NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Utility Program Descriptions

Milestone 11

Data Reduction Program for the Parameter Test System

(SDRP)
Utility Program Descriptions

Milestone 11

Data Reduction Program for the Parameter
Test System
(SDRP)

by
Regina Frey
22 April 1963

Approved
R. E. Busch

The views, conclusions or recommendations expressed in this document do not necessarily reflect the official views or policies of agencies of the United States Government.

Permission to quote from this document or to reproduce it, wholly or in part, should be obtained in advance from the System Development Corporation.

Although this document contains no classified information it has not been cleared for open publication by the Department of Defense. Open publication, wholly or in part, is prohibited without the prior approval of the System Development Corporation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>IDENTIFICATION</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>PURPOSE</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>USAGE</td>
<td>1</td>
</tr>
<tr>
<td>3.1</td>
<td>Function Request</td>
<td>1</td>
</tr>
<tr>
<td>3.2</td>
<td>Control Deck</td>
<td>2</td>
</tr>
<tr>
<td>3.3</td>
<td>On-Line Printer Messages</td>
<td>3</td>
</tr>
<tr>
<td>3.4</td>
<td>Tape Assignments</td>
<td>4</td>
</tr>
<tr>
<td>3.5</td>
<td>Test Recording Tape</td>
<td>5</td>
</tr>
<tr>
<td>3.6</td>
<td>Selective Listing Input Messages (SLI)</td>
<td>6</td>
</tr>
<tr>
<td>3.7</td>
<td>Program Output</td>
<td>9</td>
</tr>
<tr>
<td>4.0</td>
<td>METHOD</td>
<td>12</td>
</tr>
<tr>
<td>5.0</td>
<td>RESTRICTIONS AND ACCURACIES</td>
<td>13</td>
</tr>
<tr>
<td>6.0</td>
<td>TIMING</td>
<td>14</td>
</tr>
<tr>
<td>7.0</td>
<td>STORAGE REQUIREMENTS</td>
<td>14</td>
</tr>
<tr>
<td>8.0</td>
<td>SUBROUTINES USED</td>
<td>15</td>
</tr>
<tr>
<td>9.0</td>
<td>VALIDATION TESTS</td>
<td>15</td>
</tr>
<tr>
<td>10.0</td>
<td>REFERENCES</td>
<td>16</td>
</tr>
<tr>
<td>11.0</td>
<td>FLOW CHARTS</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>APPENDIX A - TABLE DESCRIPtIONS</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>Input Tape Images</td>
<td>54</td>
</tr>
<tr>
<td>2.0</td>
<td>SDRF Internal Tables</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>APPENDIX B - VALIDATION TEST CONTROL CARDS</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>Function Requests</td>
<td>60</td>
</tr>
<tr>
<td>2.0</td>
<td>SLI Cards</td>
<td>60</td>
</tr>
</tbody>
</table>
1.0 IDENTIFICATION

1.1 TITLE
Data Reduction Program for the Parameter Test System (SDRP)
Ident: K33, Mod AA

1.2 PROGRAMMED
1 April 1963, R. Frey, System Development Corporation

1.3 DOCUMENTED
22 April 1963, R. Frey, System Development Corporation

2.0 PURPOSE
SDRP is the data reduction program for the Parameter Test System. Its purpose is to format and list on a BCD tape, or on the on-line printer, the data from the recording tape generated by the Test Control Program, STCP. All records on the tape may be listed, or records may be selected for listing through the use of Selective Listing Input Messages.

3.0 USAGE

3.1 FUNCTION REQUEST
The function request used to call SDRP is:

*SDRP P₁ P₂ P₃

where:

P₁ = The input tape number. This parameter specifies the logical tape unit which contains the STCP recording tape.

P₂ = The output device. P₂ is set to either PRINTER if output is on the on-line printer, or to a logical tape number for tape output.
P₃ = Change only printing option. P₃ is set to CHANGE if change only printing is desired, or left blank if regular printing is wanted. "Change only printing" refers to the method of printing the After Core Dump Record. If change only printing is requested, then only those registers in the After Core Dump which differ in content from the same registers in the Before Core Dump are printed. If this option is omitted, the After Core Dump will be printed in the same manner as the Before Core Dump.

Restrictions:

P₁ cannot equal P₂. Legal tape numbers are 2-12 and 16-19.
If P₃ = CHANGE, then P₁ or P₂ cannot equal 4.

3.2 CONTROL DECK

The control cards needed to operate SDRP are listed below:

*CLR
*SDRP P₁ P₂ P₃
First selective listing input message deck
END
Second selective listing input message deck
END
Nth selective listing input message deck
END

Selective listing input (SLI) message decks are optional. However, SDRP expects to find at least an END message for each data file on the recording tape. Section 4.0 details the program logic used to read and utilize selective listing input messages.

If an error is found in the function call parameters, a message is printed and control is given to the typewriter for a correction. If an SLI message has an error, an error note is printed and the message is discarded.
3.3 ON-LINE PRINTER MESSAGES

On-line messages are divided between those which notify the operator of an action to be taken and those which provide information only. Messages written by COPII system subroutines are not listed.

3.3.1 Operator Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Program Action</th>
<th>Operator Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIELD X OF FUNCTION CALL ILLEGAL. CORRECT ON TYPEWRITER</td>
<td>Hangs waiting for typewriter input.</td>
<td>Switch typewriter to lower case and type in a one-field message which will correct the error.</td>
</tr>
<tr>
<td>SDRP UNABLE TO RECOGNIZE INPUT TAPE. CORRECT TAPE REEL AND PRESS START</td>
<td>Program halts.</td>
<td>The correct tape should be mounted. Continue from point of interruption.</td>
</tr>
<tr>
<td>CARD READER NOT READY. INSERT MESSAGE VIA TYPEWRITER</td>
<td>Program hangs waiting for typewriter input.</td>
<td>Shift typewriter to lower case and type in one SLI message. Also ready reader, if appropriate.</td>
</tr>
<tr>
<td>EOT READ. CHANGE INPUT TAPE AND PRESS START</td>
<td>Tape is rewound with interlock and program halts.</td>
<td>Change tape on input unit and continue from point of interruption.</td>
</tr>
<tr>
<td>PHYSICAL END DETECTED ON OUTPUT TAPE. CHANGE TAPE</td>
<td>Program writes an EOF on the output tape and halts.</td>
<td>Place new blank on output tape unit and continue from point of interruption.</td>
</tr>
<tr>
<td>INOPERATIVE OUTPUT EQUIPMENT SPECIFIED. CORRECT IF POSSIBLE AND HIT START</td>
<td>Program halts.</td>
<td>If possible, ready equipment. Otherwise, pull job.</td>
</tr>
</tbody>
</table>
Information Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Program Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT TAPE PARITY ERROR</td>
<td>If the record which caused the parity error was a data record, it is rejected. Otherwise, the program attempts to use it anyway.</td>
</tr>
<tr>
<td>OUTPUT ERROR X</td>
<td>This message is printed if an error occurs while writing a BCD data message. X = the error number generated by OUTPUT. Program continues from point of interruption.</td>
</tr>
<tr>
<td>CARD INPUT ERROR X</td>
<td>This message is printed if an error occurs while reading SLI card messages. X = the error number generated by INPUT. No special action taken.</td>
</tr>
<tr>
<td>BINARY SCRATCH TAPE PARITY ERROR</td>
<td>A parity error occurred while reading, or writing, the SDRP scratch tape. No special action taken.</td>
</tr>
<tr>
<td>BINARY SCRATCH TAPE BUFFER LENGTH ERROR</td>
<td>A buffer length error occurred while reading, or writing, the SDRP scratch tape. No special action taken.</td>
</tr>
<tr>
<td>SELECTIVE LISTING INPUT TABLE CAPACITY EXCEEDED. NO MORE INPUTS WILL BE RECOGNIZED.</td>
<td>SDRP discontinues reading SLI messages for that data file.</td>
</tr>
<tr>
<td>SDRP OPERATION COMPLETED. PLEASE LIST LOGICAL TAPE XX</td>
<td>Termination message. Program exits to MTCII. If output is on the printer, the second half of the message is not printed.</td>
</tr>
</tbody>
</table>

TAPE ASSIGNMENTS

To operate SDRP, assign tapes as follows:

- Tape Unit 1: System Utility Master
- Tape Unit 3: System Output
- Tape Unit 4: SDRP Scratch Tape
- Tape Unit X: STCP Recording Tape
- Tape Unit Y: SDRP Output Tape, if applicable
If change only printing is not requested, or the Before Core Dump consists of only one record, the scratch tape is not required. At the end of the run, SDRP writes an EOT on the output tape and rewinds both the recording tape and the output tape with interlock.

3.5 TEST RECORDING TAPE

The data input to SDRP is contained on the Test Recording Tape produced by the Test Control Program, STCP. This tape is organized into data files. There is one data file for each operation of the object program.

A file is organized as follows: Table and Item Dictionary, Test Recording Table, and data records. The Table and Item Dictionary contains information on tables and items defined as the object program's environment. The Test Recording Table contains the RECORD messages read by STCP. The first two words of most data records contain identification and processing information. Statements 5 and 6, below, describe the data records that are the exceptions. Formats of all the records can be found in Appendix A.

Other characteristics of the tape are:

1. The third record of the first file is a Before Core Dump Record.

2. If an After Core Dump record is found on the tape, no more data records will follow.

3. The end of meaningful data is signaled by a double EOF mark.

4. A physical EOT is designated by a two-word Continue Record. The first word of the record is a BCD "CONTINUE".

5. If a core recording exceeds the maximum record length, it will be broken up into two or more records. However, only the first record will have identification data as its first two words.

6. A Trace recording consists of a series of BCD coded records terminated by an EOF mark. The first record contains a one-word
identification and is 16 words long. All other records in the series have no identification word, and are 15 words long.

3.6 SELECTIVE LISTING INPUT MESSAGES (SLI)

3.6.1 Input Method

SLI messages are input to SDRP via either the card reader or the console typewriter. Their format and input method are the same as MTCII free field control messages with the exception that, if the typewriter is used, no asterisk is typed and the typewriter must be shifted manually to lower case.

First, the card reader is checked and SLI messages are read until either a termination message is found or until the reader becomes not ready. If the reader becomes not ready, control is given to the typewriter for the next message. After processing that message, the card reader is checked again. The program returns to the typewriter only if the card reader is still not ready. Typewriter message formats are the same as card message formats and each message is terminated by a carriage return.

3.6.2 Message Formats

There are four possible types of SLI messages. Their formats are exactly the same as the RECORD message formats accepted by STCP. Therefore, a card message can be used as input for either program.

The last two fields of each message provide a means for selectively choosing records of a specific "during" recording for processing. This option might be used, for example, when a trap in an object program loop causes a table to be recorded many times.

All address and numerical values may be either octal or decimal, unless specifically stated otherwise. All octal values must be terminated by a "B".
3.6.2.1 Table or Item Message

Field 1 = RECORD
2 = name of the table or item, not to exceed 8 characters.
3 = the object program name associated with a relative address in field 4. Equal to zero if field 4 is an absolute address, or if the option is not used.
4 = the trap address for a "during" recording. It may be
 1) a relative address in the object program.
 2) an absolute address.
 3) zero for no "during" recording.
5 = "before" and "after" recording indicators. May be equal to B, A, BA, AB, or zero.
6 = the starting record of this "during" entry to be processed. Equal to zero, or blank, if all records are processed.
7 = the last record of this "during" entry to be processed. Equal to zero, or blank, if all records are processed.

3.6.2.2 Core Memory Dump Message

Field 1 = RECORD
2 = name of the table or item, not to exceed 8 characters.
3 = the object program name associated with a relative address in field 4. Equal to zero if field 4 is an absolute address, or if the option is not used.
4 = the trap address for a "during" recording. It may be
 1) a relative address in the object program.
 2) an absolute address.
 3) zero for no "during" recording.
5 = "before" and "after" recording indicators. May be equal to B, A, BA, AB, or zero.
the number of words to be recorded. This field is not used by SDRP and may be zero unless the message is intended as input for STCP.

7 = the object program name in which the memory dump will start. For relocatable addresses in field 8. Equal to zero if field 8 is absolute.

8 = the core address of the first word of the dump. May be relative or absolute.

9 = the starting record of this "during" entry to be processed. Equal to zero, or blank, if all records are processed.

10 = the last record of this "during" entry to be processed. Equal to zero, or blank, if all records are processed.

3.6.2.3 Reference Pool Message

Field 1 = RECORD

2 = POOL if the pre-Augmentation reference pool is recorded or POOLA if the Augmentation reference pool is recorded.

3 = the object program name associated with a relative address in field 4. Equal to zero if field 4 is an absolute address or if the option is not used.

4 = the trap address of a "during" recording. It may be

1) a relative address in the object program.
2) an absolute address.
3) zero for no "during" recording.

5 = "before" and "after" recording indicators. May be equal to B, A, BA, AB, or zero.

6 = the absolute octal starting address in the reference pool for recording.

7 = the number of reference pool words to be recorded. Not used by SDRP. May be zero unless the message is intended as input for STCP.
3.6.2.4 Console Message

Field 1 = RECORD
2 = CONSOLE
3 = the object program name associated with a relative address in field 4. Equal to zero if field B is an absolute address or if the option is not used.
4 = the trap address of a "during" recording. It may be
 1) a relative address in the object program.
 2) an absolute address.
 3) zero for no "during" recording.
5 = "before" and "after" recording indicators. May be equal to B, A, AB, BA, or zero.
6 = the starting record of this "during" entry to be processed. Equal to zero, or blank, if all records are processed.
7 = the last record of this "during" entry to be processed. Equal to zero, or blank, if all records are processed.

3.6.2.5 Termination Message

Field 1 = END

3.7 PROGRAM OUTPUT

3.7.1 General Description

SDRF writes its BCD information either on the on-line printer or on a listable tape. The method of output is specified through the function call message.
The first recording printed is the Before Core Recording. Then each data file is printed as a unit of information. Following all of the data files, the After Core Recording is written (if there is one), and the job is terminated.

For each data file, the file number is printed and the Selective Listing Input messages are written along with the Termination message. Data records follow.

3.7.2 Data Description

There are five types of output data: core dumps, trace records, reference pool records, console records, and internal table and item records. Each type of output data is prefaced on the printout by a heading line. The heading line indicates the type of data and when the data was recorded -- before, after, or during.

3.7.2.1 Core Records (CORE)

Four binary words are converted and printed per line. If a four-word line (with the exception of the last line) contains all zeros, its printing is suppressed. Operation codes are translated to mnemonic characters in the Before, After and HCORE Core Records, but are left as octal numbers in all other cases. The range of the recording is printed at the end, giving inclusive addresses. A message is also printed if Change Only Printing is used for the After Core Recording.

3.7.2.2 Trace Records (TRACE)

Trace records exist on the recording tape in BCD form and require no processing by SDRP. Records are read and printed until an EOF is detected.

3.7.2.3 Reference Pool Records (POOL, POOLA)

Two dictionaries are used to reduce reference pool records: one for the Augmentation pool, and one for the pre-Augmentation pool. Using the
starting core address of the recording, the appropriate dictionary is searched for a matching address. The name of the table or item corresponding to that address is printed along with the values contained in its entries. If the dictionary entry is a table (i.e., the length is greater than one), table entry numbers are printed immediately preceding the contents of the entry. After the entire table has been reduced, the address of the next word in the binary record is used as the starting core address for a further search of the dictionary. If, at any time, the starting core address is not found in the dictionary, the record is printed as an octal core dump.

3.7.2.4 **Console Record (CONSOLE)**

The contents of the record are printed in a fixed format. Appendix A details the contents of the record.

3.7.2.5 **Internal Table and Item Records (NAME)**

This type of recording is processed in a manner similar to the reference pool records. The Table and Item Dictionary is used to determine the characteristics of the table.

A teletype or typewriter coded table is converted to BCD code and printed in such a way that a slash (/) immediately precedes the left-most character of each data word. Print positions are filled. No blanks are left between words. Twelve table words can be written per line.

3.7.2.6 **Inactivity Records**

As a result of an inactivity in the object program, STCP will generate Console, Core and Trace records. These binary records have the same format as requested records, except that the first character of the identification word is a BCD "H" (i.e., HCONSOLE, HOORE and HTRACE). The "H" identification is placed on the printout, and the records are reduced in the normal manner.
3.7.3 Information Messages

1. SELECTIVE LISTING INPUT MESSAGES LISTED BELOW
 Printed at the beginning of each data file. All SLI messages, whether from card reader or typewriter, are listed.

2. ILLEGAL FIELD ON FOLLOWING MESSAGE
 This message is written whenever the program is unable to process a field on an SLI message. The entire message is rejected and will not be used for record processing.

3. ONLY CHANGED LOCATIONS WERE PRINTED
 Printed immediately following the After Core Dump output if Change Only Printing was used.

4. STARTING ADDRESS OF REFERENCE POOL TABLE NOT FOUND IN DICTIONARY. RECORD IS DUMPED IN OCTAL
 Printed at any point at which the program cannot find the starting address in the dictionary. Remainder of record printed in same manner as CORE records.

4.0 METHOD

SDRP begins operation by reading the function request parameters and modifying itself as required. The initial Table and Item Directory and Test Recording Table are read from the recording tape, and the Before Core Dump Recording is read and processed.

At this point, the program is ready to process data files. As outlined in Section 3.5, the binary records on the input recording tape are grouped into data files. SDRP is designed to process any number of these files, each independently of the others.

For each file, the program must know whether to use the Test Recording Table or a table built from SLI messages. The card reader and/or typewriter are checked for messages. If at least one SLI message is found, then a table is constructed and only those records in the file which correspond to SLI messages are processed. If no SLI messages are read, but only an END message, then all records of the file are reduced according to the Test Recording Table.
An EOF mark signals the end of a data file. A new Table and Item Directory, a new Test Recording Table, and new SLI messages are read. All traces of the former file are erased.

As a data record is read, its identification word is checked to see whether it is an inactivity record (first character of word is an "H"), or a TRACE record. If so, the record is reduced without any reference to a possible SLI entry. In other words, the record is reduced automatically without any selective option.

A core dump recording whose length exceeds the maximum record length is broken up into a group of two or more records by STCP. An indicator in the second word of the initial record signals that more records are to follow. SDRP reads records until the entire core recording is processed.

Change Only Printing requires that the Before Core Dump be saved for comparison with the After Core Dump. If the Before Core Dump exceeds one record in length, the excess records are written on a scratch tape until the time when they will be needed again.

SDRP operation is terminated when either an After Core Dump record is read or a double EOF mark is found. This could occur after only one data file or after several files.

5.0 RESTRICTIONS AND ACCURACIES

1. The STCP recording tape is not rewound before reading the first record.

2. Only 100 Selective Listing Input messages can be accepted for any one data file.

3. There is no limitation on the length of core requests. However, internal table requests cannot exceed 4998 words each.
4. SDRP at present is programmed to reduce two specific reference pools. They are the Augmentation and pre-Augmentation reference pools found on the ASUM and SUM masters, respectively. To allow reduction of any other reference pool, a dictionary would have to be added to the program’s environment.

5. Note that SDRP uses tape unit 4 as a scratch tape when Change Only Printing is requested. A blank tape need not be assigned to the unit if Change Only Printing is not requested or if the Before Core Dump Recording is only one record.

6. SDRP is unable to process relative trap and dump addresses. If an address on an SLI message is given in absolute form, it will be matched with the equivalent addresses in the Test Recording Table and in the data records. Otherwise, the parameter is set to zero in the SLI table and is ignored when data records are chosen for processing.

6.0 TIMING

The reduction of a tape containing five files with 143 records onto a listable tape required approximately 1.5 minutes, including time to read SLI messages.

The total number of time needed for one job will depend upon the number of data files, the length and number of records in each file, the methods of input and output, and the number of SLI messages read.

7.0 STORAGE REQUIREMENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Octal 8</th>
<th>Decimal 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Instructions</td>
<td>14448</td>
<td>80410</td>
</tr>
<tr>
<td>Storage and Constants</td>
<td>274308</td>
<td>1205610</td>
</tr>
<tr>
<td>COPII Subroutines</td>
<td>22038</td>
<td>115510</td>
</tr>
</tbody>
</table>

Total Cells: 332778 or 1401510
8.0 SUBROUTINES USED

Those COPII subroutines used by SDRP are EOT, FFCONV, INFLEX, INPUT, OUTERR, OUTPUT, and TAPEIO. SDRP also references the communication cells EXITSTAT, IOBUFWD, and IOSTATUS.

9.0 VALIDATION TESTS

SDRP's functions have been validated through the successful reduction of seven recording tapes. Two tapes were generated by special programs written by the author. These programs wrote binary records from preset data images in a predetermined sequence. The first tape contained one file of information and served to "get the program going". The second tape was actually two tapes with two files of data and a Continue record on the first and one file of data on the second. Included in both tests were multiple record Core recordings.

The other five recording tapes were generated by STCP and aided, among other functions, to checkout STCP-SDRP communication. One tape was a five-file recording tape. Inactivity records and Trace records were mixed with numerous Internal Table, Pool, Console and Core records.

The function request and SLI cards used to reduce these tapes are listed in Appendix B. Also, many runs were made with only an END message. A description of SDRP output is given in Section 3.7. A sample output can be found in Reference 3.

Procedures used were those associated with the operation of the program by itself, without prior operation of STCP. The most common procedure was to use card SLI inputs and tape output. However, typewriter input and printer output were also tested.

SDRP has been operated successfully on top of itself; i.e., without first clearing core. SDRP has been tested as a part of a complete run of the Parameter Test System by operating the program immediately after the operation of STCP.
10.0 REFERENCES

1. AFCPL Catalogue Number for SDRP: 75933.

5. TM-715/041/00, Utility Program Descriptions, Parameter Test Control Program (STCP), Milestone 11, 25 April 1963.

11.0 FLOW CHARTS

<table>
<thead>
<tr>
<th>Routine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDRP Program Flow</td>
<td>17</td>
</tr>
<tr>
<td>BCDOUT</td>
<td>25</td>
</tr>
<tr>
<td>BEGIN</td>
<td>18</td>
</tr>
<tr>
<td>CARD</td>
<td>20</td>
</tr>
<tr>
<td>CLEAR</td>
<td>26</td>
</tr>
<tr>
<td>CON SOL</td>
<td>27</td>
</tr>
<tr>
<td>CORE</td>
<td>29</td>
</tr>
<tr>
<td>ERROR</td>
<td>38</td>
</tr>
<tr>
<td>HEADING</td>
<td>39</td>
</tr>
<tr>
<td>LINE</td>
<td>40</td>
</tr>
<tr>
<td>POOL</td>
<td>41</td>
</tr>
<tr>
<td>PROCES</td>
<td>22</td>
</tr>
<tr>
<td>READ</td>
<td>49</td>
</tr>
<tr>
<td>SPACE</td>
<td>50</td>
</tr>
<tr>
<td>TABLE</td>
<td>51</td>
</tr>
<tr>
<td>TEL TYP</td>
<td>46</td>
</tr>
<tr>
<td>TRACE</td>
<td>52</td>
</tr>
<tr>
<td>TYPE</td>
<td>50</td>
</tr>
<tr>
<td>UNPACK</td>
<td>53</td>
</tr>
</tbody>
</table>
SDRP Program Flow

INITIALIZE
Read Function Call Parameters.
Read Initial Directory and Recording Table. Clear Internal Tables.
Process Before Core Record.

CARD READ
Read Input Messages Until END Detected

PROCESS DATA
Read Data Records and Process or Reject as Indicated

After Core Record Read
YES

Double EOF
YES

NEW FILE
Read Directory and Test Recording Table

NO

YES

END OF JOB
Write EOF. Rewind Tapes. Write EOJ Message.

NO

Single EOF

NO
BEGIN
Initialization Routine
Get Function Call Parameters

1. Obtain \(P_1 = \text{Tape Input Number} \)

2. \(2 \leq P_1 \leq 12 \) or \(16 \leq P_1 \leq 19 \)?
 - NO: Print On-line Error Message
 - YES: Store in a Save Register

3. Obtain \(P_2 = \text{Output Device} \)

4. \(2 \leq P_2 \leq 12 \) or \(16 \leq P_2 \leq 19 \) and \(P_1 \neq P_2 \) ?
 - NO: Print On-line Error Message
 - YES: Setup OUTPUT Calling Sequences in INOUT and SPACE, Store \(P_2 \) in a Save Register

5. Obtain \(P_3 = \text{Printing Option} \)

ERROR

TYPE
Setup OUTPUT
Calling Sequences in
ECOUT and SPACE.
Store P_2 in a
Save Register

Obtain P_3 = Printing
Option

P_3 = 0, CHANGE
or Blank ?

Yes

Save P_3 in
Store Register

P_3 = CHANGE ?

Yes

NO

ERROR

Print On-line
Error Message

Obtain Correction
from Typewriter

NO

P_2 \neq 4 ?

P_1 \neq 4 ?

NO

A

YES

NO

YES

NO
BEGIN (Continued)
Read First Three Records of Input Tape

A

READ

Read First Record as Table/Item Directory

First Word = DIRECTORY ?

YES

READ

Read Second Record as Test Recording Table

UNPACK

Unpack Directory and Recording Tables

READ

Read Before Core Record

HALT

ERROR

Print On-line Error Message
Unpack Directory and Recording Tables

READ

Read Before Core Record

Save Number of Words Read. Set IR6 = 0. Set Record Ident = BCORE

Process Before Core Record

B
Field 1 = END Message?

YES

Write END Message on Output Device

E

NO

Field 1 = RECORD?

YES

Compare Field 2 With Block 1 of Test Recording Table

NO

BCDOUT

Print Error Message

BCDOUT

Print Contents of SLI Message

C

NO

YES

Compare?

NO

D

YES

Store Field 2 into Block 1 of SLI Table
CARD (Continued)

Field 3 ≠ 0 =
During Recording?

Yes

Field 4 ≠ 0?
Yes
Store Address of During Recording
into SLI2

Set During Recording
Bit in SLI2

No

Field 5 = BA, AB, A, B or Zero?

Yes
Set Before and/or
After Recording Bits
in SLI2 to One

BCDOUT

No
Print Error Message
and Contents of SLI Message

Field 2 = CORE

Yes
Fields 7 and 8 Have
Absolute Address?

Yes
Store Field 8 as Core Address in SLI3

No

Field 2 = POOL?

Yes
Store Field 6 as Core Location in SLI3

No

No
E

YES

Table Exhausted?

NO

Find Next Table Entry With Same Record Ident.

SLI3 Record Starting Address is Zero?

NO

Table Exhausted?

YES

Use Last Found Entry
BCDOUT

Writes One Line of BCD Coded Data on the Designated Device. Enter With
A = Address of 15 - Word Output Image and Q = Control Character.

Set Address and Control Character Into OUTPUT Calling Sequence

Decrease INS by Number of Lines to be Used

Write Line

Error Return

Error Code = 9 = EOT ?

Error Code = 0 = Inoperative Equipment ?

Write on Error Message on Printer

Write Error Message on Printer

Write Error Message on Printer

Write an EOT
CLEAR

Sets the 15 Word Output Image to BCD Blanks

Save Contents of Index Register 1

Set Each Word of the Output Image to BCD Blanks

Reset Contents of Index Register 1
CONSOL

Reduces a Console Binary Record to BCD Format. Enter With A = Binary Record Identification Word.

- Set Identification Word into Output Buffer
- Format and Write Heading Line
- Get Contents of A, Convert and Set into Line 2
- Write Line 2
- Get Contents of Q, Convert and Set into Line 3
- Write Line 3
- End
CONSOL (Continued)

Set to Loop for 6 Passes

Get Contents of an Index Register and Buffer Register, Convert and Set Into an Appropriate Line

Is This the Second Pass?

YES

Get Contents of Computer Clock, Convert and Set Into Line 5

NO

BCDOUT

Write Complete Line

NO

Six Passes Complete?

YES
CORE (Continued)

I

Set IR2 = 1 for 2 Passes
Set IR3 = 0 for First and
Second Words of Line

COREL2

Convert and Set
STOR1 = Address of
First Word in Line

0

Modify Output Image Word
Selection in COREL4
and COREL7 by C(IR3)

Binary Data Word
= 0 ?

NO

Increase ZROCOUNT

YES

COREL4

Place Word Into
Output Image as
Word 1 or 3

Increment STOR1
CORE (Continued)
ACORE Processing

Set STOR5 = -0 = ACORE Recording With Change Only Processing

NUMB = 1 = One Record in Dump

YES

NO

TAPEIO

Backspace Scratch Tape C(NUMB) -1 Records

Set IR2 = 1 for 2 Passes.
Set IR3 = 0 for First and Second Words in Line

CORE12

Convert and Set Core Location of First Word Into Output Image

L
ACORE Processing (Continued)

M

\[C(\text{DATA} + \text{IR1}) = C(\text{CORSAV} + \text{IR1}) \] ?

NO

Increment ZROCOUNT

CORE 17

Place Word Into
Output Image as
Word 2 or 4

Increment IR1
Increment IR3 by 7
Increment STOR1

STOR1 = STOR6

YES

Read New Binary Records

NO

CORE 11
CORE 11
Read Binary Before and After
Core Dump Records

CORE 20
Read an After Core
Record Into DATA

TAPEIO
Read a Before Core
Record Into CORSAV

CORE 33
Check for Scratch
Tape Errors

Reset IR1 to 2

CORE 31
Convert Octal Op Code (in A) to
BCD Mnemonic Code
CORE-31
Convert Octal Op Code (in A) to BCD Mnemonic Code

Shift Right Most A Bit Into Q-Sign... Obtain Word in OPCODE Corresponding to Contents of A

Q-Register Sign = 1?

YES

Use Code in Right Half of Word

NO

Use Code in Left Half of Word
CORE12
Sets Address of First Word of a Line Into Output Image

Convert and Set STOR1 as LOCATION, Clearing Remainder of Words in Output Image

CORE14 and CORE17
Set Data Word Into Output Image Enter With Word in A

Separate Word Into Op Code, B-Term and M-Term Components

OUTPUT
CORE 20
Read Successive Records from STCP Recording Tape

1. Binary Record Ident = BCORE and STOR11 = CHANGE?
 YES → R
 NO → S

2. Subtract One from Contents of NUMB.

3. C (NUMB) = 0?
 NO → Read Next Binary Data Record
 YES → BCDOUT
 Print Last Data Line on Output Device

4. OUTPUT
 Set C (DATA + 1) as Starting Address & C (STOR1) -1 as Final Address
 Set RANGE Parameters into Output Image

5. Is This an ACORE Record with STOR11 = CHANGE?
 YES → Place Change Only Message into Output Image
 NO
BCDOUT
Print Last Data Line on Output Device

OUTPUT
Set C (DATA + 1) as Starting Address & C (STOR l) - 1 as Final Address

Set RANGE Parameters into Output Image

Is This an ACORE Record with STOR11 = CHANGE ?

YES
Place Change Only Print Message Into Output Image

NO

BCDOUT
Print Range of Core Dump

Exit CORE
CORE 20 (continued)

Before Core Records Maintenance

Is This the First Record of the Before Dump?

- YES: Transfer Record to CORSAV
- NO: Write the Record Onto the Scratch Tape

CORE 33

Binary Scratch Tape Error Check

Interrogate EXITSTAT
ERROR

Writes One Line on the Printer
Enter with A = Location of Message
and Q = Number of Words in Message, N.

- Diagram -

1. Store Location of Message in OUTPUT Calling Sequence
2. Compute $1008N + 1$ and Store into OUTPUT Calling Sequence
3. Is P_2 of Function Call = PRINTER?
 - YES: Decrease IR6 by 2 Lines
 - NO: OUTPUT
4. Write Message Double Spaced
HEADING
Constructs and Prints the First Line of Each Data Block

Examine BAD Indicators in Second Word of Binary Record

Bit 47 = 1 = During ?

Get Address of During Recording from Bits 24-36 of Binary Record, Word 2

OUTPUT
Place DURING Message into Output Image. Convert and Set Address of During Recording and Contents or KOUNT

Bit 46 = 1 = After ?

Place RECORDED AFTER into Output Image Words 10-14

Bit 45 = 1 = Before?

Place RECORDED BEFORE into Output Image Words 10-14

Clear Words 10-14 of
LINE

Controls the Number of Lines Per Page on the Printer. Enter with A = the Printer Control Character.

1. Subtract the Number of Lines to be Set (1, 2, 3) from IR6
2. IR6 Contains a Negative Number?
 - NO
 - YES
 a. Reset IR6 to 57 = Maximum Number of Lines Per Page - 1
POOL 6
Reduce and Write One Table or Item

SPACE

Skip One Line on Printout

CLEAR

Clear Output Image

Set BCD Name of Table into Cols. 2-9 of Output Image
Clear Entry Counter, Set IR3 = Starting Entry in Record

POOL 15

Determine Type of Data in Table

Modify OUTPUT Call to Convert This Type of Data

Set IR5 to Print 4 Entries Per Line, Set Call to First Entry of Line

OUTPUT

Convert Data Word to BCD Code and Transfer to Output Image, Convert Entry Number
Prints Octally Any Unrecognized Entries in a Reference Pool Record.

1. Save Beginning Core Address, Set IN = Starting Entry in Binary STORAGE.
2. Write Message Stating That Remaining Entries Will be Dummmed.
3. Set IR2 = 1 for Two Passes Per Line, IR3 = 0 to Control Position in Output Image. Clear ZCOUNT.
4. Set Core Location and Clear Output Image.
3 (Fixed Point) ?

4 (BCD Code) ?

5 (Teletype Code) ?

Must be 6 (Typewriter)

Set Binary Scaling into Output Call

Is Number an Integer?

Convert Integer to Integer

Obtain Binary Scaling from Dictionary

Set 8 BCD Characters into Output Image

Obtain Address of Conversion Table
TELETYPE

Teletype and Typewriter Code
to BCD Conversion

X

Store Address of Conversion Table into Program. Save IR2.
Set Program to Use Right Half of Conversion Table Entries. Set IR1
= 0 For Word in Output Image. Set IR4 = 42

Y

Set IR5 for 8 Characters Per Entry

TELETYPEII

Set a BCD Slash into Output Image

Isolate One Character from Table Entry. Obtain Conversion Table Entry Corresponding to the Character's Code

Bit 47 = 1 = a Special Character?

Upper or Figure Case?

Modify Program to Use Left Half of Conversion Table
TELTYP (continued)

Z

Increment IR3 and Entry Counter

Have All Words in Table Been Converted

YES

Restore IR2

Was the Last Output Line Written?

YES

NO

BCDOUT

Print Last Line
TELTYPII
Set One BCD Character into Output Image

Set Character into Image Word. IR4 Determines Position of Character

Has a Full Output Word Been Set?

NO

Decrease IR4 by 6

YES

Reset IR4 to 42

Have All Words in Output Image Been Used?

NO

YES

BCDOUT

Write Output Image

CLEAR

Clear Output Image
READ

Reads One Record from the MCMP Recording Tape.

Enter with $A =$ Address of Input Buffer.

Save Contents of Index Register 5

Set $A =$ Location of Input Buffer

$q =$ Maximum Number of Words

IFS = Tape Number

YES

ERROR

Write Error Message on Printer

HALT

Yes

Bit i of $EXSTAT = 1 =$ Input Error

Bit i of $EXSTAT = 1 =$ Parity Error

NO

Complete the Number of Words Read from MCMPD.

Was a CONTINUE Record Read?

NO

Was a Data Record Read?

NO

YES

ERROR

Write Error Message on Printer

READ
SPACE

Skip a Specified Number of Lines on the Printout. Enter with the Control Character in A.

Set the Control Character into the OUTPUT Calling Sequence

OUTPUT

Write One Line of BCD Blanks on the Output Device

TYPE

Reads An 80-Column Message from the Console Typewriter.

Set A = Address of Input Buffer
Q = No. of 8-Column Fields
Set A = Address of Input Buffer
Q = No. of 8-Column Fields

INFLEX

Read Message from Typewriter

Set A = Address of Input Buffer
Q = Address of Converted Image and No. of Fields to Convert

FFCONV

Convert and Set Free Field Message Into A Storage Table
TABLE
Reduce Table/Item Record.
This Is NOT A Closed Subroutine

1. Store the Output Identification Into the Output Image

2. Format and Write Heading Line

3. Signal POOL 6 to Use T/I Dictionary. Set Current Entry Register = 2

4. Search T/I Dictionary, Block 1, for Comparison of Record Ident. Word

5. Found?
 - NO → E
 - YES → Save Name of T/I. Extract and Save Length of Table

6. POOL 6 Reduce Table
TRACE
Transfers TRACE records from the Binary Tape to the BCD Tape.
Enter with A = First Binary Record Identification Word.

- CLEAR
 Clear Output Buffer

- SPACE
 Skip 3 Lines on the Printout

- BCDOUT
 Print Heading Line

- READ
 Read a Binary Record

- EOF Read
 YES

- BCDOUT
 Print Trace Line

- NO
UNPACK
Separates Data Blocks of the Table and Item Directory and the Test Recording Table. These Blocks May Not Contain the Maximum Number of Entries and Have Been Packed into Adjacent Words On the STCP Recording Tape.

Set IRI = Number of Entries in the Table and Item Directory. Obtain Entries in Block 2 of the Directory and Move to Location of Block 2 of the Table

Set IRI = Number of Entries in the Test Recording Table. Set Entries for Block 3 of Table into the Correct Locations. Repeat for Block 2
APPENDIX A
TABLE DESCRIPTIONS

1.0 Input Tape Images

1.1 ENTDATA, DATA

Variable length data records are read into table DATA. ENTDATA is an item which is set to the number of words in the record currently contained in DATA.

DATA, word 0: Record identification. Eight-character BCD word, left justified with trailing blanks.

DATA, word 1: Processing information. The contents vary with the type of record; i.e., not every recording requires all of the information for processing. Trace records do not have a "word 1" and only the initial record of a Trace group has a "word 0".

Bits 0-14: Starting core address.
15-23: Number of records in a recording. Meaningful only for core dumps.
24-38: "During" recording address.
45: 1 = recorded "before".
46: 1 = recorded "after".
47: 1 = recorded "during".

1.2 Console Record

This record is read into DATA as are all other data records. Its contents, however, are in a fixed format and so are listed here. A console recording consists of a dump of various computer registers at the moment of recording.

DATA, word 2: Contents of A register
DATA, word 3: Contents of Q register
DATA, word 4: Contents of IR1 in the upper M-term and contents of IR2 in the lower M-term.

DATA, word 5: Contents of IR3 and IR4.

DATA, word 6: Contents of IR5 and IR6.

DATA, words 7-12: Contents of Buffer Registers 1-6.

DATA, word 13: Contents of the Computer Clock Register.

1.3 DIRECTORY

DIRECTORY contains the Table and Item Directory for the file currently being processed. Word 0 of DIRECTORY is tagged DIRECT and contains the record identification word. Word 1 contains the number of entries in each block of the table and is tagged ENTTID. The directory itself consists of two parallel blocks of information. Each block has a maximum length. On the recording tape, the blocks are packed together eliminating any unused entries. The blocks are labelled TID1 and TID2, respectively.

TID1: Table or item name. Eight-character BCD word, left justified with trailing blanks.

TID2: Bits 0-14: Core address.
 Bits 24-38: Length of table.
 Bits 39-44: Binary scaling of data.
 Bits 45-47: Coding of data.

1 = octal
2 = floating point
3 = fixed point
4 = BCD
5 = teletype
6 = typewriter
7 = mixed
1.4 TESTABLE

TESTABLE contains the contents of the Test Recording Table for the current data file. Word 0 is tagged RECORD and contains the record identification word. Word 1 is tagged ENTTRT and contains the number of entries in each block of the table. The recording table itself consists of three parallel blocks of information. Each block has a maximum length. On the recording tape, the blocks are packed together eliminating any unused entries. The blocks are labelled TRT1, TRT2, and TRT3, respectively.

TRT1: BCD name of recording requests. Eight characters maximum, left justified with trailing blanks.

TRT2: Bits 0-11: The number of the last record signaling the end of data reduction for this "during" request.

Bits 12-23: The number of the first record with which to start data reduction on this "during" request.

Bits 24-38: The trap address for "during" recordings. Zero if not used.

Bit 45: 1 = "before" request.

Bit 46: 1 = "after" request.

Bit 47: 1 = "during" request.

TRT3: Bits 0-14: The starting address of CORE or POOL requests. Zero if not used.

Bits 24-38: The length of the recording for a CORE or a POOL request. Zero if not used.
2.0 SDRP Internal Tables

2.1 SLI1, SLI2, SLI3

As SLI messages are read, their fields are stored in the Selective Listing Input Table. This table is constructed as three parallel blocks. Its bit structure is the same as the Test Recording Table.

SLI1: Eight-character, BCD request name. Left justified with trailing blanks.

SLI2: Bits 0-11: The record number of this "during" request with which to finish data reduction.

 Bits 12-23: The record number of this "during" request with which to start data reduction.

 Bits 24-38: The trap address for a "during" recording request.

 Bit 45: 1 = "before" recording request.

 Bit 46: 1 = "after" recording request.

 Bit 47: 1 = "during" recording request.

SLI3: Bits 0-14: The starting core address of a CORE or a POOL recording request.

2.2 REFDICT1, REFDICT2, REFDICT3, REFDICT4

Information on the reference pools reduced by SDRP are stored in the Reference Pool Dictionary, REFDICT. Blocks 1 and 2 contain data on the pre-Augmentation Reference Pool. Blocks 3 and 4 contain data on the Augmentation Reference Pool. Block 3 is equivalent to block 1 in content and format, and block 4 is equivalent to block 2 in content and format.
REFDICT1: Eight-character, BCD name of reference pool table or item. Data is left justified in the word with trailing blanks.

REFDICT2: Bits 0-14: Absolute core starting address of table or item.

Bits 15-23: Length of the table. Equal to 1 if an item.

Bits 24-27: Decimal scaling.

Bits 28-38: Binary scaling.

Bits 45-47: Code specifying type of data in table or item.

1 = octal
2 = floating point
3 = fixed point
4 = BCD
5 = teletype
6 = typewriter
7 = mixed

2.3 OPCODE

This 32-register table contains the 3-letter, mnemonic representations of 1604 instructions. It is used to convert octal operation codes to their alphabetic equivalents. Each word is in BCD with two operation codes per word. The first code occupies bits 24-41. The second code occupies bits 0-17. Unused bits are filled with BCD blanks.

OPCODE is indexed by N/2, where N = a 6-bit octal number. The remainder determines which bits of the data word should be used. If the remainder is zero, bits 24-41 are used; if one, bits 0-17.
2.4 FLEXO, TELET

These tables contain teletype and typewriter to BCD conversion data. FLEXO is used for typewriter conversion. TELET is used for teletype conversion. Both tables are indexed by the 6-bit number currently up for conversion.

For a non-special character, the bit structure is as follows:

- Bits 0-5 contain the BCD code for use when the character is to be converted in the lower or letter case.
- Bits 24-29 contain the BCD code for use when the character is to be converted in the upper or figure case.

Teletype and typewriter special character codes are represented on the printout by "(LL)". For these special characters, the bit structure is as follows:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>1 = special character</td>
</tr>
<tr>
<td>46</td>
<td>1 = upper or figure shift special character</td>
</tr>
<tr>
<td>45</td>
<td>1 = lower or letter shift special character</td>
</tr>
<tr>
<td>0-23</td>
<td>4-character, BCD representation</td>
</tr>
</tbody>
</table>
APPENDIX B
VALIDATION TEST CONTROL CARDS

1.0 Function Requests

Some of the function request cards used to validate SDRP were:

*SDRP 6 PRINT
*SDRP 6 3
*SDRP 16 3
*SDRP 6 3 CHANGE
*SDRP 10 3 CHANGE
*SDRP 10 4 CHANGE This last card has an illegal field which was corrected successfully via the console typewriter.

2.0 SLI Cards

The first group of cards were used in various combinations to reduce the five STCP recording tapes.

RECORD ITEM1 SETUP 12 AB 2 2 No "during" output for ITEM1 in this case, since there was only one "during" record on the tape.

RECORD ITEM1 SETUP 12 AB 0 0
RECORD ITEM2 0 13010B BA 0 0
RECORD ITEM3 0 13011B BA
RECORD ITEM4 0 13012B AB 0 0
RECORD ITEM5 0 13013B AB 0 0
RECORD ITEM6 SETUP 13 BA 0 0
RECORD ITEM7 0 13000B AB 3 20
RECORD ITEM7 0 13000B AB 5 15
RECORD AREA1 SETUP 5 AB 0 0
RECORD AREA1 SETUP 5 D 0 0 Illegal field 5
RECORD AREA1 SETUP 5 0 0 0
To reduce the one file tape generated by the author, these cards were used:

```
RECORD POOLA  0  0  A  4700B  0
RECORD TESTTAB  0  0  47560B  0  0  0
RECORD TESTIT  0  0  A  0  0
RECORD CONSOLE  0  0  B  0  0
```

On one run, SLI messages were inserted through the typewriter.

```
RECORD POOLA  0  0  A  4700B
END
```

To reduce the multiple file tape generated by the author, the following cards were used:

```
RECORD CORE  0  0  B  0  0  17177B
```
RECORD POOL 0 0 B 5000B 0
RECORD TABLE 0 10016B B 0 0
RECORD CORE 0 27650B 0 0 0 100B 0 0
RECORD TABLE 0 11610B 0 0 0
DISTRIBUTION LIST

External

Space Systems Division
(Contracting Agency)
Major C. R. Bond (SSOCD)

6594th Aerospace Test Wing
(Contracting Agency)
Col. A. W. Dill (TWRD)
Lt. Col. M. S. McDowell (TWRU) (4)
TWACS (6)

PIR-E1 (Lockheed)
N. N. Epstein
C. H. Finnie
H. F. Grover
H. R. Miller
W. E. Moorman (5)
461 Program Office
698HK Program Office

PIR-E2 (Philco)
J. A. Bean
J. A. Isaacs
R. Morrison
S. M. Stanley

PIR-E3 (LFE)
D. F. Criley
K. B. Williams (5)

PIR-E4 (Mellonics)
F. Druding

PIR-E5 (Aerospace)
F. M. Adair
R. V. Bigelow
R. D. Brandsberg
L. H. Garcia
G. J. Hansen
C. S. Hoff
L. J. Kreisberg
T. R. Parkin
E. E. Retzlaff
H. M. Reynolds
D. Saadeh
R. G. Stephenson
V. White

PIR-E7 (STL)
A. J. Carlson
R. L. Mills

PIR-E4 (GE-Sunnyvale)
D. Alexander
J. Farrentine
N. Kirby

PIR-E4 (GE-Box 8555)
J. S. Brainard
H. G. Klose
J. D. Selby

PIR-E4 (GE-Box 3198 Chestnut)
J. F. Butler
H. D. Gilman

PIR-E4 (GE-Bethesda)
W. L. Massey

PIR-E4 (GE-Box 8661)
J. D. Rogers
DISTRIBUTION LIST
Internal

<table>
<thead>
<tr>
<th>NAME</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busch, R. E.</td>
<td>22153A</td>
</tr>
<tr>
<td>Champaign, M. E.</td>
<td>22091A</td>
</tr>
<tr>
<td>Dobrusky, W.</td>
<td>22150</td>
</tr>
<tr>
<td>Frey, R.</td>
<td>23110</td>
</tr>
<tr>
<td>Greenwald, I. D.</td>
<td>22116B</td>
</tr>
<tr>
<td>Kneemeyer, J. A.</td>
<td>22153A</td>
</tr>
<tr>
<td>Knight, R. D.</td>
<td>24110B</td>
</tr>
<tr>
<td>Myers, G. L.</td>
<td>14058</td>
</tr>
<tr>
<td>Polk, T. W.</td>
<td>24099</td>
</tr>
<tr>
<td>Seiden, H. R.</td>
<td>22091A</td>
</tr>
<tr>
<td>Stone, E. S.</td>
<td>24058</td>
</tr>
<tr>
<td>Tennant, T. C.</td>
<td>27029</td>
</tr>
<tr>
<td>Vorhaus, A. H.</td>
<td>24074</td>
</tr>
<tr>
<td>Wong, J. P.</td>
<td>Sunnyvale</td>
</tr>
<tr>
<td>AFCPL (5)</td>
<td>14059</td>
</tr>
</tbody>
</table>
System Development Corporation,
Santa Monica, California
UTILITY PROGRAM DESCRIPTIONS MILESTONE
11 DATA REDUCTION PROGRAM FOR THE
PARAMETER TEST SYSTEM (SDRP).
Scientific rept., TM-715/040/00,
(Contract AF 19(628)-1648, Space Systems
Division Program, for Space Systems
Division, AFSC)

Unclassified report

DESCRIPTORS: Programming (Computers).
Satellite Networks.

Reports that SDRP is the data
reduction program for the Parameter

Test System. States that its
purpose is to format and list
on a BCD tape, or on the on-line
printer, the data from the
recording tape generated by the Test
Control Program, STCP. Also states
that all records on the tape may be
listed, or records may be selected
for listing through the use of
Selective Listing Input Messages.