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PREFACE

In processes involving analog machines, digital

machines, or a combination of these, the accurate trans-

mission of information is of great importance. This is

sometimes aided by the application of independent quantizer

activators called dithers. The present Memorandum gives

a numerical solution to the practical problem of determining

the effects of such activators upon the statistical pro-

cessing properties of a quantizer.

The author is a RAND consultant. The work was

initiated while at RAND during the summer of 1962 and

continued under a Tri Service Contract Grant AFOSR-62-340

and a Raytheon Predoctoral Fellowship.
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SUMMA~RY

This report gives a numerical solution to the

practical problem of determining the effects of independent

quantizer activators called dithers upon the statistical

processing properties of the quantizer. For the highly

important sinusoidal and sawtooth dithers exact analysis

yields for the first time answers, as functions of dither

amplitude, to the question of what upper bounds does the

dither impose on the following: (1) correlation between

the quantizer input and quantization noise, (2) value of

the noise mean square and (3) fidelity in the transmission

of the mean square, mean fourth and other even moments of

the input. The above information, which also comprises

a theorem for the quantization of sinusoids and sawtooths,

indicates that the rarely used sawtooth is superior to the

sinusoid.



--vii--

CONTENTS

PREFACEss* ........................ oiii

SUMMALRY. e...................... v

Section1. INTRODUJCTIONo .......................... 1

2. SINUSOIDAL DITHER ............................ 8

3. SAWTOOTH DITHER...... ................. .... *.. *i

4 CONCLUSIONS-o.... .. ...... . 18

Appendix

I. THE ENVELOPES OF DFM2 (m)__ and DFM2(m) ....... o 25
--T --7 O AWOT

II. DERIVATION OF nq AND FOR SAWTOOTH

DITHER (i.e., i. w d) .................... 28

III. PROPERTIES OF SAWTOOTH DITHERS WITH m - r/2.. 31

REFEENCES ..................... ..... ..... 35



-1-

IMPROVING THE QUANTIZATION OF RANDOM
SIGNALS BY DITHERING

1. INTRODUCTION

The injection of dither is a practical means of

improving quantizer performance economically because it

enables coarse quantizers to emulate ultrafine ones. Some

indication of the many processes employing quantization

was given in an earlier report [1], where the linearizing

effect of dither upon the multistep quantizer nonlinearity

Q (Fig. 1) was studied with the goal of minimizing the

maximum excursion of the equivalent quantizer gain from

perfect linearity. While such a minimization is useful

for the design of systems which are subject to deterministic

inputs, it does not solve the problem of optimizing the

performance of the quantizer in systems which are subject

to random inputs. For the random case, we shall examine

the effects of dither upon the performance of the quantizer

as a statistical operator, i.e., as an operator upon the

moments of its input and the quantizer as a source of

noise which can exhibit varying degrees of correlation

with the input.

Consider the problem as formulated in Fig. 2 to be

the following:

(i) Given that:

a. Transfer functions A and C may be linear or

nonlinear and sampled data or time continuous, but they are



-2-

OUTPUT

2q

-2q -• _ -/ 45*
2 -q Aq2  INPUT

q/2  q S 2q 5q
2 2

-q

-2q

Fig. 1 -- The multistep quantizer nonlinearity, Q



-3-

w D

U)) U

4 4

o 0
MJ 4

WH

0

N* -a

-0 '4-

E

NH-

-r ZNaHC

z-

zo 0



otherwise specified. It is possible to have A = 1, C = 0.

b. Transfer function B is linear and has either

a low-pass or band-pass frequency characteristic. Also,

if B is sampled-data, the sampling rate is high, the

information content of o q(t) not being appreciably degraded

by sampling.

c. A time periodic dither dq (t) may be injected

in combination with the nondither quantizer input i '(t).

The quantizer output o q(t) consists of the total quantizer

input i q(t) plus a quantization noise n q(t):

0 q(t) = iq(t) + nq(t)

d. dq may be sinusoidal (i.e., d q(t) - d (t)_-E

mq sin wdt) or it may be sawtooth (i.e., dq(t) = dA(t)

mq(l - 2t/Td) for 0 < t < Td), where q is the quantum size,

m is the normalized dither amplitude and wd = A/Td = 2 rfd

is the dither radian frequency.

e. The variables iq', dq, iq and oq have the

corresponding probability density functions

(p.d.f.'s) ix'(x), dx(x), ix(x) and ox(x).

f. It is possible to operate with Wd in the

attenuation region of B, far above the frequency band

containing the spectrum of iq'. In this way much of the

dither and noise does not reach the system output for nq

becomes nearly periodic, with wd as its fundamental.
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Under certain input conditions [2, 3], the quantizer

acts solely as a source of uniformly distributed noise

which is uncorrelated with the quantizer input. The

quantization is then said to be ideal. Our problem is,

for the condition i q' = 0, to develop measures of how ideal

the quantization is. This furnishes quantization theorems

for sinusoidal and sawtooth dithers. Also, if iq' and dq

are uncorrelated, the measures for the condition iq' = 0

can be used to develop bounds on the measures for the

condition iqi I 0, dq j 0. This can be done with iq'

completely unknown, providing the conditions under (i) prevail.

(ii) The problem is to find as functions of m the

following:

a. With iq' = 0,

1. The zero shift correlation coefficient

Pdn between dq and nq

(2) Pdn(m) aCd n

where ad and an are the standard deviations of dq and nq

respectively.

2. The difference between (nq) and (nqu) =

q2/(12), where nqu has the p.d.f. nux(x) such that
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(3) nux(x) 1/q for lxi < q/2

0 otherwise.

The normalized excess noise EN is then

(4) EN(m) (n)q 12

3. The difference between the actual

and ideal values of (o q) normalized with respect to the

ideal kth moment. This dither figure of merit, DFMk, is:

(5) DFMk(m) - °q)k - [d (m) + nqu k

kd~)+m)
[dq(m) + nqu]

where dnu 0.q qu

b. With iq' 0, find as functions of m and

iq' the following:

i n
(6) Pin'(q',m

in qin
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(7) EN'(i ',m) (n) 1
q Im=-q 02 1

(0 k
(8) DFMk'(iq'm = (o)M- [iq + nIu]

[iq + nqulk

where ci is the standard deviation of iq and .qnqu n 0.

Solutions for Eqs. (6), (7), and (8) are possible

if iq'(t) is known. However, without this knowledge it is

still possible to solve for the least upper bounds of

1Pin'1, JEN'I and IDFMk'I by taking the worst possible

case, i.e., iq'(t) = c, a constant. For any measure,

say JEN'(iq',m)I, the least upper bound for any value of

m = M occurs at (8, mln), where

(9) JEN'(8, ml)I > IEN'(c, ml)I for all c.

Upper bounds, which are not the least, are easily

obtained as the envelopes of IPdn(m)j, IEN(m)j and IDFMk(m)I.
As d (x) is an even function of x, all DFMk(m) 0 for k odd.

Hence upper bounds on odd k DFMk'(iqtm) are not obtainable

as envelope functions; they can be calculated by the

DFMk'(c,m) method outlined above. This has not been done

here.

In the following derivations, the subscript _(,) will

indicate that the dither used is sinusoidal (sawtooth).
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2. SINUSOIDAL DITHER

A. Sinusoidal dither noise correlation coefficient Pdn-

The variables involved are shown in Table 1,

Table 1

VARIABLES IN SINUSOIDAL DITHER

Range of e oQ n = Oq - i d nQ

0 < a < sin 1 0 - d - d

sin < 8 < sin-l( q q - d - d_(d~ - q)

sin-'l < 0 < sin-l 5 2q 2q = d - d_(d - 2q)

sinl[.CB. ]Be<sinl[-(2Bl) Bc- Bq < d -d~(d~ -

where i d =d =mq sin 0, 8 w dt, B m rounded off to the

nearest integer.

To obtain Pdn-, we have

() 1r 2 ()d

0

= {l2÷ B2 - (2R1)

R= 1
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Also,

=(ad) - sin d,

0

and

2r

(12) 27r-7 e~ Odq1q -• 2w-- dq(eqnq(e)de =
0

q2 [m2  1 B V4m2 -(Rl
2

R=1

Therefore, we obtain:

iB 2
zI V4m2- (2R-1) _ }

(13) Pdnf(m) = R=l
mV,/m2 B2 _2 B (F2-)2 2l~]
-m 7 + B -_ r [sinL[{2m - Jim (2R-1)

2 R=l

Using this equation, Pdn- was plotted for m lying in

the range 0.4 < m < 10 (Fig. 3). Obviously, pdn = - 1 for

all m < 1/2.

By computer simulation it was verified that the envelopes

of Figs. 3-9 are, indeed, upper bounds which are not always

least. The examples in Appendix I illustrate this point.
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B. Sinusoidal dither figures of merit for moment
fide lity DFM k.

Employing induction in the above manner we

find that

Bk- Z [Rk- (R-1)k] sin-("•l-

(14) DFM k-(m) = - 1 + R

[d_(m) + nqu k

for k even

= 0, for k odd.

Substituting k = 2, we obtain

B2 - 2 BZ (2R-l) sin-(ml
(15) DFM2 (m) - - 1 +R=1

m2 1

and for k = 4

4 2z (BR 3 - 6R2 + 4R-1) sin'- l(.R

(16) DFM 4-(m)=- 1 + 2

Figures 4 and 5 are computer generated plots of

Eqs. (15) and (16) respectively.
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C. The excess noise, EN_(m), for sinusoidal dither.

By employing Table 1, we obtain for the

normalized mean square noise:

[n-](inB)] {2 - B (2R-I) + (2RBl)sin_\ _-)}(17) q - 2 Z I2 2 -1f2R- 1
q 2 R=l

In Fig. 6, a plot of Eq. (17) for the range 0.4 < m < 10

shows the noise mean square to oscillate about its ideal

value nqu = q 2/(12), the damping increasing with m. EN_(m)

is obtained by combining Eqs. (4) and (17). Note

that (nq)' = (d) = (mq)2/2 for 0 < m < 1/2.

3. SAWTOOTH DITIHER
A. For i q(t) = dA(t) we have the following results:

After some calculations (see Appendix II), we

obtain for the noise mean square:

(18i) (n) 2C12fM2 + 2WfltB

4m 2t3  3 2
+ fo+ 1/ L m + 3/2

for 1/2 _< m _< 3/2.
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(19) (n) Q + 8q2m2 - I'¢Y2_62) + 2¢(.-)

for m_> 3/2

where B arm quantized, a B B-rn, tB* 1/2[1 2m

. .~) *1/2[ 1 +(Ž~ 8 aw/[ 12)

and E -R •

2th

Also, we obtain for the output kth moment:

(20) (Oq)[ = -Z(R-1) 1[ - 2m I
R=-1

for k even

= 0 for k odd.

In addition we obtain:

2, O1 and n [ /2
dA -(mq) /3, a ad I~3nc I
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We obtain the desired expressions by writing:

(21) Pdn ( 1/2

2[d A nq

and

+ nVu)koq - ( i
(22) DFMkA= I l . , for k even

(dA + nqu)

= 0, for k odd.

Substituting k - 2 and k = 4 in the above expressions,

we obtain:

B (22R -1 ) m2

X [2R-1] 1 - - 2

(23) DP" 2  ,(m) = R=1 2 i-(2+ 9

and

X (4R -6R2+4R-3.][1 - ~ -I

(24) DFM4A,(m) - R-1 4 m 2
-1

3m
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Using Eqs. (18) and (19), (q /q was plotted

(Fig. 6) for the range 0.4 < m < 10. Observe that

(n q)A = d = (m •/,,23 for 0 < m < 122 ~~2 ~fO~m<1/2.

Figures 7, 8, and 9 are plots of Eqs. (21), (23),

and (24) respectively.

B. It was shown [1] that sawtooth dithers with m = r/2,

where r is a positive integer, produce an equivalent

quantizer gain which is unity. These dithers also have

interesting properties from a statistical viewpoint, which

are, as proven in Appendix III:

a. EN,(m = r/2) = 0.

b. For n odd we have: Pdn6(m = r/2) = - i/r

and DFM2A(m = r/2) = - 2/(r2 +1).

c. For n even we have: PdnA(m = r/2) = I/(2r)

and DFM2 ,(m = r/2) = 1/(r2 +1).

4. CONCLUSIONS

A. Using the definition and measures of ideal quantization

given in Sec. 1, we have determined numerically the departure

of the actual quantization quality from the ideal for

sinusoidal and sawtooth quantizer inputs. It was found
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I
that any one of the three measures (Eqs. (2), (4),

or (5)) can be made to zero (i.e., to be ideal) for certain

values of m but that they cannot be made to zero

simultaneously. For example, ENA(1) = 0 but PdnA(1) = 1/4,

and DFM2 ,(1) = 1/5.

For both d and dA

(25) IPdn(m)I = IDFM2 (m)l = IDFM4 (m)I = 1 for m < 1/2.

However, for m > 1/2, the envelopes of the sawtooth

functions lie below those for the corresponding sinusoidal

functions. The results for sinusoidal and sawtooth inputs

can be used to determine quantizqtion quality directly in

undithered systems, i.e., where dq(t) a 0 and iq'(t) is

composed of sinusoids and/or sawtooths. These results,

which appear in Sees. 2 and 3, constitute theorems for the

quantization of these two fundamental wavetypes.

B. For a dithered system, i.e., where i I(t) / 0 and
_ q

d = d or d. the envelopes of ipdn(m)I, IDFMk(m)I and

I EN(m)j are of interest because they represent upper

bounds for Pin'', IDFMIk'I, and IEN'I for all iq'.

These bounds, as given in Table 2, are conservative

because they are not everywhere least even for the extreme

situation where iql(t) = c. Nevertheless, they are useful

for design purposes where it is desired to improve quantization
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quality (and therefore some index of system performance such

as the mean square error) to some specified level with

iq '(t) unknown.

Table 2

FOR DESIGN PURPOSES

Measure Dither Type Range of m Expression

P Sinusoid 1/2 < m < 10 IPn'I _< 0.77 0"3

P Sawtooth m > 1/2 1Pin''A -- <

DFM2 ' Sinusoid 1/2 < m < 3/2 IDFM2 'L~ <0.518m-0" 9 5

DFM2 ' Sinusoid 3/2 < m < 20 IDFM2 'L_ < 0.63 m-1.45

DFM2 ' Sawtooth m > 1/2 IDFM2'I , 2

4 ~m2+1

EN' Sinusoid 1/2 < m < 10 IEN'IL < (0.127m- 0 . 1 2 3  1)

EN' Sawtooth 1/2.< m < 5/2 IEN'I A < (0.103-0.1305 - I)

EN' Sawtooth 5/2 < m < 10 IEN'IA !< (0.093m-0.039 1

C. For dithers which abolish quantizer dead zone (i.e.,

for m > 1/2), sawtooth dither is superior to sinusoidal

dither on all theoretical counts. This superiority has been

demonstrated here on the basis of envelopes and in an

earlier report [i] on the basis of degree-of-linearization.

Hence, the only reasons for employing the sinusoid, its
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higher m requiring greater quantizer capacity, are that it

is sometimes more convenient to generate and/or inject.

D. As an example, let m - 2. The results appear in

Table 3.

Table 3

COMPARISON OF DITHERS FOR m - 2

Operation in'l IDFMI IDFM'I I'EN1

Ideal 0 0 0 0

Sdither IP I <0.57 IDF 2'I~ _< 0.23 IDFM'I- < 0.52 IEN'1 < 0.034

Sawtooth I inl l 0.25 IDFM2 'la < 0.118 IDF'IA < 0.35 IENI'1 < 0.0087
dither in 1 PDM1l

With m = 2, the output mean square differs from its

ideal value by less than 25% using the sinusoid but the

difference is less than 12% using the sawtooth. Also the

noise is more nearly ideal for the sawtooth as

'Pin'" Imax<Pin'" max and I A max <EN'Lmax
The output mean square is within 1% of itra ideal value

for all m > 7 using the sawtooth (Fig. 8), and for all

m > 18 using the sinusoid (Fig. 4).
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Appendix I

THE ENVEIDPES OF DFM2 (i(m) AND DFM2 A(m)

A. DPM2_(m). The purpose here is to show (for one

value of m) how it was checked that the envelope of

IDFM2 (m)I is an upper bound on IDFM2 '(cm)L-, where c is

a constant function of time. Substituting k = 2 in

Eq. (8), we obtain:

(26) IDFM2 '(c'm)L~ - + -(c c2 2

The least upper bound is found for any value of m

(say 5) by allowing c to vary freely. Equation (26) is

plotted in Fig. 10 for 0.3q < c < lOq to include the

maximum for m - 5 which occurs at c a 8 = q/2. Substituting,

we obtain IDFM2 '(c - q/2, m = 5)1- = 0.0638 as the least

upper bound for m = 5, using sinusoidal dither. From

Fig. 4 we read 0.065 for the envelope value at m = 5.

Some values of Eq. (26) for m - 0 were plotted

together with those for m = 0.2 to illustrate the great

improvement inlDFM2 'I possible with a small value of m

(Fig. 10). Let the sequence of maxima of

IDFM2'(c,m)l a Sc'm = Scim(l), Scm (2), ... ScM(n),

Observe that lim Sc,o(n) = 0, as Fig. 10 implies, but

that Sc,O (n) > Sc,o. 2 (n) > Sc, 5 (n) for all n.
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(27) Sco = 2, 0.7, 0.44, ..

Sc,o.2 = 1, 0.66, 0.37,

Sc = m.064, 0.056, o.04......,'5

B. DFM2 A(m). The purpose here is to illustrate tiat

the envelope of IDFM2 A(m)I, while an upper bound on

IDFM2 '(c,m)Ia, is not least for all values of m.

The envelope in question is 2/(4m2 + 1). It is least

at the maxima of IDFM2 A(m)I which occur at m = 1/2, 3/2,

5/2, ... , but it is not least elsewhere. Consider,

for example, m = 3/4. By computer programming, one

readily obtains 8 = q/2 and the least upper bound is 3/5,

while the envelope gives a bound of 8/(13), which is 2.5%

above the least.
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Appendix II

DERIVATION OF nf AND o FOR SAWTOOTH DITHER (i.e., i d-

A. (nq) , .

Let ti 26i-) and B = m quantized.

Then we obtain for

(n) L Td
T= d [nq(t)] 2 dt

0

the following:

'-2• d2 tl 2m2

(28) (n )2 f f [1-m + 2m] dt

Td/2 [2ct Td] d2

ti

2 2 t 2 [2 m mt2dt

(29) (nq)~ .# Yf2 m ~ dt
IB=2 d

Ttm 2 Td/2 2

d t
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( 2 2 2 f t B[m _ 2mt' 2  2 [Tdtm(B-1)) 2
(30) (flq) d - [Bm d.-Jat+() )[

qaI B-B d 0  dd B2

+ tdt + .+ J I [-f]d]

t1

t(B-1) t

where B is the positive integer and B - 1/2 < m < B + 1/2.

Writing Eq. (30) in closed form, we obtain

Eqs. (18) and (19).

B. (oq)A

For k = 2, we obtain

(31) (i22 q /

B= 1

(32) 2
(32) (o q/q 3()+(

I B=2=

(33) (0 B R1 2

A B--BR-
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Similarly, for k - 4 we obtain

4 B R 4 43[l) (2R-l1
(34f) (oq/q))R B (-1)

R=l

and in general

(35) (-oq /q ) [R (R1)[ 1

R-1
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Appendix III

PROPERTIES OF SAWTOOTH DITHERS WITH m = r/2

We are given

2tt<
d d

where r is a positive integer. Then obviously the

quantization noise n q(t) is time periodic with period

Tn = Td/r. Also, ad = qr/;v§) and 0n = anu q/ ).

A. Odd r. We have

(36) nq(t) =M( - .2rt o<t< T r

and

(37) ~;Td
(37) (t)nq(t)dt

0

r Td/r 0 dr dt =- 2 2

There fo re,

Td

(38) dnA(m- r/2) = dadan dA(t)nq(t)dt -- 1/r

'0

for r odd.
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Expanding Eq. (22) we obtain:

(39) DFM2 ,(m=r/2) = d + 2d nq +n, - a 2d n gu -

d- + 2 dAnqu + nqu

2 ~ 2By definition, dAnqu 0. Also, nq = nqu =q /(12) and

d6 = (qr)2/(12). Therefore,

(4o) DFm2,,(m=r/2) = q (+q 1

dq + nqu

Therefore, we have

2
( 41) r-M2 ,(m=r/2) = (n 2+1)

for r odd.

B. Even r. We have

(42) nq(t) =- for d< t <Td

and
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(4) ,-q ' 2fTd/(2r) "]2]1 1td-rlfTd(/r i rý]

0 FTd 0 y T dt

Also, substituting in Eq. (40), we obtain

(44) DFm 26(er/2) (nl

for r even.

Substituting in Eq. (2) we obtain

(45) Pd,(m=r/2) 'r

for r even.
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