Best Available Copy
COLLECTION OF LETTER REPORTS
OF VIBRATION SURVEYS
ISSUED DURING 1962

F. A. HEINZE
AND
D. S. BROGDEN

Prepared by:
Code 261
<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>USS ROBERTS (DD823) Post-Overhaul Hull Vibration Survey</td>
<td>24 January 1962</td>
</tr>
<tr>
<td>USS PRATT (DLG13) Hull Vibration Survey After Shaft Renewal</td>
<td>7 February 1962</td>
</tr>
<tr>
<td>USS OKINAWA (LPH3) Hull Vibration Survey</td>
<td>21 February 1962</td>
</tr>
<tr>
<td>USS LONG BEACH (CG(N)9) Investigation of Vibration Problems</td>
<td>29 March 1962</td>
</tr>
<tr>
<td>USS SAILFISH (SSR572) Snorkel Exhaust System Noise and Vibration</td>
<td>12 April 1962</td>
</tr>
<tr>
<td>USS GALVESTON (CLG3) Investigation of Vibration and Noise No. 4 Ship's Service Turbo-Generator</td>
<td>16 May 1962</td>
</tr>
<tr>
<td>USS BIDDLE (DDG5) Underway Vibration Surveys</td>
<td>23 July 1962</td>
</tr>
<tr>
<td>USS PRATT (DLG13) Vibrations Excited by Laundry Extractor</td>
<td>7 August 1962</td>
</tr>
<tr>
<td>USS PRATT (DLG13) Vibration of 30 KW, 400 Cycle IC and FC M/G Set</td>
<td>10 September 1962</td>
</tr>
<tr>
<td>USS McNAIR (DD679) Pre-Overhaul Hull Vibration</td>
<td>20 September 1962</td>
</tr>
<tr>
<td>USS KIDD (DD661) Pre-Overhaul Hull Vibration Survey</td>
<td>1 November 1962</td>
</tr>
<tr>
<td>USNS KINGSPORT (AGS164) Hull Vibration Survey</td>
<td>16 November 1962</td>
</tr>
<tr>
<td>USS TACONIC (AGC17) Vibration - Ship's Service Turbo-Generator No. 2</td>
<td>27 December 1962</td>
</tr>
<tr>
<td>USS LONG BEACH (CG(N)9) Sea Trial Vibration Items</td>
<td>28 December 1962</td>
</tr>
</tbody>
</table>
SHOP REPORT

Serial No. 261
Date Prepared: 24 January 1962

JOB TITLE
VIBRATION SURVEY
(Show-Overhaul)

Provide 3 copies for P & I Division, in addition to copies for addresses checked under "COPY DISTRIBUTION".

<table>
<thead>
<tr>
<th>SEQ.</th>
<th>TITLE</th>
<th>CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASST. P & E SUPT.</td>
<td>312 X 219 214</td>
</tr>
<tr>
<td>2</td>
<td>ADVANCE PLANNING 227</td>
<td></td>
</tr>
</tbody>
</table>

FROM

PREPARED BY (Name and Phone)
P.D. DEAR 2948

APPROVED BY
H. L. COFFIN

TO

JOB PLANNING BRANCH
(Code 230)

PURPOSE
(Check appropriate column)
- [X] Report of inspection in compliance with Job Order
- [] Request for further instructions
- [] Report of new work changing scope of Job Order
- [] Other

COPY DISTRIBUTION
(Check/write in as required)
- [X] SHIP SUPT. OR [] CODE 556
- [] CODE 507
- [] REPAIR SUPT. OR [] SHOP SUPT.
- [X] CODE 244
- [X] CODE 213 (3)
- [X] CODE 261 (2)

RECOMMENDED ACTION:

(Use additional blank sheets if needed)

ASST. P & E SUPT. ACTION AND COMMENTS:
- [] CODE 226: Issue new Job Order
- [] CODE 227: Route
- [] CODE 228: Investigate and report

- [] CODE 230: Route as required
- Investigate and report
- File if acceptable
COMMENTS AND RECOMMENDED ACTION:

1. In accordance with the J.O. a hull vibration survey was conducted on the subject vessel on 11 January 1962 during Builder's Trial to determine whether hull vibration is excessive.

2. The main propulsion system consists of steam turbines driving through reduction gears. The shafts are fitted with four-bladed propellers.

3. All data were obtained while in water depths exceeding 80 ft. Hull vibrations measurements were obtained at the 5 inch Gun Director Barbette on the 02 level at frame 72 using General Radio vibration equipment and a Brush recorder.

4. Data was recorded over the speed range of 210 to 320 RPM at increments of 10 RPM with additional data recorded at 5 RPM increments in the vicinity of the critical speeds.

5. The results of the survey are presented on sheet (3). Two distinct first order (one vibration cycle per shaft revolution) critical speeds are present. The lower critical speed was 240 RPM with a displacement amplitude of ±8.7 mils. The upper critical speed was 315 RPM with a displacement amplitude of ±14 mils.

6. Based on measurements on a great many vessels, the New York Naval Shipyard Material Laboratory has established the tolerable limit of ±18 to ±20 mils (measured on the 02 level approximately frame 74) for first order athwartship vibration on this class vessel. Therefore the hull vibration amplitudes measured on this vessel are considered acceptable.
USS ROBERTS (DD 823)

Hull Vibration Survey
Of 11 January 1982
Gun Director Barbettes
02 Level Frame 12
Aftwardship Vibration

Graph showing Displacement Amplitude vs Shaft Speed RPM.
HULL VIBRATION SURVEY
(AFTER SHAFT RENEWAL)

1. A hull vibration survey was conducted on the subject vessel on 25 January 1962 during the special sea trial conducted after the main propulsion shafting renewal.

2. All data were obtained while in water depths exceeding 80 feet. Atmospheric vibration measurements were recorded at the mast on the 02 level frame 80 over the speed range of 130 RPM to 250 RPM at increments of 10 shaft RPM.

3. The results of the survey are presented in graphical form on sheet 2 of this report. There does not appear to be any first order (one vibration cycle/shaft revolution) critical speed present. The maximum displacement amplitude of the first order vibration was 3 5.0 mils at 260 shaft RPM. Propeller blade frequency vibration (4th order) was observed from 130 to 250 RPM but never exceeded a displacement amplitude of 0.5 mils.

4. The most prevalent vibration observed throughout the speed range was a 1.7-1.8 cps constant frequency which is independent of shaft speed and most likely hydrodynamically excited. A critical occurred at 230 RPM with a displacement amplitude of 44.6 mils.

5. The hull vibration amplitudes measured on this vessel are considered to be acceptable.
U.S. BRATT (DLG 12)

Hull Vibration Survey

Off 25 January 1961
At Post 02 Level EX 50
Airway Ship Direction

Dissipation Amplitude ratio

17500 RPM Constant Frequency

Shaft Revolution Frequency

Shaft Speed (RPM)

Ship Report 52-L1-30
Sheet No. 2 of 4
From: Commander, Philadelphia Naval Shipyard
To: Chief, Bureau of Ships

Subj: USS OKINAWA (LPH-3); Underway Vibration Survey

Ref: (a) NHIPS ltr Ser 345-59 of 21 Feb 1962

Encl: (1) Underway Vibration Data for USS OKINAWA (LPH-3)

1. A vibration survey was conducted on USS OKINAWA during builders trials on 9 May 1962. Displacement was 16,500 tons with a mean draft of 24'-6". Designed full load displacement of this class is 17,983 tons with a mean draft of 26'-1".

2. During the build up to full power, speeds were increased from 40 to 115 shaft RPM in increments of 10 RPM with 5 RPM increments at the higher speeds. Vertical and transverse vibration data were recorded on the towing pad on the main deck Frame 141½ at each steady speed increment. CEV type 4-102A velocity pickups were used in conjunction with a Brush Mk II dual channel oscillograph. Conditions during the speed build up were sea state 3, wind speed 15 knots at 210 degrees relative bearing and intermittent 5 degree right and left rudder corrections.

3. At full power, measurements were taken at the bow and stern, several locations on the island and mast and on the main propulsion machinery. Vibration pickups had been mounted on the mast in the transverse direction, 30 and 52 feet above the 07 level prior to the trial. Measurements were also obtained on the mast, island and stern during hard right and left turns.

4. Results of the measurements at the towing pad, Frame 111, are plotted in figures 1 and 2 of enclosure (1). Data obtained on USS IWO JIMA (LPH-2) at 15,900 tons displacement on 10 January 1962 are plotted for comparison. It should be pointed out that vibration levels during hard turns are far from steady and the maximum amplitudes were found to vary considerably between various turns at the same rudder angle and speed. Therefore, the comparison between LPH-2 and LPH-3 in hard turns should not be given too much weight.

5. Extensive work was accomplished by the Shipyard to correct excessive local vibrations on LPH-3. Additional stiffening was installed in the island structure and the mast was extended down to the flight deck (03) level. While no measurements are available on the LPH-2 mast, visual observations of the two ships indicate that considerable improvement in mast vibration was achieved by the LPH-3 alterations. However, examination of comparable island measurements indicates no improvement in that area.
6. According to reference (a) the 10 January 1962 hull vibration measurements on LPN-2 were acceptable and satisfactory. The Shipyard concluded that the similar hull amplitudes on LPN-3 were also satisfactory.

Copy to:
COMPHIBLANT (w/1 copy encl. (1))
C.O. USS OKINAWA (LPN-3)(w/1 copy encl. (1))
BUSHIPS (Code 442)(w/1 copy encl. (1))
BUSHIPS (Code 436)(w/1 copy encl. (1))
Code 200
 212 (w/1 copy encl. (1))
 261
 300 (w/1 copy encl. (1))
Prepared by: F. Neimae
Typed by: N. L. Emma
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>RUDDER</th>
<th>DIRECTION</th>
<th>FREQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOW 01 LEVEL</td>
<td>0 DEG</td>
<td>TRANSVERSE</td>
<td>4TH ODD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VERTICAL</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FORE + AFT</td>
<td>-</td>
</tr>
<tr>
<td>1ST DK FR 14</td>
<td>4</td>
<td>TRANSV</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VERT</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F & A</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RIGHT 40°</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VERT</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEFT 40°</td>
<td>27</td>
</tr>
<tr>
<td>03 LEVEL</td>
<td>FR63</td>
<td>VERT</td>
<td>35</td>
</tr>
<tr>
<td>06 LEVEL</td>
<td>MAST FR63</td>
<td>TRANS</td>
<td>-</td>
</tr>
<tr>
<td>MAST 30' ABV 07 LEV</td>
<td>TRANS</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>MAST 50' ABV 07 LEV</td>
<td>TRANS</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>06 LEVEL</td>
<td>FR63</td>
<td>VERT</td>
<td>4</td>
</tr>
<tr>
<td>Location</td>
<td>Rudder</td>
<td>Direction</td>
<td>Freq</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>ACE MAST 16'6"3</td>
<td>RIGHT 40°</td>
<td>TRANSV</td>
<td>4TH ORD.</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>VERT</td>
<td>"</td>
</tr>
<tr>
<td>"</td>
<td>LEFT 40°</td>
<td>TRANSV</td>
<td>"</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>VERT</td>
<td>"</td>
</tr>
<tr>
<td>8'4" C. STEEL</td>
<td>RIGHT OR LEFT</td>
<td>TRANSV</td>
<td>"</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>TRANSV</td>
<td>"</td>
</tr>
</tbody>
</table>
Vibration Trial LPH Machinery Data

<table>
<thead>
<tr>
<th>Location</th>
<th>Rudder</th>
<th>Direction</th>
<th>Freq</th>
<th>LPH 2</th>
<th>LPH 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-En</td>
<td></td>
<td>A</td>
<td>ORD</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>CAT-2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>F-En</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>22</td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>26</td>
</tr>
<tr>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>"</td>
<td></td>
<td>TRANSV</td>
<td></td>
<td>20</td>
<td>7.5</td>
</tr>
<tr>
<td>Turbine FDN FWD</td>
<td>TRANSV</td>
<td></td>
<td></td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>"</td>
<td></td>
<td>F & A</td>
<td></td>
<td>25</td>
<td>18</td>
</tr>
</tbody>
</table>

(ACROSS COUPLING)
(SAME AS ABOVE)

CALCULATED BY

CHECKED BY
LPX VIBRATION TRIALS
TOWING PROD. MILD STEEL, RPM 8
4TH ORDER VERTICAL

x LPX-2 10 JULY, 1962
• LPX-3 9 MAY, 1962

PEAK TO PEAK AMPLITUDE - MILLS

0 10 20

PROPELLER SHAFT RPM

FIGURE 1
Figure 2: LPV Vibration Trials
Towing Pad, Mk II, Armor & 4th Order Transverse

- LPV-5 10 Jan, 1962
- LPV-3 9 May, 1962
- LPV-3 30 May, 1962 60 Level FA 63 (Mast)
- LPV-3 30 May, 1962 10 Meter Pedestal 56" Above 66 Level

Graph showing RPM against ship accelerations.
MEMORANDUM

From: Code 261
To: Code 214

Subj: USS SAILFISH (SSR572) Snorkel Exhaust System Noise and Vibration; investigation of

Ref: (a) PHILANAVSHIPYD J.O. 16-345-4107

1. In accordance with reference (a) an investigation of the snorkel exhaust system on the USS SAILFISH (SSR572) was made in order to determine the cause of the noise and vibration in the piping when the engines are exhausted through the snorkel exhaust mast or to the low pressure blow system.

2. The noise and vibration in the snorkel exhaust system has existed since the ship was built and the following work has been done in the past in an attempt to correct the condition:

 a. The various valves in the snorkel exhaust system have been overhauled in order to eliminate any chatter or leakage.

 b. Portsmouth Naval Shipyard installed 39 mild steel bands 4 inches wide spaced 18 to 36 inches apart around the piping in order to eliminate noise and vibration caused by pipe resonance.

 c. During the ship’s availability at Philadelphia in 1959, the low pressure blow take-off and the snorkel exhaust piping section, between frames 73 and 76 were modified in order to eliminate noise and vibration caused by suspected poor flow characteristics in this area. None of the above corrective actions were successful in reducing or eliminating the noise and vibration.

3. During the investigation conducted at dockside on the 29 January 1962, the #2 main engine was operated at 750 RPM and exhausted outboard through the muffler and low pressure blow system. The "Able" valve was inoperable and dogged shut and no attempt was made to exhaust through the snorkel exhaust mast. Tests were made to see what effect various conditions had on the generation of the noise. The results of the checks are as follows:

 a. The engine and blower speeds were kept constant and the pressure in the exhaust duct was varied. Between 4.5 psig and 9 psig the noise was evident. At 10 psig (maximum pressure obtained during the test) the
noise generation stopped but as the pressure was lowered, the noise resumed.

b. With engine speed reduced to 650 RPM and the snorkel exhaust duct pressure maintained between 4.5 and 8 psig, the noise generation did not occur.

c. The valve to the low pressure blow system was secured but this did not stop the noise generation, although there was then no flow in the snorkel exhaust system.

4. Since the noise generation is independent of flow in the duct and dependent on pressure and engine speed, it is concluded that a standing wave is being excited in the snorkel exhaust duct air column by some harmonic of engine speed. This would also explain why all previous corrective action had no effect on the noise generation. The standing wave is being generated in the long run (50') of snorkel exhaust duct between frames 77 and 97.

5. In order to correct this condition it would be necessary to detune the pipe by shortening it or lengthening it or in some manner to break up the standing wave in the duct. Bureau of Ships, Code 525, was consulted as to whether they had any objection to the installation of an enlarged section, with or without baffles, or the installation of bends in the straight duct. The installation of an enlarged section with or without baffles was not acceptable but there was no objection to the installation of bends in the straight duct.

6. Upon investigation of the possibility of the installing bends in the straight duct, it was found that not much change in the run of the duct could be made due to space limitations. With the modification of the duct that is possible, there is no assurance that it would be effective in reducing or eliminating the objectionable noise and vibration.

7. It was learned from Ship's Force that the other ship of this class, the USS SALMON (SS573) has a similar noise and vibration problem. San Francisco Naval Shipyard was contacted and it was found that in the past, corrective action had been taken on the USS SALMON similar to that already accomplished on the USS SAILFISH. During the USS SALMON's recently completed availability, no complaint about the problem was made. It is not known whether the problem has been solved or whether the Ship's Force does not consider it sufficiently serious to warrant corrective action.

8. Since it is not feasible to initiate corrective action which would have a reasonable chance of correcting the condition in the snorkel exhaust system, it is recommended that no corrective action be taken.
Copy to:
Code 260
262
261 (2)
244
Prepared by: P. D. Dear
Typed by: M. L. Riets
INVESTIGATION OF VIBRATION & NOISE

#4 SHIP'S SERVICE TURBO-GENERATOR

1. In accordance with the ship's Trial Discr. Item the vibration and noise levels of the #4 Ship's Service Turbo-Generator were measured.

2. MILSTD 167, Mech. Vib. of Shipb. Equip., establishes maximum allowable limits of vibration for new turbines. The limit for the subject unit (Instruction Book NAVSHIPS 361-004.3) is + \(\frac{1}{4} \) mils at 10,033 RPM (167 cps). The maximum measured amplitude of vibration, which was rotational frequency, was + \(\frac{1}{8} \) mils.

3. BUSHIPS Instruction 9610.12 provides instructions for measuring turbo-generator reduction gear noise in order to determine if replacement is required due to high noise levels. Noise level readings were recorded at three locations adjacent to the reduction gear and turbine, at the watch-stander's station and at a reference point adjacent to the #3 Ship's Service Turbo-Generator reduction gear. The predominate frequencies were the fundamental turbine rotational frequency (167 cps) and (the 2nd, 3rd and 4th harmonics.) The gear mesh frequency (6000 cps) was at least 17 db below the broad "band noise level and therefore insignificant. The noise levels are not considered excessive at any position.

RECOMMENDED ACTION:

1. No corrective action is recommended or required.
From: Commander, Philadelphia Naval Shipyard
To: Commanding Officer, USS BIDDLE (DDG5)
Subj: USS BIDDLE (DDG5) Underway Vibration Surveys; results of

Ref: (a) PAT Item *JA3C (Machinery)
 (b) PAT Item 1B23R (Weapons)
 (c) DTNB Report 1451 "Ship Vibration" Dec 1960

Encl: (1) Plot of Hull Vibration - Main Dk Frame 182
 (2) Plot of Missile Launcher Vibration - Arms In
 (3) Plot of Missile Launcher Vibration - Arms Out
 (4) Plot of After Gyro Compass Vibration

1. In response to references (a) and (b) vibration surveys were conducted on the USS BIDDLE (DDG5) while underway from Philadelphia Naval Shipyard to Yorktown, Virginia, 18 and 19 June 1962. The vibration surveys were conducted while the ship was operating in water over 120 feet deep. Sea state and wind conditions were mild throughout the surveys.

2. Four separate investigations were conducted as follows:

 a. Tartar Missile Launcher

 (1) It was learned that the Tartar Missile Launcher arm vibration of references (a) and (b) occurred with the launcher trained aft, with the arms retracted and with no missiles mounted on the arms. It was realized that the vibration characteristics could change considerably with missiles on the launcher, however, time considerations limited the scope of the survey to basically the conditions under which the complaint was noted. Vertical and transverse vibration measurements were recorded on the "A" and "B" arms approximately 18 inches from the loading end and on the main deck, Fr 182, at the starboard side of the launcher base using CEC Type 4-102A velocity pickups with a Brush Mk II oscillograph. Data was recorded for each position at every 10 shaft rpm from 150 to 295 rpm. Also, at each speed, the launcher arms were extended and additional data was recorded on the launcher arms.

 (2) The results of the deck measurements are shown in enclosure (1). The major exciting frequency was 4th order (Propeller blade frequency) and the maximum displacement amplitude was ± 4.6 Mile, in the vertical direction, at 280 shaft rpm. Reference (c) includes a plot,
which was developed by Boston Naval Shipyard, showing a range of acceptable displacement amplitudes for hull vibration based on a constant velocity. The maximum acceptable amplitude of vibration at blade frequency is ± 4.9 Mils.

(3) Results of the launcher measurements are shown in enclosures (2) and (3). Curves were made of the vertical motion only as the amplitudes in the transverse direction were small (maximum ± 5 Mils at 280 rpm). The dominant frequency of vibration was propeller blade frequency except at 150-170 shaft rpm where eighth order of shaft frequency was dominant in the vertical direction on the "A" arm.

(4) With the ship operating at 295 shaft rpm, the launcher was trained to starboard and vibration readings were taken. The vertical displacement, amplitudes with the arms in the retracted position were ± 18 Mils on the "A" arm and ± 16 Mils on the "B" arm. With the arms in the extended position the amplitudes were ± 30 Mils on the "A" arm and ± 22 Mils on the "B" arm. It will be noted that, in this position, the amplitudes are larger than with launcher trained forward and aft. This can be attributed to the transverse hull motion tending to excite motion in elevation and depression of the arms which appear to have their C.G. below the axis of rotation.

b. After Gyro Compass

(1) The after gyro compass, 2nd Platform, Frame 182, was investigated using the same equipment that was used for the launcher. The vibration pickup was hand-held at the base of the compass and on the inner mounting frame. Motion in the vertical, longitudinal and transverse directions was recorded. Transverse motion proved to be the only one of interest. The results are shown in enclosure (4). It appears that the rubber mounted section of the gyro is approaching a fourth order resonance at 295 shaft rpm (19.6 cps). The vibration displacement amplitudes on the base reached a maximum of ±2 Mils in the transverse direction at 295 shaft rpm. Displacement amplitudes in the transverse direction on the mounted gyro mechanism increased with shaft rpm to a maximum amplitude of ± 14 Mils at 295 shaft rpm. It was noted that objectionable vibration of selsyn indicators mounted in the gyro occurred from 190 to 295 shaft rpm.
c. Noise in F.O. Overflow Trunk, 5-149-0-F

(1) The noise produced by the swing check valve in the fuel oil overflow trunk was witnessed during high speed turns simulating the effect of rough seas. Investigation showed that the valve was properly installed and that the noise was produced by normal operation of the valve.

d. Noise in Vicinity of D.O. Tank, 5-199-0-F

(1) The noise reported in the vicinity of diesel oil tank 5-199-0-F was witnessed at high speeds and is believed to be associated with cavitation. It has been heard on many other ships at high speed and is considered normal.

3. Evaluation of the recorded data and consideration of vibration criteria leads to the following recommendations:

a. The tartar missile launcher amplitudes do not appear to be excessive for the conditions investigated. The operation of the launcher should be observed during simulated or actual missile firings at high speeds to ascertain whether any problem exists due to vibration.

b. Although an apparent resonant or near resonant condition exists in the after gyro compass at full power, the Bureau of Ships does not consider the amplitudes excessive. Therefore, it is recommended that ship's force continue to observe the gyro compass to determine whether any operation or maintenance problems exist due to vibration.

c. The noise in the fuel oil overflow trunk, 5-149-0-F, could be reduced by the installation of a non-metallic seat in the check valve. An investigation is being made in order to determine the feasibility of such an installation. If the check valve cannot be modified, then the valve and the fuel oil overflow piping in the berthing compartment should be lagged in order to reduce the noise transmission.
Copy to: (w/encl (1) thru (4))
BUSHIPS (Code 345)
BUSHIPS (Code 523)
BUWEPS (Code GTR)
BUWEPS (Code RMLG)
BUWEPS (Code FWAM 243)
Squat Officer, USS BIDDLE (DDG5)
INSURV Board, Wash., D. C.
SUPSHIP, Camden
Code 211
261
264
270
290
250

Prepared by: P. D. Dear
Typed by: N. A. DeSerio
22 April 1963
SHOP REPORT

JOB ORDER NO. 14-376-9001

VIBRATION IN UNIT COMMANDERS' CABIN & LOWER CIC EXCITED BY LAUNDRY EXTRACTOR

Provide 3 copies for P & E Division, in addition to copies for addresses checked under "COPY DISTRIBUTION".

SEQ. TITLE CODES INITIALS DATE
1 ASST. P & E SUPT. 212 213 218
2 ADVANCE PLANNING 227

COMMENTS:

1. An investigation was conducted of the reported vibration in the Unit Commander's Cabin, being caused by the 50 lb Laundry Extractor located at Frame 197 (5) on the 1st Platform. In addition to the vibration found in the Unit Commander's Cabin, the Wardroom, 03-59-G-1, and the CIC (lower Level), 02-68-C-6, were also found to be affected.

2. The load in the extractor was deliberately made to be heavily unbalanced in order to produce a known vibratory condition which would be as severe a condition as could be expected to be encountered during normal operation. The maximum displacement amplitudes measured were ± 5 miles on the deck and ± 6 miles on the floor of the machine. These amplitudes of vibration in the laundry would not cause much concern but in the areas mentioned above where the vibration amplitudes are almost as large it is quite objectionable.

3. Upon examination of the laundry machine installation, the following deficiencies were noted:

 a. The machine has worked loose on its foundation (explaining why the vibration problem has been increasing in the last 3 months) and this has been caused by the flue outboard end of the foundation not being made flat and level.

 b. The flexible pipe connections on the hot water line and the steam line have been replaced by a coil of tubing section. While this is not likely to transmit a very large amount of vibration energy to the structure, it is

(Use additional form if needed)
a safety hazard because of the possible fatigue failure of the tubing.

RECOMMENDED ACTION:

1. The following corrective action is recommended:

 a. Build-up the low sections of the foundation to make a flat surface so that contact will be made along the entire length of the machine mounting flanges and the foundation.

 b. Install lock washers under machine hold down bolts and pull up hold down bolts to 400 inch-lbs (33 ft-lbs).

 c. Reinstall flexible pipe connections in the hot water line in accordance with BUSHIPS Plan DL09-509-1540419, Fresh Water System - Aft Arr. and in the steam line in accordance with BUSHIPS Plan DL09-500-1540276, Steam Heating Sys. Aft of Fr. 148 First Platform and below.
MEMORANDUM

From: Code 261
To: Code 211

Subj: USS PRATT (DIG-13) Vibration of 30 KW, 400 cycle IC and FC M/G Set #3 (FAT IA515E Port I-30)

Ref: (a) DDI 261-1643 of 5 July 1962

1. In response to FAT item IA515E vibration measurements were made on #3 IC and FC M/G set. Maximum vibration displacement measurements of ± 3.5 mils on the generator and ± 1.5 mils on the motor were recorded in the radial direction at the rotational frequency. These measurements indicated that the machine had excessive unbalance. Reference (a) was issued calling for a dynamic balance of the motor and generator.

2. Upon completion of the balancing work the vibration of the unit was re-checked. A maximum displacement amplitude of less than ± 0.25 mils was recorded on the generator. Operation of #3 IC and FC M/G set is considered excellent from a vibration standpoint.

Copy to:
C.O. USS PRATT (2)
Code 244
261 (2)

Prepared by: F. Heinze
Typed by: N. DeSerio
HULL VIBRATION SURVEY
(Pre Overhaul)

1. A hull vibration survey was conducted on the subject vessel on 12 September 1962 enroute to Yorktown, Va.

2. All data were obtained while in water at least 50 feet in depth. Athwartship vibration measurements were recorded on the 02 level at the base of the 5" gun director, frame 67, over the speed range of 190 RPM to 290 RPM at increments of 10 shaft RPM.

3. The results of the survey are presented in graphical form on sheet 2 of this report. A first order critical appears at 225 shaft RPM with a displacement amplitude of ±11.6 Mils. The maximum displacement amplitude recorded was ±12.5 Mils at 290 shaft RPM. This appears to be approaching the upper first order critical at a shaft speed above 290 shaft RPM. More extensive data could not be taken due to operational limitations. Propeller blade frequency vibration (3rd order) was observed from 190 to 210 shaft RPM. The maximum displacement amplitude was ±4.0 Mils at 190 RPM.

RECOMMENDED ACTION:
The Hull Vibration Displacement Amplitudes measured on this vessel are considered acceptable and no corrective action is required.
SHOP REPORT

JOB ORDER NO.

85-912-9201

JOB TITLE

HULL VIBRATION SURVEY

(Pre-Overhaul)

Provide 3 copies for P & E Division, in addition to copies for addresses checked under "COPY DISTRIBUTION".

FROM

SHOP

Code 261

TO

JOB PLANNING BRANCH

(Code 230)

PURPOSE

(\Check appropriate column)

- Report of Inspection in compliance with Job Order [X]
- Request for further instructions.
- Report of new work changing scope of Job Order
- Other

COPY DISTRIBUTION

(\Check/write in as required)

- SKIP SUPT. or [X] CODE 196
- CODE 307
- REPAIR SUPT. or [X] SHOP SUPT.
- [X] Code 215 (2)
- [X] Code 244
- [X] Code 261 (2)
- [X] Code 1300 (2)
- [X] C.O. (2)

CODES INITIALS DATE

<table>
<thead>
<tr>
<th>SEQ.</th>
<th>TITLE</th>
<th>CODES</th>
<th>INITIALS</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASST. P & E SUPT.</td>
<td>212</td>
<td>219</td>
<td>216</td>
</tr>
<tr>
<td>2</td>
<td>ADVANCE PLANNING</td>
<td>227</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS:

1. A hull vibration survey was conducted on the subject vessel on 29 October 1962 enroute from Yorktown, Virginia to Philadelphia.

2. All data were obtained in water at least 80 Ft. in depth. Atmospheric vibration measurements were recorded on the 02 level at the base of the 5" gun director, Frame 67, over the speed range of 180 R.P.M. to 240 R.P.M. at increments of 10 shaft R.P.M. except near the hull critical where increments of 5 shaft R.P.M. were used.

3. The results of the survey are presented in graphical form on sheet 2 of this report. A first order critical appears at 225 shaft R.P.M. with a displacement amplitude of +10.4 mils. This was the highest displacement recorded. Due to operational limitations, no indication of the known second critical speed appeared.

RECOMMENDED ACTION:

The Hull Vibration Displacement amplitudes measured on this vessel are considered acceptable and no corrective action is required.

\[Use additional blank sheets if needed\]

ASS'T. P & E SUPT. ACTION AND COMMENTS:

- CODE 226: Issue new Job Order
- CODE 227: None
- CODE 230: Investigate and report
- CODE 235: Report as required
- CODE 244: Investigate and report
- CODE 261: None
- CODE 1300: Code 1300
- C.O. (2): Code C.O. (2)
USS KIDD (DD 661)
HULL VIBRATION SURVEY
OF 29 OCTOBER 1962
AT 5" GUN DIRECTOR BASE
OR LEVEL, FRAME 67
AHTWARTSHIP DIRECTION
HULL VIBRATION SURVEY

(Results of)

1. A hull vibration survey was conducted on the subject vessel on 16 November 1962 during the builder's trails.

2. All data were obtained while in water at least 200 feet in depth. Athrwartship and vertical vibration measurements were recorded on the main deck at the base of the centerline helicopter platform support, Frame 162.

3. The results of the survey are given on Sheet 2 of this report. The maximum displacement amplitude recorded was 23.5 mils at 3.5 pps in the ath. direction during the crash astern run. The maximum displacement amplitude recorded while running forward was +14 mils at 5.0 cps in the ath. direction at 75 shaft R.P.M.

4. The results of the deflection test are given in enclosure (1) (Memo from 294 to 261).

RECOMMENDED ACTION:

1. The hull vibration displacement amplitudes measured on this vessel are considered acceptable and no corrective action is required.

2. The deflections given in enclosure (1) are within the specified limits and no additional stiffening is required.
<table>
<thead>
<tr>
<th>Shaft Rpm</th>
<th>Vibration Direction</th>
<th>Frequency</th>
<th>Amplitude</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Vertical</td>
<td>5.33cps</td>
<td>2.0</td>
<td>Blade Frequency</td>
</tr>
<tr>
<td>90</td>
<td>Horizontal</td>
<td>5.43cps</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Vertical</td>
<td>5.0cps</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Horizontal</td>
<td>5.0cps</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Horizontal</td>
<td>4.67cps</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Vertical</td>
<td>4.33cps</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Horizontal</td>
<td>4.33cps</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Horizontal</td>
<td>4.0cps</td>
<td>2.5</td>
<td>Y</td>
</tr>
<tr>
<td>60</td>
<td>Vertical</td>
<td>6.0cps</td>
<td>13.5</td>
<td>Shaft Rotational Frequency</td>
</tr>
<tr>
<td>70</td>
<td>Horizontal</td>
<td>7.0cps</td>
<td>5.0</td>
<td>Tuke Hull Natural Frequency</td>
</tr>
<tr>
<td>60</td>
<td>Vertical</td>
<td>1.0cps</td>
<td>17.0</td>
<td>Shaft Rotational Frequency</td>
</tr>
<tr>
<td>60</td>
<td>Horizontal</td>
<td>3.5cps</td>
<td>23.5</td>
<td>Hull Natural Frequency</td>
</tr>
<tr>
<td>60</td>
<td>Horizontal</td>
<td>7.0cps</td>
<td>19.0</td>
<td>Tower No. Natural Frequency</td>
</tr>
</tbody>
</table>

Ship Running

Aster
MEMORANDUM

From: Code 294
To: Code 261

Subj: USS KINGSPORT (AG164); Deflection Test

1. Deflection between Gyro Compass Mk 19 Mod 4A and Triax Antenna:

 a. Spindle mirror was mounted on top of gyro compass and alignment scope was mounted vertically on triax antenna and the following deflection readings were recorded:

 (1) Ship underway in river
 stbd deflection .003"
 fwd and aft .002"
 Oscillation .010 (Defect in compass)

 (2) At sea during rough sea and high wind conditions
 stbd deflection .011"
 fwd deflection .006"

 (3) High Speed Run (18 knots)
 stbd deflection .012"
 fwd deflection .012"
 oscillation .010"

 (4) Full Astern
 fwd deflection .018"
 stbd .015"
 oscillation .020"

 (5) Allowable maximum angular deflection was 45 sec.
 Max. encountered during full astern
 Fwd. - 38 Sec. Stbd. - 30 Sec Osc. - 40 Sec

Copy to: Code 290
 294 291
1. In compliance with Job Order No. 16-390-080, vibration levels were checked on the #2 turbo-generator.

2. Vibration levels on the generator were satisfactory.

3. Vibration levels on the turbine, however, are considered very excessive. Mil Std. 167 requires Machinery rotating at 10,000 RPM have vibration displacement amplitudes of less than ± 0.25 mils. at the rotational frequency. On the forward turbine bearing, displacement amplitudes up to ± 0.85 mils. at the rotational frequency were measured in the radial direction and indicates an urgent need for dynamic balancing.

RECOMMENDED ACTION:

Dynamically balance turbine rotor.

Notify Design Div. Code 261 Ext. 2948 when balance has been accomplished for final check of vibration levels.

(Use additional blank sheets if needed)
MEMORANDUM

From: Code 261
To: Code 212

Subj: USS LONG BEACH CO(N)9
 Sea Trial Vibration Items; Preliminary Report of

Ref: (a) Job Order No. 14-16-90316

1. During the Post Repair Trials of the subject vessel Vibration Items were reported to the personnel from David Taylor Model Basin and Philadelphia Naval Shipyard by Ship's Force. The items were then investigated. The items requiring corrective action are given in the following paragraphs along with the recommended corrective action.

2. Compt. 6-104-0-2. The Gagevap Unit had large amplitudes of vibration at shaft RPM over 160. The motion was entirely in the Athwartships direction. The foundation of the unit should be stiffened in the Athwartship direction.

3. The Port and Stbd Antenna Platform on the after superstructure vibrated severely at high speed. The vibration is felt to be wind excited. Both Port and Stbd Platforms are identical in structure and both should have additional lateral bracing on the upper supports.

4. The Port and Stbd Fan Antenna Boxes should have additional vertical and longitudinal stiffening.

5. In Compt. 2-162-2-2, Crew's W.C. and Shwr., there was severe vibration of light metal bulkheads and partitions, rattling of soap dishes, mirrors and shelves. All light bulkheads and partitions should have additional stiffening. All objects attached to the bulkheads should be secured so that no relative motion between bulkheads and the object can exist. Code 254 is routing work to accomplish above as correction for discrepancy card.

6. The Crew's Living Space, Compt. 2-158-0-1, has essentially the same problem as the W.C. and Shwr. mentioned above. All butt kits, Bulletin Boards, mirrors, etc. should be attached firmly so that they cannot rattle. All locker doors should be fitted with rubber gromets to hold the doors firmly when closed. Close attention should be given by Ship's Force to keeping the number of loose and rattle-
prone items in the compartment to a minimum.

7. Passageway Compt. 3-160-1-L has the same type of problem as the foregoing two spaces. The hand rails on the ladder should be made to fit much tighter as should the hinge pins on the hatch.

8. Component CY-2543/SYQ-2 located in Compt. 4-82-O-O should have the supporting shock mounts removed and the vertical foundation behind the cabinet should be extended to the overhead and tied into structure there.

9. The No. 1 S.B. Switchboard in Compt. 6-93-O-C should have support from the top of the cabinet to the overhead structure.

10. The sway bracing removed from equipment in Compt. 02-122-3-C to make way for Ventilation Duct Installation should be replaced.

11. The Reactor Compt. Blow Off Ducts in Compt's. 6-61-O-E, Aux. Mach. Rm. No. 1, and 4-93-O-E and 6-93-O-E, Aux. Mach. Rm. No. 2, should be stiffened. The stiffening should be along the length of the duct on all sides.

12. This Memorandum is in advance of David Taylor Model Basin Preliminary Speed Letter Report expected early January 1963