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SUMMARY

The stability of liquid layers with a prescribed interface geometry

in the presence of surface tension and unidirectional body forces is

investigated theoretically by means of a small vibration analysis.

The fluid of the layers is assumed to be incompressible and inviscid and

the flow irrotational. Particular emphasis is given to the effects of

geometry and unidirectional body forces on the stability of such layers.

They are studied by means of a semi-inverse method which allows the

exact determination of particular eigenvibrat ions.

Following the classical method of investigating the stability of

systems, we establish the equations of motion for small perturbations

of the equilibrium configuration and formulate the boundary conditions

for both two- and three-dimensional layers with interface surfaces

having a constant mean curvature. We linearize the pertinent equations

and express them in terms of the velocity potential. By separating the

time and space variables, the vibration problem is reduced to an eigen-

value problem. Exact eigenvibrations are sought by considering solutions

to Laplace's equation which contain a number of free parameters. The

arbitrariness of these parameters is reduced by enforcing the solution

to satisfy the interface boundary condition. Integrating the differential

equation of the streamlines defined by such solutions and requiring the

solid supporting surface to constitute a streamline, we arrive at rigorous

vibration solutions. If we introduce sufficiently many free parameters

we are in a position to review exact vibration solutions corresponding

to a family of liquid layers with the same interface surface and differ-

ent solid supporting surfaces and thus different thickness distributions.

The stability criteria of the layers are presented in terms of

inequalities involving the magnitude of either the unidirectional body

force, g, or the nondimensional stability parameter g = T/pga2 in

which T denotes the surface tension, p the fluid density and "a"

a characteristic length of the liquid layer. It is shown that the

variation of the thickness of a fluid layer may significantly influence

its stability, especially for body forces in the near-zero region. The
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results also reveal that for some solid supporting surfaces, layers of

the type considered are only stable if the body forces are larger than

a certain positive value, while for other surfaces stability prevails

as long as the body force exceeds a certain negative limit value. This

fact may be utilized in the design of containers of fluid for near-zero

gravity conditions in such a manner that the fluid adheres to a certain

area of the container.

The interpretation of the results obtained in this analysis is

sabJect to the restriction that the dimensions of the interface surface

be large compared with the effective range of the contact forces, since

no contact angle considerations have been introduced in explicit form.
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NOTATION

A,B,C,D,E Constant coefficients

An, n, D n Coefficients of infinite or finite serie.

F(t) Arbitrary function of time

F(r,z),X(x),Z(z) Functions introduced to separate variables

H Mean curvatureH = i +

J mth order Bessel function of first kindm

Associated Legendre functions of degree m and

order Pn

R1,R12 Principal radii of curvature of the interface surface

S Bounding surface (interface surface equation S1 = 0;
rigid surface equation S2 = 0)

T Surface tension

a Radius of equilibrium interface surface or nondimensional
depth of fluid layer with flat interface surface at
x=O or r =0

b Half length of finite flat uniform fluid layer

g Magnitude of body forces

h Characteristic length of layers

iq

k,A,p,h n )p Constants used in separation of variables

i Body force

m,n Integers

-.0
n Unit vector normal to rigid surface S2

p Pressure in fluid

Pe Ambient pressure distribution at equilibrium interface
surface
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Notation (cont'd)

r,e Polar coordinates

r,z,e Cylindrical coordinates

r, G, ( Spherical coordinates

r 0 Nondimensional radius of axially synnetric flat inter-
face, also nondimensional radius at e = 0 of the
rigid supporting surface S2  of layers with curved
interface

t Time

v Fluid velocity

x, z Rectangular coordinates

x,z Non-dimensional length parameters x = , z
h h

x0 2xo 0= non-dimensional length of two-dimensional fluid
layers with flat interface at z = 0

* Velocity potential

* Potential function in terms of space variables

Potential of body forces

a Largest angle subtended by layers with curved interface

a Coefficient of infinite series
n

ah oa-•or -

g g

First order small perturbation of interface surface

Free parameter

Stability parameter L = T 2 , or
Pgh pga

p Density of fluid

a Frequency parameter (square of eigenfrequency)
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I. INTRODUCTION

The significance of the phenomenon of interfacial instability of

liquid layers in certain ablative heat protection problems, as well as

in the behavior of fluids in containers under near-zero gravity condi-

tions, has been repeatedly pointed out. (23) The theoretical analysis

of this phenomenon has so far been largely restricted to layers of ex-

tremely simple geometry, in particular to layers with a uniform

thickness. (4-11) In this investigation we consider layers with a non-

uniform thickness and interface surfaces with a constant mean curvature.

With the aid of the results of a recent study of -the effects of curvature

and unidirectional body forces on the stability of liquid layers (2) and

the application of a semi-inverse method of finding exact solutions to

the free oscillation problem of a fluid in a container 12) we derive

stability criteria without resorting to approximate methods.

As in reference (2), the density of fluid separated by the interface

from the layer under consideration is taken as zero while the fluid of

the layer is assumed to be incompressible and inviscid and the flow

irrotational. Moreover, we again define the equilibrium configuration

of a liquid layer as stable whenever any initial disturbance of suffic-

iently small amplitudes and velocities leads to a motion in which the

amplitudes and velocities remain arbitrarily small. Also we assume that

the eigenfunctions corresponding to the free vibration problem are com-

plete, which allows us to express the motion of the fluid due to any

initial disturbance as a linear combination of the eigenvibrations. We

therefore may deduce as the necessary and sufficient stability condition

that all the eigenvalues (squares of the eigenfrequencies) be real and

positive.

For layers of uniform thickness spread over various portions of the

exterior or interior of cylinders and spheres the stability criteria

could be presented in terms of inequalities involving the magnitude of

either the unidirectional body force, g, or the nondimensional stability

parameter
T

pga
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in which T denotes the surface tension, p the fluid density and a

the radius of the equilibrium interface surface. With these layers it

is consistently the first antisyuuetric eigenvibration which leads to

the stability criterion, since the corresponding eigenfrequency ceases

first to be real when we vary the body force (or stability parameter)

and start out with a value for which the equilibrium is stable. We

anticipate that thib fact also prevails in layers with a variable thick-

ness and therefore limit ourselves to determining only the eigenfrequency

of the first antisymmetric eigenvibration.

While exact analytical solutions to the small vibration problem of

layers with a nonuniform thickness can in general not be obtained, it is

nevertheless possible to determine rigorously one single eigenvibration

in certain cases by means of a simple semi-inverse method. (12) By

choosing to find the first antisymmetric free oscillation with the aid

of this method and comparing the results for various layers, we can

study the influence of the thickness variation on the stability.

-2-



II. BASIC EQUATIONS

We consider layers of an incompressible liquid which are bounded by

a rigid wetted surface S2  and an interface surface S . The interface

S1 separates the fluid of the layer under consideration from a neigh-

boring gas or fluid of zero density. Any motion of the liquid is assumed

as irrotational, which allows the velocity v- to be expressed with the

aid of a velocity potential 0 as

-V (1)v =-•2O

Denoting the Laplacian by V2 the equation of continuity has the form

S= 0 (2)

We consider the presence of a body force k per unit mass which can be

derived from a potential S2 such that

1= -va (3)

Assuming the fluid as inviscid and having a density p, a pressure p,

we may express the equilibrium in the sense of d'Alembert in the form

V + P + 1 2)] = 0 (4)

Integrating Eq. (4) and denoting by F(t) an arbitrary function of time

we obtain Euler's equation

S+ p a - 3 + 1 v2 F(t) (5)

Without loss of generality we may include F(t) in the time variance of

0. In addition to this we may linearize (5) for small flow velocities

by neglecting the term (1/2)pv2 , which reduces equation (5) to

-6 I
p ( ;-t Q) (6)

The kinematic boundary condition of the fluid layer can be written in

the form

-3-



Dt 0 (7)

where

s=0 (8)

represents the equation of the bounding surface in question.

Denoting the surface tension by T and the external pressure by

Pe Y the dynamic equilibrium of the interface surface S1 can be

expressed as

,- T(r- ) ).2TH (9)

where R, and R2 are the principal radii of curvature and H the

mean curvature. (The radii of curvature are taken as positive if the

center of curvature lies within the fluid.)



III. SEKI-INVERSE METHOD OF FINDING EXACT EIGUVIBATIONS

In investigating the problem of the free oscillations of an

incompressible fluid in an axially symmetric container, considering

exclusively flat interface surfaces and neglecting the effects of

surface tension, B. A. Troesch(12) made use of a semi-inverse method

which yields a rigorous solution for one of the eigenvibrations. We

apply the basic idea of this method to our fluid layers in the following

manner

Instead of prescribing the geometry of a layer completely, we

merely select the shape of the interface surface in a suitable manner.

For appropriately chosen solutions to Laplace's equation which contain

sufficiently many free paraneters it is possible to satisfy the inter-

face boundary conditions in the presence of surface tension and body

forces, By establishing the streamlines defined by such solutions and

requiring the solid supporting surface to constitute a streamline, we

are in a position to review rigorous vibration solutions corresponding

to a class of liquid layers with the same interface and different solid

supporting surfaces and thus different thickness distributions.

It should be noted that the selection of the shape of the interface

together with the body forces and surface tension define a certain

ambient pressure distribution, the feasibility of which can be dealt

with separately.
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IV. EIGENVIBRATIONS AND STABILITY OF TO-D-MIENSIONAL LAYERS WITH FIAT
INTERFACE

4.1. Rigorous Solutions to Free Vibration Problem

We refer the layer to Cartesian coordinates (x, z) such that for

static equilibrium the interface surface is characterized by z = 0

(See Fig. 1). During the motion resulting from a small disturbance the

interface surface S1 deviates from its equilibrium position by a small

distance t(x, t) and the equation for S assumes the form

S z(x, Z, t) = z - Y(x, t) = 0 (1O)

With Eq. (10) the mean curvature H of the interface surface is given

by

2

2H x2 (n1)2 2(x' t) 2

We assume that ý(x, t) as well as its derivatives are of first order

small and neglect all terms which are of second or higher order small.

Thus Eq. (11) reduces to

2H-- - t(X, t) (12)3x 2

We shall restrict ourselves for the present to unidirectional body forces

with the potential

S= gz (13)

Substituting Eqs. (12), (13) and (6) into the dynamic boundary condition

(9) we obtain

P [Tt (x, z, t) - g --P(x) =-T a22x (x, t) (14)

-6-



With Eqs. (1) and (10) the kinematic boundary condition (7) can be

written in linearized form as

Tt

By differentiating (14) with respect to time and making use of (15)

we can combine the kinematic and dynamic boundary conditions at the

interface surface into a relation for the velocity potential

x3z

at 2 7z ax 2 z

With the aid of Eq. (2) we can write this combined boundary condition

also in the form

p L-t-+g + T 63,D =o (16)

Neglecting consistently terms which are of second and higher order small,

we may require (16) to be satisfied at the equilibrium interface z = 0,

rather than at the disturbed interface z = Y(x, t).

Since we are seeking solutions in the form of harmonic oscillations

we separate the space and time variables according to

O(x, z, t) = *(x, z)ei4at (17)

and thereby reduce the initial-boundary value to an eigenvalue problem

with *(x, z) as eigenfunction and a as eigenvalue. By substituting

(17) into (2) and (16) we find

a2 * 2#2+ 0 (18)

and

F 3o
at ( r+ g T) + T~ =0 (19)L z Jz=O

-7-



We note that the eigenvalue problem for * is of a special type since

the eigenvalue appears exclusively in the boundary condition and not

in the differential equation and since the boundary condition (19) con-

tains derivatives of higher order than does the differential equation.

With the transformations

-x - z_

h h

where h is a characteristic length of the layer, we can rewrite

Eqs. (18) and (19) in terms of nondimensional space parameters

-2 * 2 0 (18')
~x 6z2

+ + 3] (19')

where

oh Ta=h and P = (20)
g pgh2

For the sake of convenience we replace again x by x and z by z

with the understanding that x and z are now nondimensional length

parameters. The eigenvalue problem can thus be presented in the form

S2 2 (18)
6x 2 z2

34r

+ + L P =0 (19")Lz z =0

We consider now the class of exact solutions for * which can be obtained

by separating the space variables:

*(x, z) = X(x).Z(z) (21)

By substituting (21) into (18) we deduce
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"X'" Z _2 (22)

whereby k2 may assume positive as well as negative values. We consider

first k j 0. According to (22) * must be of the form

*(x,z) = [A sinh(kx) + B cosh(kx)] [C sin(kz) + cos(kz)] (23)

if k ý 0. By requiring expression (23) to satisfy the interface boundary

condition (19") we obtain

-0 + k(l - lk 2)c = 0 (24)

Since the solid supporting surface S2 of the layer must constitute a

streamline, S2 is given by

v =.n 0 (25)

or

dz d (26)

where 11 is the normal vector of the surface. Integrating (26) by making

use of Eqs. (21), (22) and (23), we find

S2 (x,z) = X'(x)Z'(z) - E

= k 2[A cosh(kx)+B sinh(kx)]"[C cos (kz)-sin(kz)]-E=0 (27)

where E is a constant.

if we restrict ourselves to layers which are symmetric with respect

to the z-axis, we have

B= 0

Hence the eigenfunction and the solid surface S2 are given by

*(x,z) = A sinh(kx) [C sin(kz)+ cos(kz)) (28)

and

S2 (x,z) = cosh(kx)[C cos(kz)- sin(kz)] -E -0 (29)

"-9-



where E is a new constant. We specifically consider the following
three cases:

(a) E O0

In this case the layer is of uniform depth and bounded by the solid

surfaces x = iL0 and z = -a as illustrated in Fig. 2. The

corresponding value for k is purely imaginary

k = it (30)

and 2n-1(1
Xo = 2 2 1r, > 0, n = integer (31)

C = -i tanh(la) (32)

Substituting (30) and (32) into (24) and (28) we obtain a simple

relation for the eigenvalue a and the corresponding eigenfunction:

A C(l + 2) tanh(la) (33)

*(x, z) = D sin(ix) cosh[l(a + z)] (34)

(b) E/0

The parameters C and E in Eqs. (29) may be determined for ex-

ample by requiring the surface S2 to pass through the points

(0, -a) and (xo, 0). Thus we find for an arbitrary k (real or

imaginary)
a= l- k2)sin(ka) (35)

g-• - ( - •k 2 ) cosh ko-cos~ka (5

S cosh(kxo) -cos(ka)

S2 (x,z) =cosh(kx) os(kz)- sin(k1a) sin(kz -cosh(kxo)= 0

*(xz) = D sinh(kx) [cos k(a + z) - cos(kz)cosh(kx0 )] (36)

Representative layers corresponding to various values of k are

shown in Fig. 3.
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(c) k = 0

In this case the solution to (18) is of the form

*(x, z) = (Ax + B)(Cz + D) (37)

and the interface boundary condition (19") is satisfied if

C = OD (38)

Considering only layers which are symmetric with respect to x = 0,

we require

B = 0 (39)

The integration of (26) leads to the expression

S2 (x,z) = + D)2 - 2 E = 0 (40)

Choosing the values of (D/C) and E such that the surface S 2

contains the points (0, -a), (x 0 , 0) we obtain

C 2a (41)D=B 2 2
a +x0

and layers as illustrated in Fig. 4.

4.2. Stability Criteria

Assuming that the liquid layer under consideration has finite

dimensions and a complete set of eigenfunctions *1i *22 "''' *n' -1)

we may express the motion of the fluid due to any initial disturbance

in the form

0 a ~ n *n e i% nt (42)
n~i,2, ...

from which we immediately derive

a real, n > 0, n = 1, 2, (43)

as the necessary and sufficient stability criterion.
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We apply this criterion to the eigenvibration obtained in a rigorous

manner in the previous section and we consider again the three different

S.cases: E = 0, E ý 0, and k = 0.

(a) E -0

Requiring a > 0 in (33), we deduce

sO. + PA i2) > 0 (4i4)

With Eqs. (20), (31) and

bx0 = T (45)

where 2b is the width of the layer [See Fig. 2] we can reduce

(44) to the classical result

a > __ (46)
T 4b 2

(b) E O0

From Eq. (35) follows

a > 0 if gk(l- tk2 )sin(ka) > 0 (47)

We note that Eqs. (35) and (36) do not change if we replace k by

-k and may therefore restrict ourselves to positive values of k.

Since the slope of the solid surface 82 at x = Xo, z = 0 is

given by

dz sinh(kxo)sinh(ka)
x=xo cosh(kxo) cosh(kxo) -cos(ka)]
Z=0

its sign is the same as that of sin(ka).

This means that we have a convex solid surface for sin(ka)< 0

and a concave one for sin(ka)> O. Hence considering positive as

well as negative values for g we may restrict ourselves to

sin(ka) >0 without loss of generality. We obtain as stability
condition

- 12 -



oa 0 If T h'k
Tr> 0 If k2 (sin(ka) > 01 (48)

Similarly, we deduce for k = it

a > 0 if PA >---2 (49)
T h 2

(c) k = 0

In this case it immediately follows from Eq. (41) that

S> 0 if g > 0 (50)

For a real k the layers are only stable if the body forces exceed a

certain positive limit value while for an imaginary k the boto forces

may come close to a certain negative limit value before instability is

reached. We conclude from this that the variation of the thickness of

a liquid layer may significantly influence the stability criterion.

Besides this, we may utilize this fact in designing containers of fluids

for near .zero gravity conditions in such a manner that the fluid adheres

to a certain area of the container.
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V. EIGENVIERATIONS AND STABILITY CRITERIA OF THREE-DIMENSIONAL LAYERS
WITH FLAT INTERFACE

As illustrated in Fig. 5, we refer the layer ti cylinder coordinates

z, r, e such that for equilibrium the interface surface S1 is defined

by z = 0. Denoting the deviation of the interface from its equilibrium

position by t(r, e, t) we may write for the surface S1

S1 (z, r, e, t) = z - t(r, e, t) = 0 (51)

and its mean curvature in linearized form

(52
2r r6 e

As before, we assume the presence of body forces whose potential is de-

fined by Eq. (13). The combination of the dynamic and kinematic boundary

conditions leads to

+ g + T =0 (53)

We separate the time and space variables according to

O(z, r, 6, t) = *(z, r, ~ T (54)

If we refer the length parameters again to a characteristic length h

we may interpret z and r as nondimensional quantities and define the

eigenvalue problem for * by

2r 2 2 2

* " 1" " z, +4o (55)

0 - 3 =0 (56)

Exact solutions for * can be obtained in the form

- 14 -



*(z, r, e) - F(z, r)eime (57)

which requires F to satisfy the equations

)2F 1 F m2 F (58)
+ 2 ~F+ =

I F 13F'
F - -0 (59)

Considering first such functions which permit an additional separation

of variables, we find

F(z, r) = Alcosh(kz) + B sinh(kz)]JM(kr) (60)

where Jm(kr) denotes the mth order Bessel function of the first

kind and k the separation parameter. The substitution of (60) into

(59) leads to

S= 

St = k(l + k 2)B

or

a = I k(l + i 2k)B (61)
h

The stability conditions are

k> 0, B> 0 & > k (62)
< 'T h- 72

and the corresponding equation for S2

k> 0, mn> 0, in[sinh(kz)+B cosh(kz)]-k2 1 J (kr) dr+C=0 (63)

0 int

Layers with solid surfaces defined by (63) are illustrated in Figure 6.

We consider the following special cases

- 15 -



(a) Fz =0 , Fr = 0

Requiring S2  to contain the points (0, -a) and (r 0 , 0) we

have in this case a layer of uniform thickness bounded by the surface

z = -a and the cylinder r = r 0  (See Fig. 7). The relation for the

eigenfrequencies corresponding to mode shapes as defined by (60) is

a = I k(l + .Lk 2)tanh(ka) (64)
h

where the possible values of k are given by

Jt(kro) = 0 m = 1, 2, ... (65)

From (64) we find the stability condition

a >, " k2 (66)

which indicates that the lowest value for k is most significant: m = 1,

kr 0 = 1.85.

(b) k.= 0

In this case the velocity potential can be written in the form

*(r, z, e) = A rm (z + B)eira@, m ý 0 (67)

The interface boundary conditon (59) yields

B (68)

and the equation of the solid surface S2 becomes

= m (1 + - • r + C =0 (69)

By requiring the surface S2 to pass through the points (r = 0,

z = -a) and (r = r 0 , z = 0) we find

2 2
B a 0mr (70)

-16-



and

2 2
2 am+ro a ~2  2=0(1

S2 = mz + z + rc- r 2= 0 (71)
2 a

From (68) and (70) we obtain as stability condition

g > 0 (72)

which holds independently of m, r 0  and a. Representative layers

defined by (71) are shown in Fig. 8.

As in the two-dimensional case, we conclude that the variation of

the thickness can markedly influence the stability of three-dimensional

layers with a flat interface, particularly for body forces in the near-
zero region. We also note that for some solid supporting surfaces S2

(container walls) layers of this type are stable if the body forces are

larger than a certain negative limit value while for other surfaces S2

the body forces have to be positive for stability. Moreover, we may

again suggest the feasibility of exploiting such a behavior in the
design of fluid containers for near-zero gravity conditions.

- 17 -



VI. ON THE STABILITY OF LAYERS WITH UNIFORMLY CURVED INTERFACE

6.1. Two-Dimensional Layers with Curved Interface

We refer the layer to cylindrical coordinates such that the equil-

ibrium configuration is characterized by r = a as shown in Figure 9.

In the presence of a disturbance the equation for the interface surface

may be written in the form

Sl(r, 8, t) = r - [a + t(e, t)] = 0 (73)

In terms of cylindrical coordinates, the uniaxial body forces are now

defined by the potential

I Q = gr cos e (74)

and the linearized mean curvature given by

2H = 2" = 1 - a(Et) _ 1 2 1 (e,tl (75)
R 2 a IL 6

By combining the dynamic and kinematic boundary conditions as before, we

obtain

p 1 7 g cos r 3 (76)

L2[tr=a a L j r=a

We again separate the time and space variables according to

0(r,e,t) = *(r,e)eisRat (77)

and may interpret r as nondimensional length parameter by using "a"

as the reference length. Thus we arrive at the eigenvalue problem for

' defined by

+1 1 , * o (78)
3r 2  rr 2 3e2

- 18 -



C os e + + = 0 (79)
rr (Tr re2)r=l

where 0 and P now abbreviate

T and 13 = Ca (80)
pga g

The streamlines can be obtained by integrating the relation

r 6 de=-rd ar (81)

Any function of the form

N

*(r,E) = (rIn + An r'in)[Bn sin(ine) + Dn cos(Ine)] (82)

n=l

with arbitrary In and N represents a solution to (78). In particular,

we may choose In = n and N = 3:

3

*(r,e) = (in + An r-n)[Bn sin(ne) + Dn cos(ne)] (83)

n=l

We require D = 0, n = 1,2,3 and thus restrict our attention again to

the antisymmetric modes of oscillation. The substitution of

3

*(r,G) n Bn[rn + Anr-nlsin(ne)

n=l

into the interface boundary condition (79) leads to the relations

- 19 -



B3 1B2 = 2

A2 = 1 - 20X

BI/2= X + 2P[l - x(p + 6p)] (84)

AlB 1/B2 = X - 2P[l - x(0 + 6g)]

A3  1

in which X is an arbitrary parameter. If we select

% =(85)

we limit our analysis to a family of layers for which we can readily

derive a stability condition by replacing the abbreviations P and

in (85) by their original form and requiring a to be positive. We

deduce

a>O, >6T

pa

a < 0, g < 6%T (86)
2pa

With (85) the differential equation for the stream lines becomes

dr r(%(r-r 1)sin e+2[r - (1-2X%)r 2]sin 2e + 3%(r 3 - r3 )sin 3e) (87)

d)1 2 2 3 -3
X(r + r' )cos e + 2[r + (1 - 2%P)r" ]cos 2e + 3%(r + r )cos 3e

Representative layers with such streamlines are illustrated in Figure 10.

6.2. Two-Dimensional Layers with Slightly Curved Interface

For such layers we may write

cos e f 1 (88)

and as interface condition

- 20 -



+ + 3;r )1 = 0 (89)

j=l

This condition is satisfied by

*(r,e) = B(rI + Ar-')sin Xe (90)

for arbitrary I if

A - [1 + P(.g - 1)] -2 (91)
+ (A2 . i)] +

The corresponding stream lines are given by

B[r - ArK ]cos(1e) - C = 0 (92)

where C denotes a constant. By choosing C = 0 we arrive at a family

of layers with uniform thickness and the same stability criteria as dis-

cussed in Ref, 2. For C ý 0 we may require the solid boundary to contain

two prescribed points, e.g.

e = 0, r = ro; e = *, r=1

which determines A and C/B in (92):

r - cos(za)
A 0 -1 (93)

r 0  - cos(ta)

42 1C ro - ro
= -0 cos(la)

rO - cos(la)

By comparing (93) and (91) we find the relation
22

0.=51 "ro 29 _ý " )2-r 0 (5 + (95)a 1 -+ r02- 2rI cos(T(a) Pa

0 0 1 a
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from which we can deduce the stability conditions

2

a> 0 ro 0 >

2
a ro > r : > T:< 1 '10 T

As a special case we consider 1 = 1 and A = 0. The substitution of

(93) and (94) into (92) yields for the solid boundary

r cos e = r 0  (96)

i.e., a flat surface. The corresponding velocity potential is given by

S= Br sin e (97)

Specific examples of two-dimensional layers with a slightly curved inter-

face are illustrated in Fig. 11.

6.3. Three-Dimensional layers with Curved Interface

In terms of spherical coordinates we may define the disturbed

interface by

Sl(r, eqT, t) = r - [a + 9(e, P, t)] = 0 (98)

where r = a represents the equilibrium configuration as shown in Fig. 12.

The potential of uniaxial body forces is again given by (74). For small

the mean curvature may be written in the form(13)

2 2\

2H = 1 - 1 2 + ý- cot e + + - 2 (99)
ýe sin2 e I

A combination of the kinematic and dynamic boundary conditions for

the interface leads to

cos (2.S4g Cos 2- +cote 32,+ + 1 0

at2 e)~ ~ ~ 22 -
-r 1 0



The physical nature of the problem suggests a separation of the variables

according to

I(r, e9 qP, t) -*r, e)eimq e i-t (101)

in which m denotes an integer. We may again interpret r as the

nondimensional length parameter, using the radius "a" of the equili-

brium shape as reference length. The eigenvalue problem for # is now

defined by

6 r * i )6 2 ~ 0 (102)
r T-r_ +sine e ineso 2

and

- cos e r 0 (103)

LP ( r 6 r r=l

The nondimensional quantities P and p are again defined by (80) and

the stream lines by (81). Exact solutions to the eigenvalue problems
(14)

are for example

*(r,e) =j An[rPn + Bnr(Pn+l) ]Pn (Cos e) (104)

n

in which Pm represents the associated Legendre function of degree m
Pn(1)and order pn (l5) The order pn is arbitrary while the degree m is

integer.

We consider a particular family of layers to which (104) represents

an exact solution by selecting

mr=l, Pn=l, 2

or

* = Al[(r + Blr 2)sin e + A2 (r2 + B2 r3 )sin e cos e] (105)

This function satisfies the interface condition if
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B=-,B 2 9_ (106)
B1 =-l, B2 -- , A2 ' 5(

From (1O6) and (80) follows

a = 9 (107)
5A2 a

For A2 > 0, a > 0 we find as the stability condition

g> 0

Layers representative for this family are shown in Fig. 13.

6.4. Three-Dimensional Layers with Slightly Curved Interface

For such layers we have

cos 8 - 1, sin e "e e (108)

and therefore as the continuity equation and the interface condition

-) = 0o (109)

Solutions to Eq. (109) which satisfy the interface condition (110) can

be written in the form

•t(r, 8) = [rP + Ar'-(P+l)IJmE4•p +I)Y e] (111)

where

A = (112)
, +(p. l)(1, .[p•,l)- 2))

and

p> 0 .

The streamlines correEpondinc to (1in) are

- 2] -



ln (P+l) - A r-P] =f dx + C (m > O) (113)

0

with C denoting a constant.

For C = 0 we have a family of three-dimensional layers of uniform

thickness as illustrated in Fig. 14. By defining the solid surface as

r = r0 , e= a (ac small) (114)

and requiring

we obtain

A = r 2p+1  (115)

p+1 0

and

Ji [4p'(p+1) ] = 0 (116)m

The comparison of (115) with (112) leads to

1 p(l' ro2p+l)0 < •2p

CF 0- 1 __ 2p+l + 1 [2(pp + 1) -2] (117)

p+l 0

with r0 < l, and p > O, we have

g + 1 2 [p(p + 1) - 2] > 0

pa

and therefore as stability condition

g > [2 - p(p+ 1)] T 2 (118)
pa

Similarly, we find for r 0 > 1

- 25 -



g < [2- p(p +1) T (119)
pa

2

It should be noted that for a given a the parameter p is determined

by (116). According to (118) and (119) we obtain the stability criterion

with the smallest value of p. The latter is given by the smallest root

of
J{ [Ip(p+l) 1 ] a 0 (120)

The physical interpretation of this fact is that among all eigenvibrations

the first antisymmetric oscillation leads to the stability criterion since

the corresponding frequency approaches zero first in varying the parameters

T, p and g.

The stability criterion for an axially symmetric layer with a flat

interface, a uniform thickness and a radius b as shown in Fig. 7 is

T

g > -13.7 T2
p(2b)

while that of the slightly curved layer of uniform thickness and the same

interface area (see Fig. 14) is

- 13.7-1.

La2  (2bAJ (2

As in the two-dimensional case(2) we observe that the curvature has a

destabilizing effect.

If C j 0 in Eq. (113), we can interpret (112) as the frequency

equation for arbitrary values of p and A:

a [p(-j. l)AI ( + I [p(p+l) 2 (121)

For stability we deduce

p-(p + 1A>0, aZ ,0 g* [2-p(p+1)]1I+A <,

I P a
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1 + A < 0O, a• , 0 X S [2 - p(p + 1)] (122)

Representative examples of slightly curved three-dimensional layers are

illustrated in Fig. 15.

If we assume p(p + l)e << 1, we may obtain approximate solutions to

the streamline Eq.(1l3) in the form

Jm% dX c,• -(m + 1lin b2

777" 2(m + 1)

For m = 1 we have

q'.p(p+17 ) W

im Jm(X + ) 2

and thus

S 2  [rP+l A P+ir P] pi (123)

Requiring the solid surface to contain the points (r = 1, e = I) and

(r = rO, e = o) we find

A-t (124)

and

2 ( ( r0P+l _+ a 2) -r mp • +l -r 2].2))

" 1i - -V ej ' °(r- r(r2 0 
0 (125)

For p = 1 and A = 0 we have an approximation to the important case

of a layer on a flat surface

r cos e = r0

as shown in Figure lb.
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VII. CONCLUSION

The results of this study clearly indicate a strong dependence of

the stability of all layers (two- and three-dimensional) on the thickness

variation, especial.ly in the realm of near-zero gravity conditions. Of

particular significance is the fact that for certain solid supporting

surfaces (container walls) the fluid layers are stable only if the uni-

directional body force is either positive or exceeds a certain positive

value, while for other surfaces stability prevails for limited negative

values of the body force. By taking advantage of this fact in the design

of containers of fluid for near-zero gravity conditions, it appears pos-

sible to enforce the permanent adherence of the fluid to a certain area

of the container.

It should be noted that we have not introduced any contact angle

considerations in explicit form in our analysis, and therefore we have

to require that the dimensions of the interface surface be large compared

with the effective range of the contact forces. Also, it should be point-

ed out that our stability criteria are conservative only if the "appropri-

ately chosen" solution to Laplace's equation actually leads to the

fundamental eigenvibration* whose eigenfrequency ceases first to be real

in varying the body force or stability parameter. Partial reassurance in

this regard is offered by the fact that our results include as special

cases the known stability criteria for layers of uniform thickness with

either flat or uniformly curved interface surfaces.

Vibration with the lowest eigenfrequency.

- 2.8 -
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Z•C Equilibrium
confiuration

Disturbed interface 2u

S, (xzt) az-C(xt)- 0

ah

i ,Szlx,z)-O

Fig. I. Reference Frame for Two-Dimensional
Layer with Flat Interface.

z

S : _bu xxoh -j

ah

Fig. 2 Two-Dimensional Layer whose Free
Oscillations have the yelocity Potential
*(xvzt) : Dsin(lx)cosh Y1,(a+z)J.et/yt
where I [(2n-I)/2Jr(h/b).
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z

0 01

• - %..-N

"N,, ,s ,(o-l, x0-2. k.I)
/ S(a*x 0 2.36, k r/2)

(a) k real

z
S, ~ h

- S,(a-l, xo-O.7, k.2i)

(b) k imaginary

Fig. 3 Two-Dimensional Layers with Free Oscillations
Defined by 0(xz,t) Dsinh(kx)(cosk(a+z)-cos(kz)

cosh(kxo)]ei./Ot; (a) k real, (b) k imaginary.
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\,, • /4-Sp,(awl, xo I)

-h

Fig. 4. Two-Dimensional Layers with Free Oscillatogns
Defined by O(x,zt)-Ax{l+[2a/(aa*+x)z}eItIr

.•C Equilibrium
configuration

Disturbed interface Qye z\ 0

S, (rz,,t)u z-V(r,,t)sw r0 h

-' - r

oh• ' .:.,• •Sj(r, z) w 0

Fig. 5 Reference Frame for Three-Dimensional
Layer with Flat Interface.
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S\\ \ s, -- o,, /--r

k-1

Fig.6 Three-Dimensional Layers with Free
Oscillations Defined by

, (r,z,6,t) =A[cosh(kz) + Bsinh(kz)]J, (kr)ei(+G ct)

z

er

ah

•S?

Fig. 7 Three-Dimensional Layer whose Free
Oscillations can be Characterized by
0(r,z,8,t) = Acosh(ka+kz) J ,(kr)eI(M+;t)
where Jm(kro) a 0
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z

'" Sj h• x-~~=l r= =1

-•.• "- •S=,(a = I , re=I

Fig. 8 Three-Dimensional Layers with Free
Oscillations Defined by,
0(r, z,8,t) = Ar[z+ (at+ri)/2a]ei(+/t

O=0
Disturbed interface JEquilibrium

Sl~re~t = -•(,t)= 0I _ conf ig~uration

r-a " "S2(r,19) =0

Fig. 9. Reference Frame for Two-Dimensional
Layer with Curved Interface.
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quo
- - -I..S.1~P [rou l.098, )*-2.5,

\v~ro zQ,9, Xa 0.625

=:I A 330351

Fig. 10 Two-Dimensional Layers with Oscillations

0(r,6,t)z=B {X(r+i'F)sin + [r'+(1-219X)r 3]sin28+
X(r'+r-')sin38Ieiý/w where x=

{lA(wo/g + 6(T/pgos)]}
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6=0

SI

(b) 1=1 r. cosa
(D=Brsin~eiV('t

Fig. I la~b. Two-Dimensional Layers with Slightly
Curved Interface.



8:0

Sa,(icl0, roO.9i a 15*)

(c) 1=0 (D= B8P[nr-a a+)]InOI %at

8=0
~ ~S2(r 0 > 1)

r0a r=a

(d) O=B ; r+(oýu]cosl9ei-/0t where I=r or

Lo'o 2a
Fig. tic,d. Two-Dimensional Layers with Slightly

Curved Interface
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Equilibrium 8= Disturbed Interface
Conf iguration -Y JSI r9~t=-(,t:

Fig. 12. Reference Frame for Three -Dimensional
Layers with Curved Interface.

6=0

...... SPA,(0:.1, Azz-l)

4S 2,(ro 0.95, 'Ae:2

Sa,(r = 0.95, A2 = )

Fig. 13. Three- Dimensional Layers with Oscillations
Defined by

0=A[(r-r'*)sinO6 +Ap(r*+/r -1) sin 8cos8]eI(+vrf
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8=0

• i"}° )s.9ro>=,
~ra1

fr: S2,q(r0<l)

Fig. 14 Three-Dimensional Layers with Slightly
Curved Interface and Uniform Thickness.
The Fundamental Oscillation of such
Layers is Characterized by

= [rP+ -P ,P+ r(P+I)] Jm[k/-19]ei(mn t)

where J4(VPp%+l a) Z 0
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//*1- e-Sa,(p'A'i, (O=100 roI 1.1)

S•{p= bl, Cr=l00, row Q9)

(a) 0 zB[rP+Ar'(P+')] J/•p lGp+lei÷At) where

A f.4e') and /p/Fp+1) 8 << I

"SR '(pul, ro= cosa)
(b) 0=BrJ, (4 ) ei(#+./W't)

8=0

/i•- - •..•:S ,(p=zO, re 1.I1, am 150)

Sao= (pz0, ro:O.9, a= 150)

(c) p=O Q =B8r _- -

Fig. 15. Three-Dimensional Layers with Slightly
Curved Interface and Oscillations Defined
as above.
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