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ABSTRACT

An analytical method combining simplified potential
flow theory and low aspect-ratio wing theory with empirical
modifications for a real viscous fluld 1s used to predict the
stability derivatives (first order hydrodynamic force and
moment derivatives) of a family of hulls in order to estimate
the dependence on geometric characteristics of course stabllity
and turning or steering qualities. The hulls are Taylor
Standard Series forms wlth after deadwood removed and have
the same length and prismatic coefficlent but varylng length-
draft and beam-draft ratios and skeg area. Comparison between
the values calculated by this method and those obtalned from
experimental measurements shows good agreement. The analytilcal
method can predict the relative effects of the geometrical
characteristics. Calculated magnitudes are slightly different
from the experimental but are on the conservative side. How-
ever, since the hulls tested have the same prismatic, the em-
plrical modificatlon for the rotary moment derivative which is
a functlon of prismatic coefficient has not been fully tested.
Necessary refinements of the method must walt on analysis of
data on series of forms with different prismatic as well as
length-draft and beam-draft ratios.
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NOMENCLATURE

profile area of wing or hull, ft2
aspect ratio of wing
beam, ft

dimensionless 1i1ft coefficlent based on
profile area

two-dimensional lateral added mass coef-
ficient (sectional inertia coefficient)

dlameter of turning clrcle, ft

total reslstance coefficient of the hull

force, 1b

measured lateral force coefficlent

acceleration of gravity
maximum draft, ft

local draft, ft
maximum skeg height, ft

moment of inertia of hull, 1b-ft-sec?®

added moment of lnertia of entrained water
(see text), 1lb-ft-sec?

Lamb's coefficients of accession to lnertia,
longltudinal, lateral and rotational

lift, 1b

dimensionless 1ift coefficient based on
area L« H

length, ft

mass of hull, slugs
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Ucos B

-U sin B

hull mass coefficlent

longltudinal added mass coefficient

lateral added mass coefficient (see text)

longitudinal virtual mass coefficient
lateral virtual mass coeffilclent

rotational added mass coefficlent (see text)
yawing moment, 1lb-ft

dimensionless yawing moment coefficient

virtual moment of inertia coefficlent

radlius of turning circle, ft
frictional resistance, 1b

reslidual resistance, 1b
dimensionless angular velocity

dimensionless distance along the path of
the center of gravity of the hull

time, seconds

velocity of the center of gravity of the
hull, ft/sec

x-component of U, ft/sec
y-component of U, ft/sec
coordinate axes flxed in the hull with

origin at the center of gravity

distance from LCG of center of gravity of
lateral added mass, ft

distance from LCG of center of pressure of
lateral force ¥, ft

distance from LCG of center of pressure of
tall surface or skeg, ft
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Xgs X x-coordinates of stern and bow, respectively

Y lateral hydrodynamlic force, 1b

Y' = lateral hydrodynamlc force coefflcient

B yaw angle or drift angle

6 rudder angle

A displacement of hull, 1b

I mass denslty of the fluild, slugs/ft®
O1,2 stabllity indices

Subscripts (other than those in above definitions)

H refers to bare hull

1 refers to ideal fluld

r! refers to derivative with respect to r!
T refers to tall surface or skeg

B refers to derivative with respect to B

R-945
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INTRODUCTION

The object of the program whose results are re-
ported here was to develop an analytic method for estimating
the course stability and turning or steering qualities of
ships. The method, following Martin,! was to be based on a
combination of simplified flow theory and low aspect-ratio
wing theory and was to be assayed by comparison with signifi-
cant empirical results.

Measurements exist of lateral force and moment, on
stralght course and in turn (rotating arm tests), on a series
of eight models (the "840" Series) having the same parent as
the Taylor Standard Series without the deadwood (faired-in
skeg) aft (Fig. 1). The models were of the same length and
prismatic but with varying beam and/or draft and hence dls-
placement. 1In additlon, there are measurements taken on the
models with various flat plate skegs added (Fig. 2), but no
other appendages.

Data measured in 1946-47 were reported in refs. 2
and 3 which were concerned primarlily with equilibrium turn-
ing conditions. Measurements were limited in some cases to
a very narrow range of yaw angle around the equilibrium turn- )
ing angle for a given diameter of turn. For this reason, the :
data on models with skegs reported in ref. 3 are useless for
the purpose of this report. However, unpublished experimental ]
data over a wide range of yaw angle at several turning radii, 3
obtalned in 1951 at this laboratory, are available for two of
the models with and without a plate skeg extending to the
stern. A third hull was tested here in 1959, without skeg
and with skegs of various slzes, and an analysis of the data
was reported by Tsakonas.?

Martin! recently reanalyzed the straight course
data obtalned in 1946-47 on the eight bare hulls along the

R-945
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lines suggested by Thieme, S Inoue® and Fedyaevsky and
Sobolev.” His method of treating the problem of ship motions
in the horizontal plane 1s based on a modified low aspect-
ratio wing theory, the Munk 1deal moment and cross-flow drag
theory. The last was used 1ln estimating the nonlinear force
and moment range.

The present work considers only stabllity deriva-
tives of the flrst order so that the nonlinear varliations,
the quadratic and higher terms, may be neglected. Also,
since 1n the linear range the stralght-course data are much
sparser than the rotating-arm data, it was declilded to glve
more welght to the latter in estimating statlc stability de-
rivatives. It has been the experlence at Davlidson Laboratory
that entirely rellable static force and moment rates for
straight-course motion can be obtained from rotating-arm data
at sufficiently large turning radii. This was confirmed in
ref. 4 where rotating-arm results were compared with straight-
course data measured 1n Tank No. 3 of Davidson Laboratory
using the same towing system and measuring devices as for the
rotating-arm experiments in Tank No. 2. In this way, errors
attributable to inconsistent mechanisms were avolded. The
earlier stralght-course data had been measured in Tank No. 1
using different towlng and measuring apparatus.

Landweber and Johnson® have shown that the simpler
methods derived from an alliance of potential flow theory
and low aspect-ratio wing theory can estimate the stability
derivatives as accurately as sophisticated methods based on
more reallstlc theoretical considerations. The more complex
methods employed in ref. 8 require as many simplifying
assumptions and empirical correction factors if not of the
same kind.

The analytical method adopted here combines the
force and moment approximations which were derived for

R-945
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spherolds from potential flow theory by Lamb® and for long
slender bodies with tapered or pointed ends by Breslin'®
with Albring's!? empirical modifications for viscid flow.
This approximate method 1s based on simple concepts, yet
correlation can be considered good between calculated and
experimentally obtained values. Necessary reflnements must
walt on the avallablllity of further data on hullis of other
prismatic with and wlthout skegs.

This project was sponsored by the Office of Naval
Research under Contract Nonr 263(40) and technically ad-
ministered by David Taylor Model Basin.

THE ANALYTICAL METHOD

Simplified Flow Theory

In the potentlal flow theory the hydrodynamlc force
and moment rate coefficients, or stability derlvatlves, of an
elongated body of revolution without appendages are defined
for the linearized region of small angles of attack and large

radli of rotation as:on stralght course, r' = % =0

LY, =Y =0 ]
By Py

(Munk 1deal moment)

in turn, around B

[
(@]
-

1

h

I
(@)

N!,
|

I
o
—

The notation is that of the Society of Naval Architects and
Marine Engineers (see Nomenclature and Fig. 3). The measured
lateral force coefficient is defined as

v v ' 1 t
Fy Y (mO +m!)r

R-945
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and 1its derivative with respect to r' as

6F§
= [] - 1 1
sy = ¥4, - (mg + m) (2)
where m! 1s the mass coefficient of the hull and m] is the
longitudinal added mass coefficlent. Lamb,® consldering the
added mass term as a hydrodynamlc force, defines

Y.¢ = -mi =- kym! where k, 1s the coefficient of longi-
H o]

tudinal accession to lnertia. Equations 1 are equivalent to
those derived by Breslin'® for a long slender body with
tapered or polnted ends from three-dimensional singularity
distributions.

The first of egs. 1 1s known to be in serlous error
in a viscous fluid. To quote Arnstein and Klemperer: "When
an alrship is propelled at an angle of attack, 1lift forces
are created 1n a similar manner as by the wing of an alrplane,
It 1s true that the airship's shape as a wing 1s very poor
and its aspect ratio extremely small; but the size of the ex-
posed surface 1is so great that tremendous aerodynamic force
components at right angles to the flight path can be evoked."12

Fedyaevsky and Sobolev’ have defined the forces and
moments acting on a ship by ldentifyling the body of the ship
with a wing. 1In thls analogy the span of the wing is assumed
to be double the draft of the shlp to take into account the
actlon of the free water surface. Tsakonas® shows, by a com-
parison with the wind-tunnel results of Flax and Lawrence,1®
that this "solld wall" method of accounting for the free sur-
face effect 1s correct for moderate speeds when the influence
of wave making may be neglected.

Albring'! has derived approximate formulas for the
stablility derivatives of a body of revolution with and without
appendages moving in a viscous and eddying fluld. The 1ift L
on a bare hull is the force developed by the "imagined angle of

R-945
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of attack at the stern" of a "correspondingly shaped solid
without the effect of curvature." It is assumed or taken
from experimental measurements. It acts at a distance x
from the center of gravity and Albring suggests that for most
bodies of revolutlon xp = 0 18 a good approximation. For a
bare hull his results are given in ref. 11 as:

on straight course, r' = % = 0, h
L! assumed or measured
Py
Y! = [} + D}
Pg  TPp o O L (3)

x
L= my - mj + 1? L, = m} - m{ = N}
By 1 By 1% %y

in turn, around 8 = 0

X
Yy = - LI =0
TH * Py /
Albring does not give a formula for N;' for the

H
body without appendages. If one assumes that the center of

pressure does not shift when golng from rectilinear to curvi-
linear motlion, then

b= (P Ly, =0 (3a) ?

On the other hand, on the basis of Albring's assumption that
the center of pressure 1s unaltered by the addition of fins

or skegs, his formula for N'r‘ for the body with fins should
hold for the bare hull:

!

XO 2
bes - (P (3b)

R-945
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X
where 1? i1s implied by Albring to be half the prismatic coef-

ficlient of the body. Lé in this case would be the value for
the hull alone, Lé 3 8ince the effects of the appendages are
H

taken as simply additive.

Equations 3 are derived from simplified flow theory
with the necessary condition that in viscild flow the drag 1s
not zero,and so at an angle of attack the 1lift force is not
zero., Under this condition there is an additional moment due
to the action of the 1ift force at a center of pressure dis-
placed from the CG by xp % 0. 1In rotation,the angle of attack
at the center of pressure 1s changed by an amount

tan~! (:x%z) ~ jgzz- X_EI:

where
r = angular veloclty
SREF
U = forward velocity
4 = length of the hull
R = radius of turn

The additional force coefficient resulting from this change
in angle of attack is

x rt
Lt
B

and therefore the rotary force derivative of eq. 1 has an
additional term

-X
1]
= L
which 1s equivalent to the negative of the additional static
moment derivative,

R-945
-6-
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In treating the long body equipped with fins, skegs
or control surfaces, simplified theory assumes that there 1s
no interference between the body and these surfaces so that
thelr separate effects are additive. Tail-surface (skeg)
effects would be derived from the 11ft on the surface
(obtained either by measurements or by assuming the surface

to be a wing) by following the reasoning of the previous
paragraph. Then

Lé assumed or measured
T

Xq
N! = L
bo = T by
(4)
Yr, = - x_{'! Lt
T B
N, = '(x-g-‘a L}

P

where X 1s the algebralc distance between the center of
gravity and the center of pressure on the taill (xT is
negative).

Equations 3 and 4 are the basis for the calculation
method used 1n the present report. The assumed 1ift rates and
the other force and moment rates derived from them will be
discussed in the followlng sections.

The Assumed Static Force And Moment
Rates For The Bare Hull

The derivative of the lift coefficlent with respect
to B,Lé s 1s assumed as given by Jones' formula for a low
H

aspect-ratio wing of span equal to twlce the ship draft. The
dimensionless 1ift rate per unit wing area

R-945
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18 derived from the consideration of elliptic load distribu-
tions along the chord and the span of a thin foll. Nondimen-
slonallzed on the basis of the area H x £, the static rates
of eq. 3 become \\

Ly = mH
By T
. > (5)
YéH = I + D}
N' =

X X
= H
by T VB *ELp  momit (R )

where Dé 1s the drag coefflicient obtalined from the Taylor
Standard Seriles curves of resistancel? and xp 1s taken as the
distance of the center of area of the bare hull profile from
the center of gravity.

Tsakonas* and Martin®! found the Jones formula to be
a good approximation of the statlic 1lift rate of the Standard
Series hulls. The fact that the formula does not predict the
values obtained from measurements on flat plates of the same
profile does not detract from its usefulness for cambered
wings. Bisplinghoff proves that an elliptically loaded wing
must have an elllptic planform and he points out that it is

the so-called flat-plate chordwise distribution which "compares

very favorably wlth the measured chordwlse distribution of
pressure difference over a slightly inclined, thin, uncambered
alrfoll developing the same 1ift. The only significant dis-
crepanclies come from within a few per cent chord lengths of
the singularity [at the leading edge]."'S Tsakonas* referred
to Crabtree's!® work in substantiation of this statement.
Crabtree had found that the pressure distribution over a thin

R-945
-8~

st bl et Semed eed

] [ IS,




| et TR TR

i EE D

——y
+ ]

ey gy pm—

S amm M T e el e peey ey

b EREre LI

plate (less than 12% thickness to chord ratio) at various
incidences showed a pronounced suction peak near the leadlng
edge with a consequent steep adverse pressure gradlent and
laminar boundary layer separation. Since the slze and form
of the separation region or "bubble" has a large effect on
the 1ift, Tsakonas cautloned against use of the experimental
measurements on flat plates to predict forces 1n the case of
the ship-wing analogy.

The Assumed Rotary Force And Moment
Rates For The Bare Hull
From simplified flow theory the rotary force de-
rivative for a body of revolutlon without appendages 1s zero
i1f the body has fore-and-aft symmetry. For a bare ship hull

without fore-and-aft symmetry, on the other hand, eq. 3 shows
that:

X

Y = o 1 = [ - 1
TR Ty T b VA
and the measured force derivative with respect to r' (eq. 2): (6)
oF!
yH X
Ser = - (mé + m!) - 7? Lé
H

where xp 1s different from zero although small,

From eq. 3a:

X =2
R A

which is very small. In addition, as shown by Martin,! there
1s a term due to the asymmetry of the rotary added mass of en-
trailned water, mé. The moment due to this added mass is

-mir’ X/t where X 1s the distance from the center of gravity
of the hull to the CG of the lateral added mass.

O— S UM
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Then eq. 3a becomes

X, 2
T S RAC RN (6a)
If eq. 3b is used
_ x _ (Xo,2

where xo/l is half the prismatic coefficient. The values ob-
tained from eq. 6b have been found to be much closer to ex-
perimental results than those calculated by eq. 6a. The
second term of eq. 6b is approximately 1-L/2 times the first.
For this reason, eq. 6b has been taken as the assumed rotary
moment rate. As in ref. 1, mé and X have been estimated in
the followlng way:

k! kt my
1 ! = =
Mz ® %= "2 T k2 p17H
2
*b
— 2
m, =k, & Cy h® ax
xS

ko,k' are Lamb's coefficlents of accession to inertia,
lateral and rotational.

XgsX,, are the x coordinates of the stern, bow.

h = local draft

o = two-dimensional lateral added mass coefficient.
It 1s determined at each section from the curves

on two-dimensional forms of Lewls' sections by
Prohaska.t”

R-945
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The Stabillity Derlvatives
For Hulls With Skegs
The force and moment derivatives for the hulls with
skegs are taken as a simple addition of the corresponding
forms of eqs. 6 and U:

Ly = LBH + LéT A

Yy = YéH + LI'ST

Np = NEH + )—FLET \ (7)
Ype = ¥pp - J;,glfé,f

N', =N', - (XTT)2 L}

r ry Brp )/

In the present nondimensliocnalized form of Jones' formula

Yy T T ”
hp, = maximum skeg height

The center of pressure of the skeg will be assumed at the
after end of the skeg. Since the length of the skeg 1s small
in comparison with the length of the hull, any error involved
in this assumption wlll be small.

R-945
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For the case of models wlth skegs extending to the
stern (Fig. 2), these formulas glve essentlally the same re-
sults as those obtained by the method suggested by Martin.?
He 1ncluded the following terms 1n his force and moment
equatlons, respectlvely, to account for the skeg effect:

- 1 -
m(xs)ux (kauy + k'r xs) (from eq. 2 of ref. 1 for Fy)

(9a)
and
- X m(xs)ux (x uy + k'r xs) (from eq. 3 of ref. 1 for N)
(9b)
where

m(x )= two-dimensional lateral added mass at the stern

per ft
u, = Ucos B=1T
u = -U sin = =U
y B B
r = angular veloclty of the ship.

Vhen the section at the stern 1s that of a flat plate,

_ pmH?
m(x,) = L
(see Kuerti, McFadden and Shanks'®)

and thils term 1s numerlcally the same as that glven by the
Jones formula for a low aspect-ratio wing of span equal to
twice the ship draft., After nondimensionalizing, since

k, = k' = 1, eq. 9a for the added force 1s approximately

X
LéT (B - P"TQ

and eq. 9b for the added moment 1is

X X
LéT—E-‘(B - %)

R-945
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where Lé 1s given by eq. 8. Then the force and moment rates
T

are those given in eq. 4.

The Stability Indices

The criterla for inherent dynamic stability of a
free body moving on stralght course in the horizontal plane
are the damplng exponents o, and o, 1n the solution

of the homogeneous linearized equations of motion'®

(m! - Y1) r' - mg By - Yy B =0

t p?! _ N! p! - N! -
n, rg Nr,r NB B 0

where Y., N!, ¥Y!, and NI, are defined in eqs. 6 and 6b for

(10)

the bare hull and in eq. 7 for the hull with skegs.

f = ! 4 !
mx mo my

! = m! ?
mg = mj + m}

t
nZ

O m!
=2 (assuming the radius of gyration is equal to L)
50’41{ E E

Xp

. v 2.2

Iz—k'-éef C, h®xax (ref. 1)
xS

and

= 9B _dr' Ut
Ps T3 s = 8=T

Solution of the characterlstic equation of eq. 10 gives the roots

R-945
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If g, and o, (or thelr real parts) are both negative,
the motion 1s inherently stable in that an ilnitial disturbance
damps out exponentlally; the more negative the exponents, the
sooner 1t damps out and hence the greater the stabllity. If
0, 18 positive, the motlon 1s unstable and the hull cannot
keep to a stralght course without application of a corrective
rudder.

The turning characteristics of a hull in turns that
are not too tight (when nonlinearities can be neglected) can
be predicted qualitatively from the o, index. A more dynam-
1cally stable hull will turn in a larger radius under a given
applied rudder force than will a less stable hull. Conversely,
the more stable hull will require greater rudder force than
the less stable hull to turn 1n a given radlus. On the other
hand, an unstable body may turn in the opposite direction to
that indicated by the applled rudder and will need a com-
paratively large force to bring it around (until it becomes
stable in the turn, but stablility 1n turn 1s outside the scope
of this report). ‘ 2
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PRESENTATION AND DISCUSSION OF RESULTS

The experimental data measured in 1946-47,2°% 1951
(unpublished), and 1959,* are shown in Figs. A-1 to A-48 in
the Appendix, plotted in dimensionless form versus dimension-
less angular veloclty r' = L/R and yaw angle B. TFigures
A-1 to A-19 present the measured lateral force coefficlents
F§ = -(m! + m}) r' + ¥' and Figs. A-20 to A-38 the measured
yawing moment coefficients N' for the bare hulls. Filgs. A-39
to A-48 show these quantities for three of the hulls equipped
with skegs but no other appendages. Skeg 20 or A 1s the full
skeg extending to the after perpendicular (Sta. 20), skeg 18
or B extends to Sta. 18, 0.1 length from the after perpendi-
cular, and skeg 17 or C to Sta. 17, 0.15 length from the after
perpendicular,

The experiments had been conducted at speeds ranging
from length-Froude numbers of 0.16 to 0.23, for which range
the 1Implication of the analytical method that wave making may
be neglected is valid. In that speed range the ratio of force
or moment to the square of speed changes only slightly so that
data measured at different speeds within the range can be com-
pared legitimately.

Table I glves the pertinent characteristics of the
eight hulls and the necessary information for the calculatlons.
The resistance coefficlents D! = 2 (Rf + R.)/pU?LH were taken
from the Taylor Standard Series curves'* as the average of the
slightly different values for Froude numbers 0.16 and 0.23.

The calculated Yéﬁ and Néﬁ, force and moment coef-
ficlents respectively at r' = 0, are also shown on the data
charts in the Appendix. The data plotted at varlous B versus
r!' are falred to the calculated values at r' = 0 with no
stretch of the lmagination., The static force and moment rate
coefflclents are the same whether predicted by the analytical
method or by rotating-arm data.

R-945
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Figures 4 through 9 in the text are summary charts
comparing experimentally obtalned values for the rotary as
well as static derlvatives with those calculated by the
analytical method. These values are shown for varylng length-
draft 4/H and beam-draft B/H ratios.

The calculated OF!/or°, N;, and stabllity indlces
0152 predict the variations with 4/H and B/H correctly but
underestimate the actual magnitudes slightly in the bare-hull
cases, more 1n the cases of hulls with skegs. The quantita-
tive predictions, however, are on the conservative side.
These comparisons suggest that the simple method adopted here
can be useful for estimating the stabllity of a given vessel.
The good results Justify use of the ship-wing analogy and the
Jones formula for the 1ift on the ship as a low aspect-ratio
wing. '

The followlng are speclfic deductions from the
charts:

1l. The static force derivatlve Y! varies inversely
with L/H (or directly with aspect ratio) and directly with
B/H although B/H has very slight effect. Yé 1s increased by
adding skeg area. An increase in Yé is in the directilon of
greater stability.

2. The statlc moment derivative N} also varles in-
versely with 4/H and directly with B/H. This destablizing
moment rate is reduced mainly by increasing 4/H and by adding
skeg area at the stern.

3. The rotary force derivative oF!/dr! becomes
less negatlive or more positive by 1ncreasing L/H, by de-
creasing B/H and by 1ncreasing skeg area at the stern. As in
the case of Né, increasing 4/H or decreasing B/H is in the
direction of greater stability. The variation with B/H arises
from the varlation in the longitudinal virtual mass coeffi-
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clent, This is the most important effect for the bare hulls, ?
and 1is as lmportant as the skeg effect 1n the case of hull
with full skeg.

4, The rotary moment derivative N!, 1s independ-
ent of B/H. It becomes less negative wilth lncreasing 4/H
and more negative (towards greater stabllity) when skeg area
is added at the stern. The variation with 4/H is slight in
the case of the bare hulls, more pronounced for the hulls
with skegs.

5. The stabllity indices o¢,,,, which combine the
effects of statlic and rotary force and moment rates, show
that stability depends almost entirely on B/H and very little
on L/H in the range tested. Stability increases as B/H de-
creases. On the other hand, an increase 1n B/H would result
in greater turning ability.

Figure 10 18 a summary chart comparing the calcu-
lated Yé, Né, Y;,, N;, and o, with the values from measure-
ments obtalned by Tsakonas? in 1959 on the 842 hull, wilthout
skeg and wlith three skegs of different sizes. The calculated
static derivatives Yé and Né are ldentlical with those obtalned
from experimental results. This 1s also shown in Figs. 4 and
7. Filgure 10 shows that while the calculated and experimental
magnitudes of the rotary derivatives and stabllity index differ
slightly, the stability predictions are conservative estimates.
It 1s also seen that the analytical method can predilct the
trend 1n stability with increase in skeg area. Figures 11 and
12 for the hitherto unpublished 1951 data confirm these con-
clusions.

R-945
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CONCLUSIONS AND RECOMMENDATIONS

An analytlcal method for estimating course stabllity
and turning qualities of ships has been developed and com-
pared with avallable experimental data on a series of eight
hulls, the 840 Series, of the same length and prismatic but
varying 1n draft and/or beam and displacement. The analytil-
cal method combines simplified flow theory with low aspect-
ratlo wing theory and makes use of Albring's emplirical modi-
fication for the rotary moment derlvative.

Encouragingly good correlation 1s shown between the
calculations by thls method and the results based on the ex-
perimental data. However, since the 840 Serles 1s a family
of hulls of the same prismatic, Albring's modification for
the rotary moment rate which 18 a functlon of prismatic coef-
ficlent has not been fully tested. Necessary refinements of
the method must walt on analysis of data on hulls of other
prismatic, wlth and without skegs or deadwood aft.

It is recommended therefore that all avallable data
on hydrodynamic forces and moments, 1n turn, for other hull
forms with different prismatic as well as length-draft and
beam-draft ratlos be assembled and analyzed with a view to
checking and refining the method. It would also be advisable
to do further experimentation in still water on families of
hulls such as the Serles 60. The latter series has been the
subject of extensive tests to determine reslstance, bending
moments and sea-keeplng qualities in waves but the stability
on stralght course and behavlor 1n turn have so far been in-
vestigaced for only one of the series.2°
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