NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TRANSLATION
ON THE NEW FORMULA OF THE INTENSITY OF RADIATION
AND NEW CHARACTERISTICS OF THE
TRANSPARENCY OF THE AIR

By
Kh. Nyurk

FOREIGN TECHNOLOGY
DIVISION

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE
OHIO
UNEDITED ROUGH DRAFT TRANSLATION

ON THE NEW FORMULA OF THE INTENSITY OF RADIATION AND NEW CHARACTERISTICS OF THE TRANSPARENCY OF THE AIR

BY: Kh. Myurk

English Pages: 8

SOURCE: Russian Book, Issledovaniya po Fizike Atmosfery, AN Estonskoy SSR, Institut Fiziki i Astronomii, Nr. 1, 1959, pp. 7-14

S/169-61-0-11

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:

TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP-APB, OHIO.

FTD-TT- 63-178/1+2

Date 25 April 1963
ON THE NEW FORMULA OF THE INTENSITY OF RADIATION AND NEW CHARACTERISTICS OF THE TRANSPARENCY OF THE AIR

by

Kh. Nyurk

In actinometry there are used various formulas for determining the direct radiation of the sun in the case of atmosphere of invariable transparencency.

Some of these formulas were obtained empirically, and some of them theoretically.

In the latter case one starts generally with the weakening of the monochromatic radiation in the atmosphere. The intensity, however, of the integral radiation is found by the monochromatic radiation.

In the present report the author derives a formula of the intensity of the integral radiation somewhat differently, namely, assuming that the coefficient of the weakening of the integral radiation, with invariable transparencency of the atmosphere, is a function of the number of masses \(m \).

After determining the suitable conditions relative to the weakening of the integral radiation it was possible to derive a formula of intensity sufficiently well in agreement with actuality. This formula contains a magnitude almost independent of \(m \), which one can make use of as a new characteristic of the atmosphere.

Let the coefficient of the weakening of the integral radiation of the sun in the atmosphere be \(k \), whereby \(k \) corresponds to a certain unit of the number of masses. By assuming that \(k \) under invariable transparency depends on the number of masses \(m \) one can write the equation for the integral radiation:

\[
dS = -k(m)Sdm. \tag{1}
\]

By integrating this equation in accordance with \(m \) within the limits
from \(m_1 \) to \(m \), we obtain
\[
S_m = S_{m_1} \exp \left[-\int k(\mu) d\mu \right].
\] (2)

On the other hand it is known that the intensity of the integral radiation under invariable transparency is expressed by the intensity of the monochromatic radiation in the following fashion
\[
S_m = \int_0^\infty S_{0,\lambda} \exp(-k_{1,\lambda} m) dl,
\] (3)

where \(S_{0,\lambda} \) represents, as corresponds to the length of the wave \(\lambda \), the intensity of the radiation on the upper boundary of the atmosphere, and \(k_{1,\lambda} \) is the coefficient of weakening corresponding to the length of the wave \(\lambda \).

From the equations (2) and (3) we obtain:
\[
S_m \exp \left[-\int k(\mu) d\mu \right] = \int_0^\infty S_{0,\lambda} \exp(-k_{1,\lambda} m) dl.
\] (3a)

For determining \(k(m) \) we will differentiate this expression in accordance with \(m \):
\[
-S_m \exp \left[-\int k(\mu) d\mu \right] k(m) = -\int_0^\infty k_{1,\lambda} S_{0,\lambda} \exp(-k_{1,\lambda} m) dl.
\] (3b)

Hence
\[
k(m) = \frac{\int_0^\infty k_{1,\lambda} S_{0,\lambda} \exp(-k_{1,\lambda} m) dl}{\int S_{0,\lambda} \exp(-k_{1,\lambda} m) dl}
\]
(4)

The equation (4) determines the dependence of \(k \) on \(m \) in invariable transparency. Hence it is possible to draw some conclusions:

1. If \(k_{1,\lambda} = \text{const} \), i.e., the weakening of the radiation is not selective, then the coefficient of the weakening of the integral radiation of the integral radiation \(k(m) = \text{const} \). Under selective absorption and dispersion the coefficient of weakening of the integral radiation \(k \) depends on \(m \).

Consequently the assumption made in the derivation of the formula (1) that \(k \) depends on \(m \) is correct.

2. In accordance with the formula (4) \(k(m) \) are determined by \(S_{0,\lambda} \) and \(k_{1,\lambda} \). As a result of the fact that the dependence of \(S_{0,\lambda} \) and \(k_{1,\lambda} \) on \(\lambda \) is composite, in the determination of \(k(m) \) we come up against great difficulties.

In taking the formula (4) it is necessary to have recourse to great sim-
plifications relative to $S_0 \lambda$ and k_λ, as a result of which there is basis for doubt as to the correspondence of the results of the calculation with actuality.

In this report in determining $k(m)$, proceeding from the indicated assumptions, there is derived the corresponding expression for $k(m)$ and found the corresponding formula of the intensity of direct radiation. In comparing the results of the computations by this formula with the actually measured intensities one can judge as to the agreement of the assumption made with the actual facts.

Let us introduce the following assumptions relative to the earth’s atmosphere from the point of view of the weakening of the radiation:

1. The atmosphere consists of layers in which the amount of substance weakening radiation in the horizontal direction is constant, and

2. in the indicated layers the amount of substance weakening radiation does not change in the course of the period under consideration, for example, a day. This condition is identical with the requirement of the invariable transparency of the atmosphere.

In considering the real atmosphere from the point of view of the conditions mentioned one should note that the air layers which are next to the surface of the earth contain some kind of a substance which weakens the radiation uniformly. This circumstance affects the weakening of the radiation in proportion as the path of the beam in the layer under consideration is greater and as the gradient of the amount of substance weakening the radiation is greater. The first depends on the thickness of the layer and on the height of the sun, the second, however, on the homogeneity of the soil and on local factors.

Over a more or less uniformly covered surface in the absence of sources of smoke or dust with the sun as high as possible, one may consider that the
air layer next to the earth's crust weakens the radiation uniformly.

With the increase in the height the effect of the soil and local factors decreases, and at the same time the gradient of the substance which weakens the radiation of the air layers remains more uniform.

With regard to another condition, under certain conditions of the weather in the course of a short interval of time one can also consider the transparency of the atmosphere as constant.

In conclusion one may say that in real atmosphere under certain situations the above-mentioned conditions are observed.

With the number of masses \(m \) let the coefficient of the weakening of the integral radiation in the layer under consideration be \(k_1 \), and the number of masses with the lowering of the height of the sun be increased to the magnitude \(\Delta m \). Since \(k_1 \) depends on \(m \) it also changes by some value \(\Delta k_1 \). Let us assume that the decrease in the coefficient of weakening is proportional to the relative increase in the number of masses \(\frac{\Delta m}{m} \) (Fig. 1).

In that case

\[
dk_1 = -B_1 \frac{\Delta m}{m},
\]

where \(B_1 \) is a magnitude not dependent on \(m \).

By integrating the latter expression in accordance with \(m \) we will get:

\[
k_i = -B_1 \ln m + C_i.
\]

One can determine the constant integration of \(\xi_1 \) from the condition:

with \(m = 1 \) let us take \(k_1 = \xi_1 \). In that case

\[
k_i = \xi_i - B_1 \ln m.
\]

If the atmosphere consists of \(n \) layers the coefficient of weakening of
the whole atmosphere

\[k(m) = \sum_{i=1}^{a} k_i = \sum_{i=1}^{a} A_i \log\left(\frac{B_i}{m}\right). \]

(7a)

By designating

\[\sum_{i=1}^{a} A_i = A \text{ and } \sum_{i=1}^{a} B_i = B, \]

we get:

\[k(m) = A - B \log m. \]

(8)

By substituting in the formula (2) instead of \(k(m) \) the respective expression from the formula (8) we get:

\[S_n = S_m \exp\left[-\int \left(A - B \log m\right) dm\right]. \]

(9)

By performing the integration in the exponent and designating

\[e^{-(A - B \log m)} = a_m, \]

we get:

\[S_n = S_m a_m^{e^{-m}} \left(\frac{m}{e^m}\right). \]

(10)

This formula is noticeably simplified if we take \(m_1 = 1 \):

\[S_n = S_1 a_1^{e^{-1}} m^{2a}. \]

(11)

or

\[S_n = \frac{S_1}{a_1} (m^{2a}). \]

(12)

By comparing the formula (12) with Bouguer's formula

\[S_n = S_0 e^{a^m}, \]

(14)

we see that

\[\frac{S_1}{a_1} = S_0 \text{ and } a_1 m^{2a} = p_m. \]

(15)

By taking \(m = 1 \) we reveal the physical essence of \(a_1 \); then \(a_1 = p_1 \), i.e., \(a_1 \) is the coefficient of the transparency of the air with \(m = 1 \).

Keeping in mind the latter one may write the formula (13) in the following form:

\[S_n = S_0 p_m m^{2a}. \]

(16)

The formula found contains two unknowns, \(p_1 \) and \(B \), for the finding of which one should determine the value of the intensity for two numbers of masses. For facilitating the computations by the formula (16) a corre-
sponding nomogram has been prepared \(J^1 \). The validity of the formula (16) has been checked on the basis of the data of S. I. Sivkov \(J^2 \) and Sh. M. Chkhaidze \(J^3 \). The results of the computations are given in the tables 1 and 2.

Table 1

Deviations of the intensity computed by the formula (16) from Sivkov's figures

<table>
<thead>
<tr>
<th>(P)</th>
<th>1.0</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>-0.009</td>
<td>0.009</td>
<td>-0.013</td>
<td>-0.013</td>
<td>-0.009</td>
<td>-0.002</td>
<td>0.001</td>
<td>±0.009</td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>-0.001</td>
<td>-0.011</td>
<td>0.011</td>
<td>-0.002</td>
<td>-0.009</td>
<td>-0.002</td>
<td>0.004</td>
<td>±0.006</td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>-0.002</td>
<td>0.006</td>
<td>0.011</td>
<td>-0.003</td>
<td>-0.012</td>
<td>-0.003</td>
<td>0.002</td>
<td>±0.007</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>-0.003</td>
<td>-0.009</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.009</td>
<td>-0.004</td>
<td>0.003</td>
<td>±0.006</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>-0.010</td>
<td>0.007</td>
<td>0.002</td>
<td>-0.003</td>
<td>-0.005</td>
<td>-0.003</td>
<td>0.001</td>
<td>±0.004</td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>-0.010</td>
<td>-0.005</td>
<td>-0.007</td>
<td>0.000</td>
<td>-0.002</td>
<td>0.004</td>
<td>0.000</td>
<td>±0.004</td>
<td></td>
</tr>
</tbody>
</table>

Key: (a) average deviation.

Table 2

Deviations of the intensity computed by the formula (16) from Chkhaidze's figures

<table>
<thead>
<tr>
<th>(P)</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.005</td>
<td>±0.003</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>±0.002</td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td>-0.006</td>
<td>-0.004</td>
<td>0.000</td>
<td>0.000</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>±0.003</td>
<td></td>
</tr>
<tr>
<td>0.007</td>
<td>-0.003</td>
<td>-0.002</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.005</td>
<td>±0.003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The value \(B \) which depends on the transparency of the atmosphere, and determinable by the formula (16) can be used as a new characteristic of the atmosphere. The physical value \(B \) is apparent from the formula (5). \(B \) shows the decrease in the coefficient of weakening \(k \) if the relative change in the number of masses \(\frac{dN}{N} = 1 \).

By comparing \(B \) of the real atmosphere with \(B^0 \) of the ideal atmosphere...
one can determine the new characteristic of transparency \(r = \frac{B}{D_n} \). \((17) \)

More detailed data relative to \(B \) are given in the article by the author [2].

Literature Cited

1. Myurk, Kh. Yu., Nomogram for computation and reduction of some characteristics of the transparency of the atmosphere (See this compendium).

2. Myurk, Kh. Yu., On the rationalness of Makhotkin's index of cloudiness (See this compendium).

<table>
<thead>
<tr>
<th>Distribution List</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTMENT OF DEFENSE</td>
</tr>
<tr>
<td>HEADQUARTERS USAF</td>
</tr>
<tr>
<td>AFCIN-3D2</td>
</tr>
<tr>
<td>ARL (ARB)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

FTD-TE-63-178/1+2