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ABSTRACT

A procedure for the design of a controller to optimize a certain class of
pulse width modulated systems is presented. The process to be controlled is
time-invariant, of arbitrary order and excited by a sequence of pulses gen-
erated from information available at arbitrary sampling instants. Input infor-.
mation to the system is quite general and includes random and deterministic
phenomena, Identification of the plant is accomplished using state variable
notation and linear estimation techniques., Prediction of the future plant
behavior is also performed with these techniques and the controller is designed
to optimize the predicted plant performance by minimizing a measure of the
future system errors. The mechanized optimal control law or controller program,
develops the pulse to be applied at any sampling instant by specifying the
pulse width and associated sign. The controller is not adaptive in the sense
of redesign occuring as new information becomes available from the estimator.

It does, however, accomplish the goal of optimization by deciding the form

of the pulse width actuating signal utilizing the future errors of the system,

The general results are applied to several examples through digital computer
simulation. The optimal pulse width controller is shown to produce far better
performance than normal pulse width control which utilizes present errors to
develop the actuating signal to be applied at that same instant and for some
time in the future., The results of considering a family of step function in-

puts to the system are shown for a third and fourth order plant,.
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1., INTRODUCTION

1.1 Pulse Width Control

Pulse width modulated control systems have been in existence for more than
65 years1 and only recently, activity and interest have increased in this area,
The present frequent use of pulse width control has developed in spite of the
almost complete lack of elegant mathematical tools for analysis and synthesis
since the description of these systems requires nonlinear differential or dif-
ference equations, This seems to indicate the possibility that this type of
control is so effective and natural in a large class of control problems that

defiance of analysis is not sufficient justification to avoid its use.

Pulse width control is a generalized form of relay or on-off control which
provides a finer, more precise response. The advantages arise mainly from the
ability to regulate the steady state ripple oscillation frequency, to obtain
improved accuracy due to elimination of dead zone, and to include possible time

sharing of the control computer.

Pulse width modulated control has direct application to satellite and
space vehicle attitude control. In many cases this situation requires power
to be modulated in an on-off fashion where a control computer must be time
shared leaving very little choice other than to use pulse width control. Recent
experimental efforts in this area have shown that time dependent switching
techniques provide precision attitude control with low thrust vapor jets achiev~

ing results not possible with conventional on-off method52’3.

Further investigation of pulse width control is justifiable on the basis
of attitude control applications alone, but let us consider for a moment, another

system utilizing a more general form of pulsed control.

Man is the ultimate control system. Many physical devices have been mocdeled
after a particular human function, and today we find an ever increasing effort
toward the understanding of biological functions so that related systems may be
improved and extended. The method of information transmission in the human
being is a combination of pulse width and pulse repetition modulation, We find
cardiac pulsatory phenomena remarkable in all senses4, particularly in accuracy
and reliability of control, since it is literally vital., More incredible is

the completely integrated pulse communication network in the nervous system5’6.



The sensory receptors provide the pulsed form of physical stimuli that excaite
our system achieving extreme sensitivities (e.g. the retina 3t the =2ye). Fr m
these considerations it might be concluded that pulse mocdulaticn wculd be the
ideal method of information transmission for many control purpcses. In any case,
future investigation of this type and simpler types of pulsed contr:l is cer-
tainly justifiable,

10,11 12 13

8 9
, R.E. Andeen , T.T. Kadcta
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T. Nishimura and E.I. Jury , I.V, Pyshkinl ’16, F.R, Delfeld and G.J. Murphyl7

18
S.C. Gupta and E.I. Jury , S.C. Guptalg, have published efforts in limit cycles,

7
Several authors, R,F. Nease E. Pclak
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finite duration processes, analytical techniques and optimizaticn, The techriques
for optimization have been limited to second order regulator systems to date,

The purpose of this work is to develop an optimizaticn technique applicable to
controlled processes of any order when the system is subjected t2 a broad class

of possible input phenomena,

1.2 Statement of the Problem

The system to be investigated in this report is assumed quite general in
form, Restrictions on the nature of the system which would degenerate useful-
ress of the optimization technique to only academic problems are avoided.
Practical considerations have taken precedence in the formulaticn of this problem

where ever possible.

A time-invariant linear system called the controlled system <r plant is
assumed excited by a pulse width modulated control signal. A fesdback contrcller
is to be designed to provide the best control or actuating signal utilizing
information about the state of the system at only arbitrary sample instints,

The informaticn about the state of the system is constrained in that cnly noisy
measurements are available for estimation purposes. The system is to be
optimum for this pulse width modulated control signal where optimum is used

in the sense of minimizing a measure of system error.

The mechanized control law will constitute the design of the optimal con-
troller and the solution to the problem. The controller is not to be adaptive
in the sense of redesign occuring as new information becomes available about
the state of the system. It is to provide a program of logical steps that
will be executed during each sampling interval determining the exact for

the pulsed actuating signal by specifying the pulse width and assccial



The command inputs to the system are quite general in form in that they

include both random and deterministic phenomena.

A block diagram of the system under investigation in this report is shcwn

in Figure 1.

1.3 Optimal Control Law

The optimization of a class of pulse width modulated systems with linear
plants was first considered by W.L., Nelsonzo. This class consisted of regulatcr
systems and is a problem of minimal time control. Nelson's approach follows a
general technique for the minimal time control of pulse amplitude mcdulated sys-
tems with saturation as presented by R.E. Kalmanzl. This preocedure consists of
dividing the state space into regions for which the system may be taken to the
desired state in a minimal number of sampling periods, establishing a cancnical
vector representation for initial states in the respective regions., The ap-
proach is limited to plants of second order due tc the conceptual difficulty of
determining the optimal control regions in higher dimensional state spaces,

Nelson did not, however, present a procedure for constructing canonical

11,12,13 _

vector representations for arbitrary initial states. E. Polak
ceeded in accomplishing this following a method suggested by C,A., Desoer and

J. Wing22 on minimal time control of pulse amplitude modulated systems with
saturation., Polak was able to solve the regulatcr problem for some sec~nd order
linear and nonlinear plants. The limitation to second order is again prominent

due to conceptual difficulty in higher dimensional state spaces.

The previous efforts have been based on the approaches used to cptimize
pulse amplitude modulated systems., The extension of techniques applicablz to
pulse amplitude systems may itself be a fundamental limitation and thus not
worthy of further investigation., Considering pulse width contrnl as a funda-
mentally different type of control with its own intrinsic prcperties, an ap-
proach to the problem may be found, Variaticnal techniques have been attempted
with little successzs. Combinatorial techniques as previocusly applied seem
to be the only other alternative, Dynamic programming as anr organized logical
scheme is directly related to the sampled system and seems to be the most
likely candidate here. Dynamic programming then, will provide the logical

framework for the optimization scheme where the pulse width modulated control
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signal will be treated as a part of the system constraint rather than as a

separate constraint,

The previous contributions in the application of dynamic programming
have been formulated for time varying plants, The first such application to
a time varying plant was presented by R.E., Kalman and R.W, Koepcke24. Later,
T.L. Gunckel25 and, independently, P,D, Joseph and J.T. Tou26, reported
results in the control of linear processes subject to multiplicative as well
as additive random effects, A very practical extension to include random
multiplicative phenomena which are correlated both in time and with each other,
and not restricted to independence from instant to instant, has been presented

by C. Pottlez7.

The system under study here is not assumed time varying for simplification,
but is approached in exactly the same fashion as mentioned above. The additional
constraint of pulse width modulation is included and the information about the
state at sampling instants is also constrained. Minimization of a measure of
predicted system errors on a step by step basis provides the final necessary

ingrediant for the solution to the optimization problem.

Estimation of the state and prediction of the future system error is

accomplished by linear estimation techniques in state vector notation as pre-

2
sented by R.E. Kalmanzs’ 9_



2, DESCRIPTION OF THE SYSTEM

2.1 General

A mathematical description of the system is necessary. We must decide
on a general model which is sufficiently complex to represent the behavior of
a large class of physical processes with a high degree of accuracy. The model
must also be simple so that useful results may be obtained easily. Any model
under consideration is also required to represent linear plants subject to

pulse width information,

The representation of a pulse using transform techniques where the width
is a complex function of system responses seems entirely inadequate. Thus, a

time domain representation will be used.

2.2 State Vector Representation

A general model which can represent a system with finitely many degrees of
freedom is one using the ''state space' concept introduced by Kalman and
Bertram30. The state of the system at any instant of time is represented by
a vector whose components are called the ''state variables, This vector defines
a point in the state space. The dimension of the state vector is the smallest

possibly to completely describe the behavior of the system at that point in time.

For a general time invariant plant, its dynamic behavior is assumed to be

adequately approximated by the following vector equation,.

A x(t) + B u(t) (2.1)
M x(t)

x(t)
c(t)

where
i(t) is an (mx1l) state vector
c(t) is a (pxl) output vecter
ult) is a (qx1) input vector
A is an (mxm) transition matrix
B is an (mxq) distribution matrix
Mx is a (pxq) output matrix
If the system is time invariant, the transition, distribution and output

matrices have elements not dependent on time.



The actuating or control signal is u(t) and will have a form dictated by
the constraints imposed by the problem. For the particular problem at hand,
that of pulse width modulated systems, the control signal must then satisfy

these requirements, The ith component of u(t) is

o0

ui(t) = E: [ul(t-tn) - ul(t-tn_ pni)]eni
n=0

T g

where ul(t) is the unit step function and pni is the pulse width of the nth

interval for the ith channel and En is the associated sign (¥1). Thus, we see

i
that the pulsed control signal is described by the sequence of pairs of vectors
G)n,an). The solution to the optimization problem is the generation of a se-

quence of couples (5n,2n) determined in such a way that the performance of the

system satisfies the condition for optimality.
For the control vector u(t), we have
P -—
- -t - €
0 [“l(t tn) u1(t tn pnl)] nl

u(t) = Z

=0 [ul(t—tn) ul(t_tn_ pnq)] €nq
L -

where
Pn is a (g9x1) pulse width vector

En is a (gqx1) sign vector

Defining a unit step function matrix will simplify the description of

the control vgctor in general form. Let

Ul(t) = 1 u(t)

where I is a (qxq) unit matrix,



I= 101 ......

0 0 ...... 1

And, let Ul(a), where a is a (qxl) vector, be defined as

—
ul(al) 0 o .....
i 0 ul(az) ceses
Ul(a) = .
0 0 eeess u (a)
1 q_J
Then, the control vector may be written
> o]
) =) o) - v By e (2.2)
n=0

Using this notation, we may now determine the discrete form of the state
vector representation for the system at the sampling instants. The solution

for the state vector in equation (2.1) is

t
x(e) = e, epxce) + [ e nmoa & (2.3)
n

- )
where ¢f(t,tn) = eA(t tr? and is called the characteristic matrix.

Using the expression developed for the control signal ﬁ(t), equation (2.3)

becomes
t

t
x(t) = 4"<t,tn)x<tn) + ftn¢(t,x)adx - ftnﬁ‘(t,x)sul(x-tn-Pn)ax €

fort <t<t .
n- - n+l



' 9
To simplify notation define
(o= —
L Y
I bl bm
I h - dp *e o000 I h dp
' a 11 a 1m
(), . .
, .[H dp = . .
by bm
B dp eeuuren. J' h d
L q1 P g am P
where H = (hn) 1=1,2,..q J =1,2,,,.mand b is a (gxl) vector = (b))
k = 1,2,.-‘1.
The expression for i(t) may be written now as
t t
x(t) = ¢ (L, t HR(L ) + _[n ¢*(t,\)Bax - f #(t,0BU. (-t _-Dran | €
n n 1 nn n
tn "'(pn)i
i1 = 1,2,..--q (2.4)

For t + (ﬁn)i St<t, 1=1,2,....,q Equation (2.4)may be simplified
by combining the two integrals.

1'h+(pn)1

%) = ¢ epxe + [ Fen BanE (2.5)
tn

i-= 1,2,~ooo,q

Changing the variable of integration in (2.5)

®)
- . ACt-top) L 2
x(t) = &‘(t,tn)x(tn) + '[o AP g gp € (2.6)
and (Pn)1
x(t) = ¢"(t,tn)§(tn) + ¢"(:,tn) IO e 5 ap € 2.7
l for 1 =1,2,...q ta+ P, <<t .
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For the response at the sampling instants, t = tn+1 and equation (2,7)
becomes
(pn)i
- - -Ap -
x(t, ) = N L)+ PR L) jo Mpap & (2.8
Letting x(tn) =X, and ¢¥(tn+1,tn) = ¢§, equation (2.8) becomes
<pn)i
- X ~ * _AX -
X1 = ¢n x o+ ¢ﬁ Jo e B d\ € (2.9)

The controlled system is thus adequately approximated at the sampling

instants by the vector equations

xn+1 = ¢§ xn M An 6n
(2.10)
c = Mx X
n n n
where (pn)i
A =¢" f Mg dn  1=1,2,...q (2.11)
n n 0

The equations (2.10) describe what will be called the plant process at the
sampling instants. The state of the system at the sampling instants is con-
trolled by the choice of the adjustable parameters in the control signal which
are the pulse widths ﬁn and signs En' The control law will provide the tech-
nique by which this pair (Pn,in) may be determined in the desired manner.

2,3 The Input Process

Kalman has introduced the notion of a reference input vector ;(tn) which
can be regarded as being generated as the output of a linear dynamic system.
Following this idea, the input or reference signal ;(tn) is assumed to be defined
by an input process. That is, the reference input vector representing the
desired value of the plant output vector is adequately approximated, at the

sampling instants, by the following vector difference equation,



— oy [ ] L]

11
- w - w -
wn+1 = ¢h wn + Ah sn
- _ (2.12)
r = lw w
n n n

where
;n is a (vxl) state vector
;n is a (pxl) reference input vector
;n is an (hxl) process input vector
w
¢B is a (vxv) transition matrix
A; is a (vxh) distribution matrix
I: is a (pxv) process output matrix

The dimensionality of the reference input vector ;n has been assumed the
same as that of the output vector cn. The components of the process input
vector are assumed to be random varjables with zero mean and to be statistically
independent from one sampling instant to the next and independent of the transi-

tion and distribution matrices. Thus

- -t -
E(sn) =0 E(sn sm) = (2.13)

Note that this model is sufficiently general in that it includes
a) The regulator problem when ;n =0 for all n
b) The deterministic problem when A; =0 for all n
¢) The random input problem when ;o =0
Also, & combination of these classes of inputs can be accommodated by the model
using suitably defined transition and distribution matrices.

The assumed input vector ;(t) may or may not belong or be a subset of the
actusl command input vector r'(t), If it is a subset, the system will be opti-
aum with respect to ;a; if not, only an approximation will be obtained, and an
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approximation at the sampling instants. The designer must decide on a class
[;n] to which hig system is to be optimum, and then determine the necessary

matrices since the controller will depend on these quantities,

The requirement that the reference inputs be describable as the output
of some process limits the class of possible inputs, but this restriction is

not too severe for our purpose,

2.4 The System and Information Constraints

Following the suggestion of Kalman and Koepke22

; the equations for the

plant process and the input process are combined into a single equation, This
is accomplished as follows:
xn+1 dfl: 0 xn 0 - An _
- = W _ + w sn + En
'nil 0 ¢h ¥n An 0
- ol _3 —
] x T (2.14)
c M o
n n
T o M
n n
e - e —
Defining
x c ] M o
_ n _ r n
zn = - Yn = M = W
w n 0 M
n n n
-
& o 0 A
n _ n
¢ = A A =
n 0 ¢: n Aw n 0
b
we may write (2.14) as
z = A €
zn+1 ¢n + 4 n + An n
- (2.15)
Y =M
n n

(V=]

——y
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(m+v x 1) state vector

(hp x 1) output vector

(q x 1) sign vector

(h x 1) process input vector
(m+v x m+v) transition matrix
(m+v x h) distribution matrix
(m+v x q) distribution matrix

(2p x m+v) output matrix
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The complete set of equations (2.15) which include the plant process and

the input process will be called the system constraint,

The remaining constraint is concerned with the amount of information

available about the state of the system at any particular sampling instant.

1f the special case of exact measurement of the state exists, then we have no

restriction on information and no need to consider the limitation.
case, however, is the one where only certain measurements are available and

these measurements together with past history constitute the data available

for estimation of the state,

by additive noise, for example, we speak of the information constraint,

The usual

Since the existing data in this case is limited
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3. OPTIMUM PLANT CONTROL

3.1 General

We are interested in finding an "optimum" control law for the pulse width
modulated system described previously. The sense of the word "optimum' is
defined by the introduction of a performance index which provides a measure of
the system behavior. The method of dynamic programming is then used to de-
rive a control law for the processes of the type introduced in Chapter 2,
Actually, the method is applicable to many cases of the general model with
varied constraints, but here we will examine only one particular class of prob-

lems, namely that of pulse width modulated systems.

3.2 The Performance Index

An optimum control system is characterized by a performance index which is
a function of the system variables and parameters, For extremal values of the
scaler function, the system is said to be optimum in this sense, but obviously,
its optimality is subject to the performance index chosen., This choice of a
performance index is thus, perhaps the most important decision to be made,
Unfortunately, there is really no way a designer may specify what he wants in
the performance of a particular system so that it is optimum in any absolute
sense31. We are thus faced with choosing a performance index which is con-
venient to work with mathematically and which also corresponds to some reason-

able definition of "desirable behavior,"

The measure of system performance which seems suitable in general would
be the weighted error of the system. This error in the system is the difference
between the actual plant output and the desired output, It is assumed that a
quadratic combination of the error vector will be a suitabhle measure of perfor-
mance.

E =(c_~-1) Q! (c -?n) (3.1)

The matrix Q; is taken to be symmetric and positive definite and simply cor-
responds to the desired weighting of the errors in the system. Thus, the single

number En represents the performance of the system at the nth instant of time.

The measure of performance may be rewritten in terms of the state vector
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Since
- - x w -
(cn- rn) =E‘n -un] Zp
then
E =(c_-7)7Q (3 -7)
n n n n ‘°n n
or

-t} ® . wl -
E =z Q! -] z (3.2)

n
' - w
Q = o Q' u"n MZ' (3.3)

we have

E =2 Q z (3.4)

for the measure of system performance,

For operation of the system involving N steps, a reasonable performance
index is the sum of the individual performance measures En'

Define the performance index as JN—n+1

N
J =V 2T q, z (3.5)
N-n+1°z R N *
i=n

The performance index is thus the sum of the weighted mean square errors at

the sampling instants.

3.3 Criterion for Optimal Performance

To obtain optimum pulse width control, we will minimize the performance
index by generating the sequence of both the width and sign of the pulse at
each sampling instant, The final sequence of pairs and the control law to ob-
tain them will constitute the solution to the optimization problem. Optimum is

used here in the sense of minimizing this quadratic function of system error,
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The precise statement of the optimization problem is thus the minimization of

the performance index over the class of acceptable pairs of pulse width and sign,

subject to system and information constraints,

That is

Minimize
J

H N-n+l
€
@ €)

(3.6)

Note, however, that the above statement is restricted to only deterministic con-

ditions. In the more general case, random variations in the system preclude the

possibility of finding an input which will be optimum in every case.

In other

words, the performance index is also a random variable. The conditional expec-

tation of the performance index will then be minimized. Let Dn

represent the

information available for the determination of the state of the system at time

t = tn' The optimization problem may be stated as follows:

anir_nize E Uy no1 7 D)
{(pn’en)}

where

subject to the system constraint

z = Z s A€
zn+1 ¢h zn *+ An n M nn
? =M z
n n n

and the information constraint
'=Y +a
n n n
FAR SR 1
n {Yn > "n-1? o
D 1is the get of measurements at time t =t

n n-1
avajilable for estimation of the state,

=)
]

A loss function is defined as follows:

Minimum

I ={(pn,2n)} E (J

N-n+l /D)

N-n+l n

(3.8)
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In order to clarify the notation used above, consider a simple example of

an N stage process,

Let N = the total number of stages in the process
n = the number of the stage of interest,
1 2 3 p————- k —~ == = N

When at stage n, the number of remaining stages which constitutes the new process

is N-n+l.

3.4 Derivation of the Control Law

The minimization of the performance index over the class of possible pairs
qbn,in) will provide the solution to the problem and the loss function provides
the measure of achievement at each stage of the process. To determine the con-

trol law we will follow the framework of dynamic programm1n332’33 and derive the
principle of optimality for this case since Bellman's principle of optimality

does not apply directly when concerned with a conditional expectation.

Consider the loss function,

Minimum
IN-n+1 ={(I-)n,€n)} E(JN-n+1/Dn) (3.9)
or
N
Minim -T -
IN-n+1 ={‘pn,z:§ E z [zi Qi zi/Dn ] (3.10)
i=n

Taking the first term of the summation and writing it separately,

N
_ Minimum =T - -T | =
Nenel “{B,,€0) F [*n % L HEm  ea

n n n

1

i=n+1

Writing the class of pairs for which the minimization is to be accomplished, we

have
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1 - -Min  Mip Min .., Min
N-n+l (POGO) (Plél) ) ) n-l) [z Q zn + ziqizi/nn-l:]

+1

g[\/Jz

(3.12)

Examining the first term in the expression (3.12), we see that it is the perfor-
mance measure of system error at time tn. The sequence of pulses that have been
applied before time tn are initial decisions that have already been made, There-
fore, the remaining decisions must constitute an optimal policy with regard to the

state resulting from the application of the previous pulses. We may write then,

Minimum -T -
1 = ~ E[(z Q z /D )
N-n+l mn—l’en-l) n n nn-l1

N
Mi 9 _Min_ ¥ip Z‘ ]
E (z Q ) (3.13)
(p e (pn+len+1) (pN"N) 1 i n-1
i=n+1

Note that the last term in the expression is IN—n and write

Minimum [-T -
I = = El zQz /D + 1 ] (3.14)
N-n+l (pn_l,én_l) nnn n-1 N-n
where I°=0andn=1,2, ceessey N o

The introduction of the effect of future errors is contained in the derivation
above when the minimization terms are distributed throughout the expression and
the one retained is (pn_l,én_l). This pair corresponds to the pulse applied at
time tn—l and the performance measure at time tn is minimized by this pair.
Thus, the function of error one sample ahead of the time of application of the
pulse i8 the future function of error that is minimized. The loss function

IN—n+1 is the number representing the achievement of this pulse.

At this point, there certainly exists the possibility of looking ahead

further in the system to minimize the error function perhaps at two sample
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instants ahead. These results may easily be seen and we will not carry through

the details of that particular derivation here.

Continuing with the solution of the recurrence relation involving the loss
functions, we will first let n=N and solve for a single stage process. This
will accomplish the first step in the iterative procedure for the final solution,
For n = N equation (3.14) is

— G U W e

Minimum

L=@ €

N1’ "N-1

(3.15)

-T -
y B @ yPyy)
since I = 0.
o
Introducing the system constraint by substitution for EN from equation (3.7),
- - = T

3
*AGENY Y

Minimum [ -
I = - (¢ z + A s
1 (DN_I,GN_I) N~1°N-1 N-1"N-1

+ A Ay €))7 DN_IJ (3.16)

e @12y YO 5y ¢

Performing the indicated operations and expanding,

Minimum [ =T LT -T T -
I. = - ¢ Q ¢ + Z ¢ Q s
1 (pn-ven-l) ME17%1 t A P11 O
-T T - -T T -
N N L I R S v Wi N W

-T T -
* o 1% 191581

-T T
m1n4%ﬁ#1m1

-T =T = -
€ €

* Sy N—lQN¢N-1 N-1 N—1AN-1QN'5N-15N-1

+ € AT QA & D, ] (3.17)
N-1 N-1 N‘N—1 N1 N-1 :

The first, third, seventh and last terms may be rewritten in simpler form

using the following equivalence.
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A € 3 - _
S I ¢N—12N-1) QB En ) * P1Zyr)
T AT oa ¢ =T 4T -
= € A €
1 NS e T P P e 1P B (3.18)
& Q9 -z D 9B E
1A% T A Pl WS

Thus, equation (3,17) may be written as

Minimum ) E [(— -

- T - - -
= A € €
L=p ¢ N1 N1t P QB * Onrtna)
N-1, N-1
T T - ST 4T -
IS
S W NS T AP Ot t
(3.19)
-T T - _1 T - c
- a A
et NP 1A T e e
-T -T - \
A ;
A Y S T P

If the input to the system is deterministic then An = 0 for all n and we
have only the first term in the expression (3,19). If the input is random with
;n satisfying the assumed properties, then taking the expectation with respect

to §n eliminates all but the first two terms.

Taking the expectation with respect to s we then may write

Minimum - - - T
- m ‘ €
L=w, & »EF Ay & Pu-1%n-10 U
N-17" N1
(3.20)
e (A € 1+ PuiZi)) YDy 1_1
where
-7 T -
Yo = Bs CGn1On190%- 1% 1w 1) (3.21)

In the deterministic case, Yo is zero since An is zero for all n, This

agrees with equation (3.19) for this case.

To proceed further, the information constraint must be considered. First

note that in either the deterministic or random input case, the state of the
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system at any sample instant is not known exactly in general., Only noisy measure-
ments of the output at the sample instants are available in the usual case.

These measurements constitute part of the data available for the estimation of
the state, In particular, at time tn, the data Dn consists of any bit of
information about the state of the system, including any past record or past

state.

It is known from estimation theory that the best estimate of a random variable
in the sense of minimizing a quadratic error criterion is the mean of the a
posteriori distribution26 which in this case is the expected value of the state

given the information or data D.

Using the conditional expectation then, we have

z = E (z /D ) (3.22)

and will call this estimate optimum leaving the detajils of the conditional
expectation as an optimum estimator to Chapter 5.

Assuming that the optimal estimate of the state is available then, when
applying the information constraint, equation (3.20) reduces to

Minimum [ = = -% T
I, = < A, €+ zZ ) Q...
175 @y & ) LwIN T TRt W

- - -k

—-%
To include all cases of interest, we will let Zv1 represent the estimate

of the state in the noisy case, and the exact value of the state if it is known,

Equation (3.23) is minimized for a best pair de—l’EN-l)' The details of
this determination is left for the general case. For the present, assume that

a best or optimal pair exists, The minimum value of the quadratic form is then

- - -* T - - -%
By = Ay 8w * Oy NAuafvr * Pyaind) opt_
N-1"6N-1

(3.24)
)

The loss function I1 has a value corresponding to this choice of pulse width

and sign.
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1, =E(B, +y,) (3.25)

Continuing the step by step solution let, n = N-1,

Minimum =T
I, = = [E (z Q /D, ) + 1 ] (3.26)
2 “_z,ex_z) N-1 'N-1 N—l N-2 1
Using the 11 previously determined, we obtain
Minimum [
I, = E(z +B +y] (3.27)
2 (pn-z’ N2 ¥1 1 N-l Py-2

Equation (3.27) is anslogous to equation (3.18) within the constants B1

and Yo+ Hence, we may follow the same procedure and include the (B1 + yo),
obtaining

T
I, = [« )Tq
27 By €, ) Aez &na*t Buo N—2 N-1
where
-T T -
Yy =F (8y 2 Oy Uz O 2 S5-2/Px-2) (3.29)
Defining Bz in & manner similar to before
=Ry & g+ Oy 07 n-z QN-1G*N-2 w2 * O n-z) (3.30)
opt
NPV NP
The loss function is
I, =E (B, +B, +y_ +Y,) (3.31)

The quadratic form to be minimized in either the deterministic or random case is:
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Minimize T - = - %
Py 2r€ 2 [(Au-z N2 * Oz N-2) U 1Py 2 €n2 + Py zN—Z)]
(3.32)
where
-%
Zy 5 = E(Zy ,/Dy o) (3.33)
Summarizing the results for the first two stages:
n=N
I, =E (B + y,) (3.34)
Iinimize -k
@ ) L(Arm w1t P N-l) QN(AN-I N1+ Pna1 zN-l)]
N1, N-l
B, =GR, € _ +¢ Ay o .z
1= P Sy-1 Y P N—l) Q ( 1% %P1 Zn1)
opt Py &y )
-T T -
Yo =B (83 Ax1 W lyg On1Px))
n= N-l1
12 = E (Bl 1 82 + YO + Yl) (3.35)
Minimize - -* T - - - % ]
Py g8y ) [(An-z €2 * Pz ing) 1By S gt Pyg 2y 2

T

- - - - - -k
2= A2 €+ Pug Zn ) Y Rep E0 * Py zn-z’L

’t(pn-z’en-z)

AT
Y, =E “N-z N2 On1 Oz Bne2 2/Px-2)

The general term for the nth point in the N stage process may simply be
written now by induction,
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N-n

Iy nsl = E Z (y, + B,,)) for n=1,2,...N (3.36)
1=0

The quadratic form to be minimized is

linimize [ -* T = = _* :l ‘
n—1’ ) @ n—l n1 " n-lzn-l) QN(An-len-]. + n-lzn-l) (3.37)
for n =1,2,.....N
- - - —*
BN-n+1 = (An-len—l + ¢m1 n-l) Q (An-len-l + ¢n— Z - )l (3.38)
opt® )€, )
where
= L
Q, un MR
and
YN-n = B (sn-lAn—l 1018011 (3.39)

The control law will be obtained from the minimization of the quadratic
form (3.37). Before accomplishing this, let us examine the significance of
this particular form. Define

%
nn = l‘n (An-l n-1 + ¢n-lzn-1) (3.40)
or
Y
A ¢ . o x
T =[",r: -M:] - En-l *+ = w -:-1 (3.41)
0 LI I

Expanding (3.41)

n, = n"A € .+ W % - W (3.42)

n—l n-1 nn-1l n-1 n'n-1 n-1
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Consider the last term in (3,42)., Only terms in the input process are involved.
The input process was defined by (2.12).

v = W% _+A .3
n n-1 n-l1 n-1 n-1

- v-
r =M w
n nn

Taking the conditional expectation with respect to w we have

- w -
Ew,/D ) =9 , Ev /D 1
or, in simpler notation
- \ 2 -
“on1 = Pt Va1 (3.43)

since the process input vector satisfies the original requirements of Chapter 2.
Also,

-k W =%

n(rn/Dn—l) = Ta/n-1 T l‘n “o/n-1 (3.44)
Combining these terms we obtain
-% [T, W oW -k
rn/n_l = un wn/n‘l = un ¢n_1 wn_l (3.45)
Substituting this expression into (3.42) for 17n
- - -%
nn = Mi‘x"n-len-l + u:: n-1%n-1 ~ I'n/n—l (3.48)

The remaining terms are involved with the plant process., Repeating these

equations for convenience,

c =M%

n nn

- - - (3.47)
xn = ¢n—1 xn-l + An—len--l

Taking the conditional expectation of the first equation in (3.47), we obtain

B@ /D ) =% W EGx /D) (3.48)

n/n—l= n n’ n~-1
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- -%
cn/n—l = % xn/n--l

Taking the conditional expectation of the second equation,

% ¢ . x . +A_E
/-1 T Tn-1 Tne1 * fp1fnad
Thus,
-t -k -
®a/n-1 ~ ": Ppe1 X1 * “2 A 16n-1 (3.49)

Using the expressions (3.45) and (3.49) in (3.42) we see that,

My = ECC, - T /Ppn) =€
or
= E(e /D ) (3.50)

The function nn is simply the expected value of the error at time tn given the

data at time ¢t .
n-1

The quadratic form to be minimized then simply represents the measure of
system error at one sample instant ahead of the time at which the pulse will be
applied. Obviously, the dynamic programming approach here simply provides the
organized logical structure to follow in arriving at the final result,

3.5 The Control Law

The minimization of the quadratic form (3.37) results in the control law
for optimal behavior of the system, Summarizing the pertinent equations,

linimize [ﬂ } (3.51)
n 1, n ;
where
- - %
My = "zAn-len-l + ": n-1p-1 ~ Tn/n-1 (3.52)

*
Let the function Hn be defined as

H =3 - ¢ 3’::_1 (3.53)

n n/n-1 n n-1
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This function then takes into account the results of the optimum estimation of

the state of the system given the data D The calculations and details of

1.
obtaining H are accomplished in Chapter 4, We will assume temporarily that
the results of the estimation are available and the function H is known. The
expression for nn using the results of the estimator is thus

x - *

M = ln An-l en-l - l'!n (3.69)

Using the expression for A:n—l we obtain

~A\ - *
7,n=|(’;4f‘1j e " BAE  -H (3.55)

Define

(pn-l)i
-A\
FO__,t -t ) = & fo e Ban (3.56)
for 1 =1,2,....,q
Equation (3.54) may now be written
- *
M = F(pn-l’ n-1) €p-1 ” Hn
To simplify the notation, let
O'n = the length of the nth sampling interval
or
g = -
n tn+1 tn
Then,

¢;_1 = ¢x(tn - tn—l) = ¢x(an)

and since the output matrix does not depend on n
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Equation (3.56) reduces to

- *
n1r ) €q - B (3.57)

N, = FP

Instead of referring to the nth sampling interval, the notation may be further
simplified by referring to any sampling interval, and we may write

n=FP,0» E-n (3.58)

where
0 = the length of the sampling interval

D = the pulse width vector associated with the
particular sampling interval

€ = the sign vector associated with the
particular sampling interval.

Returning to the quadratic form with this new notation, we have

Minimize [ T .,
@, n e 7)]
or T
"“(‘;,':%;' [r(P,O) - H'] Q'[r(P,O) - H'] (3.59)

The condition to be taken to insure minimization of (3.59) will be the control
law, The control law then must satisfy

"“(‘3:%;’ [r(ﬁ,c) € - n*} (3.60)

The function H‘ is known from the results of estimation of the states of
both the plant and input processes, Knowing the length of the sampling inter-
val or using the best estimate available, we have sufficient information to
satisfy condition (3.60) by choice of the pulse width and sign which will be
optimal in the sense defined here.

It simply remains to investigate the function F(p,O) for various types of
systems since the estimation problem is covered in Chapter.4. The sign vector
€ may easily be determined for the situation at hand and this bears no further
comment.
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For a single variable control, the function F(Q,0) takes a particularly
simple form

p
P0,0 =" @ [ B ap (3.61)
0o

If the output of the system is directly related to one of the stite variables
the output matrix is quite simple and fortunately, this is the usual case. In
particular,

o= [1 0 0 ...... o]

and since the order oI the numerator is usually less than that of the denominator
for the plant transfer function, the matrix B also contains several zeros. The
calculation of F(P,O') is then quite simple and only a little more involved
than the calculation of the characteristic matrix which may be accomplished

easily by means of Mason's signal flow graph.34

The function r(P,O’) is shown in Table 1 for several typical plant processes.
Since P < 0 at all times, the boundary curve may be considered to divide the mode
of operation from on-off control to pulse width control. It is apparent that in
some ctases, the expression for pulse width may be obtained in closed form as a
function of the estimation H* and the sampling interval O, This expression will
satisfy the condition for optimality and constitutes the control law in these

cases,
TABLE 1
G(s) FP,O p<o Boundary P=0
-'-é—l e.o (ep -~ 1) 1 - e-p
..11) P-e-a (ep-l) p - (1+e-p)
2 -
-ri— P(°+1)-e2—+ea(ep+l) P(g-+1)+1+e—p
s (8 + 1)
- ~-20 -P_ -P

.z-+1§ (8+2) % vela-d ei (1-e%) % + L2 3)4(9 L)
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The technique which results in optimal control can be reviewed easily using
the curves showing the relationship between pulse width, sampling length and the
function FGD,O). Following the idea of using the pulse width as a parameter,

the curves may be presented as shown in Figure 2,

F(P,0)
4
np/-_—:o
p4
Py
pz
P,

Figure 2, Typical Characteristic Curve

*
For a known value of the estimation function H and the sampling length, the
optimal pulse width and sign are determined so that the condition for optimality

is satisfied. Repeating this for convenience we have

Minimize *
®,€) [F(P,O’)G - H J (3.60)

These 'characteristic” curves are shown in Figures 3 to 6 for several systems

including ones to be used as examples in Chapter 6.

3.6 Controller Mechanization

The program or mechanization of the procedure reviewed in terms of the
"characteristic" curves constitutes the design of the optimal controller. The
control computer may be programmed to execute a sequence of logical orders for
each sampling instant, determining the optimal pair (P,€). A flow graph of a
general scheme is shown in Figure 7 where the inputs are the length of the .

—%
sampling interval or its best estimate, and the optimal estimate of the state z .

Let us consider possible realizations for two simple classes of systems

with emphasis on the calculations to be executed for each sampling instant.
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First consider a type zero system with a transfer function
“® =333
The transition, distribution and output matrices are:

A =-a B =K M=1

The function F(P,0) is

p
FO,0 = 4 $©) f e pap=e2" ’—:(e"p - 1) (3,83)
0
In this case F(P,0) >0 for 0< P <O
Thus,
€ = Sign of (H*) = sgn(H‘) (3.683)

To achieve & zero minimum of equation (3.60), the pulse width is
1 a a0 =*
Pz-.- Ll{l +i° H €] (3.64)
* -%
Writing H in terms of the optimal estimate z we have,
* -
H = [-1 1] M PO z (3.65)
The logarithm in equation (3.64) must be calculated to determine a pulse width,
and then checked to insure the condition
0 f;P <0
The complete realization for the controller is shown in Figure .8. In this
realization, the voltages representing the pulse width P and sign € are multi-
plied together and applied to & hold circuit providing a staircase output which
is the desired input signal to the pulse width modulator. These waveforms are

shown in Figure 9. The complete block diagram of the system is shown in Figure
10. If the state is known exactly, no filter is required.

In this simple case, the value of P has been obtained in closed form.
This will not be posaible in general,
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Consider a type one second order class of systems with the transfer functicn

0 1 0
A= B = M =[1 0]
0 -a K
The characteristic matrix is
-at
1 % - ea
() = eM: -

0 e-at

The function F(R,0) is

p
FP,0 = M) J‘oe'A" Bdp = —'52- [ap - e""’(e"‘J - 1)]
a

where
0<pP<L O

The control law is determined from equation (3,60)
Minimize [ *]
F € - H
®,0 LF@:N

For & zero minimunm,

fz- [ap - e %™ - 1)] =n'e

or 2

) - (7 ¥ L& ge . (&)

8ince ¥(P,0) >0 for 0<P<0,a>0 and K> 0, then

€ = Sign of (H') = sgn(H")

(3.66)

(3.60)

(3.67)

(3.68)

(3.69)
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Equation (3.60) may be minimized by a program shown in Figure 11. The
variable is incremented and the function tested at each step. The program is
repeated for each sampling interval.

Another possible realization may be accomplished with analog elements,
The expression

£(0) = (a8) - (o *7) (¥

is the solution to & constant coefficient ordinary differential equation which
is easily programmed. The value of the function is compared to the remaining
terms in (3.68) and if a zero minimum condition is satisfied, the computer is
stopped with (aP) held on the output of an integrator. Provision is also in-
cluded for minimization on the boundary where P = 0. The realization is
particularly simple since £(aP) is well behaved with

2(@) >0
1(0) <0

;(OP) =0 for P= 0

for05P<0

eliminating the possibility of a minimum not on the boundary for P=0., This
realization is shown in Figure 12, Time scaling may be included to provide the

desired response time.

If reset does not occur until new data is available, then the holding
property of the integrators is sufficient to eliminate the need for a separate
hold circuit, Hence, a staircase wave is fed directly to the pulse width mod-
ulator. The block diagram for the complete system is shown in Figure 13,

If exact measurement of the state occurs and the input to the system is

deterministic, then no filter is needed. This is shown in Figure 14.
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4. OPTIMUM PLANT IDENTIFICATION

4.1 General

The plant requires more state variables in its description than there are
measurable quantities, Since the plant state variables must be known for com~
plete knowledge of the plant's behavior, the problem of identifying the state
from the measurable outputs is apparent, The identification problem is equiv-

alent to finding an optimum estimator for the state vector z given knowledge

k
-t
of the output vector Yk for t < tk. The initial derivation of the optimum linear
2
estimator is due to Kalman 6,27 and the presentation here is simply a review of
the derivation with emphasis on the interpretation of results applicable to this

problem.

4.2 The Conditional Mean as an Optimum Estimator

1

-' 3
k—l""Yo) has the following prop-

- -' -
The conditional expectation E(zk/Yk, Y

erties:

(1) It is a linear function of the output vector, requiring

knowledge of only means and covaridnces,

(2) If z and Y are gaussian random vectors, it is an optimum

estimator for any reasonable performance index.

- -t
(3) If z and Y are not gaussian, it is an optimum linear

estimator,

For these reasons, the conditional expectation will be used as the optimum

linear estimator to accomplish the identification of the state of the system.

Notational Definitions:

- - ! - -!
sz,nooo,Yo)

n n/n-1 " zn = predicted estimation error

e =z - z_ = estimation error
n
cov (z,Y) = n[(in - Ez ) (¥, - E(?n))T]

* % _%
Pn = cov (en,en) = the error covariance matrix
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pn/n-l = cov (en,en)
[ ] vl -
D, "= {?;_1, Y;_z,....vo} = ::ttoi :easurements
R 2 |

To show that the conditional expectation is an optimal linear estimator,
consider a simple case. Define the loss function L, where Q is a positive,
semi-definite, symmetric matrix.

“ kT o ok L
L =E [(z -2)Qz - z)/Y ] (4.1)
-% -
where z is an estimate of z,

By simple manipulation, L may be written
L=[2e@in ] 28640 ] - BGA D TwGANE GTas

-k
The dependence of the estimate 2z is idolated in this form. Thus, the one value
-k

of z which minimizes L is clearly

-%

z = E(z/y') (4.2)
The estimate is optimum in the sense of minimizing L and is unique if Q is

-

nonsingular. Thus, we speak of the optimum linear estimate z ,

4.3 The Optimum Estimator, Predictor and Filter

We will consider first the problem of estimating the state of the system
from noisy measurements of the output assuming certain a priori information.
The optimum estimate or mean of the a posteriori distribution 1s calculated in
terms 0f the assumed a priori information. The second step is then to show

how the a priori information may be developed recursively.

Consider the output relationship

y = M ; (4.3)
-t - -

where y =M z + an (4.4)

-t
and Ya is the noisy measurement at t = tn available for estimation purposes,



Since the conditional expectation is linear with respect to the output
vector, the form assumed for the optimal estimate is

- - -%
Za T E(zn/Dn) = zn/n—l n ) (4.5)

where bn is determined by minimizing the covariance of the estimation error.
The a priori information assumed is

-

Zo/m-1 ! E(an), cov(ah,an) and
* - -
pn/n—l = cov(en,en) = covariance of predicted estimate

and
bn is a (m x p) matrix
I isan(m x m) unit matrix

Pn is & (p x p) matrix

The covariance of estimation error is to be minimized with respect to the

elements of the bn matrix. The error in estimation is

-% - - (4 6)
en = Zn - Zn .

Substituting (4.4) and (45) into (4.6),

- - - - - - -1
en = zn/n-l -z ¢+ g M z +a ) (4.7)

Since the noise is additive, we may write

- —% - - - - -
e, = (zn/n-l-zn) + bn(unzn+an) - bn("nzn/n-l + E(an) )

*

—% - - - -
e = (I-bnun) (zn/n-l - zn) + bn (an - E(an)) (4,8)

Computing the covariance of the error in estimation
x -k =Xk
P = cov(en,en) = (I-bnln)P

T - = T
n/n-l(l'bnun) + b cov(e ,a )b, (4.9)
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The covariance matrix P is symmetric and thus, minimization of the trace
with respect to the elements of b 1- sufficient for minimizing the matrix, A
necessary condition for nininizing P is found to be

T -1
bn = pn/n—l n (l pn/n-lu + cov(a ,a n-
Defining
T
Fn = ln Pn/n-l M_ + cov (a ,a ) (4.10)
the condition may be written
T -1
bn = pn/n-l "n Fn (4.11)

*
The resulting minimum value for Pn when using the value of bn from (4.10)

is

* T
Pn = pn/n—l - bn Fn bn (4.12)

*
The value of Pi is the minimum covariance of estimation error attained by the

optimum linear estimator,

Summarizing the filter equations:

-% - -, -
z = (I-bnyn) zn/n-l + bnyn - bn E (an) (4.13)
where
F =M P IT + cov (a_,a )
n n n/n-1 n’
T -1
bn = pn/n-l n n

and the minimum error covariance for this estimate is

P =p b F_bY
n” "n/n~1" "n n°n
The filter equations in (4.13) depend on the assumed a priori information
-
‘n/n-l and P
the process

This information will be developed recursively. Consider

n/n-1°
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Zp < ‘pn-l 1 ¥ U (4.14)
Assumi P‘ d * are kn P d * b
suming P, and z . are known, n/n-1 and 2, /01 must be calcylated. Taking
the conditional expectation of (4.14)
E(zn/Dn--l) = ¢n—1 E(zn-l/Dn-l) + l!(qn—l/bn-l)
or
-% ¢ -% -% 4
Za/n-1 = To-1 *p1 t 1 (4.15)
Calculating the errors in this estimate, we have
e = (z z)=0¢ o a ) 4.16
°n T z, n/e-1 " %n’ T Ype1 Cp1 (qn-l 91 (4.16)
The covariance in this estimate is
P =cov (e ,0 ) =¢_  pP* +E[G T D@ -3 )T] (4.17)
n/n-1 n’®n n-1"n-1 n-l B SO RAL NS T .
Thus, the a priori information is determined from (4.15) and (4.17).
The complete estimator may now be summarized for the proceas
=1 Za1 * Y
-, _ _
y =M z +a
n n n n
Given the estimate of the state at t = tn—l and the covariance of this estimate,
- *
zn—l and Pn-l
-% - -
Za/o-1 = Poe1 %1 * 9pe1 (4.18)
and

*

T - -
l,n/n-1~ = ¢n—1 p11--1 ¢n—1 + cov(qn_l,q )

n-1
The filter is

- - -, -
z = (I-bnlln) zn /o1 " bnyn - bn E(an)
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where
Fn = ln Pn/n-l H: + cov(an,an)
bn = pn/n--l M: F;l
The covariance for this estimate is
* T
pn = pn/n—l - bnFnbn

- *
Thus, 'n add Pn are known,

The block diagram of the optimal filter and estimator is shown in Figure 15.
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5. THE OPTIMAL CONTROL LAW WITH IDENTIFICATION

5.1 General

The results of Chapters 3 and 4 are now combined in summary to achieve the
complete optimization technique. The optimal estimates, assumed to exist in
Chapter 3, are obtained by the Kalman filter in general form, That is, esti-
mation for both the input and plant processes are combined into a single effort
which reduces to appropriate conditions when specific conditions exist (e.g. deter-

ministic inputs, etc.)

The condition for optimality utilizing these estimates is shown in the flow

graphs for two alternative optimization procedures.

5.2 Summary of Equations and Optimization Scheme

The condition for optimal control is

Minimize = *
= FP_,0 )E - H:l (3.60)
(pn_l,en_l) I: -1’ n-1""n-1" "n
where (ﬁ)i
F@,0 = ¥ ¢ fo e B (3.61)
i=1,2,...q
and
* - X X -
Hn = rn/n-l - Mn ¢h—1 *n/n-1 (3.53)

*
Hn represents the results of estimation and has been previously assumed to

exist,

*
Investigating the significance of Hn’ first consider the plant process

defined in (2.10)

x =¢F L X AL € (2.10)

X
n

(¢ X]
n

n-
X
n
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Assuming that no pulse is applied at t = tn (An-l = 0), and taking the con-
ditional expectation of the first equation in (2,.10), we get

-% -
Xa/m-1 = ¢§-1 *n-1
Multiplying by u: ,
*
uu xn/n-l lﬁ ¢¢-1 X1 (5.1)

This term then is the estimate of the output at t t when no pulse is applied

at t =t Since H is the difference between this term and the expected value

n-1°
of the reference input, it may be interpreted simply as the estimate of the
future or extrapolated incremental error at t = tn when no pulse is applied at

t=t The pulse width and sign determined from the control law are chosen

n-1°
to minimize the incremental error that would occur at the next sampling instant
if the pulse were not applied. A pulse exists then for the sole purpose of
minimizing the effect of the nonexistence of that pulse. This is shown in

Figure 16.

Since the estimation involves both the input and plant processes in the
general case, a compact form using the stacked state vector ;n will be used.
* -%
Writing the function Hn in terms of zn—l’ we have
* x - W LW -
Hn = -un ¢§-1 Xn-1 + Mn ¢n—1 wn-l
or

»
Hn=[-1 1]‘! <pnl n-1

The system constraint is

zn = ¢h—1 zn—l + Ah-l sn—1 + An-l €n-l
; =N z (2.15)
n n n

The information constraint is included by considering measurements of the out-
put corrupted by additive noise.

.y" =“ z +¢-! (5.2)
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|
“r//i—nesponse with pulse applied
at t =t
| n-1

Desired Value | ’ -—t
l *
| H
N n
Response with ng_J ! ~
pulse applied at | ~
t=t
n-1 |
I
|
tn—l tn
*
H

= estimate of the incremental error at t = tn when no

pulse is applied at t = tn—l'

Figure 16. Use of Pulse to Cancel Future Error
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The set of these measurements constitute the data to be used for estimation

purposes at a particular sample time,
! ] p )
Dn—l B{yn-l’ ykz’oooooyo} (5.3)
The filter equations are summarized as follows:

Begin at time t = tn—l and assume the knowledge of the optimal estimate of the

-t *
state zn_1 and the covariance of the estimation error Pn—

The predicted estimate of the state at t = tn is

lo

- ¢ - - - 5.4
zn/n-l = %1 Z%n-1 ¥ fp-1 Cpe1 (5.4)
The covariance in this estimate is
* T T
Pooe1 = Pt Poot ooy * Ope1 B (5.5
Using the measurement ;; st t = t , the filtered estimate is
Z = (I-b M)z b ¥' +b_ E(a) (5.8)
Za = Y0 % zn/n-l nIn* Pp 5 ¢
where
T - -
Fn = "n Pn/n-l "n + cov (an,an) (5.7
and
T -1
b, = pn/n-l L (5.8
The covariance of the filtered estimate is
* T
pu = pn/n_l - bn Fn bn (5.9)

In writing equations (5.4) to (5.9), the following definitions have been

made:
P* 0
n/n-1

n/n-1
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the general filter equations reduce to the appropriate conditions.
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™~ x
b (1] px X 0
n n
*
= p -
n w n
0 b 0 | ol
n n
[ X - x‘
Fn 0 ) dn
n = “ an = )
o F_ a”
L n

(m+v x m+v) covariance matrix

(m x m)

(v x v)

covariance matrix for the plant state
vector

covariance matrix for the input process

state vector

(2p x 2p) matrix
(p x p) matrix for the

(p x p) matrix for the

(m+v x 2p) matrix
(m x p) matrix for the

(v x p) matrix for the

(m+v x 1) noise vector

plant process filter

input process filter

plant process filter

input process filter

(m x 1) noise vector for the plant process

(v x 1) noise vector for the input process

For the case of deterministic inputs or exact measurement of the state,

1f, for

example, the problem is completely deterministic, then bn = Fn = Pn = 0 and the

*
function Hn represents the exact incremental error involved,

The block diagram for the complete optimization procedure is shown in
Figure 17,
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5.3 Alternate Scheme

For the program shown, there is a limitation due to the finite time required
for the calculations involved. The pulse applied at time t = tn must be cal-
culated using the data obtained at that same time. The optimal estimate must be
found and the procedure for determining the optimum pulse width must be executed
before the pulse may actually be applied., The time required for these calcula-
tions delays the application of the pulse sufficiently in some cases, If this
limitation is tou severe due to high sensitivity of the output with respect to

"pulse width, or the system is operated with a fast sampling rate compared to the

time of calculation, then an alternate procedure must be developed.

The alternate procedure is quite simple in that predicted estimates rather
than filtered estimates are used where the prediction and other calculations are
executed throughout the sampling interval. That is, at time t = tn’ a  measure-
ment of the output is available, but will be used for predicting the state at
nel® The function H:+1

optimal pulse width and sign are then calculated. These operations are per-

=t is determined from this predicted value and the
formed during the sampling interval and the pulse to be applied at the next
sampling instant is ready. This alternate procedure limits the calculation
time to the length of the sampling interval, but the obvious extension of pre-

dicting several samples ahead may be used in cases of this nature.

The flow graph for the alternate scheme is shown in Figure 18.
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6. EXAMPLES

6.1 Genersal

This chapter is intended to illustrate the optimization technique described
in the previous chapters. It is hoped that the validity and usefulness of the
theory will be demonstrated at the same time. Numerical results have been ob-

tained through simulation of the entire system on & high-speed digital computer.

The computer involved in this simulation was the Control Data Corporation
1604, The entire program was written using the FORTRAN compiler language. The
extensively tested > normal deviates from the table "A MILLION RANDOM DIGITS
WITH 100,000 NORMAL DEVIATES">® were tranmscribed in part on magnetic tape and
used as the source of additive noise in all cases. The program included the
choice of mean and covariance for these normal deviates. A random number gen-
erator, which was programmed in machine language, together with von Neumann's
rejection tochniqu037 for sampling from various other distributions was also

available.

The optimal response is compared to a normal response in each case where
normal pulse width control refers to a standard procedure used to determine the
pulse width and sign at each sampling instant, This standard procedure is some-
times called "lead” pulse width modulation where the width and sign of each pulse
are directly related to the magnitude and sign of the actuating signal at the
sampling instant.

P

€
n

ajle
n n

sign of (en)

The parameter ''a' was taken as unity for convenience.

The block diagram of the system under consideration for each example is

shown in Figure 19,



)
r(t)—{ Predictor 'LCO:‘::OI _g[m f_uct) G(s) C(t))

Filter I* +

L2 d

Noise

Figure 19. Block Diagram of Simulated Systems

6.2 A Second Order System

The linear plant for this example is described by the transfer function

. _K _ C(s)
G(s) = s(s+l) U(s)

Using state vector notation, the plaant process may be written

x=AXx+Bu
c=Mx
0 -1 0
A= B = M=(1 0]

62
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The discrete form is

xn+1 = ¢¢ xn + Anen
E =M x
n nn
where
1 1- e-t
¢ﬁ(t) - eAt -
0 e-t
p p - (ep -1)
Y = f e g at =
0 P
(e -1)
p- &% -1
AP,0) = ¢"(0) ¥ =
e’o(ep -1)

The step responses for plant gains of 4,0 and 5,0 are shown in Figures 20
and 21 for both exact and noisy measurements of the state, The additive noise
was assumed normally distributed with zero mean and unity covariance., The

sampling rate was assumed constant at 0.1 seconds.

The normal pulse width response was found to be unstable for any gain
greater than 5.0, The optimum system was found to be stable for gains much
higher than 5.0 for both step and ramp inputs. The response for a gain of 10.0
is shown in Figure 22,

The ramp responses for these gains are shown in Figure 23,

The results show a marked improvement in performance for these inputs,
For the step response, this is attributed to the small pulse applied before
the desired value is reached allowing the system to coast for the remainder
of the sampling interval and then settle rapidly thereafter. This of course

is due entirely to the minimization of the future errors,

The flow graph for a digital controller is shown in Figure 24, The

analog realization is shown in Figure 25,
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6.3 A Third Order System

A third order system with complex roots is investigated in this section.
The transfer function of the plant is

G(s) = LS (6.3)

s(s + 28 + 2)

The block diagram of the system is shown in Figure 19. Preliminary calcu-
lations lead to the following matrices:

01 0 0
A=lo o0 1 B=|0 M={[1 0 0]
0-2-2 K
1 1l - e-t Cos(t) % - {g e-t Sin(t+45°)
P*t) = et =|o et sin(t+45°) e % sin(t)
0 -2 e % sin(t) - 7 et sin(t-459)
P 1 1
P 3" 3 L Cos(P) + 3
Y = j eMpac = |-1. 2 P cos (0+45%)
0 2 2
Lep Sin(P)

AP, =) v

A plant gain of 2.0 and a constant sampling rate of 1.20 seconds was used
for this example. The unit step response is shown for exact and noisy measure-

ments of the state in Figure 26.

Since a nonlinear system is under investigation, the unit step response

has very little significance in terms of describing the system performance to
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displacement inputs. For this reason, & family of step responses is shown in
Figure 37 for the optimsl mode. The corresponding normal responses are shown
in Figure 28, A direct comparison is shown in Figure 29,

For large step inputs the system approaches the behavior of the normal
system since the on-off mode of operation is in effect in both cases until just
before settling time. Also, since the system response time is very slow for
large inputs, little information will be gained by considering these large dis-
placement inputs.

For small step inputs, the behavior depends a great deal on the sampling
rate and begins to exhibit rather sporadic results for large sampling rates com-
pared to the system response time, The criterion for optimality is satisfied
in all cases, but it becomes doubtful whether or not the criterion has any
meaning in relation to what we might consider good response with respect to our
sesthetic criterion for optimal behavior. A good example of this is seen for
the 0,70 step response in the optimal mode, The system eventually settles and
satisfies the criterion established, but our judgment dictates that the normal
response in this case is better with respect to our aesthetic optimality cri-
terion. Thus, the optimal mode leadsto undesirable results for some ranges of
operation., The pole-zero location in relation to the magnitude of input infor-
mation for various sampling rates is seen to be an important consideration
when using this optimization technique since there are desirable and undesirable
ranges of operation,

No attempt was made to investigate thoroughly the change ot stability
boundaries with respect to gain and sampling rate but there seems to be an
extremely interesting effect involved. For a gain of 3.0 and a unit sampling
rate, the system is stable in the optimal mode but unstable in the normal
wmode, On the other hand, for a gain of 2.0 and a unit sampling rate, the re-
verse is true., The explanation for this may be tied in with the fact that
these points lie very near the stability boundary.

For a ramp input, the system exhibited a constant steady state positional
error of 2.20 units in the normal mode when the state was known expctly. In
the optimal mode for exact measurement of the state, the steady state positional
error was improved to 1.0 units. In theroptimal mode when the information about
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the state was constrained, the steady state error was found to be a linear
function of time, These results are shown in Figure 30, The steady state

error series for each case is listed as follows:

Normal mode; exact measurement of the state

Ess(t) = 2,20

Optimal mode; exact measurement of the state

Eas(t) = 1.00

Optimal mode; noisy measurement of the state
E _(t) =0,346 t - 6.5
ss '

6.4 A Fourth Order System with Distinct Roots

A fourth order system with a zero is investigated in this section. The

transfer function of the plant is

K(s8+2)

G(s) = 8(s+1)(8+3)(8+4)

(6.4)

The block diagram of the system is again in Figure 19. Preliminary calculations

of the necessary matrices lead to the following results:

o 1 o o 0
o o 1 o 0

A=lo o o 1 B=1lk
0 -12 -19 -8 -6K
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The characteristic matrix for higher order systems is somewhat involved but

may be calculated easily using Mason's gain formula as presented by B.C, Kuo34.

A family of step responses is shown in Figure 31 for a gain of 6.0 and a
unit sampling rate. Again there is a range of inputs which lead to results
which may be undesirable, In particular,the input step of 0.3 units begins
following the 0.4 unit input response until about 2,5 seconds resulting in a
large initial overshoot. This result of course depends on the sampling rate
chosen and is expected in this case since the rate is quite low compared to the
settling time for this lower input level. In general, we would expect unusual
results when the sampling rate is larger than the system response or settling

time.

In order to compare the normal and optimal responses, a quality factor
which seems to be reasonable is the 5% settling time for the two systems,
Figure 32 shows the settling time versus the magnitude of displacement input.
For large inputs the on-off mode is predominant and the two curves approach the
same asymptote &s shown in the figure. For input magnitudes greater than 40.0,
the settling time curves for both systems are within 5% of the asymptote.

Investigating the behavior of the two systems further, another quality
factor examined was the first overshoot versus input magnitude, This curve is
shown in Figure 33 and we see immediately that lower level inputs exhibit rather
sporadic first overshoots due primarily to the large sampling rate. Note, how-
ever, that in this case even though the first overshoot is larger than that for
the normal system for an input of 0,3 units, the settling time is still about 60%

lower than the normal response.

Since the sampling rate is fixed at unity, it is not to our advantage here
to consider step responses for input signal levels less than 0.1 units, A family
of responses for various other sampling rates and input levels would be in order

however, if the technique were to be applied to existing systems,

8.5 A PFourth Order System with Complex Roots

A fourth order system with complex roots is investigated in this section.
The transfer function of the plant is

a(s) = X = &) (6.5)

l(l+3)(s2 + 28 + 2) )
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Figure 31. Family of Optimal Step Responses for Fourth.

Order System with Distinct Roots
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The initial calculations lead to the following matrices:

0 0o o 0
0 0 0
A=1, o B=1o
0 -6 -8 -5 K
M=(1 0o o o]
At

The elements of the characteristic matrix (t) = e are:

¢, ®
¢y, ()
L))
P14t
0 (V)
B0 (1)
a3 (®)
b,
93, (0
Pya(®)
$;5(t)
$34(®)

Pgy (V)

n

e el G =) ol = »lon Wl -

o

b R L

al™

-3t

-3t

-3t

-3t

-3t + ¥ ot Sin(t-45°) - % et Sin(t)

-3t L TNZ -t gin(e-45%) - 2 et sincty
io 5

-3t + —@ e-t S:ln(t-45°) - 3 e_t Sin(t)
10 5

3“— t Sin(t-45°) + -1-2- e ' sin(t)

2_5~T3' et sin(t-45%) +% et sin(t)

-"—Ze-t Sin(t-45°) +% e-t Sin(t)

t Sin(t-45°) - g et sin(t)

et sin(t-45°) +-§ et sin(t)

t Sin(t-45°) +§ et sin(t)
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The step response curves for a gain of 5.0 and a sampling rate of 1,40
seconds are shown in Figure 34, The input level in this case is 2.0 units, 1In

Figure 35 the response is shown for an input signal level of 0.8 units,
6.6 Comments

From the several examples presented here, we see that the system performance
is greatly improved for certain ranges of gains, sampling rates and input signal
levels when optimized using the technique presented in the previous chapters.
There are, of course, ranges where the response satisfies the criterion estab-
iished but where it does not satisfy some aesthetic criterion for optimal behav-
ior. In particular, for the families of curves shown, the sampling rate was
assumed constant and for low level signal inputs, the response time of the sys-
tem is smaller than the sampling rate leading to results that may be classified
as undesirable., The results demonstrate, however, the ability of the system to
achieve optimal performance with respect to the established criterion in all

casds and excellent performance not otherwise possible in many cases.
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7. SUMMARY, FURTHER PROBLEMS AND CONCLUSIONS

7.1 Summarx

A method for the design of a controller to optimize a class of pulse width
modulated systems has been presented. The process to be controlled is linear,
time-invariant, of arbitrary order and excited by a sequence of pulses generated
from information available at arbitrary sampling instants., State variable no-
tation has been used for description of the plant and input processes., Estimation
of the state at the sampling instants is provided by linear estimation techniques,
accomplishing the identification problem. The information obtained from the
filter is then used in the contpoller to develop a predicted estimate of the
future system error which in turn is used to develop the optimum pulse width and
sign to minimize a measure of the predicted future system error at each sampling
instant, The criterion established, providing the definition of optimality, is
based on the minimization of the conditional expectation of a sum-~squared perfor-
mance index, It was shown that the overall system is optimum in this sense.

Two alternate schemes for determination of the pulse width and sign were pre-
sented allowing flexibility in controller design to include those systems re-
quiring calculation time in the controller comparable to the length of the
sampling interval,

The construction of an optimal strategy has been presented in the litera-

curel0s11,12,13

based on the determination of a finite canonical sequence
associated with each initial state which specifies optimal control over the en-
tire transient process during which the state is taken to the origin. Con-
struction of the canonical sequence associated with any arbitrary initial state
is determined from the observed value of the state by a reverse time mapping.
The phase plane is divided into two regions corresponding to pulse width and
relay control in each of these cases. The approach is limited to plants of
second order due to the conceptual difficulty of determining the optimal con-

trol regions in higher dimensional state spaces.

The technique presented in this report is based on the philosophy of
minimizing future system errors at each sampling instant as opposed to the usual
reverse time mapping., The future weighted errors are minimized sequentially

and the optimal strategy is constructed at each step removing the previous
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restriction to second order systems, Input information is also quite general in
that random and deterministic phenomena are included as opposed to the previously
presented techniques which are restricted to simple deterministic inputs. The
usual condition in practice where information about the state is constrained is
also included. Sampling may occur at arbitrary times and is not limited to a con-
stant rate, Finally, the application of this technique is no more difficult for

& system of arbitrary order than for one of second order. The higher order system
requires more computation in the controller but if this restriction is severe an
alternate technique has been presented utilizing the length of the sampling inter-

val for computational purposes,

Several systems were simulated on a digital computer using the methods pre-
sented in this paper. The results indicate superior performance of the system for
ranges of input signal levels with respect to the length of the sampling interval
and the gain of the plant process, It was found that input displacement levels of
small magnitude corresponded to response time of the system which was smaller than
the sampling interval leading to what might be called undesirable results even
though the criterion for optimality was satisfied. Also, for input displacement
levels of large magnitude, the system was found to be predominantly in the relay

mode and hence, pulse width control effort had very little effect.

7.2 Further Problems

The concept of minimizing future errors has led to the technique presented
in the preceding work. The future error at only one sampling instant ahead was
considered with only a passing mention of the control law which would be appli-
cable if future errors several sample instants ahead were considered. The
extension of this technique to include investigation of the predicted error at
perhaps two sample instants ahead together with the information about error only
one sample ahead and a subsequent decision process based on the desired perfor-
mance, might prove worthwhile, Various approaches utilizing the predicted
errors may provide the insight necessary to achieve excellent performance for

systems other than those with pulse width control signals,

No investigation into the stability problem was made in this work. Several
interesting results were noted however, when the controller was introduced into
the system. The stability boundary determined as a function of sampling time
and plant gain for two of the example systems changed appreciably. It was found
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that a second order system was stabilized in the optimal mode for both step

and ramp inputs for gains twice as large as the maximum gain allowable for sta-
bility in the normal mode., A third order system was stabilized in one case by
allowing a larger gain than in the normal mode, but on the other hand, the
reverse was found true for a different sampling rate. Since the system is non-
linear, the interesting stability problem would be extremely difficult to solve

but would certainly be a major contribution.

7.3 Conclusions

The techniques presented here are applicable to plants excited by a pulse
width modulated signal. The results seem to indicate marked improvement in
system performance at only the expense of additional computation which may be
accomplished between the sampling intervals. It must be concluded, however,
that the science of optimization is still in the infancy stage and the use of
predicted future system errors to achieve optimal control is but only an attempt

which, hopefully, will help contribute to the maturity of optimization science,
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