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ABSTRACT!

A procedure for the design of a controller to optimize a certain class of

pulse width modulated systems is presented. The process to be controlled is

time-invariant, of arbitrary order and excited by a sequence of pulses gen-

erated from information available at arbitrary sampling instants. Input infor-.

mation to the system is quite general and includes random and deterministic

phenomena. Identification of the plant is accomplished using state variable

notation and linear estimation techniques. Prediction of the future plant

behavior is also performed with these techniques and the controller is designed

to optimize the predicted plant performance by minimizing a measure of the

future system errors. The mechanized optimal control law or controller program,

develops the pulse to be applied at any sampling instant by specifying the

pulse width and associated sign. The controller is not adaptive in the sense

of redesign occuring as new information becomes available from the estimator.

It does, however, accomplish the goal of optimization by deciding the form

of the pulse width actuating signal utilizing the future errors of the system.

The general results are applied to several examples through digital computer

simulation. The optimal pulse width controller is shown to produce far better

performance than normal pulse width control which utilizes present errors to

develop the actuating signal to be applied at that same instant and for some

time in the future. The results of considering a family of step function in-

puts to the system are shown for a third and fourth order plant.
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1. INTRODUCTION

1.1 Pulse Width Control

Pulse width modulated control systems have been in existence for more than

65 years 1 and only recently, activity and interest have increased in this area.

The present frequent use of pulse width control has developed in spite of the

almost complete lack of elegant mathematical tools for analysis and synthesis

since the description of these systems requires nonlinear differential or dif-

ference equations. This seems to indicate the possibility that this type of

control is so effective and natural in a large class of control problems that

defiance of analysis is not sufficient justification to avoid its use.

Pulse width control is a generalized form of relay or on-off control which

provides a finer, more precise response. The advantages arise mainly from the

ability to regulate the steady state ripple oscillation frequency, to obtain

improved accuracy due to elimination of dead zone, and to include possible time

sharing of the control computer.

Pulse width modulated control has direct application to satellite and

space vehicle attitude control. In many cases this situation requires power

to be modulated in an on-off fashion where a control computer must be time

shared leaving very little choice other than to use pulse width control. Recent

experimental efforts in this area have shown that time dependent switching

techniques provide precision attitude control with low thrust vapor jets achiev-

ing results not possible with conventional on-off methods 2 ' 3 .

Further investigation of pulse width control is justifiable on the basis

of attitude control applications alone, but let us consider for a moment, another

system utilizing a more general form of pulsed control.

Man is the ultimate control system. Many physical devices have been modeled

after a particular human function, and today we find an ever increasing effort

toward the understanding of biological functions so that related systems may be

improved and extended. The method of information transmission in the human

being is a combination of pulse width and pulse repetition modulation. We find
4

cardiac pulsatory phenomena-remarkable in all senses , particularly in accuracy

and reliability of control, since it is literally vital. More incredible is

j the completely integrated pulse communication network in the nervous system5' 6 .

I
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The sensory receptors provide the pulsed form of physical stimuli thlA cxcitf

our system achieving extreme sensitivities (e.g. the retina Df the 2ye). Fr:m

these considerations it might be concluded that pulse modulaticn. would b- the

ideal method of information transmission for many control purpcses. In any case

future investigation of this type and simpler types of pulsed conty.:1 is cer-

tainly justifiable.

7 8 9 10,11,12,13
Several authors, R.F. Nease , R.E. Andeen T.To Kadcta E. pclak

T. Nishimura and E.I. Jury14 , . Pyshkin 516 F.R Delfeld and 0. Murphy

S.. utaan .I Jr18 1uta9
S.C. Gupta and E.I. Jury S.C. Gupta , have published efforts 4n limit cycles,

finite duration processes, analytical techniques and optimizaticn, !he techniques

for optimization have been limited to second order regulator systems to date.

The purpose of this work is to develop an optimization technique applicable to

controlled processes of any order when the system is subjected to a broad class

of possible input phenomena.

1.2 Statement of the Problem

The system to be investigated in this report is assumed quite general in

form. Restrictions on the nature of the bystem which would degenerate useful-

ness of the optimization technique to only academic problems are avoided,

Practical considerations have taken precedence in the formulation of this prcblem

where ever possible,

A time-invariant linear system called the controlled system or plant is

assumed excited by a pulse width modulated control signal. A feedback ccntrcller

is to be designed to provide the best control or actuating signal utilizing

information about the state of the system at only arbitrary sample instants,

The informaticn about the state of the system is constrained in that cnlv noisy

measurements are available for estimation purposes. The system is to be

optimum for this pulse width modulated control signal where optimum is used

in the sense of minimizing a measure of system error.

The mechanized control law will constitute the design of the optimal con-

troller and the solution to the problem. The controller is not to be adaptive

in the sense of redesign occuring as new information becomes available about

the state of the system. It is to provide a program of logical steps that

will be executed during each sampling interval determining the exact for

the pulsed actuating signal by specifying the pulse width and associa!
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The command inputs to the system are quite general in form in that they

include both random and deterministic phenomena.

A block diagram of the system under investigation in this report is shown

in Figure 1.

1.3 Optimal Control Law

The optimization of a class of pulse width modulated systems with linear
20

plants was first considered by W.L. Nelson . This class consisted of regulator

systems and is a problem of minimal time control. Nelson's approach follows a

general technique for the minimal time control of pulse amplitude modulated sys-
21tems with saturation as presented by R.E. Kalman . This procedure consists of

dividing the state space into regions for which the system may be taken to the

desired state in a minimal number of sampling periods, establishing a canonical

vector representation for initial states in the respective regions. The ap-

proach is limited to plants of second order due to the conceptual difficulty of

determining the optimal control regions in higher dimensional state spaces.

Nelson did not, however, present a procedure for constructing canonical

vector representations for arbitrary initial states. E. Polak 1.12)13 suc-

ceeded in accomplishing this following a method suggested by C.A. Desoer and
22

J. Wing on minimal time control of pulse amplitude modulated systems with

saturation. Polak was able to solve the regulator problem for some seco.nd order

linear and nonlinear plants. The limitation to second order is again prominent

due to conceptual difficulty in higher dimensional state spaces.

The previous efforts have been based on the approaches used to optimize

pulse amplitude modulated systems. The extension of techniques applicabl3 to

pulse amplitude systems may itself be a fundamental limitation and thus not

worthy of further investigation. Considering pulse width control as a funda-

mentally different type of control with its own intrinsic properties, an ap-

proach to the problem may be found. Variational techniques have been attempted
23

with little success . Combinatorial techniques as previously applied seem

to be the only other alternative. Dynamic programming as an organized logical

scheme is directly related to the sampled system and seems to be the most

likely candidate here. Dynamic programming then, will provide the logical

framework for the optimization scheme where the pulse width modulated control

I
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I signal will be treated as a part of the system constraint rather than as a

separate constraint.

I The previous contributions in the application of dynamic programming

have been formulated for time varying plants. The first such application to
24I a time varying plant was presented by R.E. Kalman and R.W. Koepcke . Later,

T.L. Gunckel25 and, independently, P.D. Joseph and J.T. Tou 26 reported

results in the control of linear processes subject to multiplicative as well

as additive random effects. A very practical extension to include random

multiplicative phenomena which are correlated both in time and with each other,

and not restricted to independence from instant to instant, has been presented
27

by C. Pottle

The system under study here is not assumed time varying for simplification,

but is approached in exactly the same fashion as mentioned above. The additional

constraint of pulse width modulation is included and the information about the

state at sampling instants is also constrained. Minimization of a measure of

predicted system errors on a step by step basis provides the final necessary

ingrediant for the solution to the optimization problem.

Estimation of the state and prediction of the future system error is

accomplished by linear estimation techniques in state vector notation as pre-

sented by R.E. Kalman 2829.

I
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2. DESCRIPTION OF THE SYSTEM

2.1 General

A mathematical description of the system is necessary. We must decide

on a general model which is sufficiently complex to represent the behavior of

a large class of physical processes with a high degree of accuracy. The model

must also be simple so that useful results may be obtained easily. Any model

under consideration is also required to represent linear plants subject to

pulse width information.

The representation of a pulse using transform techniques where the width

is a complex function of system responses seems entirely inadequate. Thus, a

time domain representation will be used.

2.2 State Vector Representation

A general model which can represent a system with finitely many degrees of

freedom is one using the "state space" concept introduced by Kalman and
30

Bertram . The state of the system at any instant of time is represented by

"a vector whose components are called the "state variables." This vector defines

"a point in the state space. The dimension of the state vector is the smallest

possibly to completely describe the behavior of the system at that point in time.

For a general time invariant plant, its dynamic behavior is assumed to be

adequately approximated by the following vector equation.

x(t) = A x(t) + B u(t) (2.1)

c(t) = Mx x(t)

where

x(t) is an (mxl) state vector

c(t) is a (pxl) output vectc-r

u(t) is a (qxl) input vector

A is an (mxm) transition matrix

B is an (mxq) distribution matrix

Mx is a (pxq) output matrix

If the system is time invariant, the transition, distribution and output

matrices have elements not dependent on time.
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The actuating or control signal is u(t) and will have a form dictated by

the constraints imposed by the problem. For the particular problem at hand,

that of pulse width modulated systems, the control signal must then satisfy

these requirements. The ith component of u(t) is

00

u ut M = EIU 1u(t-t n) u 1(t-tn - Pnt)]eni

SnU=O

where u (t) is the unit step function and Pni is the pulse width of the nth

interval for the ith channel and E in s the associated sign (*1). Thus, we see

that the pulsed control signal is described by the sequence of pairs of vectors

Wen n). The solution to the optimization problem is the generation of a se-

quence of couples 'n )n) determined in such a way that the performance of the

system satisfies the condition for optimality.

For the control vector u(t), we have

oO [(t-tn u U(t- -tn Pn) e

n=O [ul(t-tn) - u1 (t-tn- Pnq)] £nq

where

P is a (qxl) pulse width vectorn

Z is a (qxl) sign vectorn

Defining a unit step function matrix will simplify the description of

the control vector in general form. Let

U (t) = I u(t)

where I is a (qxq) unit matrix.

1
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100 00

1 = 1 ...... 0

0 0 ...... 1

And, let U1 (a), where a is a (qxl) vector, be defined as

u1(a1) 0 0 ..... 0

0 u1(a) . 0

U (a) =

0 0 u (aq)

Then, the control vector may be written

00

u~t) L= ~ ~ (t-tn) U 1(t-tn-Pn]n (2.2)

n=O

Using this notation, we may now determine the discrete form of the state

vector representation for the system at the sampling instants. The solution

for the state vector in equation (2.1) is

t

x(t) = eX(t,tn )X(t n) + f px(t,X)Bu(k)d% n (2.3)

n

where eX(tt) = eA(t-tn) and is called the characteristic matrix.

Using the expression developed for the control signal u(t), equation (2.3)

becomes

x(t) = + t@(t t nt,)Bd- t

for t <t<tn- -- n+l"
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To simplify notation define

b1  bm

i hl dp . . him dp

4(b)i•

H dp=

b1 bSm
Jhidp ........... h dp

where H - (hij) i = 1,2,. .q j = 1, 2,...m and b is a (qxl) vector = (bk)

k = 1,2,..q.

The expression for x(t) may be written now as

tc t
R(t) = 4X(t~tn)iltn) + ex(t,X)BdX - f x(tX)BU. (-tn4)d]

tn 1 1 n n
i = 1,2,9...q (2.4)

For t n + ( n~_ t < tn+1 i = 1,2.,9 q Equation (2.4)may be simplified

by combining the two integrals.

V+•n)i

x(t) = eP(tytn)X(tn) + f 4x(t,x) B dX in (2.5)

tn

i = 1,2) .... ,q

Changing the variable of integration in (2.5)

•n~i

x(t) = n9c(tt)x(t) + eA(t-tn-p) B dp C (2.6)
0n

and di)
SeApBdp•(2)

x(t) = ex(ttn) X(tn) + le(ttn) 0 e B dp I (2.7)

for i z 112,...q tn + ndi :S t < tn+1

I
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For the response at the sampling instants, t = t n+ and equation (2.7)

becomes

X(tn) -- (tn+1'tn)X(tn) + 9 (t n+l't n e- (2.8)

letting c(t x and 0(t n) = n equation (2.8) becomes

Xn = •xx + e B d% 29

The controlled system is thus adequately approximated at the sampling

instants by the vector equations

Xn+l = n Xn +n •n

x (2.10)c =M x
n n n

where ) ).
ni1

A= eAX e BABd i=1,2 ,...q (2.11)
nn 0

The equations (2.10) describe what will be called the plant process at the

sampling instants. The state of the system at the sampling instants is con-

trolled by the choice of the adjustable parameters in the control signal which

are the pulse widths P and signs Z . The control law will provide the tech-n n

nique by which this pair (PnEn) may be determined in the desired manner.

2.3 The Input Process

Kalman has introduced the notion of a reference input vector r(t n) which

can be regarded as being generated as the output of a linear dynamic system.

Following this idea, the input or reference signal r(t n) is assumed to be defined

by an input process. That is, the reference input vector representing the

desired value of the plant output vector is adequately approximated, at the

sampling instants, by the following vector difference equation.



I
l1

I
S + 4;(2.12)

where

w is a (vxl) state vector

r n is a (pxl) reference input vector

a is an (hxl) process input vector

n is a (vxv) transition matrix

w
n is a (vxh) distribution matrix

M7 is a (pxv) process output matrix
n

The dimensionality of the reference input vector r n has been assumed the

nn

vector are assumed to be random variables with zero mean and to be statistically

independent from one sampling instant to the next and independent of the transi-

tion and distribution matrices. Thus

( = 0 E(Stn )=f :8 (2.13)
n n m I n = m

Note that this model is sufficiently general in that it includes

a) The regulator problem when r = 0 for all n
n

b) The deterministic problem when A = 0 for all n

c) The random input problem when r; =0

Also, a combination of these classes of inputs can be accommodated by the model

using suitably defined transition and distribution matrices.

The assumed input vector r(t) may or may not belong or be a subset of the

actual command input vector r'(t). If it is a subset, the system will be opti-

mum with respect to r'; if not, only an approximation will be obtained, and an
ia

I
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approximation at the sampling instants. The designer must decide on a class

(;n) to which his system is to be optimum, and then determine the necessary

matrices since the controller will depend on these quantities.

The requirement that the reference inputs be describable as the output

of some process limits the class of possible inputs, but this restriction is

not too severe for our purpose.

2.4 The System and Information Constraints

Following the suggestion of Kalman and Koepke 22 the equations for the

plant process and the input process are combined into a single equation. This

is accomplished as follows:

[:J =0[:_ MW]][::1

n÷ 0 Xn 0 A

Defining

= [ Mn =n

we may write (2.14) as

n+ -- +n +W - n "

Znl o n n n n n
(2.15)

nn nn

0 iM W

n n n
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where

Szn is an (m+v x 1) state vector

n is a (ap x 1) output vector

n is a (q x 1) sign vectorn

s is an (h x 1) process input vector
n

An is an (m+v x m+v) transition matrix

In is an (m+v x h) distribution matrix
I is an (m+v x q) distribution matrix

n

M is a (2p x m+v) output matrixn

The complete set of equations (2.15) which include the plant process and

the input process will be called the system constraint.

The remaining constraint is concerned with the amount of information

available about the state of the system at any particular sampling instant.

If the special case of exact measurement of the state exists, then we have no

rpstriction on information and no need to consider the limitation. The usual

case, however, is the one where only certain measurements are available and

these measurements together with past history constitute the data available

for estimation of the state. Since the existing data in this case is limited

by additive noise, for example, we speak of the information constraint.

I

I



14

3. OPTIMUM PLANT CONTROL

3.1 General

We are interested in finding an "optimum" control law for the pulse width

modulated system described previously. The sense of the word "optimum" is

defined by the introduction of a performance index which provides a measure of

the system behavior. The method of dynamic programming is then used to de-

rive a control law for the processes of the type introduced in Chapter 2.

Actually, the method is applicable to many cases of the general model with

varied constraints, but here we will examine only one particular class of prob-

lems, namely that of pulse width modulated systems.

3.2 The Performance Index

An optimum control system is characterized by a performance index which is

a function of the system variables and parameters. For extremal values of the

scaler function, the system is said to be optimum in this sense, but obviously,

its optimality is subject to the performance index chosen. This choice of a

performance index is thus, perhaps the most important decision to be made.

Unfortunately, there is really no way a designer may specify what he wants in

the performance of a particular system so that it is optimum in any absolute
31

sense . We are thus faced with choosing a performance index which is con-

venient to work with mathematically and which also corresponds to some reason-

able definition of "desirable behavior."

The measure of system performance which seems suitable in general would

be the weighted error of the system. This error in the system is the difference

between the actual plant output and the desired output. It is assumed that a

quadratic combination of the error vector will be a suitable measure of perfor-

mance.
- -T

E = (C - rn) Q' C - r ) (3.1)
n n n n (n n

The matrix Q' is taken to be symmetric and positive definite and simply cor-
n

responds to the desired weighting of the errors in the system. Thus, the single

number E represents the performance of the system at the nth instant of time.
n

The measure of performance may be rewritten in terms of the state vector

znn
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I 1

Since

n -n) [Mx -M : w]

then
En = (Cn rn)T Qn (Cn" rn)

nn n n ni n

or

En z -M z (3.2)

Defining a new weighting matrix Qn

n

Qn = Q'nV n (3.3)

we have

E T Q z (3.4)

for the measure of system performance.

For operation of the system involving N steps, a reasonable performance

index is the sum of the individual performance measures E .

Define the performance index as JhNn+l

N

N-Z -T Q * (3.5)

i=n

The performance index is thus the sum of the weighted mean square errors at

the sampling instants.

3.3 Criterion for Optimal Performance

To obtain optimum pulse width control, we will minimize the performance

index by generating the sequence of both the width and sign of the pulse at

each sampling instant, The final sequence of pairs and the control law to ob-

tain them will constitute the solution to the optimization problem. Optimum is

f used here in the senre of minimizing this quadratic function of system error,

I
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The precise statement of the optimization problem is thus the minimization of

the performance index over the class of acceptable pairs of pulse width and sign,

subject to system and information constraints.

That is

Minimize JN-~
(P n, n ) (3.6)

Note, however, that the above statement is restricted to only deterministic con-

ditions. In the more general case, random variations in the system preclude the

possibility of finding an input which will be optimum in every case. In other

words, the performance index is also a random variable. The conditional expec-

tation of the performance index will then be minimized. Let D represent then

information available for the determination of the state of the system at time

t = t n The optimization problem may be stated as follows:n

Minimize E (J N-n+l/ D )

{(Pnn)Nnl n.

where N

JN-n+l Ti Qi z
i=n

subject to the system constraint

z = )nz +s + A
Zn+l n n nn n n

Y =M I
n n n

and the information constraint

n n n

Dn Yin 'nl '

Dn is the set of measurements at time t = tn_

available for estimation of the state.

A loss function is defined as follows:

Minimum

'Nn+l=l(_n, n)) E (JN-n+l / Dn) (3.8)
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In order to clarify the notation used above, consider a simple example of

an N stage process.

Let N = the total number of stages in the process

g n = the number of the stage of interest.

When at stage n, the number of remaining stages which constitutes the new process

is N-n+l.

3.4 Derivation of the Control Law

The minimization of the performance index over the class of possible pairs
nnn ) will provide the solution to the problem and the loss function provides

the measure of achievement at each stage of the process. To determine the con-

trol law we will follow the framework of dynamic programuing32)33 and derive the

principle of optimality for this case since Bellman's principle of optimality

does not apply directly when concerned with a conditional expectation.

Consider the loss function,

I Minimum /D)N- n+1 f(nEn)) E(J. n (3.9)

or

N

iN-n+l MiQnimE I i i Q /D n (3.10)

i=n

Taking the first term of the summation and writing it separately,

r N1
Minimum T -

IN-n+l -- nnb•Z E [ n Qn n zn Qizi)/D (3.11)
i=n+l

Writing the class of pairs for which the minimization is to be accomplished, we

have

I
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IMj n )iD Min ... Min N
N-n+l (P00 C 0 () 1n-1In-I ?E IZnQn n+ I ziQizi/Djn- 1

i=n+l

(3.12)

ExamirAtng the first term in the expression (3.12), we see that it is the perfor-

mance measure of system error at time t . The sequence of pulses that have beenn

applied before time t are initial decisions that have already been made. There-n

fore, the remaining decisions must constitute an optimal policy with regard to the

state resulting from the application of the previous pulses. We may write then,

:_i Minimum EF(zT Q Zn/Dn- )

Nn+1 -1?n -• ) n n n

N
Min _Min_ ViD
M Zn) (mnin) ...... M1iEN) E (z Qi z i/Dn-l) (3.13)
n n n+1ln+1 N i =n+l1

Note that the last term in the expression is IN-n and write

= Minimum EEZTQZ/Dnl+ IN-n (3.14)IN-- n+ I n- 1, Zn- l) Z~z D~ -](.4

where Io = 0 and n = 112. ....... , N .

The introduction of the effect of future errors is contained in the derivation

above when the minimization terms are distributed throughout the expression and

the one retained is (5n-1?n-l). This pair corresponds to the pulse applied at

time tn-1 and the performance measure at time tn is minimized by this pair.
Thus, the function of error one sample ahead of the time of application of the

pulse is the future function of error that is minimized. The loss function

IN-n+1 is the number representing the achievement of this pulse.

At this point, there certainly exists the possibility of looking ahead

further in the system to minimize the error function perhaps at two sample
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instants ahead. These results may easily be seen and we will not carry through

the details of that particular derivation here.

Continuing with the solution of the recurrence relation involving the loss

functions, we will first let n=N and solve for a single stage process. This

will accomplish the first step in the iterative procedure for the final solution.

For n = N equation (3.14) is

Minimum -T -
I N1 N- 1)E (z NQNzN/DN-l) (3.15)

since I = 0.
0

Introducing the system constraint by substitution for zN from equation (3.7),

I Minimum E [((N - - 1+ -IZ ) Q(P NN- ) NlZN-11 _ 1 lSN_ N-1 N-1 N

. (ON- ._N_- + ' "N- _1 + N-1 N- N-_1) D/ N-l (3.16)

Performing the indicated operations and expanding,

Minimum E[ -T T - -T T -

""LN- N-l N N-I +- . N-..lQNN-I5N-l

-T T - -T T+ SN-lA-lQA•,_N-.l + sN-,.1,.l%,QN- lzN- 1

+T -T + T -T+ N-IAN-16 W- Z + N- 1A1N-L N-liSN- i

"-zT -T -NNJI~ +-T1

"+ T A T / D (3.17)

The first, third, seventh and last terms may be rewritten in simpler form

using the following equivalence.

1
!
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(N- N-i IN-i N-_I QN(AN-i N-1 + ON- ZN-i

NAT -T+ -T + pT T (3.18)
-1ANN-1 I- N- 1 +ZN-I N-1QN--ION-1ZN-1 +

,T T - T T - -

N--1 N- N 1 zN- I - z N N- IQNAN- ?iN- I

Thus, equation (3.17) may be written as

1 Minimum E N- ZN-N1 _z )T Q (A , + N-1 z +i VJNI N-i) 1 A EN1 - N-i N N-IN-i N-iZN-i)

-T T - T
+SN QNS + _ IQNA S +

N-i 'N- I N-N- N-i 1 N-i 1N- 1N- 1ýN-i N- I+
(3.19)

-T T - -T T +
+~~ ~ ~ s N_ 1NIQ AN EI +N- I' N- IQ NN- I N- I N- N-i NAN-i N-i

+T AT Q s /D
N-I N-I N'N-I N-I N-IU

If the input to the system is deterministic then A = 0 for all n and wen

have only the first term in the expression (3.19). If the input is random with

s satisfying the assumed properties, then taking the expectation with respectn

to s eliminates all but the first two terms.
n

Taking the expectation with respect to s we then may write

Minimum - T
1 ( N- I I) E N(A-NI N-I "N-N- QN

(3.20)

... (ANI N-i + ONIzN-I) + yo/DN-I1

where

T T
No = Es N-IAN-IQ NN-1sN-1/DN-I) (3.21)

In the deterministic case, y o is zero since An is zero for all n. This

agrees with equation (3.19) for this case.

To proceed further, the information constraint must be considered. First

note that in either the deterministic or random input case, the state of the
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system at any sample instant is not known exactly in general. Only noisy measure-

ments of the output at the sample instants are available in the usual case.

These measurements constitute part of the data available for the estimation of

the state. In particular, at time tn9 the data D consists of any bit ofI
information about the state of the system, including any past record or past

state.

It is known from estimation theory that the best estimate of a random variable

in the sense of minimizing a quadratic error criterion is the mean of the a

posteriori distribution26 which in this case is the expected value of the state

given the information or data D.

Using the conditional expectation then, we have

S1= E (z N-/D N) (3.22)

and will call this estimate optimum leaving the details of the conditional

expectation as an optimum estimator to Chapter 5.

Assuming that the optimal estimate of the state is available then, when

applying the information constraint, equation (3.20) reduces to

Minimum -* T

I1 Uniu ''AN-i1 T z IlZ-) ..
N-1) N-l,1 N-i N-

(A N-1 Z-N-1 + ON-1N-1 + N (3.23)

To include all cases of interest, we will let z.N-l represent the estimate

of the state in the noisy case, and the exact value of the state if It is known.

Equation (3.23) is minimized for a best pair (PN-liN-1). The details of

this determination is left for the general case. For the present, assume that

a best or optimal pair exists. The minimum value of the quadratic form is then

B l(N-l_,I+N _,)N QN(AN + OPN_,!* j) opt (3.24)

(PN- 1 N-1~

The loss function I1 has a value corresponding to this choice of pulse width

j and sign.

I
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I, a C(B1 + -o (3.25)

Continuing the stop by step solution let, n = N-i.

MiniLmum -T
2 = N-2-CN- 2) N-1Q(N- z N-i 1/DN-2) + 1 11 (3.26)

Using the II previously determined, we obtain

Miimm -T]1 2 = (•N- 2 'EN- 2)) I N-1 QN*N- I z NI/DN_-2 + BI* y (3.27)

Equation (3.27) is analogous to equation (3.16) within the constants B1

and y•. Hence, we may follow the same procedure and include the (B 1 + -yo),

obtaining

2 " Q8N-2,EN.-2 (NI-2 IN-2 + 4N-2-2 TNl

S....(W 2 IN-2 + ON-2 zN- 2 ) + Y1 + Yo + B1] (3.28)

where

Y1= N ( A A- 2 -N-2 6W 2 SN-2"DN-2) (3.29)

Defining B2 in a manner similar to before

B= zl-1- +4~-z-) (3.30)- -* )T • *

opt

SN- 2 ,E -2)

The loss function is

12 = Z (BI + B2 + Yo + Y1) (3.31)

The quadratic form to be minimized in either the deterministic or random case is:
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I
minimize+

(PN- 2 ,' N-2 ) L(N- 2 !N-2 +4N-2 ZN*-2 )T'N-1'N?-2 ZN-2 + "ON-2 !*N-.2J

(3.32)

where

2N-2 = B("N- 2 /DN- 2 ) (3.33)

Summarizing the results for the first two stages:

n N
I, = E (B1 + yo) (3.34)

--- * T
B =(A N 1 C + zN- AN- I + ON- 1 2N Il'f

1o a N- I 1 QN A N- N N-1

n =N-1
12 = E (B 1 S2 + -o + YI) (3.35)

(-Minimize) [(N-2 !N-2 + O)N-2 *N-2)TQN-L( -N-2 + 4)N-2 zN-2)]

B - Z- - * T - -

2 -2 N-2 zN-2) QN-I -2 N-2 N-2

- T T
'Y -= E (aN-2 AN-.2 (N-iA 2 N- sN.2/DAN,2)

The general term for the nth point in the N stage process may simply be

written now by induction.

I

I
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N-n

I Nn+l a E I (y, + B,+I) for n=i,2,...N (3.36)
1--0

The quadratic form to be minimized is

Minimize +( 1J) TQ~I +) ~ A (.7
(Pn-l' U-1 I)n e E(•n-i11n-l + n n TQN(An-1Fn-l + nn -lznn i)- (3.37)

for n = 1,2.q.....N

BN += (An En +4 z •n~ )TQn(An ln +4 nlz n)I (3.38)
N-n+1 n-1 n-1 n-i1 n-i 1)nr n-i n-i + n-i zn-i1)(.8

opt(Pn-1 i n-_i)

where

Qn =JMT Q'M
n n n n

and

-T T s/n) (3.39)

'Y-n 311ý- n- i~-a- n-i

The control law will be obtained from the minimization of the quadratic

form (3.37). Before accomplishing this, let us examine the significance of

this particular form. Define

nMn (Anln_l + )n_Il) (3.40)

or

n- 1  + [-i1 n- (3.41)

0 0 1 n-i

Zxpanding (3.4).)

1  )n +n n.MYn-i -i n ww n - (3.42)7n= n n-1 - nn-l n-I -Mnon-lwn-i
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Consider the last term in (3.42). Only terms in the input process are involved.

The input process was defined by (2.12).

W ~4 ;i +A
n -i Wn-i n-i n-i

n n n

Taking the conditional expectation with respect to w we have

E(Wn/D- n-i E(wn-I/D)n-l

or, in simpler notation

Wn/n- i = On-I n-I ' (3.43)

since the process input vector satisfies the original requirements of Chapter 2.

Also,

E(r/D r MW (3.44)
n n-i n/n-1 n n/n-1

Combining theme terms we obtain

-* w* w
r =M w =V -w i w (3.45)
n/n-i n n/n-i n n-i n-(

Substituting this expression into (3.42) for 'n

n Mn-n n- rn/ni (3.46)

The remaining terms are involved with the plant process. Repeating these

equations for convenience)

c=M~
n n n

(3.47)

n = On-i +n-i n-1 n-i

Taking the conditional expectation of the first equation in (3.47), we obtain

E(c /D) =c =MX E(x/D ) (3.48)

n n-i n/n-i n nn-i
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or

Taking the conditional expectation of the second equation,

Xn/n- 1 = O :n- 1 Xn- 1 +A 1 E n-i

Thus,

-, .. __. -(

n/n-1 =n on-i XnI + An (3.49)

Using the expressions (3.45) and (3.49) in (3.42) we see that,

7 = E(cn rnn-i) = cn/n-1 *n/n-1

or

1n= en/n-i Z E(e /nIAn-1) (3.50)

The function 7n is simply the expected value of the error at time tn given the

data at time tn.

The quadratic form to be minimized then simply represents the measure of

system error at one sample instant ahead of the time at which the pulse will be

applied. Obviously, the dynamic programming approach here simply provides the

organized logical structure to follow in arriving at the final result.

3.5 The Control Law

The minimization of the quadratic form (3.37) results in the control law

for optimal behavior of the system. Summarizing the pertinent equations,

Minimize FT (3.51)

On-i' n-1'in n q

where

S÷ n-in-i rn/n-i (3.52)

Let the function H be defined as
n

H rn 1  x (3.53)
Un /- n n-i n-i 33
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This function then takes into account the results of the optimum estimation of

the state of the system given the data D The calculations and details of
o in-l"

obtaining H are accomplished in Chapter 4. We will assume temporarily thatn ,
the results of the estimation are available and the function H is known. The

expression for 77n using the results of the estimator is thus

Mx A H (3.64)
n n-1 n-1 n

Using the expression for A we obtain
0-1

7n- f e -A'- B dX in-_- H* (3.55)
0

for i 1)2,....q

Define (( i
(Pn-d i

F t n -t n-) = Un 'n-I f0 e- B dX (3.56)

for i = 1,2 .... q

Equation (3.54) may now be written

--- *

1n = FJn-ltn-tn-l) En_, - H
n -n ni -l n

To simplify the notation, let

ar = the length of the nth sampling intervaln

or
a t -t
n n+l n

Then)

-= (tn - t 1 ) = 1 (n)

and since the output matrix does not depend on n

Mx = ux
n

I
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Equation (3.56) reduces to

"7 "n n, n (3.57)

Instead of referring to the nth sampling interval, the notation may be further

simplified by referring to any sampling interval, and we may write

: (P,O) - H (3.58)

where
0 = the length of the sampling interval

P = the pulse width vector associated with the
particular sampling interval

= the sign vector associated with the
particular sampling interval.

Returning to the quadratic form with this new notation, we have

Minimize

or

The condition to be taken to insure minimization of (3.59) will be the control

law. The control law then must satisfy

Minimize [F(P,a) - H*] (3.60)

The function H is known from the results of estimation of the states of

both the plant and input processes. Knowing the length of the sampling inter-

val or using the best estimate available, we have sufficient information to

satisfy condition (3.60) by choice of the pulse width and sign which will be

optimal in the sense defined here.

It simply remains to investigate the function FP,Or) for various types of

systems since the estimation problem is covered in Chapter.4. The sign vector

i may easily be determined for the situation at hand and this bears no further

coment.
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For a single variable control, the function F(PO) takes a particularly

simple form

F (P,O,) = Mx e (") J e-AP B dp (3.61)

0

If the output of the system is directly related to one of the stite variables

the output matrix is quite simple and fortunately, this is the usual case. In

particular, U = [1 o o ...... 0]
and since the order of the numerator is usually less than that of the denominator

for the plant transfer function, the matrix B also contains several zeros. The

calculation of F(PO,) is then quite simple and only a little more involved

than the calculation of the characteristic matrix which may be accomplished

easily by means of Mason's signal flow graph. 3 4

The function F(P,O) is shown in Table 1 for several typical plant processes.

Since P < Y at all times, the boundary curve may be considered to divide the mode

of operation from on-off control to pulse width control. It is apparent that in

ome cases, the expression for pulse width may be obtained in closed form as a

function of the estimation H and the sampling interval 4. This expression will

satisfy the condition for optimality and constitutes the control law in these

cases.

TABLE 1

G(s) F(P,O) P < Or Boundary P=a

1 -0 P l-P
a+1 (e -)

1 a - -e-
a =87 5 P - ee (e - 1) P - (l + e

1 P2  -0 P & -P
P(a + 1) - 2c + e-(e + 1) P2 + l) + 1 + e

1 p -a P e P (O-3) (e-P+ 1)+e °(1-6P) + E•(-eP + 4

s(s+l) (s42) 2 +

1
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The technique which results in optimal control can be reviewed easily using

the curves showing the relationship between pulse width, sampling length and the

function F(P,0). Following the idea of using the pulse width as a parameter,

the curves may be presented as shown in Figure 2.

F(P,a)

P =:

P4

P3

P2
PI

6a

Figure 2. Typical Characteristic Curve

For a known value of the estimation function H and the sampling length, the

optimal pulse width and sign are determined so that the condition for optimality

is satisfied. Repeating this for convenience we have

Minimize F(P,a)E - H* (3.60)

These "'characteristic" curves are shown in Figures 3 to 6 for several systems

including ones to be used as examples in Chapter 6.

3.6 Controller Mechanization

The program or mechanization of the procedure reviewed in terms of the

"characteristic" curves constitutes the design of the optimal controller. The

control computer may be programmed to execute a sequence of logical orders for

each sampling instant, determining the optimal pair (P,C). A flow graph of a

general scheme is shown in Figure 7 where the inputs are the length of the

sampling interval or its best estimate, and the optimal estimate of the state z

Let us consider possible realizations for two simple classes of systems

with emphasis on the calculations to be executed for each sampling instant.
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p =-0.5

10 p=02

"02

0
0 01 02 03 04 05 06 07 0.8

0'

Figure 4. Characteristic Curves for G(s) =
u. +1
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6.0 -- p=1.4

50__ ____

40 -100 -1000__ ___ _ _

Q 30Z

I-0

10 -= -

P=0.

Figure 6. Characteristic Curves for G(s) = s~+)s21+2s+)
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First consider a type zero system with a transfer function

K
G(s) Ka + a

The transition, distribution and output matrices are:

A=-a B=K M=I1

The function F(P,O) is
P

F(p•(Y) = M O•)(O fe-Ap B dp = e- a a K (eSIP(362FIm- ( -1I) (3,62)

In this case F(P,) > 0 for o < P < a

Thus,

C = Sign of (H) = sgn(H ) (3.63)

To achieve a zero minimum of equation (3.60), the pulse width is

P = 1I + ! ea H* C] (3.64)

Writing H in terms of the optimal estimate z we have,

H= M[-I il m (cY) ! (3.65)

The logarithm in equation (3.64) must be calculated to determine a pulse width,

and then checked to insure the condition

o <p <a

The complete realization for the controller is shown in Figure .8. In this

realization, the voltages representing the pulse width P and sign C are multi-

plied together and applied to a hold circuit providing a staircase output which

Is the desired input signal to the pulse width modulator. These waveforms are

shown in Figure 9. The complete block diagram of the system is shown in Figure

10. If the state is known exactly, no filter is required.

In this simple case, the value of P has been obtained in closed form.

This will not be possible in general.
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Consider a type one second order class of systems with the transfer function

K

G(s) - K

The transition, distribution and output matrices are:

A B = [] M = (1 0)

The characteristic matrix is

) At -=a -a

0
he function Fe Is

oaeerominimm (3.60)

FKr a zero minimum,

K Leo -e-a r(eai - 1)] = H*, (3.67)
a

or 
(Y & 2(OP) _ (e-o e(.o =T- H*C - (e(x (3.68)

Biunce F(PO) > 0 for 0<'P< 0t, a > 0 and K > 0, then

C = Sign of (H*) = sgn(H *) (3.69)



I
41

Iquation (3.60) may be minimized by a program shown in Figure 11. The

variable Is Incremented and the function tested at each step. The program is

repeated for each sampling Interval.

SAnother possible realization may be accomplished with analog elements.

The expression
f (1P) -a (aP)- (-or) e (8p)

is the solution to a constant coefficient ordinary differential equation which

Is easily program•ed. The value of the function is compared to the remaining

torms in (3.68) and if a zero minimum condition is satisfied) the computer is

stopped with (#0) held on the output of an integrator. Provision is also in-

cluded for minimization on the boundary where P = O. The realization is

particularly simple since f(#4) is well behaved with

(o) > 0

ý(#P) < 0 for 0 < P < a

f(.P) = 0 for P=. (

eliminating the possibility of a minimum not on the boundary for P=a. This

realization is shown in Figure 12. Time scaling may be included to provide the

desired response time.

If reset does not occur until now data is available, then the holding

property of the integrators is sufficient to eliminate the need for a separate

hold circuit. Hence, a staircase wave is fed directly to the pulse width mod-

ulator. The block diagram for the complete system is shown in Figure 13.

If exact measurement of the state occurs and the input to the system is

deterministic., then no filter is needed. This is shown in Figure 14.

a

I
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4. OPTIMIUM PLANT IDENTIFICATION

4.1 General

The plant requires more state variables in its description than there are

measurable quantities. Since the plant state variables must be known for com-

plete knowledge of the plant's behavior, the problem of identifying the state

from the measurable outputs is apparent. The identification problem is equiv-

alent to finding an optimum estimator for the state vector zk given knowledge

of the output vector Yk for t < tk . The initial derivation of the optimum linear

estimator is due to Kalman26J27 and the presentation here is simply a review of

the derivation with emphasis on the interpretation of results applicable to this

problem.

4.2 The Conditional Mean as an Optimum Estimator

The conditional expectation E(Zk/Yk Yk-l'"Yo) has the following prop-

erties:

(1) It is a linear function of the output vector, requiring

knowledge of only means and covarignces.

(2) If z and Y are gaussian random vectors, it is an optimum

estimator for any reasonable performance index.

(3) If z and Y are not gaussian, it is an optimum linear

estimator.

For these reasons, the conditional expectation will be used as the optimum

linear estimator to accomplish the identification of the state of the system.

Notational Definitions:

n =E(z /Y Y ....Y)Zn n n' n-i"'"o

.• -- ~ -, _

'n/n-I E(Zn/Yn- 1 ,Yn- 2 ,)... Yo0)

e = z - z = predicted estimation erroren n/n-i1 n

e = z - z = estimation error
n n n

coV (znYn) = EE(. - E(z))(Yn - R( n))T]

P = coy (enen)= the error covariance matrix
nnn
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Pn/n-i nco (nen'

D-i n o•( a7'1 1 . set of measurements
n2...f' at t = t

To show that the conditional expectation is an optimal linear estimator,

consider a simple case. Define the loss function L, where Q is a positive,

semi-definite, symmetric matrix.

L*., = - - Y (4.1)

where z is an estimate of z.

By simple manipulation, L may be written

L =[.(,rJT[z~ y] E(j/y)TQ(z/y)E(Q/

The dependence of the estimate z is isolated in this form. Thus, the one value

of z which minimizes L is clearly

z EC(z/y') (4.2)

The estimate is optimum in the sense of minimizing L and is unique if Q is

nonsingular. Thus, we speak of the optimum linear estimate z

4.3 The Optimum Estimator, Predictor and Filter

We will consider first the problem of estimating the state of the system

from noisy measurements of the output assuming certain a priori information.

The optimum estimate or mean of the a posteriori distribution is calculated in

terms of the assumed a priori information. The second step is then to show

how the a priori information may be developed recursively.

Consider the output relationship

ff =M z (4.3)

where -1 =u -
Y n = M n n (4.4)

and yn to the noisy measurement at t = tn available for estimation purposes.

I
!
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Since the conditional expectation is linear with respect to the output

vector, the form assumed for the optimal estimate is

=E(z = - Yn/_ ) (4.5)
n n n n/n-1 n ( n - n*n-1

where b is determined by minimizing the covariance of the estimation error.n
The a priori information assumed is

Z E(a), coy(a, an) and
n/n- 1 )

Pn/n-1 = cov(e Wen) n covariance of predicted estimate

and

b is a (m x p) matrixn

I is an(m x m) unit matrix

P is a (p x p) matrixn

The covariance of estimation error is to be minimized with respect to the

elements of the b matrix. The error in estimation is
n

e =z -z (4.6)
n n n

Substituting (4.4) and (4b5) into (4.6),

e=z +-- b (Mnz + -yn ) (4.7)
n n/n-l n n n n n n/n-l

Since the noise is additive, we may write

e* -(z - +bn (MnZn+n) b "* +()

n (6n/n-l - n) + n nn n n nn/n- n

Or ~
en = (I-bnMn) (z/n-1 - zn) + bn (a n- E(an)) (4.8)

Computing the covariance of the error in estimation

* -*-*T -- T
P = cov(enen) = (I-bnMn)Pn/n-l (1-bnMn) + bncov(anWann)bn (4.9)
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The covariance matrix Pn is symmetric and thus, minimization of the trace
n

with respect to the elements of b nis sufficient for minimizing the matrix. A

necessary condition for minimizing P is found to ben

#T T-- 1
b n - Pn/n-1 un (UnPn/n-lin + ¢oV(an an

( Defining F =M P UT +cov(i a) (4.10)

n n n/n-1 n n n

the condition may be written

b = Pn H Fnl (4.11)

n n/n-i n n

The resulting minimum value for Pn when using the value of bn from (4.10)

is

P P - b F bT (4.12)n n/n-i n n n

The value of P ns the minimum covariance of estimation error attained by the
optimum linear estimator.

Summarizing the filter equations:

z=(I-bnM) +b y-b E(a) (4.13)

n n n/n-1 nn n (an

where

F = M P UT + cov(a )"n n n/n-1 n n n

b =P MT F-"n n/n-i n n

and the minimum error covariance for this estimate is

P =P b F bT
n n/n-l bn n n

The filter equations in (4.13) depend on the assumed a priori information

z n/n. and Pn/n-l" This information will be developed recursively. Consider

the process

I
!
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n n- I n- n-1 (4.14)

Ass u n-i and zn_1 are known, n/1 and zn/n-i must be calculated. Taking

the conditional expectation of (4.14)

Sn /Dn-l) 'On-i Z(;n-i/ n-i) + '('n-i/ n-i

or

Z:/n-1= •n-i -"nn-i n-i (4.15)

Calculating the errors in this estimate, we have

*n a (z n/n - z) =O- en-I + (q--i - qn-) (4.16)

The covariance in this estimate is

e 1 n - )T (4.17)

Thus, the a priori information is determined from (4.15) and (4.17).

The complete estimator may now be summarized for the process

n n- -1 + n-1

i z +a
n n n n

Given the estimate of the state at t = t and the covariance of this estimate,

z and Pn-
n-I n-i

; - = on-, z + i* (4.18)
n/n-i - n-i n-i1

and

p O~l * 1T

Pn/n-l n- n n-1. _n-l + CoV('n_ 1''1)

The filter Is

Zn " (I-b M) / bnYn- be (an)
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where

F = M P MT +cova,,)
n n n/n- 1 n n

b =P MT F1
n n/n- 1 n nL

The covariance for this estimate is

I *P = _bnFnbT

n n/n-i nI

Thus, x add P are known.n n

j The block diagram of the optimal filter and estimeator is shown in Figure 15.

I

I

I

I

I
1
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5. THE OPTIMAL CONTROL LAW WITH IDENTIFICATION

5.1 General

The results of Chapters 3 and 4 are now combined in summary to achieve the

complete optimization technique. The optimal estimates, assumed to exist in

Chapter 3, are obtained by the Kalman filter in general form. That is, esti-

mation for both the input and plant processes are combined into a single effort

which reduces to appropriate conditions when specific conditions exist (e.g. deter-

ministic inputs, etc.)

The condition for optimality utilizing these estimates is shown in the flow

graphs for two alternative optimization procedures.

5.2 Summary of Equations and Optimization Scheme

The condition for optimal control is

Minimize [ ~p)E - (3.60)
,V Z n-lI n-1 n-1l ](.0

where (P)i

F(PO) = 9 e(a) J" e- AX B dX (3.61)0
i=l, 2, .. .q

and

* -* xx (3.5*
Hn n/n-l n n- 1 Xn/n- (3.53)

H represents the results of estimation and has been previously assumed to
n

exist.
*

Investigating the significance of Hn, first consider the plant process

defined in (2.10)

x = n + A (2.10)
n n-1 n-1 n-l n-i

- =Mxx
n n n

i
!
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Assuming that no pulse is applied at t = tn (An_1 = 0), and taking the con-

ditional expectation of the first equation in (2.10), we get

n/n-i n-i n-i

Multiplying by M'

UXx * U4X X~
n n/n-1 n n-i (5.1)

This term then is the estimate of the output at t = tn when no pulse is applied

at t a t 1 . Since H* is the difference between this term and the expected value
t -n n

of the reference input, it may be interpreted simply as the estimate of the

future or extrapolated incremental error at t = t when no pulse is applied atn

t X t]%--1. The pulse width and sign determined from the control law are chosen

to minimize the incremental error that would occur at the next sampling instant

if the pulse were not applied. A pulse exists then for the sole purpose of

minimizing the effect of the nonexistence of that pulse. This is shown in

Figure 16.

Since the estimation involves both the input and plant processes in the

general case, a compact form using the stacked state vector z will be used.* _, n
Writing the function Hn in terms of zn-1, we have

n n- w whav

H -Mx - x + M - -
n n n-i n-1 n n- n-i

o r *-.
H n =[-1 1] M n (An-1 Zn-i1

The system constraint is

zn n-i n-i + Ln-l 'n-1 + An-i in-i

n=M (2.15)
n Mn n

The information constraint is included by considering measurements of the out-

put corrupted by additive noise.

"" = M Zn +n (5.2)
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The set of these measurements constitute the data to be used for estimation

purposes at a particular sample time.

D 1 -{ " I' Y2-' ..... Yo} (5.3)

The filter equations are summarized as follows:

Begin at time t = t and assume the knowledge of the optimal estimate of the.$ n--i $
state zn.1 and the covariance of the estimation error Pn-1.

The predicted estimate of the state at t = t isn

zn/i- l = n-I Zn-i + An-i in-i (5.4)

The covariance in this estimate is

* T Ten/n-i D n-I Pn-I n-i + "n-I n-i (55)

Using the measurement yn' at t = tn, the filtered estimate is

"Zn (I-bnMn) zn - b -'+ E(an) (5.6)zn n n n/n.1-l n n n b n

where

F = M nP M + covy a (5.7)n n n/n-i n n• n"

and
bT -r (5.8)b=P F

n n/n-1 n n

The covariance of the filtered estimate is

P =P - b F bT (5.9)
n n/n-i n n n

In writing equations (5.4) to (5.9), the following definitions have been

made:

Pn/n-i I]

n/n-n
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bx 0 p, x 0
n

bn n

x

F 00

n an

0 F =a
nn

where

SP i a a (m+v x m+v) covariance matrix

PX is a (m x m) covariance matrix for the plant state
vector

pw is a (v x v) covariance matrix for the input process

state vector

Fn is a (2p x 2p) matrix

F is a (p x p) matrix for the plant process filter
n

eFW is a (p x p) matrix for the input process filter

b is a (m+v x 2p) matrix

b bxin a (m x p) matrix for the plant process filter
n

b is a (v x p) matrix for the input process filter
an

a n is a (m+v x 1) noise vector
ax is a (m x 1) noise vector for the plant process

n

a is a (v x 1) noise vector for the input process
n

For the case of deterministic inputs or exact measurement of the state,

the general filter equations reduce to the appropriate conditions. If, for

exasple, the problem is completely deterministic, then b = F = P = 0 and the, n n n

function H represents the exact incremental error involved.

The block diagram for the complete optimization procedure is shown in

Figure 17.I
I
I
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5.3 Alternate Scheme

For the program shown, there is a limitation due to the finite time required

for the calculations involved. The pulse applied at time t = t must be cal-n

culated using the data obtained at that same time. The optimal estimate must be

found and the procedure for determining the optimum pulse width must be executed

before the pulse may actually be applied. The time required for these calcula-

( tions delays the application of the pulse sufficiently in some cases. If this

limitation is too severe due to high sensitivity of the output with respect to

pulse width, or the system is operated with a fast sampling rate compared to the,
time of calculation, then an alternate procedure must be developed.

The alternate procedure is quite simple in that predicted estimates rather

than filtered estimates are used where the prediction and other calculations dre

executed throughout the sampling interval. That is, at time t = tni a measure-

ment of the output is available, but will be used for predicting the state at
,

t: = tn+l* The function Hn+ 1 is determined from this predicted value and the

optimal pulse width and sign are then calculated. These operations are per-

formed during the sampling interval and the pulse to be applied at the next

sampling instant is ready. This alternate procedure limits the calculation

time to the length of the sampling interval, but the obvious extension of pre-

dicting several samples ahead may be used in cases of this nature.

The flow graph for the alternate scheme is shown in Figure 18.

i

I
I
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6. EXAMPLES

6.1. General

This chapter is intended to illustrate the optimization technique described

in the previous chapters. It is hoped that the validity and usefulness of the

theory will be demonstrated at the same time. Numerical results have been ob-

mined through simulation of the entire system on a high-speed digital computer.

The computer involved in this simulation was the Control Data Corporation

1604. The entire program was written using the FORTRAN compiler language. The

extensively tested35 normal deviates from the table "A MILLION RANDOM DIGITS

WITH 100,000 NORMAL DEVIATES"36 were transcribed in part on magnetic tape and

used as the source of additive noise in all cases. The program included the

choice of mean and covariance for these normal deviates. A random number gen-

erator, which was programmed in machine language, together with von Neumann's

rejection technique37 for sampling from various other distributions was also

available.

The optimal response is compared to a normal response in each case where

normal pulse width control refers to a standard procedure used to determine the

pulse width and sign at each sampling instant. This standard procedure is some-

times called "lead" pulse width modulation where the width and sign of each pulse

are directly related to the magnitude and sign of the actuating signal at the

sampling instant.

Pn = aleln

C = sign of (e)
n n

The parameter "a" was taken as unity for convenience.

The block diagram of the system under consideration for each example is

shown In Figure 19.

I
I
I
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r(t Predictor ! Control u(t) G(s)S Law

Noi se

Figure 19. Block Diagram of Simulated Systems

6.2 A Second Order System

The linear plant for this example is described by the transfer function

G(s) = K C(s)
s(s+1) =U(s)

Using state vector notation, the plant process may be written

x=Ax+Bu

A-[ ] B-[][
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The discrete form is

xn+l n : n n+An

c=Mn n n

where
•(t) = e

Y=P e-At B dt P-oe=2

A(PO) = (•) Y _ e--1)

Le-aU -1) j

The step responses for plant gains of 4.0 and 5.0 are shown in Figures 20

and 21 for both exact and noisy measurements of the state. The additive noise

was assumed normally distributed with zero mean and unity covariance. The

sampling rate was assumed constant at 0.1 seconds.

The normal pulse width response was found to be unstable for any gain

greater than 5.0. The optimum system was found to be stable for gains much

higher than 5.0 for both step and ramp inputs. The response for a gain of 10.0

is shown in Figure 22.

The ramp responses for these gains are shown in Figure 23.

The results show a marked improvement in performance for these inputs.

For the step response, this is attributed to the small pulse applied before

the desired value is reached allowing the system to coast for the remainder

of the sampling interval and then settle rapidly thereafter. This of course

is due entirely to the minimization of the future errors.

The flow graph for a digital controller is shown in Figure 24. The

analog realization is shown in Figure 25.

I
I
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Figure 24. Flow Graph of Controller and Predictor
Program for Second Order System

G(s) = -
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6.3 A Third Order System

A third order system with complex roots is investigated in this section.

The transfer function of the plant is

G(s) = K (6.3)
s(s + 2s + 2)

The block diagram of the system is shown in Figure 19. Preliminary calcu-

lations lead to the following matrices:

0 1 0- c

A = 0o B= 0 = (l 0 o3

$(t) = eAt = 0 e t Stn(t+45°) e-t Sin(t)

-2 e-t Sin(t) - E e-t Sin(t-45°)]

p OP Cos(P) + -

o 2Y=f B dt = - + -§

SSin(P)

A(O,O) = e(a) Y

A plant gain of 2.0 and a constant sampling rate of 1.20 seconds was used

for this example. The unit step response is shown for exact and noisy measure-

ments of the state in Figure 26.

Since A nonlinear system is under investigation, the unit step response

has very little significance in terms of describing the system performance to
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displacement Inputs. For this reason, a family of step responses is shown in

figure 27 for the optimal mode. The corresponding normal responses are shown

in Figure 28. A direct comparison is shown in Figure 29.

For large stop inputs the system approaches the behavior of the normal

system since the on-off smof of operation is in effect in both cases until just

before settling ti•e. Also, since the system response time is very slow for

l1rge inputs, little information will be gained by considering these large dis-

placement Inputs.

For small step inputs, the behavior depends a great deal on the sampling

rate and begins to exhibit rather sporadic results for large sampling rates com-

pared to the system response time. The criterion for optimality is satisfied

In all cases, but it becomes doubtful whether or not the criterion has any

meaning in relation to what we might consider good response with respect to our

aesthetic criterion for optimal behavior. A good example of this is seen for

the 0.70 step response In the optimal mode. The system eventually settles and

satisfies the criterion established, but our Judgment dictates that the normal

response in this case is better with respect to our aesthetic optimality cri-

terion. Thus, the optimal mode leadeto undesirable results for some ranges of

operation. The pole-zero location in relation to the magnitude of input infor-

mation for various sampling rates is seen to be an important consideration

when using this optimization technique since there are desirable and undesirable

ranges of operation.

No attempt was made to investigate thoroughly the change of stability

boundaries with respect to gain and sampling rate but there seems to be an

extremely Interesting effect involved. For a gain of 3.0 and a unit sampling

rate, the system is stable in the optimal mode but unstable in the normal

mode. On the other hand, for a gain of 2.0 and a unit sampling rate, the re-

verse is true. The explanation for this may be tied in with the fact that

these points lie very near the stability boundary.

For a ramp input, the system exhibited a constant steady state positional

error of 2.20 units in the normal mode when the state was known exActly. In

the optimal mode for exact measurement of the state, the steady state positional

error was improved to 1.0 units.. In the, optimal node when the information about
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the state was constrained) the steady state error was found to be a linear

function of time. These results are shown in Figure 30. The steady state

error series for each case is listed as follows:

Normal mode; exact measurement of the state

E s(t) = 2.20

Optimal mode; exact measurement of the state

E (t) = 1.00

Optimal mode; noisy measurement of the state

E s(t) = 0.346 t - 6.5

6.4 A Fourth Order System with Distinct Roots

A fourth order system with a zero is investigated in this section. The

transfer function of the plant is

G(s) = K(s+2)
s(s+l)(s+3)(s+4) (6.4)

The block diagram of the system is again in Figure 19. Preliminary calculations

of the necessary matrices lead to the following results:

0- 0 1 0 - 0

[ -12 -19 - 6

M = [l 0 0 0o
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The characteristic matrix for higher order systems is somewhat involved but
34may be calculated easily using Mason's gain formula as presented by B.C. Kuo

A family of atop responses is shown in Figure 31 for a gain of 6.0 and a

unit sampling rate. Again there is a range of inputs which lead to results

which may be undesirable. In particular,the input step of 0.3 units begins

following the 0.4 unit input response until about 2.5 seconds resulting in a

large initial overshoot. This result of course depends on the sampling rate

chosen and is expected in this case since the rate is quite low compared to the

settling time for this lower input level. In general, we would expect unusual

results when the sampling rate is larger than the system response or settling

time.

In order to compare the normal and optimal responses, a quality factor

which seems to be reasonable is the 5% settling time for the two systems.

Figure 32 shows the settling time versus the magnitude of displacement input.

For large inputs the on-off mode is predominant and the two curves approach the

sae asymptote as shown in the figure. For input magnitudes greater than 40.0,

the settling time curves for both systems are within 5% of the asymptote.

Investigating the behavior of the two systems further, another quality

factor examined was the first overshoot versus input magnitude. This curve is

shown in Figure 33 and we see immediately that lower level inputs exhibit rather

sporadic first overshoots due primarily to the large sampling rate. Note, how-

ever, that in this case even though the first overshoot is larger than that for

the normal system for an input of 0.3 units, the settling time is still about 60%

lower than the normal response.

Since the sampling rate is fixed at unity, it is not to our advantage here

to consider step responses for input signal levels less than 0.1 units. A family

of responses for various other sampling rates and input levels would be in order

however, if the technique were to be applied to existing systems.

6.5 A Fourth Order System with Complex Roots

A fourth order system with complex roots is investigated in this section.

The transfer function of the plant is

K C(s) (6.5)
s(s+3)(s2 + 2s + 2) U(s)

!
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The initial calculations lead to the following matrices:

0 1 0 0 0

0 0 1 00
A=[ 0 0 0=

LO-6 -8 -!

SM = 1 0 0 0]

The elements of the characteristic matrix O(t) = e are:

Ii
I 'P11 (t) = 1

S•2() 4 -t ___e- 9 -t
4 2 -3t + 64 _-t Sin(t-450 ) - - e Sin(t)
3 5r -55

5 2 -3t 747 -t 9 -t

' 1 3 (t) = 6 -1 e + e Sin(t-45 ) - e Sin(t)

1 1 -3t F2 -t 2 -t
04.(t) = 1-5 e + - Sin(t-45°) -- e Sin(t)

0 2 1 (t) = 0

2 -3t 3j- -t 12 t
22 3 e - Sin(t-45°) +- e Sin(t)

2 -3t _2•'2 e-t 0 7 -t'P2 3 (t) = - e +-a Sin(t-45°) +5- e Sin(t)
02() 5 5 5

1 -3t _ Je-t o 1 -t
= 2(t) = 3 e + e Sin(t-45°) +- e Sin(t)

0 3 1 (t) = 0

3-6 e-3t 6r' e-t 6 e-t
03 )Sin(t45°) - e Sin(t)

= -3t _ 1a -t Sin(t-450 ) + e Sin(t)

3 e-3t 3We-t o 2 -t

e3-3t _ 3 e- a Sin(t-45 ) + 2 e Sin(t)

041(t) 0
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2 -- 3 L( Sin(t-45°) - -L e Sin(t)

",3(t) 18 e-3t 2 e-t t2 4-t + 'NY + - Sin(t-45°) - L -t Sin(t)

!9 0-3t + 5 e-t Sin(t-45°) - 6 0 -t Sin(t)
044(t) 5 5 5

1 p 1 3P p _2
+-- " (e -1) - e Sin(P) - e Cos(P+45°)

59 6i 45 105

1. ,1 + 0(e3  -1) ep Sin(P) + - ep Cos(P+45°)
- + T1_ 5 10

1 1 33 P 0
(e 1) + Sin(P) + - e Cos(P+45O)

5 5
3 33 4 P23-T

3 (e 3P -1) - ep Sin(P) - -e Cos(P+45o)

The step response curves for a gain of 5.0 and a sampling rate of 1.40

seconds are shown in Figure 34. The input level in this case is 2.0 units. In

Figure 35 the response is shown for an input signal level of 0.8 units.

6.6 Comments

From the several examples presented here, we see that the system performance

is greatly improved for certain ranges of gains, sampling rates and input signal

levels when optimized using the technique presented in the previous chapters.

There are, of course, ranges where the response satisfies the criterion estab-

lished but where it does not satisfy some aesthetic criterion for optimal behav-

Ior. In particular, for the families of curves shown, the sampling rate was

assumed constant and for low level signal inputs, the response time of the sys-

tem is smaller than the sampling rate leading to results that may be classified

as undesirable. The results demonstrate, however, the ability of the system to

achieve optimal performance with respect to the established criterion in all

casts and excellent performance not otherwise possible in many cases.
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7. SUMMARYJ FURTHER PROBLEMS AND CONCLUSIONS

7.1 Summary

A method for the design of a controller to optimize a class of pulse width

modulated systems has been presented. The process to be controlled is linear,

time-invariant, of arbitrary order and excited by a sequence of pulses generated

from information available at arbitrary sampling instants. State variable no-

g tation has been used for description of the plant and input processes. Estimation

of the state at the sampling instants is provided by linear estimation techniques,

accomplishing the identification problem. The information obtained from the

filter is then used in the controller to develop a predicted estimate of the

future system error which in turn is used to develop the optimum pulse width and

sign to minimize a measure of the predicted future system error at each sampling

instant. The criterion established, providing the definition of optimality, is

based on the minimization of the conditional expectation of a sum-squared perfor-

mance index. It was shown that the overall system is optimum in this sense.

Two alternate schemes for determination of the pulse width and sign were pre-

sented allowing flexibility in controller design to include those systems re-

quiring calculation time in the controller comparable to the length of the

sampling interval.

The construction of an optimal strategy has been presented in the litera-

ture10'11'12y13 based on the determination of a finite canonical sequence

associated with each initial state which specifies optimal control over the en-

tire transient process during which the state is taken to the origin. Con-

struction of the canonical sequence associated with any arbitrary initial state

is determined from the observed value of the state by a reverse time mapping.

The phase plane is divided into two regions corresponding to pulse width and

relay control in each of these cases. The approach is limited to plants of

second order due to the conceptual difficulty of determining the optimal con-

trol regions in higher dimensional state spaces.

The technique presented in this report is based on the philosophy of

j minimizing future system errors at each sampling instant as opposed to the usual

reverse time mapping. The future weighted errors are miinimized sequentially

and the optimal strategy is constructed at each step removing the previous



88

restriction to second order systems. Input information is also quite general in

that random and deterministic phenomena are included as opposed to the previously

presented techniques which are restricted to simple deterministic inputs. The

usual condition in practice where information about the state is constrained is

also included. Sampling may occur at arbitrary times and is not limited to a con-

stant rate. Finally, the application of this technique is no more difficult for

a system of arbitrary order than for one of second order. The higher order system

requires more computation in the controller but if this restriction is severe an

alternate technique has been presented utilizing the length of the sampling inter-

val for computational purposes.

Several systems were simulated on a digital computer using the methods pre-

sented in this paper. The results indicate superior performance of the system for

ranges of input signal levels with respect to the length of the sampling interval

and the gain of the plant process. It was found that input displacement levels of

small magnitude corresponded to response time of the system which was smaller than

the sampling interval leading to what might be called undesirable results even

though the criterion for optimality was satisfied. Also, for input displacement

levels of large magnitude, the system was found to be predominantly in the relay

mode and hence, pulse width control effort had very little effect.

7.2 Further Problems

The concept of minimizing future errors has led to the techlnique presented

in the preceding work. The future error at only one sampling instant ahead was

considered with only a passing mention of the control law which would be appli-

cable if future errors several sample instants ahead were considered. The

extension of this technique to include investigation of the predicted error at

perhaps two sample instants ahead together with the information about error only

one sample ahead and a subsequent decision process based on the desired perfor-

mance, might prove worthwhile. Various approaches utilizing the predicted

errors may provide the insight necessary to achieve excellent performance for

systems other than those with pulse width control signals.

No investigation into the stability problem was made in this work. Several

interesting results were noted however, when the controller was introduced into

the system. The stability boundary determined as a function of sampling time

and plant gain for two of the example systems changed appreciably. It was found
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that a second order system was stabilized in the optimal mode for both step

and ramp inputs for gains twice as large as the maximum gain allowable for sta-

bility in the normal mode. A third order system was stabilized in one case by

allowing a larger gain than in the normal mode, but on the other hand, the

reverse was found true for a different sampling rate. Since the system is non-

linear, the interesting stability problem would be extremely difficult to solve

but would certainly be a major contribution.

7.3 Conclusions

The techniques presented here are applicable to plants excited by a pulse

width modulated signal. The results seem to indicate marked improvement in

system performance at only the expense of additional computation which may be

accomplished between the sampling intervals. It must be concluded, however,

that the science of optimization is still in the infancy stage and the use of

predicted future system errors to achieve optimal control is but only an attempt

which, hopefully, will help contribute to the maturity of optimization science.

I

I

I
I
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