U V U(,)V( (3.14.25)

etc.
Substituting for A and B in (3.4.18) and (3.4.19) and collecting

term we get:

-~~~~~ ~ ~~ 5-G[I(, 3,/ , 0)VD C 4
18 2 -

(CL).. L) .426
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k {G [c•c.14. , -,., V +

From equations (3.)&.26) and (3.I&.27) LA~and L5  may be found.

Substitution of (3.-.26) and (3 .-. 27 ) in (3.4.22) and (3.-.23)

gives A(-~. and B(-4 ) respectively.

Case of n - 1

Equations (3.i4 .10) and (3.411U) become:

- C'* &+i ,'j 4 (3.4.28)

hence:

,- { (3.-4.30)

The relation dr~ satisfies the condition of vertical equili.

brium, i.e.

_0 - % 1(3. 31)

To cE
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also for ni - 1 from (3.3.6) and (3.3.62)

=A 3 (3.3.61)

~1 Ajj- 3 (3.3.62)

In view of these and also (3-414.)) and 03.4.15)

civ ~A,(e .-ai)-~)5 (3.i4.32)

-A, (C 3 +(3-4-33)

Equations (3.3.63) and (3 -3.64&) can only be consistent in view of

if

W~- -nY,~ (3-4.3i1 )

vhich In true, since the right hand side represents the combined veight

of sheli and cylinder.

Also from (3.3.63) and (3-3-64) we have

1= -j 0 rlRO1L +(3.Ji.35)
A.~ '



Ading these lat two equations we get:

4~~4'I Z.-Acl4 ~ L Y (3.14.37)

Hence:

A~2~ 2 4  S 4I 4 3> r' (34-38)

also from(3. 4 .32)

_a-'- (3.4.39)

From (3.4.38) and (3.4.39),

othewise by eliminating I SO 4 "S, ) we can determine A1 i.e.
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or

Naturally, for the mrant, 4%, - L7; 1 cannot be determined since

it represents a rigid body displacement. Finally, however, as, vill

be determined from the condition that UL - 0 at e - 0.

Case of n 0

From (3.4 .f1)

'- C (3.•'ii2)

also in viev of (3.4.-1)

S(3 4.4.3)

z 0.

Hence:

;A-=- "•(,-(3-4-44)

Bt from (3.3.76)

(3.3.75)
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or

AO c iZ (3.4.45)

Substituting for Ao in (3.4.44) we got

NA/ or

S+ (3.4-.46)

also from (3.4.45)

A o,,,,G c G -3.447)

a - n -f l

This completes tUe formal solution to the elastic problem.

3.5 The Associate Viscoelastic Problem

To obtain the solution to the viscoelastic problem we make use of

the Integral form of the constitutive relation, i.e.

G 4 t -- L (3.5.1)

Upon taking Laplace transform with respect to time (2.3.1) becomes:

(3.5.2)'• - •' 1•i
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vbere the dash designates a transformed quantity. In vier of (3.5.2)

it is evident that the solution to the viscoelastic problem can be

obtained on substitution of G ý for G in the relevant equations

and taking the inverse transform C I] -

The nuerical analysis of the problem consists in calculating

the displacements of the cylinder both at the inner and outer radius.

These results vill be presented at a later date.
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APPDIX I

Numerical Application@

Infinite Viscoelastic Slab

To test their accuracy, the methods outlined in Chapter I

were applied to the problem of a viscoelastic slab, which has been

solved exactly, within the accuracy of the numerical computations

employed, by Miki and Sternberg

The slab is of infinite extent and finite thickness 2a, bounded

by the planes Z :- Ct . Initially it is at uniform temperature,

80°C, when suddenly the temperature of the faces changes to 1100C and

remains constant at that value.

The solution of the problem reduces to

xy~~ C :=(ý- ( -) (A.1.1)

=0 6 C-1 (A.1.2)

where is found from the integral equation

6X "•-4-• (• -- cPt =-2OE(L'- De.t (A.1.3)

0

In Ref. C the problem was solved by referring (A.1.3) to the

plane and taking IAplace transform. Nwever, in view of the
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realistic nature of B(t), finding the analytic representation of the

latter, taking Laplace transform of (A.1.3) and inverting van a very

tedious procedure.

Bare ve obtain a solution at the middle plane of the slab first

by reducing (A.1.3) to a set of linear algebraic equations by the

method described in Chapter I.

Let • be piecevise linear in t i.e. in the interval

t 10(- (A..4

Also let

A (t - fK-I k 1<(A.1.5)

Then in matrix form (A.1.3) becomes

vbere F is a knoin function.

From (A.1.6)

fC~j =(A.l.7')

.here C ] - [CW - [F- ] (A.1.8)

"•~ ~~~~~~ K .I-•" " "•
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Referring to the data of Ref. for the material properties ve

can find:

2.24 
.1010

2.01 2.24

1.79 1.88 2.24

E = 1.52 1.61 1.69 2.24 (A.1.9a)

1.29 1.33 1.39 1.44 2.24

1.00 1.04 1.08 1.U 1.15 2.24

.80 .80 .80 .80 .80 .80 2.24

1.2933 .1010

1.2632 1.2933

1.2344 1.2462 1.2933

R = 1.1991 1.2019 1.2213 1.2933 (A.1.9b)

1.1689 1.1742 1.1820 1.1886 1.2933

1.1397 1.1362 1.1414 1.1454 1.1506 1.2933

1.1048 1.1o48 1.1O48 1.1048 1.1o48 1.1048 1.2933

(A.1.9) being the solution to the problem. The results obtained by this

method have been platted for comparison against the "exact" solution

obtained in Ref. W - See Fig. (A.1.4)-and they compare very favorably,

in view of the fact that only a desk calculator was used for the numer-

ical computations.
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The iterative mtbod was also used to solve (A.1.3) aain at the

middle plane j m 0 The zero' th approximation to the solution was

found by putting K< co Then

t

Iteration was then carried out on the basis of the formula

Z Cheo(.( 01I (A. 1.U1-)

were in iterations subsequent to the zero'th the actual value of

was used. In Fig. (A.1.4), it is shown that after two iterations the

solution obtained was practically - within error of numerical computa-

tions involved - identical with the "exact solution" cited above.

The above iteration procedure is in fact convergent as can be

seen by the following simple proof.

Write E 0V') E E(f- 4 (A.1.12)

where &E-f •< (A.l1.13)
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_ I- =) <• <I {ov -'>o/O (A.1.1I.)
E, 1- 2 2-\>>

3K

Equation (A.1.8) becomes:

vhere

F Q-) = (2cc. E-(-')•-' (A. 1.15)
o •'

Furthermore F€c in bounded in every interval, o"< $ t , See

Fig. (A.1.4). Hence

IF cW I M M (A.1.16)

Then

LoI -< )d (A.1.18)

and

or"
or) $ fO1 < (A.1.20)

also

I~X2 ~ .v,1(..1
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and

f series 1--- is converpnt for j< I and equals

Hence

and the iteration is convergent. Also

K--imp (A.1.21 4)

Hence solution can be approached as closely as ve please, by a

sufficient number of iterations.
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E-,

110.-

100

90

1 2 TIM (hours)

Figure (A.1.2)
TEXFERATURZ AT MIDDLE PLARE OF SLAD
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20

15 -

10 -

5

TIN (urm)
IoI I I

0.2 0.4 0.6
niav (A.1.3)

IWUED3~ ThU COOIRDIATE
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K co

0

E-4

-0.5 
*Itrto

o 2nd Iteration

M Jethod of Successive Integration

I I cA6I

0.2 o.4 0"6

TMe (hours)

Figure (A.1.4)

STRESW IN MIDDLE PLAMM OF THE SLAB
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Viscoelastic Sphere With a Step Rise in Surface Temperature

The same methoda, under more unfavorable circumstances of non-zero

initial conditions and rapid changes in temperature, are now used to

obtain the hoop stress at the surface of a solid viscoelastic sphere,

subjected to a step temperature rise at the surface. It is found that

in applying the first mthod same care mast be taken near t a o. Other-

vise both methods give results vhich are in excellent agreement with

the exact solution of Ref.L73.

Maki and Sternberg [7] obtained an exact solution for the

stresses by assming that the material has an elastic bulk modulus.

Using their notation, 5. can be obtained by solving the follow-

ing integral equation,

+ 
(A.1.25)

0

whilst on the surface of the sphere

S(<') - - e y t') (A.1.26)

9 2

When (A.l.25) is referred to the ( , ) plane it becomes

f A tr
+ olý(A.1.27)\(+'+) 3 -- S+ -++

where

fY = ) ,,.< ) = k (A-1,28)
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Now taking Laplace transform of (A.1.28) vith respect to

one obtains:

~~iz2- r =:& (A.1. 29)

or

A - A - A

'S (A.1.30

vhere R is then obtained by Laplace inversion.

It is shown however in the General Introduction

where R(t) the tension modulus of the material.

On substitution of (A.1.31) in (A.1.30) we obtain:

A - (A..132)

On taking inverse Laplace transform of (A.l.32) and reverting to

the ( , ) plane (A.1.32) becomes:
t

S(',I At)

(A 1. 33)



120

On the other hand from (A.1.30):

t

e - Z _ý-t")ýkC (A. 1. 31 )

Naturally, since R is known a solution for ',, can be obtained

from (A.1.34) by simple quadrature.. Such a solution provides a

basis for comparison with the two sugested methods of solution of

(A.1.33)

Solution of r.e.d b ruction to a set of a__ _raic equations.

We proceed to solve (A.1.33) on the surface of the sphere.

In Che+lI it was suggested that equations similar to (A.1.33)

could be solved by assuming a piecevise linear variation of the

unknown function with time, assuming that the function was zero at

* This is not the case here, however, by virtue of the right

hand side of (A.1.33) which is different from zero at i=o÷ . On

the other hand it is convenient to solve an auxiliary equation in

which the right hand side is -: L3& 51nj . i.e.
3

3K 3

On the surface of the sphere we have from the example of Ref.

t1o " ,and

~~~ (4-cj -= ~{t) (A. 1.36)
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If ve look at (A.1.35) in the ( , ) plane, then, after Laplane

transform and in view of (A.1.35), and (A.1.33) ye et

3 (A.1.37)

after coiparison of (A.1.37) vith (A.1.30) it transpires that

Since R is known, an estimte of the accuracy of the method can

be made on the basis of solution of Eq. (A.l.35). Again, of course,

Hence following Ref. [sI]

= H (0) •}(,+) .+ , - (A.1.39)

where R(t) is the unit step function, and

Substituting (A.1.39) in (A.1.35) and in viev of (A.1.36):

H (0 + + Ut)4-' 1 2+ _e (tE)W (A.1.4O)

Putting 1=0+ we find

E(o+) (A.. 1 41)

In view of (A.1.1), (A.1.4i0) become
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A..~JtE 4Ltj -t)~t (A. 1. 42)

Eq. (A.1.39) is a necessary step and the omission of the initial

conditions vould introduce significant error in the solution of (A.1.35).

The right hand side of (A.1.42) is now a known Tfnction vhich vs

denote by g(t) i.e.

f I'

and (A.1.42) becomes

Because of the nature of E-(t Fig. (A.1.8) g(t) has a very high

gradient at t - o.

-g(t)

approximate

TNI rexact

g(O+)

F (

Fiur (A. 1 5)
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This is a potential source of error for a finite initial interval,

unless the first intervals are taken extremely small. To avoid such

a lengthly numerical coputation we approximate here the high gradient

of g(t) at t - o÷ by a finite step at t - o as shown in Fig. (A.1.5).

Thus aain ve vrite

and consequently we can write:

Substituting (A.1.46) and (A.1.44) we obtain

+ (o++)(A.l 1-4T)I ,- Ec+-

1K

and

0 (A. 1. 8)

The right hand side of (A.1.48) is now a well behaved function

and (A.1.48) can be solved by piecevise linearization of over

small finite intervals.

Naturally:

0 /
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Solution of •(t) baa been obtained over a total time of .20 hours,

in the folloving intervals:

0, o+, o++, .01, .02, .04, .08, .12, .20

NY W) , which is identical to R [ ý (Y,, t- )] , thus obtained is compared

against the exact solution of Ref. C 7 3 . The agreement beween the two

solutions, shown in Fig. (A.1.10) is exceedingly good.

The hoop stress was then calculated from (A.1.37) and

(A.1.26) and is compared with exact 9 from (A.1.34) in Fig. (A.1.-)

Again agreement is very satisfactory.

Solution of 1A.1.2) by an iteration technique.

Since T(-o• has been found eq. (A..41), we solve (A.l.44)

instead. In other words in the zeroth approximation K is considered

infinite for all values of time except at t - o+. This apparently

artificial physical consequence can be appreciated if one looks at

S(t).

Fro (1.514)

- J (A. 1. 50)
oK

Note that Q~)'.. s ISee Fig. (A.1. 6)Z
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,-I

Figure (A-1.6)

The above values of K imply that '= at t obut k

oa

for t > o , in other vords ve have approximated >(O) by the thick

line shown in Fig. (A.1.6).

N•) is then found from the recurrence relation

for n = 1, 2 ... where

W (A.1.52)

Values of obtained by this method are also shown in Fig.

(A.1.1O), and these too compare favorably vith the exact solution. The

hoop stress G is also found and plotted in Fig. (A. 1.11), vith

good agreement.
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Stresses in Viscoelastic Solids due to Cyclic Temperature Nistories

The effects of cyclic temperatures on the stresses in viscoelastic

bodies are not well understood, and this in not surprising in view of

the analytical difficulties inherent in the investigation of this

problem. The critical effect of temperature on material properties,

renders the problem non-linear in so far as the principle of super-

position no longer holds vith regard to separate temperature histories.
(4) .(A)

That is, if T (.X gtv produces 1.. 1,x, t') andT X t

produces (, 4 then:

(, ,,t) -+
(A• .. (

does not give rise to

(A) 8

The superposition principle will hold only in the particular

JA) (81'
case where I ) 7 are sinultaneously taken to affect to material

properties but their effects on the strains are considered separately.

In such a context, however, superposition will be of little value.

To investigate the phenomnon at all, we take the simple case of

the viscoelastic slab, and subject its surface to cyclic temperature

changes shown in Fig. (A.l.7).
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50"

5O'c+

50oi
cycle (a)

LI1

Cycle (b)

Figure (A.l.7)



We examine the effect of the two cycles shown, on the stress at

the surface of the infinite slab, when e = 50 0 C, wad the datum

temperature is 700 C.

Moreover we "sum that the slab is made of LPC-543A propellant

for which the shift factor is a well known function of temperature,

see Ref. , P. 55.

For this particular material it in found that the shift factor

(0* 1 a-0
is 75 when C =50C, and 75 when 8 ="50C or

= ( t SO- SoC (A.-.53)

,- _. I- • - T -o ¢
7T

In the notation of Ref. [ - , on the surface of the slab

0

Pig's (A.1.12) and (A...13) show ý as a function of t and ()
as a function of . It is easily seen that (0 can be expressed

in the following form.

and consequently
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where is the delta function at .Substitute

(A. 156) in (A.1. 54) and integrating we get

- I a 2 (A.1. 57)

From (A.1.57) we can easily find as a function of time for

two temperature cycles, see Figs. (A.1.14) and (A.1.15).

It can be seen that in both cases (: increases asymptotically

to values which are almost twice the Naximum for identical

temperature cycles applied to an elastic slab. This phenomencn will

take place irrespective of the period of the cyclic variation, and is

due to the difference in the relaxation rates at the lover and higbaer

temperatures.

Though this result is important it cannot be readily generalized

either for more complex temperature histories or for more intricate

boundary value problems. It does however bring out a phenomenon that

mist be considered in the design of solid propellant configurations.
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2.5j

2

• 10 .20

Figur, (A.1.8)
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Figure (A. 1. 14)
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APPENDIX II

Error Analysis of Approximate Solutions Developed in the First

Chapter

Introduction

In Chapter I it was shown that the solution of viscoelastic

boundary value problems associated with thermorheologically simple

viscoelastic solids in non-uniform transient temperature fields

reduces to the solution of a Volterra integral equation of the second

kind. In som cases 171 the integral equation can be expressed in a

convolution form in the reduced variable and can then be solved by

taking Laplace transform.

Where this, however, is impossible or where the relaxation moduli

of the material are in the form of experimental curves, which is

invariably the case, Volterra integral equations can be solved

approximately by reduction to a set of algebraic equations as was

shown in Chapter I. The solution of these equations is easy because

the mtrix of the coefficients is triangular.

In this report we investigate the error inherent in this procedure

by finding first an auxiliary solution. Upper and lower bounds to this

solution are then established, and these are utilized to establish an

estimate to the aforementioned error.

Upper and Lower Bounds to Solutions of Volterra Integral Equations

Consider the integral equation
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vhere

Kc•• t I t)• Cj (A-c,,€.2.2)

and is a positive real number, and is an integrable non

negative function.

The symbol denotes the reduced time variable given by the

relation

H- d't (A.2.3)

and

Ck (K e) (A.2.4)

where f(T) is the shift function.

Whatever the form of -(X, t) for any ', O-(xKt1 is a

non-negative function of and hence s t) is a monotonically

increasing function of t
Eq. (A.2.2) may be written in the form
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and a asu•iwng appropriate values.

Exammning a typical term of (A.2.5) ve deduce the following

properties for <(t,

K(t = (A.2.6)

For any t , K(t, is a monotonically increasing function

of "( , since G (t) is a monotonically decreasing function of t ,

this being the property of the relaxation modulus of linear viscoelastic

solids. Also

where K (t) is monotonically decreasing in Fig. (A.2.1

K((t)t t

t '

Figure (A.2.1)
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Also

= (A.2.8)

where ki (O is the Heaviside unit function. Without loss of gener-

ality we also assume that 4(o) = o , hence (N (-) = 0 because

the case of {Co') t 0 can be reduced to the previous case as vlil

be shown later.

Eq. (1) can be reduced to the standard form of the Volterra inte-

gral equation of the second kind by integration by parts, i.e.

or

ro </ý t C ,)C r(..0

where

K (tI~' (A.2.11)

- i... ~ =(A.2.12)
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From (4-2.5)

Now since 0I is a1lwys positive and G (H) is monotonically
a-.

decreasing, G is non-positive and hence: is non-negative.

LeAM. Subject to the above restrictions on V(t,''•) , (: is

non-negative and non-decreasing if 0) is non-negative and non-decreas-

ing.

Proof:

Eq. (A.2.10) is the standard form of the Volterra integral

equation of the second kind.

From the theory of integral equations it is proved [ 1nj that

0

where K mt(tg is defined by the recurrence relation

t

K ") ( (A.2.15)

and

(tK$( (A. 2.16)
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is known as the rnth iterated Kernel, Since [<,. (fC4

is non-negative all the iterated Kernels are non-decreasing in ' .

Also sin~e* / is a poeitive member it follows that if C/t) .

non-decreasing function <) (t) is also non-decreasting.

We shall utilize this important fact in what follows. In general

4(t) will be an arbitrary function so we seek the solution for C:(-)

when • 107 is a simple non-decreasing function such as H (0) and

use the solution to construct another solution for arbitrary W •

Reformulation of the Problem

Given (A.2.1) where f(f) is an arbitrary function we seek the

solution to the equation

T(t + dt H () (A.2.17)

then

F

Fiue(A22



14&3

Proof:

See Fig. (A.2.2).

In view of (A.2.18)

In the limit

However 1I(oI-yýO so we reduce the solution to the standard

case by writing

vhere

Then substituting for 4 (') in (A.2.18) ve get

+

H-04 W+- (A.2.21)



Putting i-o-V ye get

I -+ ý 1, -+ = I(A.2.22)

hence

At = _4_ _ (A.2.23)

and substituting for It in (A.2.21) we find

if) ) . (A.2.24)

and the right hand side is now a monotonically increasing function of

Let

then (A.2.24) becomes

4

-K *C) (A.2.26)

and is a monotonically increasing function.

Solution of (A.2.26) by Reduction to an Algbraic Set of Equations

We divide the range of integration into smll intervals:
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In the first interval we got

K(ý d9 d't (A.2.27)

By the mean value theorem

CO -Y (A.2.28)Olt

where (A.2.29)

lAtting

(A.2-30)

(A-2-27) becomes

AP (A.2-31)

In view of the properties of (A.2-31) may be written in

torus of the inequalities



* (A.2.33)

hence:

S$ < J < (A.2.34)

In the second interval we get

x (-4 (A.2.35)

where

< (A.2.36)

We also have the inequalities

K'(-L~o 0 <KCt,,) 't,, (A.2.37)

<(~~t ''5$I. 1J K'; (A.2.38)

> A..9
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In view of inequalities (A.2.37), (A.2.38) and (A.2.39), (A.2.35)

becomes:

*ý * C1(A.2.ii0)

4*- * *(A.2.41)

or

_________ e:'< 4-____ (A.2.4&2)

and similarly for other intervals.

It follows that if we choose

(A.2.4*3)

we get a lower bound to A which we denote by and by

choosing

* (A.2.44.)

we get an upper bound to " which we denote by

Hence A4 is bounded by the solutions and or

<4 CA4I < 44)U (A.2.45)
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Let

j (A.2.46)

and

df ~ -f~. oLZ(A.2.47)

Then since t is monotoaiically decreasing in le and

making use of Bonnet's second mean value theorem

where < t

Hence if denotes the error in the solution of for

some

t . < (A.2.49)

then

.< It- (A.2.50)
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where again C

Matrix Formulation of the Problem

Consider (Fig. A.2.3) some which is a non-decreasing

function of t

t1  I: t

Figure (A.2.3)

is capable of two approximate step-wise representations.

One is the full line and the other the dotted line,i.e.

or

S~(A.2.52)

Substitutions in (A.2.27) show that in fact (A.2.51) yields the

upper bound solution for and (A.2.52) the lower bound. Thus we

get
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(A. 2- 53)
-f CP

or in matrix foru,

(A.2-54)

whero (A.2-55)

and

(A.2-56)

KI. Wil

Ks.

From (A.2.54)

(A.2-57)
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and

(A. 2.58)

Similarly

where

tKI] Kit (A.2.6o)

Naturally a linear variation in as indicated in Ref. 1

will yield a solution lying between the two bounds.

Exanple: (From Appendix I)

Consider the slab problem where the relevant Integral equation

to be solved is

(•x÷•-•' . F--(-•'°("~l' --d.-. •I g•"•)•-•d'.o ~c (A.2.61)
-dt
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In this case - - , and

We first solve the auxiliary equation

"E4t4± w) (=) L' (A.2.63)

and obtain upper and lover bounds to ' . by first finding "

as indicated in the previous section.

It is imediately obvious from (A.2.63) that

A solution for i is obtained in the range a t -7 hours

and the range of integration is divided into the following intervals

(-oo,o+) (o+,.l) (.1,24) (.24,.4) (.4,.5) (.5,.6) (.6,.7) hours.

Under the above conditions we obtain the following values for •r
If

and 4

o o 0 .77321 .77321

.1 .01801 .o1845 .79122 .79166

.24 .03591 .03676 .80913 .80997

.4 .05863 .06031 .83184 .83352

.5 .0 7 42 .08160 .85263 .85481

.6 .10629 .10985 .87950 .88306

.7 .12822 .13197 .91043 .90518



153

For numerical details of the analysis see [l2•3

From the table above and from Fig. (A.2.5) it can be seen that

lies within close bounds the maximum difference between and 4

being less than 0.5*.

Fig. (A.2.6) shows the exact solution lying between the upper and

lover bounds. This is because of the form of in (A.2.1). In

general however this may not be the case.

On the other hand I helps to bracket the error and guides the

choice of the size of the intervals of integration.
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Figure (A.2.4~)
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APPENDIX III

Proof of Convergence of the Iteration Solution Obtained in

Chapter I.

We finally present a proof of the convergence of the Iteration

solution to the cylinder problem, formulated in Chapter I. The

solution is obtained by perturbation about the uncompressed state.

Let us expand these stresses and strains into a series of l/K:

a=, K"•"(A.3.1)

00

e...

-- (

0 4

whee -- A-31a
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Since

6 = -- + 3&o (A.3.2)

we obtain

WA 

(A - 3-3)~

Comparing powers of l/K:

(A.3-4)

0 to (2) (A.3-5)

In general

Sewe • -(A.3.6)

Substituting for E in terms of C

Integ Gin 
(A.33 .7)

Integrating (A. 3.7) :
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06

,(. iA (A.3.8)

L

Substituting for 6, from (A.3,1)

Comparing coefficients of K,

_,~( ,3. 1. r1..)

Also from (A.3.1),

•_ --_ G&.t, f ) I•.(A-.312)

To determine w ye make use of the expression

G44
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"_2. E. (A.3.13)

which in view of (A.3.11) and (A.3.6) becomes

- = 3a

2 (A-3.114)

In view of (A.3.1) and equating powers of K:

•.• _ •.<_ 2 re <:i (A.3.16)

Hence from (A.3.12)

G 0 d-, (A.3.17)

By definition and in view of (A.3.1),

S (A.3.1 8 )
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where

-, A. (-i ~)* ~(-vtK)(A-.3.19)

It can be readily shown that

-e e (A.3.20)

Therefore in view of (A.3.19) and (A.3.20),

S - I. G( ) 1 (A.3.21)

and from (A.3.18)

'Ire) (A3-22)

Eq. (A.3.22) formally completes the cycle of operations in as far

as, is found from (A.3.10), ( *)o from (A.3.15), and Go

from (A.3.17). Bence 1o is found from (A.3.22), and consequently

and can be found from (A.3.11) and (A.3.16) respec-

tively. This procedure can be repeated for higher values of H.

Criteria of Convergence

From (A.3.11), (A.3.16) and (A.3.22) we obtain
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('C 4- 1 -4- - (A. 3.23)
lyv + f4FA

also from (A.3.23)

< H c-,•ta 4 + J - - - (A.3.24)
ITI

where

H J, dr (A.3.24a)

is a non-negative monotonically increasing

function of f for all , and t

Hence*

-• __ A(..5

where

I _,H.

Also

o p-, oo . *H- se (•end of (pe3.n6)

SFor proof see end of Appendix.
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in view of (A.3.25).

However

A 2. ý ^A (A.3.26)i •L•• (I "<+ K-It

Then from (A.3.2 8 ), (A.3.25) and (A.3.24)

4"

~7. i + ;§;-&I i.c r•(A.3.29)-y -,* -4 r-4,

We now write

1(4V_ (A.3.30)

, -, r

Integrating by parts

'44

.,- : v, - I a -ir c Cif

Introducing (A.3.31) in (A.3.29) we finaly obtain

or
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('~~ I 1 A. 3.33)

Hence a sufficient (but not necessary) condition of convergence is

that

G. (A-3-3i4)

A typical value of 1a/1 would be 2.0.

In this case

ý-C' <(A-3.35)

K '3

which in term of ?* becomes,

3 -( -21 \) "

or

(A.3.36)

It is important, however, that smaller values of \4 do not

exclude convergence although their sufficiency cannot be established.

Nevertheless we expect that for most viscoelastic materials \{, will

be much nearer 1/2, and hence (A.3.36) is sufficient for moot practical

purposes.
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To Show that if .Y, is Monotonicaly Increasing In

I t) j 'iHI (
o~ t•

where A

otI I GH .H,) + H. G (H- q

G1Fl HO (G z -GI+.

A

< 6(H 0  +(G -G YH H I.. -.- I~H ilG 1  (A. 3.38)

where is some value of G in the nth interval

In the linit G -) Gc, t t G=o , and therfore

i-I ~ HI G(A.3-39)"(G
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GENERAL DISCUSSION

When the critical dependence of the material properties of visco-

elastic solids on temperature was established, it was realized that the

prospects of obtaining analytic solutions to the related boundary value

problem with arbitrary geometry, were rather poor. In fact, up to the

time the present work was undertaken, the only two problems that

yielded exact solutions in the formal sense, were those of the infinite

state and the sphere with polar syintry, these solutions being limited

to solids with thermorheologically simple behavior.

The purpose of the present work was dual in the sense that though

the infinite cylinder was initially the central problem to which a

solution was sought, general approximate techniques that would apply

to any desired geometry were developed, and tested with very encourag-

ing results in the two cases where exact solutions were known.

The cylinder problem was also treated successfully, and two

analytic solutions were given. The perturbution solution can be viewed

as an "exact" solution, in _s far as the series expansion of the unknmwn

function has been proved convergent, and hence the desired degree of

accuracy may be achieved by calculating a sufficient number of terms.

Also, within the limitation of material incompressibility the

problems of the sphere and cylinder were examined and solved in the

presence of inertia forces. It is worth noting that in the presence of

inertia forces, compressibility precludes closed form solutions even in

the case of the infinite slab, since the equilibrium equation can no

longer be integrated directly.
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A perturbation technique is indicated here as well, and will form

the basis of future work.

An interesting consequence of the material dependence on temperature,

from a structural integrity design standpoint, is the effect of a

periodic temperature history oa the stresses in a viscoelastic slab.

It was shown in Appendix I that the maximum stress was almost

twice the value that would have occurred in an elastic slab under the

same temperature history. This is contrary to views empressed in the

literature [131 , that stresses due to a step input are likely to be the

design stresses.

In fact this phenomenon is only but one facet of the "Thermal

Cycling Problem" which is of particular concern in system with solid

propellant configurations. In view of the above result it is natural

to inquire into the existence of a critical thermal cycle which will

produce the maximum possible stress at some point in the viscoelastic

body.

Though the existence of such a cycle is instinctively certain, its

determination is a formidable problem, and it requires further studies.

Finally in the third Chapter, the horizontal slump problem of a

viscoelastic cylinder under isothermal conditions, contained in an

elastic shell is solved formally. Numerical computations are under

way.

This is a problem of concern when solid propellant system have

to be stored for a prolonged period of time.
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