OXYGEN SOURCES FOR FUEL CELLS

A. F. Forziati

D. Singman

25 April 1963

HARRY DIAMOND LABORATORIES
FORMERLY: DIAMOND ORDNANCE FUZE LABORATORIES
ARMY MATERIEL COMMAND
WASHINGTON 25, D.C.
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
MISSION

The mission of the Harry Diamond Laboratories is:

(1) To perform research and engineering on systems for detecting, locating, and evaluating targets; for accomplishing safing, arming, and munition control functions; and for providing initiation signals: these systems include, but are not limited to, radio and non-radio proximity fuzes, predictor-computer fuzes, electronic timers, electrically-initiated fuzes, and related items.

(2) To perform research and engineering in fluid amplification and fluid-actuated control systems.

(3) To perform research and engineering in instrumentation and measurement in support of the above.

(4) To perform research and engineering in order to achieve maximum immunity of systems to adverse influences, including countermeasures, nuclear radiation, battlefield conditions, and high-altitude and space environments.

(5) To perform research and engineering on materials, components, and subsystems in support of above.

(6) To conduct basic research in the physical sciences in support of the above.

(7) To provide consultative services to other Government agencies when requested.

(8) To carry out special projects lying within installation competence upon approval by the Director of Research and Development, Army Materiel Command.

(9) To maintain a high degree of competence in the application of the physical sciences to the solution of military problems.

The findings in this report are not to be construed as an official Department of the Army position.
UNITED STATES ARMY MATÉRIEL COMMAND
HARRY DIAMOND LABORATORIES
WASHINGTON 25, D.C.

HDL Proj 96084
DA 1PO10501A002
AMCS Code 5011.11.804

25 April 1963

OXYGEN SOURCES FOR FUEL CELLS

A. F. Forziati
D. Singman

FOR THE COMMANDER:
Approved by

P. E. Landis
Chief, Laboratory 900

Qualified requesters may obtain copies of this report from ASTIA.
# CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>5</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>2. SOURCES OF OXYGEN</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Compressed Gas</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Liquid Gas</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Chemical</td>
<td>11</td>
</tr>
<tr>
<td>3. ELECTROCHEMICAL POWER FROM OXYGEN SOURCES</td>
<td>13</td>
</tr>
<tr>
<td>4. SUMMARY</td>
<td>16</td>
</tr>
<tr>
<td>5. REFERENCES</td>
<td>16</td>
</tr>
<tr>
<td>6. BIBLIOGRAPHY</td>
<td>19</td>
</tr>
<tr>
<td>6.1 Comparison of Oxygen Sources</td>
<td>19</td>
</tr>
<tr>
<td>6.2 Sources</td>
<td>19</td>
</tr>
<tr>
<td>6.2.1 Liquid</td>
<td>19</td>
</tr>
<tr>
<td>6.2.2 Chemical</td>
<td>22</td>
</tr>
<tr>
<td>6.2.3 Other</td>
<td>22</td>
</tr>
<tr>
<td>6.3 Purity</td>
<td>22</td>
</tr>
<tr>
<td>6.3.1 Compressed Gas</td>
<td>22</td>
</tr>
<tr>
<td>6.3.2 Liquid</td>
<td>23</td>
</tr>
</tbody>
</table>
Commercially available gas, liquid, and chemical sources of oxygen for use with fuel cell batteries are compared. Cryogenic sources are shown to be the most efficient on a weight and volume basis. Chemical generators are satisfactory for applications requiring rather large quantities of oxygen gas at infrequent periods. Compressed gas cylinders are convenient when small quantities of oxygen are desired. A bibliography of selected publications during the past five years is included.

1. INTRODUCTION

The practicable utilization of present day fuel cells requires a dependable source of oxygen. The oxygen should be sufficiently pure that unimpaired operation of the battery is insured. The use of air directly is not considered in this survey as trace impurities would eventually impair the electrochemical efficiency of the oxygen electrode. Furthermore, the cell would be complicated by the addition of air pumps and chemical purification trains. For portable applications, the source and cell must be efficient on a weight and volume basis.

Available sources of oxygen consist of containers of gaseous or liquid oxygen and of chemical and mechanical generators. A comparison of these sources is needed in order to choose an oxygen supply offering the best compromise of lightness, convenience, and dependability.

2. SOURCES OF OXYGEN

2.1 Compressed Gas

Compressed gas is commercially available in a variety of cylinder sizes, some of which are listed in table I. The 9 5/8-in. cylinders are not available separately but in stacks of 30, mounted on trailers. The stack is connected to a manifold so that the contents of the cylinders are delivered simultaneously. When the gas pressure drops to 50 lb/in.², the valves are automatically closed and a signal notifies the operator to change trailers.

The weights of the cylinders of a given size may vary as much as 15 percent (1). This may amount to 10 lb for the 70 ft³ and 20 lb for the 224 ft³ sizes. Although the values for the ratio of the weight of gas to the gross weight are consequently approximate, it is still evident that use of the larger cylinders is more efficient from a weight standpoint.

The tabulated gross weights do not include weights of regulators required to reduce the gas pressure to the low values used by fuel cells. Such regulators weigh about 7 lb, which is less than the possible weight variance of the larger cylinders and, in these cases, may be neglected.
<table>
<thead>
<tr>
<th>Cylinder Dimensions</th>
<th>Cylinder volume&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Gross volume&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Gas volume&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Wt. gas&lt;sup&gt;b&lt;/sup&gt;</th>
<th>Vol gas&lt;sup&gt;b&lt;/sup&gt;</th>
<th>Vol cylinder&lt;sup&gt;b&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>diameter&lt;sup&gt;a&lt;/sup&gt;</td>
<td>length&lt;sup&gt;a&lt;/sup&gt;</td>
<td>(ft&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>(lb)</td>
<td>(ft&lt;sup&gt;3&lt;/sup&gt;)</td>
<td>(lb)</td>
<td>(%)</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0.03</td>
<td>4</td>
<td>2</td>
<td>0.2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>0.1</td>
<td>16</td>
<td>10</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>0.3</td>
<td>32</td>
<td>28</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>0.8</td>
<td>73</td>
<td>70</td>
<td>6</td>
<td>6.2</td>
</tr>
<tr>
<td>9</td>
<td>52</td>
<td>1.9</td>
<td>153</td>
<td>224</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>9 5/8</td>
<td>252</td>
<td>11.1</td>
<td>-</td>
<td>1540</td>
<td>128</td>
<td>-</td>
</tr>
</tbody>
</table>

<sup>a</sup>From ref 2

<sup>b</sup>Calculated
2.2 **Liquid Oxygen**

Oxygen is also available in the liquid state. The containers vary in capacity from a few liters to several thousand gallons. The small containers are usually simple Dewar-type flasks made of glass or of spun copper. They depend on high vacuum and the reflectivity of the silvered glass or the polished copper surfaces for insulation. The containers are open to the atmosphere and the low temperature is maintained by the vaporization of liquid at a rate corresponding to the heat leakage. A 2-ℓ flask may have an evaporation loss, called boil-off, of 6 percent of its contents per day (1).

Inexpensive medium size containers are available for commercial uses requiring 6000 ft³, or more, of oxygen per month. These containers consist of an inner wall of polished stainless steel and a mild steel outer shell. The intervening space is filled with a mixture of inert powder and bright copper particles, then evacuated, and sealed. The cylinders hold about 26 gal of liquid oxygen under a pressure of 75 lb/in.². Excess pressure generated by oxygen boil-off is relieved through a vent valve. Thus with no additional equipment other than possibly a manifold, these cylinders can supply 3000 ft³ of oxygen at 300 ft³/hr and 75 lb/in.² pressure. This is equivalent to 12 standard, 224 ft³, high-pressure cylinders (3).

Very efficient tanks for the storage and transportation of large quantities of liquid oxygen have been constructed. A 30,000-gal railway tank car is said to have an evaporation loss of only 0.1 percent per day (4). Such tanks employ high vacuum and multiple radiation shields to achieve the high degree of thermal isolation required. Table II lists data for Dewar-type flasks, pressurized liquid containers, and a selection of mobile and stationary tanks. It will be noted that once again, the larger tanks experience a smaller percentage boil-off and have a more favorable content to gross-weight or volume ratio.

Construction details of typical vacuum-jacketed storage vessels and descriptions of instrumentation for the control of liquid oxygen flow are available (10, 11, 12, 13, 14, 15). Storage containers and transfer equipment capable of safe operation by unskilled personnel and conforming to military specifications are in assembly-line production (16).

Progress in the state-of-the-art of cryogenic containers has been very rapid. It is believed that it will be possible to construct storage tanks with a gas to tank-volume ratio of 900:1 and a liquid to gross-weight ratio of 93:100 in the near future. Evaporation losses as little as 0.02 percent per day are anticipated. A number of contemplated containers are listed in table III.

The very large quantities of oxygen required at remote areas by the military have spurred the production of mobile and of assembled-on-the-site liquefying facilities. The capacities and weights of some of these units are given in table IV.
<table>
<thead>
<tr>
<th>Gross Weight (lb)</th>
<th>Container Volume (ft³)</th>
<th>Gas Volume at Normal Boiling Point (lb), (ft³), (gal)</th>
<th>Liquid Volume (lb), (gal)</th>
<th>Weight (lb)</th>
<th>Weight Loss (lb), Percentage</th>
<th>Loss per Day</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0.18, 1.3</td>
<td>13</td>
<td>41</td>
<td>320:1, 6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>0.35, 2.6</td>
<td>25</td>
<td>49</td>
<td>250:1, 6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>0.53, 4.0</td>
<td>38</td>
<td>55</td>
<td>380:1, 6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>0.88, 6.6</td>
<td>63</td>
<td>56</td>
<td>420:1, 6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>7</td>
<td>1.18, 13</td>
<td>120</td>
<td>62</td>
<td>340:1, 3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>15</td>
<td>3.00, 26</td>
<td>250</td>
<td>60</td>
<td>400:1, 3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>26</td>
<td>6.10, 53</td>
<td>500</td>
<td>66</td>
<td>430:1, 3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>463</td>
<td>12.4</td>
<td>3,000</td>
<td>248</td>
<td>53.6</td>
<td>340:1, 1.85</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1,800</td>
<td>34</td>
<td>9,000</td>
<td>860</td>
<td>47</td>
<td>300:1, 1.5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>2,100</td>
<td>41</td>
<td>9,400</td>
<td>840</td>
<td>47</td>
<td>300:1, 1.5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4,700</td>
<td>96</td>
<td>9,600</td>
<td>4,700</td>
<td>70.8</td>
<td>290:1, 1.0</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>12,700</td>
<td>198</td>
<td>9,600</td>
<td>12,500</td>
<td>56.2</td>
<td>290:1, 0.8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>21,500</td>
<td>300</td>
<td>151,000</td>
<td>12,500</td>
<td>56.2</td>
<td>290:1, 0.8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>52,00</td>
<td>840</td>
<td>151,000</td>
<td>12,500</td>
<td>56.2</td>
<td>290:1, 0.8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>76,000</td>
<td>1,440</td>
<td>60,000</td>
<td>50,000</td>
<td>66</td>
<td>420:1, 0.2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>185,000</td>
<td>4,530</td>
<td>1,510,000</td>
<td>125,000</td>
<td>67.6</td>
<td>333:1, 0.3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>341,000</td>
<td>3,740</td>
<td>3,000,000</td>
<td>250,000</td>
<td>73</td>
<td>800:1, 0.45</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>1,000,000</td>
<td>13,300</td>
<td>10,000,000</td>
<td>830,000</td>
<td>82</td>
<td>750:1, 0.25</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>2,400,000</td>
<td>34,400</td>
<td>25,000,000</td>
<td>2,100,000</td>
<td>84</td>
<td>720:1, 0.15</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

*Volume ratio calculated from dimensions of obround container.

b Low pressure cylinder.
### TABLE III  LIQUID OXYGEN CONTAINERS, FUTURE TECHNOLOGY\(^a\)

<table>
<thead>
<tr>
<th>GROSS Weight (lb)</th>
<th>CONTAINER Volume (ft(^3))</th>
<th>Contents at 1 atm, 70°F (ft(^3))</th>
<th>Liquid volume at normal boiling point (ft(^3))</th>
<th>CONTENTS (gal)</th>
<th>RATIO Wt (lb)</th>
<th>Weight oxygen volume gas container (lb)</th>
<th>LOSS (^b) Percent per day</th>
<th>CONSTRUCTION (^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,150</td>
<td>21</td>
<td>12,000</td>
<td>13</td>
<td>100</td>
<td>950</td>
<td>82</td>
<td>0.33</td>
<td>Aluminum, 1963</td>
</tr>
<tr>
<td>1,230</td>
<td>21</td>
<td>12,000</td>
<td>13</td>
<td>100</td>
<td>950</td>
<td>77</td>
<td>0.33</td>
<td>Steel, 1963</td>
</tr>
<tr>
<td>72,400</td>
<td>1000</td>
<td>810,000</td>
<td>940</td>
<td>7,000</td>
<td>67,000</td>
<td>93</td>
<td>0.08</td>
<td>Aluminum, 1963</td>
</tr>
<tr>
<td>75,700</td>
<td>1000</td>
<td>810,000</td>
<td>940</td>
<td>7,000</td>
<td>67,000</td>
<td>86</td>
<td>0.08</td>
<td>Steel, 1963</td>
</tr>
<tr>
<td>1,130</td>
<td>21</td>
<td>12,000</td>
<td>13</td>
<td>100</td>
<td>950</td>
<td>84</td>
<td>0.15</td>
<td>Aluminum &amp; Steel, 1964</td>
</tr>
<tr>
<td>74,400</td>
<td>1100</td>
<td>810,000</td>
<td>940</td>
<td>7,000</td>
<td>67,000</td>
<td>90</td>
<td>0.03</td>
<td>Titanium &amp; Steel, 1964</td>
</tr>
<tr>
<td>1,080</td>
<td>21</td>
<td>12,000</td>
<td>13</td>
<td>100</td>
<td>950</td>
<td>88</td>
<td>0.07</td>
<td>Reinforced Plastic, 1967</td>
</tr>
<tr>
<td>72,000</td>
<td>1100</td>
<td>810,000</td>
<td>940</td>
<td>7,000</td>
<td>67,000</td>
<td>93</td>
<td>0.02</td>
<td>Reinforced Plastic, 1967</td>
</tr>
</tbody>
</table>

\(^a\) Calculated except where otherwise indicated.

\(^b\) Reference 7.

\(^c\) Projected technology for the year indicated.
### TABLE IV. CRYOGENIC OXYGEN GENERATING EQUIPMENT PRODUCED FOR THE MILITARY

<table>
<thead>
<tr>
<th>Name of Unit</th>
<th>Oxygen Capacity</th>
<th>Approximate Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>USN Shipboard plant</td>
<td>110 lb/hr</td>
<td>21,000 lb</td>
</tr>
<tr>
<td>Trailer-mounted generator</td>
<td>25 lb/hr</td>
<td>8,000 lb</td>
</tr>
<tr>
<td>Trailer-mounted generator</td>
<td>125 lb/hr</td>
<td>30,000 lb</td>
</tr>
<tr>
<td>Skid-mounted generator</td>
<td>83 lb/hr</td>
<td>23,000 lb</td>
</tr>
<tr>
<td>Field generator-semi-trailer</td>
<td>5 tons/day</td>
<td>78,000 lb</td>
</tr>
<tr>
<td>Field operation-railway car</td>
<td>20 tons/day</td>
<td>-</td>
</tr>
<tr>
<td>Transportable generator</td>
<td>28.2 tons/day</td>
<td>-</td>
</tr>
<tr>
<td>Liquid oxygen facility</td>
<td>75 tons/day</td>
<td>-</td>
</tr>
</tbody>
</table>

*Reference 8.

### TABLE V. COMPARISON OF SOLID CHEMICAL SOURCES

<table>
<thead>
<tr>
<th>Source</th>
<th>Available Oxygen (wt-percent)</th>
<th>Gross wt of typical unit (lb)</th>
<th>Yield of typical unit (wt-percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium peroxide</td>
<td>9(^a)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lithium peroxide</td>
<td>35(^a)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sodium chlorate</td>
<td>34(^b)</td>
<td>88</td>
<td>15(^e)</td>
</tr>
<tr>
<td>Sodium peroxide</td>
<td>21(^a)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Potassium superoxide</td>
<td>32(^c)</td>
<td>4(^d)</td>
<td>15(^d)</td>
</tr>
</tbody>
</table>

*Stoichiometric yield

\(^a\) Liberated by chlorate candle (22)

\(^b\) Yield of commercial superoxide (21)

\(^c\) Neither the weight of water needed for reaction nor the weight of control equipment is included.

\(^d\) The yield is greater for additional candle furnaces per generator (23)
Liquid oxygen is the most economical source of oxygen gas; it can not, however, be stored for long periods of time. The compressed gas, on the other hand, can be stored indefinitely but only in very limited amounts, within a reasonable volume. Chemical generators serve as a satisfactory compromise in applications requiring rather large quantities of oxygen gas at infrequent periods. Barium and sodium peroxides have been used to generate oxygen (17, 18, 19), lithium peroxide has been suggested (20), but the most successful chemical generators employ sodium chlorate or potassium superoxide. The amounts of oxygen available from these chemicals are compared in table V.

Potassium superoxide (21) is frequently used in face masks that do not admit air from the surrounding environment. The superoxide serves a dual purpose. Water vapor from the wearer's breath reacts with potassium superoxide forming potassium hydroxide and oxygen; the potassium hydroxide then reacts with the exhaled CO$_2$ to form potassium carbonate. Thus the superoxide not only generates oxygen but also removes CO$_2$ from the system. As the amount of oxygen generated is somewhat greater than is required for normal breathing, the excess is vented to the outside through a one-way valve.

Self-regulating generators furnishing moderate amounts of oxygen on demand have been built commercially (21). A simple oxygen generator (fig. 1) consisting of three compartments, one above the other, may be readily assembled. Potassium superoxide is placed in the middle chamber and water in the top. Water flows down and fills the lower compartment eventually contacting the superoxide in the middle. The oxygen gas generated forces the water back up and stops further reaction. When gas is withdrawn, the drop in pressure (in the middle chamber) causes water to again enter the middle chamber and oxygen generation is resumed. This arrangement could be utilized to furnish oxygen for a hydrogen/oxygen fuel cell; the water required for the decomposition of the KO$_2$ would be obtained from the cell.

Sodium chlorate yields slightly more oxygen, by weight, than does potassium superoxide (34% for NaClO$_3$ vs 32% for KO$_2$). The equipment required for oxygen generation is somewhat more complicated (22). Sodium chlorate is mixed with iron powder, barium peroxide, and an inorganic binder and fabricated into candles. When ignited by means of a percussion cap, phosphorus match, or electric squib, the candle burns and liberates oxygen at a rate proportional to the burning area for a period determined by the length of the candle. Oxidation of the iron powder to iron oxide furnishes heat to continue decomposition of the chlorate; the barium peroxide combines with any chlorine that may be liberated during the reaction.

Although chlorate candles appear to have unlimited shelf life, once ignited, the candle is generally burned to completion; excess oxygen is stored under pressure in reserve tanks. Hence sodium chlorate is known as
Figure 1. "Demand" oxygen generator.
a controlled oxygen source; that is, the size and shape of the candle determine the rate and period of oxygen generation. Potassium superoxide, on the other hand, can generate oxygen on demand and within limits, in proportion to the demand. It is therefore considered to be a demand chemical source of oxygen.

A sodium chlorate oxygen generator is available commercially (21). The unit consists of a chlorate candle burner, two storage tanks capable of withstanding an internal pressure of 400 lb/in$^2$, and a reducing valve outlet. About 35 ft$^3$ of oxygen are generated by one candle. A check valve permits changing candles without loss of oxygen stored in the tanks. By attaching a number of burners to a manifold and firing the candles electrically, one at a time, whenever the pressure drops to a preset value, a continuous oxygen supply may be attained. A unit comprising six candles, a storage tank, check valves, pressure switches, and firing mechanisms has been designed (fig. 2) (23). Its weight and volume are estimated at 88 lb and 5 ft$^3$, respectively. This unit can furnish oxygen for about 6 1/2 hr at 25 ft$^3$/hr and 10 psig, or a total of 162 ft$^3$ over a longer period. The weight efficiency of the unit (ratio of weight of gas to weight of unit) is about 15 percent for one set of six candles. As the equipment can be used indefinitely, the weight efficiency of the system may be increased by providing additional sets of candles, for example, one additional set raises the weight efficiency to 21 per cent. The weight efficiencies of some chemicals and units used to generate oxygen are compared in table V.

The oxygen from any one of the three sources discussed above is satisfactorily pure for fuel cell use. Compressed "extra dry grade" oxygen is stated to have a minimum purity of 99.6 percent (2). Cryogenic oxygen is 99.5 to 99.6 percent pure; the major part of the impurity is argon (24, 25). Oxygen from a chlorate generator is about 99.5 percent pure (22). It contains small amounts of sodium chloride smoke and traces of carbon dioxide and carbon monoxide. Less than 0.05 percent of carbon dioxide and 0.007 percent of carbon monoxide, by volume, are present. The superoxide generator produces oxygen described as breathing grade. Oxygen obtained by the electrolysis of water has a purity of 99.5 percent (24).

3. ELECTROCHEMICAL POWER FROM OXYGEN SOURCES

A hydrogen/oxygen fuel cell, operating at 100 percent efficiency, yields about 1.9 kw-hr/lb and about 0.16 kw-hr/ft$^2$ of oxygen consumed. To assist in the selection of oxygen supplies for such cells, the amounts of power that may be generated by the oxygen available from the various units are listed in table VI. Power per pound and per cubic foot of source are also shown. Although present oxygen electrode efficiencies are about 75 percent, 100-percent efficiency was assumed in calculating the data tabulated; the weights and volumes of regulating equipment were neglected.
IF Storage Tank 2 J

Oxygen supply
10 psig

Figure 2. Controlled oxygen generator.
TABLE VI. ELECTROCHEMICAL POWER FROM VARIOUS OXYGEN SOURCES
(Hydrogen/Oxygen Cell)

<table>
<thead>
<tr>
<th>Source</th>
<th>kw-hr per unit</th>
<th>kw-hr per lb of unit</th>
<th>kw-hr per ft³ of unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Compressed gas cylinders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Smallest size</td>
<td>0.3</td>
<td>0.08</td>
<td>10</td>
</tr>
<tr>
<td>2. Largest size</td>
<td>35</td>
<td>0.24</td>
<td>18</td>
</tr>
<tr>
<td>B. Liquid containers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Smallest Dewar</td>
<td>24</td>
<td>0.78</td>
<td>35</td>
</tr>
<tr>
<td>2. Largest Dewar</td>
<td>940</td>
<td>1.2</td>
<td>67</td>
</tr>
<tr>
<td>3. Low-pressure cylinder</td>
<td>460</td>
<td>1.0</td>
<td>38</td>
</tr>
<tr>
<td>4. Tank - 51 ft³ volume</td>
<td>2,800</td>
<td>1.2</td>
<td>55</td>
</tr>
<tr>
<td>5. Tank - 198 ft³ volume</td>
<td>8,900</td>
<td>1.3</td>
<td>45</td>
</tr>
<tr>
<td>6. Tank - 245 ft³ volume</td>
<td>14,000</td>
<td>1.2</td>
<td>57</td>
</tr>
<tr>
<td>7. Tank - 509 ft³ volume</td>
<td>23,000</td>
<td>1.1</td>
<td>46</td>
</tr>
<tr>
<td>8. Tank - 4,530 ft³ volume</td>
<td>230,000</td>
<td>1.3</td>
<td>52</td>
</tr>
<tr>
<td>9. LOX Trailer</td>
<td>75,000</td>
<td>1.6</td>
<td>89</td>
</tr>
<tr>
<td>C. Solid generator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorate</td>
<td>25</td>
<td>0.28</td>
<td>5</td>
</tr>
<tr>
<td>Superoxide</td>
<td>1.1</td>
<td>0.22</td>
<td>16</td>
</tr>
</tbody>
</table>

*aValues are computed for an oxygen electrode assumed to be 100% efficient. Weights and volumes of regulatory equipment are not included.*
The power generated by oxygen in other electrochemical systems will be different from the values tabulated. The ratios of the amounts of power generated by the oxygen from the various sources will be independent of the particular system employed.

4. **SUMMARY**

A graphical comparison of the various oxygen supplies is shown in figure 3. Compressed-gas cylinders and solid-chemical generators possess the best shelf life as there is no loss of oxygen due to evaporation. The weight efficiency of compressed-gas cylinders, however, is only 5 to 15 percent because the containers must be made of heavy steel to withstand high pressures, about 2000 psi. The weight efficiency of chlorate generators is limited by the 34 weight percent yield of the chemical mixture. Systems for handling liquid oxygen in large, insulated, double-walled vessels have been developed. These containers are much lighter because their thin walls need withstand pressures of only a few pounds above atmospheric, thus weight efficiencies as high as 84 percent may be achieved.

The volume ratio of gas at atmospheric pressure to gas at 2,000 psi is approximately 130:1. One volume of chlorate candle yields about 300 volumes of gaseous oxygen. However, one volume of liquid oxygen produces 860 volumes of gas. Therefore, transportation and storage of oxygen in the liquid form is most economical on a volume as well as a weight basis.

5. **REFERENCES**


*Footnotes on next page.
Figure 3. Weight efficiency and evaporation loss of oxygen supplies.
(11) R. W. Roundy, ibid, pp 30-34*

(12) W. A. Wilson, ibid, Vol 2, pp 54-58.**

(13) T. Stearns and W. C. Nason, Jr., ibid pp 59-63.**

(14) O. A. Hansen, ibid, pp 75-82.**

(15) D. H. Tantam and A. Allen, ibid, Vol 5, pp 299-306.***

(16) H. A. Richstaedt, ibid, Vol 1, pp 27-29.*


6. **BIBLIOGRAPHY**

6.1 **Comparison of Oxygen Sources**


6.2 **Sources**

6.2.1 **Liquid**

6.2.1.1 **General Information**


6.2.1.2 **Converters**


6.2.1.3 **Design**

M. P. Sweeney, "Process Design Study of Proposed Liquid Oxygen

*Literature survey of last five years. ASTIA references were obtained from Armed Services Technical Information Agency, Arlington, Virginia.*


H. R. Greenlee, "Chrysler-Type Oxygen Pressure Vessel Calculation, Design and Testing (Chrysler Assembly No. 1984929)," Chrysler Corp, Defense Engineering, Detroit, Michigan, May 1960, (WADD TR 60-365), ASTIA AD-243 624. (Development of lighter, stronger, dual pressure cylinder for two gases or a liquid and gas is described.)


6.2.1.4 Generators and Plants


J. C. Evans, "Development of an Improved Oxygen-Nitrogen Generator Type AF/M 26A-3 (XQ-1)," Air Products, Inc, Allentown, Pa., January 1961 (WADD TR 61-23), ASTIA AD-253 953L.


6.2.1.5 Storage


6.2.1.6 Transfer


"Rapid, High-Pressure Transfer of Liquid Oxygen within a System Immersed in Liquid Nitrogen," A. D. Little, Inc, Cambridge, Mass., 1 September 1959, (Special Report No. 105; C-57879) ASTIA AD-267 498


6.2.2 Chemical


6.2.3 Other


6.3 Purity

6.3.1 Compressed Gas


6.3.2 Liquid


C P Smith, "Composition and Analysis of Commercial Liquid Oxygen," ibid, Vol 5, 545-548.


Chief, Bureau of Ships  
Department of the Navy  
Washington 25, D. C.  
Attn: Code 660S, Mr. C. F. Viglotti

Office of Naval Research  
Washington 25, D. C.  
Attn: Code 425, Dr. H. W. Fox

Power Information Center  
Room 103 Moore School Building  
200 South Street  
Philadelphia 4, Pennsylvania

Director, Advanced Research Projects Agency  
Washington 25, D. C.  
Attn: Materials Sciences Office, Dr. J. H. Huth

California Research Corporation  
P.O. Box 1627  
Richmond, California  
Attn: Dr. R. T. Macdonald

Power Supply Laboratory  
Department of Chemical Engineering  
University of Florida  
Gainesville, Florida  
Attn: Prof. R. D. Walker

Pennsylvania State University  
Fuel Technology Department  
University Park, Pennsylvania  
Attn: Prof. L. G. Austin

Allis Chalmers Manufacturing Co  
Defense Products Division  
Box 512  
Milwaukee 1, Wisconsin  
Attn: Mr. Kirkland

Westinghouse Research Laboratories  
Churchill Boro  
Pittsburgh 35, Pennsylvania  
Attn: Mr. Y L. Sandler

TYCO Laboratories, Inc.  
Bear Hill  
Waltham 54, Massachusetts  
Attn: Dr. Arthur Rosenberg
DISTRIBUTION (Continued)

Englehard Industries  
Research and Development Division  
Newark, New Jersey  
Attn: Dr. J. G. Cohn

The Polytechnic Institute of Brooklyn  
333 Jay Street  
Brooklyn 1, New York  
Attn: Dr. Ju Chin Chu

The M. W. Kellogg Company  
711 3rd Avenue  
New York City, New York  
Attn: Dr. George T. Skaperdas

Ionics, Incorporated  
152 6th Street  
Cambridge 42, Massachusetts  
Attn: Dr. Carl Berger

General Electric Company  
Aircraft Accessories Turbine Department  
Lynn, Massachusetts  
Attn: Mr. T. K. Johnson

General Electric Company  
G.E. Research Laboratory  
Schenectady, New York  
Attn: Dr. Herman A. Liebhafsky

Air Products and Chemicals Inc.,  
Allentown, Pennsylvania  
Attn: R. G. Clark, Project Engineer, R&D

Linde Company  
777 - 14th Street, N. W.  
Washington, D. C.  
Attn: T. W. Bowron, Mgr

Stanford University  
Department of Chemical Engineering  
Stanford, California  
Attn: Prof. David M. Mason

Monsanto Research Corporation  
Everett 49, Massachusetts  
Attn: Dr. Ralph C. Gentile
DISTRIBUTION (Continued)

Texas Research Associates
1701 Guadalupe Street
Austin 1, Texas
Attn: Mr. Ray M. Hurd

Esso Research & Engineering Co.
Box 51
Linden, New Jersey
Attn: Dr. C. E. Heath

American Oil Company
Whiting Laboratories
Post Office Box 431
Whiting, Indiana
Attn: Dr. R. J. Flannery

Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Attn: Prof. Herman P. Weissner

University of California
Chemistry Department
Berkeley, California
Attn: Prof. C. Tobias

General Atomic Division
General Dynamics Corporation
Post Office Box 608
San Diego 12, California
Attn: Dr. Howard Saltsburg

Mine Safety Appliances Research Corporation
Callery, Pennsylvania
Attn: R. L. Campbell, Sales Engineer

Aerospace Corporation
P.O. Box 95085
Los Angeles 45, California
Attn: Library Technical Documents Group

Lockheed Aircraft Corporation
Missiles and Space Division
Technical Information Center
251 Hanover Street
Palo Alto, California

Electrochemical Research Laboratory
Western Reserve
Cleveland 6, Ohio
Attn: Dr. Ernest B. Yeager
National Academy of Sciences Committee on Undersea Warfare
DISTRIBUTION (Continued)

NASA Code RPP
1512 H. Street N. W.
Washington 25, D. C.
Attn: Mr. Ernest M. Cohn

Dr. Gordon Peattie
Director of Energy Research Laboratory
Texas Instruments, Inc.
Box 5474
Dallas 22, Texas

Internal

Horton, B. M./McEvoy, R. W., Lt Col.
Apstein, M./Gerwin, H. L./Guarino, P. A./Kalmus, H. P.
Hardin, C. D., Lab 100
Sommer, H., Lab 200
Hatcher, R. D., Lab 300
Hoff, R. S., Lab 400
Nilsen, H. M., Lab 500
Flyer, I. N., Lab 600
Campagna, J. H./Apolenis, C. J., Div 700
DeMasi, R., Div 800
Landis, P. E., Lab 900
Seaton, J. W., 260
Technical Reports Unit 800
Technical Information Office, 010 (10 copies)
DOFL Library (5 copies)
Branch 940 (10 copies)
Forziati, A. F., 940
Singman, D., 940
Rotkin, I./Godfrey, T. B./Eichberg, R. L.
Bryant, W. T./Distad, M. F./McCoskey, R. E./Moorhead, J. G.

(Two pages of abstract cards follow.)
Commercially available gas, liquid, and chemical sources of oxygen for use with fuel cell batteries are compared. Cryogenic sources are shown to be the most efficient on a weight and volume basis. Chemical generators are satisfactory for applications requiring rather large quantities of oxygen gas at infrequent periods. Compressed gas cylinders are convenient when small quantities of oxygen are desired. A bibliography of selected publications during the past five years is included.

Commercially available gas, liquid, and chemical sources of oxygen for use with fuel cell batteries are compared. Cryogenic sources are shown to be the most efficient on a weight and volume basis. Chemical generators are satisfactory for applications requiring rather large quantities of oxygen gas at infrequent periods. Compressed gas cylinders are convenient when small quantities of oxygen are desired. A bibliography of selected publications during the past five years is included.