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The Frictional Resistance and Boundary Layer
of Flat Plates in Non-Newtonian Fluids'

By Paul S. Granville?

~Boundary-layer parameters and frictional resistance formulas for either lominar or

turbulent flow are derived for flat plates in power-law non-Newtonian fluids.

The results

for laminar flow are based on the known velocity profiles for pipe flow, whereas those for
turbulent flow are based on the application of similarity laws.

Tue possibility of injecting non-Newtonian fluids into
the houndary layers of bodies to reduce frictional resist-
ance raises two questions: What is the frictional resist-
ance oi bodies in non-Newtonian fluids? Or more funda-
mentally, what are the characteristics of boundary layers,
laminar and turbulent, of non-Newtonian fluids?

As far as can be ascertained attention has been di-
rected mainly to the flow of non-Newtonian fluids in
pipes for chemical engineering applications. The work
of Metzner and his associates has been particularly note-

' This work was carried out at the David Tavlor Model Basin
under the Bureau of Ships Fundamental Hydromechanics Re-
search Program, .

* Physicist, David Taylor Model Basin, Navy Department,
Washington, D. C.

3 The tilde will be used over symbols relating to factors peculiar
to power.law fluids.

worthy in this respect. Dodge and Metzner[1]* have ap-
plied similarity laws to the turbulent flow of power-law
non-Newtonian fluids in pipes.

The so-called power-law fluids are those whose charac-
teristic stress curves can be fitted by straight lines on
log-log plots. In this respect, Newtonian fluids com-
prise a special case of power-law fluids. The studies in
this paper are confined to flat plates in zero pressure
gradient as the simplest of bodies with boundary layers.
By utilizing the known velocity profiles of the laminar
flow of power-law fluids in pipes, local coefficients of
frictional resistance for flat plates in laminar flow follow.

The similarity laws are applied to the turbulent
boundary layers of power-law fluids on fla* plates to ob-

¢ Numbers in brackets designate Refcrences at end of paper.

Nomenclature?®
A = slope of logarithmic velocity L = subscript for quantities at junc- U = free-stream velocity
law tion of laminar and transi- T = average velocity in pipe
a = factor in equation (29) tional aublayers u = tangential velocity in bounda
B\, B; = intercelpt.s of lognrithrglic ve(lgé:; In = natural logarithm to base ¢ |as;er 1y 4
ity law; see equations log = common logarithm to base 10 . _ ,
and (23, b : = ﬂow-behnvﬁ)r index of power- ur = shear velocity, u; = (r./p)""
C = constant of integration in equa- law fluids, equation (2;)0 z = distance along boundary layer
tion (47) L . 0 = subscript for limit of overlap- ¥ = normal distance from wall
Cr = co:gict:ent of frictional resist- ping of inner and outer laws ¢ = nondimensional y for power-
o, 0, . e . . P,, P, = constants in logarithmic resist- . 2_, 1
':h’c‘} = linearization constants in equa- ! ance formuﬁaa, equations law fluids §* = u,n ‘/;,.
tions (60) and (64) (61) and (66) a; = velocity profile constant, equa-
D = frictional resistance or drag N , ' tion ‘(3%) ’ » €4
D), D, = velocity profile constants in R = radius of pipe . .
equations (36) and (38) Rp = Reynolds number of pipe B = velocity ?roﬁle constant, equa-
¢ = base of natural logarithms 2, ? tion (37) .
F = outer law function, equation Rp=U» 2R/s» $ = boundary-layer thickness
(19) R. = Reynolds number based on 4% = displacement thickness
f = friction factor for pipes length for power law fluids, n = boundary-layer Reynolds num-
H o= inr(ule;)law function, equation R 2,0 , ber, tE:‘,‘Q{:)—l‘/ﬂ/u
. =Un" z/im = momentum thickness .
G = subecript for quantities at Rs = Reynolds number based on mo- # = viscosity of power-law fluide;
junction of inner and outer mentum thicknese for power- see equation (2)
turbulent sublayers 1 » = kinematic viscosity of power-
.H = shape parameter, H == §*/o law fluids, Ry = Ui_lo/,i law fluids, 3= u/p
I, I, = integrals of outer law velocity r = radial distance from center of p = density of fluid
profiles, equations (39) and pipe o = local resistance paramete , ¢ =
(40) T = subscript for quantities at Uy X .
Ji = transitional sublayer factor, junction of transitional and v = shearing strese in fluid
equation (27) inner turbulent sublayers r, = shearing stress at wall

1
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Fig. 1 Shear curves of time-independent non-Newtonian fluids

tain the usual boundary-layer parameters of momentum
thickness, displacement thickness, and shape parameter.
The overall coefficients of frictional resistance follow in
terms of a local-resistance parameter. The subsequent
elimination of this parameter provides the mcre familiar
logarithmic resistance-type formulas.

An example is worked out for the frictional resistance
of a flat plate in an aqueous solution of a synthetic poly-
mer exhibiting a reduction in resistance for pipe tests in
the turbulent regime. Here the values of the pertinent
boundary-layer factors are deduced from the pipe data.

Non-Newionian Fluids

Definition

Non-Newtonian fluids [2] are a class of viscous or real
fluids for which the shearing stress = is no longer a fixed
ratio to the rate of shear; this fixed ratio is termed the
coefficient of viscosity for' Newtonian fluids. For two-
dimensional flows the rate of shear is du/dy and then

- 1(&)

where u is the velocity in the direction of the shearing
stress and y is the distance normal to the direction of the
shearing stress. Representative curves are shown sche-
matically in Fig. 1.

As stated by Metzner [3], Newtonian fluids are: (a)
All gases, and (b) all liquids or solutions of low molecular
weight (i.e., nonpolymeric) materials.

(1)
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Fig. 2 Laminar velocity profiles for power-law fluids

Non-Newtonian fluids are:

1 Solutions or melts-of polymeric materials of high
molecular weights.

2 Suspensions of solids in liquids, particularly if the
solid tends to swell, solvate, or otherwise associate with
the liquid phase,

“The distinguishing feature of non-Newtonian systems
is seen to be that the colloidal rather than the molecular
properties are of significance.”

Classification

Non-Newtonian fluids may be divided broadly into
three main categories [3]:

1 Fluids with properties independent of the time or
duration of shear.

2 Fluids with properties dependent on the time or
duration of shear.

3 Viscoelastic fluids which have some of the charac-
teristics of solids, such as elastic recovery from deforma-
tions.

Most enginecring studies to date have dealt with the
first and simplest category, which will also be the one
considered in this paper.

The time-independent non-Newtonian fluids may be
subdivided into three categories whose characteristic
shear curves are shown in Fig. 1:

1 Bingham plastics which require a finite shearing
stress to initiate movement. Otherwise, the relationship
between shearing stress and shear rate is linear like
Newtonian fluids.

2 Pseudoplastic fluids for which the shear curve is
nonlinear and curves downward. These include the
majority of non-Newtonian fluids.



3 Dilatant fluids for which the shear curve is also
nonlinear but curves upward.

Power-Law Fluids

The power-law fluids are those characterized by linear
plots in log-log coordinates of the curves of shearing stress
versus shear rate, or

_fdu\"
T “(dy) @
These fluids include pseudoplastic fluids n < 1, dilatant
fluids n > 1, and Newtonian fluids n = 1,

Term n is the flow-behavior index and i is usually
termed the viscosity or consistency index (often sym-
holized as K). Here ; is called the power-law fluid vis-
cosity, since for Newtonian fluids n = 1, u is thie ordinary
coefficient of viscosity. However, it should be noted
that the dimensions of i depend on # for non-Newtonian
fluids.

The simple analytic statement of power-law fluids
lends itself readily to mathematical analysis, as shown
in this paper.

Laminar Boundary Layer
Velocity Profile

In lieu of attempting to solve the equations of motion
for the laminar flow of power-law non-Newtonian fluids
wherein the difficulties are compounded by the nonlin-
earity of the shearing-stress terms, a simple expedient is
to assume that the known velocity profiles for pipe flow
[3] hold sufficiently close for the boundary-layer flow on
flat plates. When the boundary-layer thickness & is
substituted for the pipe radius, the velocity profile be-

comes
v ! (1 6) ®

where u is the velocity in the boundary layer parallel to
the plate.

U is the free-stream velocity outside the boundary
layer, and y is the distance normal to the plate. Also

u=0 at y=0
u=U at y=38§

Typical velocity profiles are shown in Fig. 2.
For displacement thickness

] u
| J— — —
8 _.——j; (1 7 ) dy,
s* n
T T2+ 1 @
and momentum thickness

4 u\u

0 nin + 1)
5= @nt D@n+9) ®)

and shape parameter H == §*/9,
3n +2

H = n+1 ©
The solution here for Newtonian fluids n = 1, is
H=25 "

In contrast, the exact Blasius solution for flat plates
[4] which is sufficiently close is

H = 261 8
The limiting conditions for n = 0 are a constant veloc-
ity U for
& [
y> 0, 3 =0,3=0,andH=2
The limiting conditions for n =« are a straight-line
velocity profile
u _y¥ 1906 1
U"8 35 225 @
Shearing Stress at Wall
The local skin friction or shearing stress at the wall 7,

is given by
du)"
.= g\ 9
o= a(2) ®
where
du du
(&).= 5 ©rv=o
From velocity profile, equation (3),
INYAAN
S [EOT
or for shearing-stress coefficient,
Te n 4+ 1\* U*?
G5 w

where » = /p will be termed the power-law fluid kine-
matic viscosity.
Substituting @ for § from equation (5) yields
Te [ (n + 1)? ]" 1
pUt [ (2n+ 1)3n + 2)] R
where R, is the momentum-thickness Reynolds number
for power-law fluids,

(12)

U’;“o
R = S
For Newtonian fluids n = 1, equation (12) becomes
Te 0267
pU? R
In contrast, the exact Blasiua solution [4) is

Te 0.220
oU? Re

(13)

(14)
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Fig. 3 Typical inner law velocity profiles (based on data of reference (1))

Consequently equation (12) will be arbitrarily altered
to agree with the exact solution in the Newtonian case, or

r . m+1 Tt X
pun = 0824 [<2n D6 + 2)] Re UM

Turbulent Boundary Layer
Inner Law or Law of the Wall

Similarity laws for the turbulent boundary layer of
non-Newtonian fluids on flat plates may he deduced in
the same manner as those for pipe flow [1].

Close to the wall the mean velocity u of the turbulent
flow of a particular non-Newtonian liquid® parallel to the
wall is considered to depend on the normal distance y
away from the wall, the shearing stress =, at the wall,
and the density p, the power-law viscosity g, and the
flow-behavior index n of the finid, or

u = fly, ru, p, i, ¥ (16)
By dimensional analysis the variables can be grouped
significantly in the following nondimensional ratios:

U
= fi(3*, n) an

where u, = (r,/p)!* is friction or shear velocity,

§ Since the turbulence level may be uffected by other rheological
effects such as the development of normal stresses, it is preferable
to specify the similarity laws only for each particular liquid.

. u,3m =1y

V=
is the power-law fluid Reynolds number for the inner
law, and # == ji/ p is the kinematic viscosity for power-law
fluids. Fig. 3 shows characteristic velocity profiles for
power-law fluids. The inner law, equation (17), reduces

to the well-known Newtonian case forn = 1.

Ovuter Law or Velocity-Defect Low

At some distance away from the wall and for the re-
mainder of the bounday-layer thickness, the velocity
defect U-u, for Newtonian fluids, has been found experi-
mentally to be independent of viscosity s and is only a
function of 7., p, and distance 6-y. Hence for power-law
fluids the velocity defect may be assumed to be inde-
pendent of # and n. Dodge and Metzner (1] make the
velocity defect independent of @ but dependent on n.
This is inconsistent with the concept of the outer law as
pointed out to the author by Tulin and Owen Phillips of
Hydronautics, Inc.

Then
U-—u ‘= f(r'-y Y 6) (18)
or by dimensional analysis,
U—u_ Y
v, F(G) (19)

The characteristic velocity profile is shown in Fig. 4.
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Fig. 4 Outer law velocity profile

Logarithmic Velocity Law

Within the region of the boundary layer where the
inner and outer laws overlap, a logarithmic expression
results as a consequence of the analytic requirements.
This region will also be termed the inner turbulent sub-
layer.

Eqguating the derivative of velocity u with distance y
of the inner and outer laws, equations (17) and (19),
yields

ou_ i o _ _u, dF
oy 5 o5t = T3 dly/h) @)
or
_+ N y dF
O _ _(¥y _er _ 21
Yo (s) awm -4 @D

Since the left-hand side of equation (21) is only a func-
tion of 5* and n and the right-hand side of (21) is only a
function of y/8 they may be equated to a factor 4 which
is independent of ¥*, y/5, and n. From the left-hand
side of equation (21) there results after integration,

fi = 5 = Aln 5 + Bi(n) (22)
and from the right-hand side,
F=U—u=—Aln%+Ba 23)

Factor B, is necessarily a function of n from the integra-
tion of a partial derivative. Tigs. 3 and 4 show the
logarithmic velocity profiles.

Since both the inner and outer laws hold in the over-
lapping region, adding equations (22) and (23) results in

o= = Alng+ Bi(n) + B, (24)
where
_ u'{2/n)—16
n = pl/n
Also
7 = exp [‘% (¢ — By — B,)] 25)
Sublayers

Various sublayers may be distinguished in the bound-
ary layer according to the behavior of the velocity profiles,
as indicated schematically in Fig. 5. These are:

1 The laminar sublayer next to the wall wherein the
turbulent fluctuations are effectively dampened out.

2 The transitional sublayer wherein the shearing
stresses are affected by both laminar and turbulent con-
tributions.

3 The inner turbulent sublayer wherein the inner and
outer laws overlap.

4 The outer turbulent sublayer where only the outer
law prevails.

Velocity Law for the Lominar Sublayer

The inner law, equation (17), holds here however,
with no specification as to the exact functional relation-
ship. Within the laminar sub-layer for power-law fluids

=2(5)

For the thin laminar sublayer » = r, and with boundary
condition 4 = 0 at y = 0, there results

(2.
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which also agrees with the inner law.

Velocily Law for the Transitional Sublayer

The transitional sublayer is bounded by the laminar
sublayer and the inner turbulent sublayer. VFor the
Newtonian case [3], the velocity profile for the transi-
tional sublayer as originally derived by Squire ix

L= At =)+ B @27
iy
where
.11=B,—Aln%=_\“',_*—,l (28)
This relation starts at the outer edge of the laminar sub-
layer y, and merges asymptotically with the logarithmic
velocity law, equation (22).

It will now be assumed that a similar relationship holds
al~o for powerlaw finids, with By, J,, and ¥.* bheing
functions of n.  Fig. 3 shows typical plots of the velocity
profiles for the transitional sublaver.,

Velocity Law for the Outer Turbulent Sublayer

I"or Newtonian fluids Hama (6] fitted a parabola to the
nonlogarithmic part of the outer law, or

(29)

A similar relation will he assumed for non-Newtonian
fluids.

This relation is to merge smoothly with the logarithmic
relation equation (23): that is, with equal tangents,
Hence, if the point of junction is (y ') ¢, equating deriva-
tives results in

= . 130)
200 =ty 8ol 81 4]
Then equating 23), and (29) produces
1 ] B,
-~ 21n =2 4 | 13i)
tr 8y, W8 A

where (4 8}, ix 10 e determined implicitly,
Fig. 4 shows a plot of the parabolic velocity profile,

Boundory-Layer Parameters

The boundary-layer parameters 8%, 8, awd 1/ = §* 9
are obtained from the similarity laws by appropriately
integrating o with respeet to y picce-wise across each
sublayer.  The vesults are shown Table 1 which is similar
1o that in reference |3,

Then
& _ (,,l - (32)
[ 4 nJ/
2 (n. + "_') - (n.z + ‘i‘) @)
o- n
and
. ('r_' """0 e . 2 me
R‘E 'Fl" Eana’)l
.2 -2 a 1 B .
= gotm-z [(I). + —_)— -(Dg + —)] (34)
n 4 n
where
_—
w =T, ('L> (33)
2 w/r
by = (-’4) Fo+ ) +1 (36)
§/¢
5 2
=TT, [("— - A] -
3 ./r
A(FL* — Ay, * + A (37)
D, = (ﬁ) (Fo+ A2+ A +1  (38)
G
h= [l re@) -3 -@ e
e [$"%¢ 31H 5 _:_; ) G

and

1 2 4
I Ef Fd (-”) e [1 - (5-’) ] 10
7 Jomwe 8) 1 3o (40)

Since 7is given in terms of ¢ in equation (25), 8*, 6, and
H are then funetions of ¢ (and r) according to the pre-
ceding relationships. ¢

Frictional Resistance of Flat Plates

Momenfum Equation

Considerations of the momentum changes of any
fluid [4], Newtonian or non-Newtonian, flowing past a



flar plate indicate that the von Karman momentum
equation is also applicable to non-Newtonian fluids, or
for flat plate in zero pressure gradient

17 Te

de ol
where . is the streamwise distancee from the leading edge.

Sinee the frictional resistance or drag 1) for a flat plate
of unit breadth is

(1)

D= j: rode (42)
the drag coefficient
=B
¢, = zi = 2R 43)

T

where

R = {riz/m-1g
L plin
and
R _ ('\2/1:)—11
r = -——i“—,,"‘

Laminar Flow

Substituting the expression for shearing-stress coef-
ficient. for laminar flow, equation (15), into the momen-
tum equation (41) and integrating from x = 0 produces

(n + 1)2+(l/u) n/(n+1) .
@n ¥ D + 2)] x4

The drag coeflicient for flat plates in the laminar flow of
non-Newtonian fluids from equation (43) becomes

8 = 0.8241/n+1 [

(n 4 1)2HW/m Ta/ntd
@n 4+ 1)@3n + 2)] R/ FD
(45)

C, = 2(0.824)1/(71-}'1) [

Turbulent Flow
Since /¢t == 7./pl’? the momentum equation (47)

becomes
R: = f o%dR, (46)
or integrating by parts
R, = 0% — 2 f Reodo + C 47)

From the statement for R,, equation (34), and %, equa-
tion (25) in terms of o, there results after integration by
parts

fa,qd, = Ao®/mM-15 {D; [1 42 - + ]_
no

_2:[1_{1_(2—2n)+. ]}

L' n g
+a?m ot — 26——.59-"6(2/")—1 (48)¢
Then
R, = D,,,w-;,[l - (2.4 +,%j)},
+ 24 (2;"‘+%);},+ ]

3n — 2

+ (1 — n)a, 02/"+(
2—n

Ywoerm=t ¢ oy
The solution of C, as a function of R; is hence given im-
plicitly in terms of ¢ by equations (34) and (49).

I'or Newtonian fluids n = 1, equation (49) reverts to
that given in reference [7).

Evaluation of Constant of Integration

The evaluation of the constant of integration (' de-
pends on the starting point of the turbulent flow. If
the turbulent flow is assumed to start at the leading edge,
it is found that the similarity laws do not hold all the
way but begin only at the point where the overlapping
of the inner and outer laws starts. The point is given
by yr = yg, where yr is the limit of the overlapping

region nearest the wall and y, the farthest. Then
- yr* -
= 2T __ (50
™ e )
and
oo =Alnn+ B+ B; (31)

where the subscript 0 refers to the limit of overlap.

The evaluation of the constant of integration for the
case of complete turbulent flow then requires the assump-
tion of the variation of ¢2 with R, from the leading edge
to the limit of overlap. As shown in reference (8] for
Newtonian fluids, the curve of ¢? versus Ry starts at zero
where it is tangent to the laminar line and gradually
reaches the limit of overlap where it becomes tangent to
the curve specified by the similarity laws, equation (34).
A like procedure may be applied to non-Newtonian fluids.

The more realistic procedure is to have the initial por-
tion of the flat plate laminar and, hence, with a constant
of integration specified for each particular point of
transition. The constant of integration is evaluated
from the momentum thickness deveieped by the laminar
flow, or

R’lm = R‘lurb (32)

at the point of transition. The value of ¢ at the point
of transition is determined implicitly from equation (34).
There the value of C, the constant of integration, is oh-

¢ The terms containing 8 in equationa (48) and (49) do not hold
forn = 2. Instead for n = 2, the term is —g, In ¢ for equation
(48) and 8 (2 In ¢ — 1) for equation (49).



Table 1 Velocity Profile Integrals for. Pipe Flow
. . U e v 2 ~e
Region Limits Velocity Law j— dy I (—) dy
Uy vr
Laminar g™ N =, ] =2 | we3
£y S — - -
sbiager | 07V WL v Y 7 n
Tronsitional | e oy _ ~8| ¥ % n -~y ] 2 -y -y vy
Sublayes ¥ Sy Syr ;" In(y —Jy)+ 54 yr-4y) ('—,) - Ayy (yr-1) [(—) -A] - Aly, -4+ Blyy -y )
Inner o e o
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Layer
1 y al ~ol
I, = i‘d(—) Iy= F’d(l) a-d__, (.."_) D .(l) (Foed)+1
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tained from thiz value of ¢ and the R, conesponding to
Rs,,.. 0f the laminar flow.

logarithmic Resistance Formuias

The climination of parameter ¢ from equation (49)
produces the more familiar logarithmie resistance formu-
las with (', as a function of R,. The procedure starts by
combining equations (43) and (47) to give, after neglect-
ing the constant of integration,

)_=’_<1_2fk.ada>
2

2 R

e
The expressions for f Reodo and R, from equations

(53)

(48) and (:34) are inserted into equation (33) to give with
a; and 8, dropped as negligible

. o1 oAy _
lﬂ=%’[l _-:’_1+%M_12+ ] (54)
[ il &~ a n 2

'lhrough reiteration ¢ is replaced by (', within the brack-
ots_so that

1« . A\ C, .-
;-2 = ? [i — 24 (’2-) + n (-, + .. (')-))

and by the binomial expansion
VoGl (G (=Y e (4
=@ (F)
and by inversion

_ 2 12 (', tr2
=)+
3n — 4\ ,, (¢ ] .
+( on )A(2)+‘. (57)
Now, after substituting for 7 from equation (25) and

ignoring ay, B;, and the constant of integration, R. in
equation (49) is written in logarithmic form as

lnﬁ,=d——§1—li"‘+lnl),—]ln 1,,
n

R Dz 1 =
+ln[1 — (2A +l—)*l);+ ] (h8)

Substituting the appropriate expressions for 1/¢%, 1/0
and ¢ from equations (55), (56) and (57), and expanding
the logarithm as a series results in common logarithms as

o \/.zn l 172
log RCr = 520064 \©,
n A 1)2 1 _n
T 23026/2 \2 ( ) A"+ 5 3026

wherein terms of higher order than (C,)'? have heen
neglected.-

If the term involving ((,)"/? is linearized with respect
to 1/C/Mt or

= ok ®
then equation [65] becomes
log R,*C, = (%.l,, + @ 61)
where ‘
b= 23026[ (A D’) ] @
and

_n _ ({4 D\ ¢, (B, + B;)
O = 2.3026[' ( + 1),> V2 A :l

+ log 2Dy (63)

For n = 1, Newtonian fluids, equation (61) reduces to
the well-known Kérméan-Schoenherr formula.

Furthermore, if log €, is linearized with respect to
1702 or

log C; = ¢ + — (, - (64)
then equation (61) becomes
P .
log R." = (',1’/2 + Q. (65)
or
P .
C (66)
! aog (log R — Qu)°
where T R
1’2 = l)i — 0y (67)
and
Q-' - Qi — G ((’8)

Equation (66) provides an explicit relation between (',
and R:-

Pipe Flow

Since some of the frictional resistance properties of
non-Newtonian liquids may be deduced from pipe flow,
it is appropriate to show in detail the application of the
similarity laws to pipe flow. The friction factor in pipe
flow is stated in terms of av erage velocity, which pro-
vides a measure of flow- -carrying capacity of the pipe.

Average Velocity

The average velocity of flow in a pipe 7 is given by the
rate of discharge divided by the crms-sectmnal area or

R
2x f urdr
= 0
o ~R?*

(69)
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Fig. 6. Comparison of coefficient of frictional resi ce for fiat pl in turbulent flow

where 7 is the radial distance from the center of the pipe Then from equations (71) and (24) there results for high

and R is the radius of the pipe. values of 7
In terms of similarity parameters <2 ),,,
R - - —_ =4 In ‘;] + Bl(n) + Ba fandd 2D1 + 1)3 (74)
0 =2 ([t L [TLsap) a0 ]
n 0 U nJo U

or from the definition of 4 another form is
where y is the radial distance from the pipe wall towards

the center and u,, 4, and 7* have the same definitions as (l)m _ 2.30264 log [(f5)@/m=1 p ] — 230264
for a flat plate. f V2 V2
Substituting the values of 1 1 Bi(n) By — 2D, + D
.1 2 1 3 1 3 !
(5 +3)ez+ 20 4 B 20t B

0 U,

where
from Table 1 and Ro = U@/m=1 2R/pn
f i3 F*dv*
o U, Numerical Example
from Table 2 into equation (70) produces To illustrate the application of the formulas derived
T oD, + Ds + 201 2y 1) from the similarity laws, the frictional resistance of a
w, T AT flat plate in a non-Newtonian liquid is calculated from
results in pipes.
Friction Factor The example chosen is a liquid used in fracturing oper-

ations for oil wells which shows a lower friction factor

The friction factor f for pipe flow is defined as than untreated water [9]: 0.18 percent aqueous solution

— _Te 72) of a synthetic polymer with n = 0.66 and g = 2.0 X
f= 3p0? ( 10-% Ib-sec”/sq ft. A fit of the pipe data gives
1 2/n—1
or 2\ [J jn = 4 log [(fl/z) RD] + 17.38 (76)
(7) = w (73) Comparison with equation (75) then yields

11



B, 4+ B; — 2D, + D, = 28.00 n
From Newtonian flow [4]
J%’ = 4 log (f"’RD) ~ 0.40 (78)
&nd B] = 5.1,
Then
B, — 2D, + D; = -3.11 (79)

Then for the polymeric solution B; = 31.1 from equation
(77). For both pipe and flat-plate flow (1, 10]
2.30264 = 5.66 (80)

while By = 4.9, reference [10], for flat plates and B, =
5.1, reference [1], for pipes.
Hence for the polymeric solution B, is taken as 30.9

for flat plates,
From values of B, and D, obtained from reference (7]
. 0.1693
log R."Cy = El—,z— - 3.108 (81)

for flat plates in the polymeric solutions.

A comparison of the drag coefficients for a flat plate
in water and in the polymeric solution is shown in Fig. 6
for lengths of 10 and 100 ft, respectively. A decided
drag reduction is indicated.
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