EXPERIMENTAL RESEARCH INVESTIGATION
OF
EXTREMELY LOW FREQUENCY PROPAGATION

R. D. Smith
P. F. Kuhnle
T. M. Georges

SPACE-GENERAL CORPORATION
9200 East Flair Drive
El Monte, California

Contract No. AF19(628)-1603
Project No: 4603
Task No: 460305

Scientific Report # 1
SGC No. 212R-4

15 February 1963

Prepared for

ELECTRONICS RESEARCH DIRECTORATE
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS
"Requests for additional copies by Agencies of the Department of Defense, their contractors, and other Government agencies should be directed to the:

ARmed SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for ASTIA services or have their 'need-to-know' certified by the cognizant military agency of their project or contract."

"All other persons and organizations should apply to the:

U. S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D. C. "
EXPERIMENTAL RESEARCH INVESTIGATION
OF
EXTREMELY LOW FREQUENCY PROPAGATION.

By R. D. Smith,
P. F. Kuhnle and
T. M. Georges.

SPACE-GENERAL CORPORATION
9200 East Flair Drive
El Monte, California

NA
SR 212 K-4

Contract No. AF19(628)-1603
Project No: 4603
Task No: 460505

Scientific Report # 1
SGC No. 212R-4

February 1963

Prepared for
ELECTRONICS RESEARCH DIRECTORATE
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS
ABSTRACT

Characteristics of ELF electromagnetic wave propagation were investigated by measuring the characteristics of cw signals transmitted over a 400 cps link established between Boron, California, and Carlsbad, New Mexico, a distance of 1300 km. The work described is a continuation of the investigations carried out under AF 19(604)-7448.

Propagation measurements were carried out during July and October 1962. Signal strength, received and transmitted signal phase, and atmospheric noise were recorded. Data reduction and analysis showed that received values of signal strength were 2 db less during nighttime and 1 db less during daytime than the values predicted by analytical studies carried out during the previous contract. Data reduction and analysis of the recorded phase data showed that more stable reference signal sources are required at transmitter and receiver. The form of the record obtained over a link which had approximately a 6 db signal to noise ratio in a 1 cps band indicates that a useful technique has been evolved.

Atmospheric noise data was recorded for all transmission periods. This data is presented in the form of amplitude probability distributions and impulses per unit time distributions.
ABSTRACT

Characteristics of ELF electromagnetic wave propagation were investigated by measuring the characteristics of cw signals transmitted over a 400 cps link established between Boron, California, and Carlsbad, New Mexico, a distance of 1300 km. The work described is a continuation of the investigations carried out under AF 19(604)-7448.

Propagation measurements were carried out during July and October 1962. Signal strength, received and transmitted signal phase, and atmospheric noise were recorded. Data reduction and analysis showed that received values of signal strength were 2 db less during nighttime and 4 db less during daytime than the values predicted by analytical studies carried out during the previous contract. Data reduction and analysis of the recorded phase data showed that more stable reference signal sources are required at transmitter and receiver. The form of the record obtained over a link which had approximately a 6 db signal to noise ratio in a 1 cps band indicates that a useful technique has been evolved.

Atmospheric noise data was recorded for all transmission periods. This data is presented in the form of amplitude probability distributions and impulses per unit time distributions.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 PURPOSE</td>
<td>1</td>
</tr>
<tr>
<td>1.2 METHOD OF APPROACH</td>
<td>1</td>
</tr>
<tr>
<td>1.3 SCOPE OF REPORT</td>
<td>1</td>
</tr>
<tr>
<td>2.0 EXPERIMENTAL SETUP</td>
<td>2</td>
</tr>
<tr>
<td>2.1 TRANSMITTER FACILITY</td>
<td>2</td>
</tr>
<tr>
<td>2.2 RECEIVER FACILITY</td>
<td>4</td>
</tr>
<tr>
<td>3.0 MEASUREMENT SCHEDULE AND PROCEDURE</td>
<td>13</td>
</tr>
<tr>
<td>4.0 ANALYSIS OF EXPERIMENTAL RESULTS</td>
<td>24</td>
</tr>
<tr>
<td>4.1 SIGNAL STRENGTH</td>
<td>24</td>
</tr>
<tr>
<td>4.2 TRANSMISSION PATH PHASE MEASUREMENTS</td>
<td>28</td>
</tr>
<tr>
<td>4.3 ATMOSPHERIC NOISE</td>
<td>30</td>
</tr>
<tr>
<td>4.4 ATMOSPHERIC NOISE IMPULSES</td>
<td>39</td>
</tr>
<tr>
<td>5.0 CONCLUSIONS</td>
<td>42</td>
</tr>
<tr>
<td>6.0 RECOMMENDATIONS</td>
<td>44</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Transmitter Facility Functional Block Diagram</td>
<td>3</td>
</tr>
<tr>
<td>2. Transmitter Phase Measurement Functional Block Diagram</td>
<td>5</td>
</tr>
<tr>
<td>3. Receiver Facility Functional Block Diagram</td>
<td>6</td>
</tr>
<tr>
<td>4. Receiver Trailer Interior</td>
<td>7</td>
</tr>
<tr>
<td>5. Phase-Lock Loop Detector System</td>
<td>7</td>
</tr>
<tr>
<td>6. Phase-Lock Loop Detector System Block Diagram</td>
<td>8</td>
</tr>
<tr>
<td>7. Phase-Lock Loop Detector Limiter Amplifier Block Diagram</td>
<td>9</td>
</tr>
<tr>
<td>8. Receiver Phase Measurement Functional Block Diagram</td>
<td>10</td>
</tr>
<tr>
<td>9. Relative Location of Transmitter and Receiver Sites</td>
<td>14</td>
</tr>
<tr>
<td>10. Data Collection Schedule - July 1962</td>
<td>15</td>
</tr>
<tr>
<td>11. Data Collection Schedule - October 1962</td>
<td>16</td>
</tr>
<tr>
<td>12. Sample Received Signal Strength Record - July 18, 1962</td>
<td>18</td>
</tr>
<tr>
<td>13. Sample Received Signal Strength Record - October 25, 1962</td>
<td>19</td>
</tr>
<tr>
<td>14. Sample Transmitted Phase Record - October 27, 1962</td>
<td>22</td>
</tr>
<tr>
<td>15. Sample Received Phase Record - October 27, 1962</td>
<td>23</td>
</tr>
<tr>
<td>16. Signal Strength vs. Ground Sunrise - Carlsbad, New Mexico</td>
<td>25</td>
</tr>
<tr>
<td>17. Theoretical and Measured Values of Signal Strength vs. Range</td>
<td>27</td>
</tr>
<tr>
<td>18. Transmission Path Phase Record - October 27, 1962</td>
<td>29</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.</td>
<td>Atmospheric Noise Impulse Count Distribution</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Transmission Tests - July 1962</td>
<td>20</td>
</tr>
<tr>
<td>2. Transmission Tests - October 1962</td>
<td>21</td>
</tr>
</tbody>
</table>

vii
1.0 INTRODUCTION

1.1 Purpose

This report presents some results of a continuing experimental investigation of extremely low frequency (ELF) electromagnetic wave propagation phenomena using a 400 cps transmission link. Previous research carried out under Contract AF 19(604)-7448 is reported in Reference 1, which contains background information and theoretical calculations that will prove invaluable in any study of the work to date. The work to date has been directed toward substantiation of the mode theory of VLF propagation as extended to ELF in Reference 3, and modified by changes in the ionosphere model (Reference 4) to account for increased daytime attenuation.

Experimental studies of the signal transmission environment established by the atmospheric noise are carried out by recording the impulse distribution and amplitude probability distribution of the noise.

1.2 Method of Approach

The transmitter facility and mobile receiver facility used on the previous contract were modified for use in the present program. A 1300 km transmission link was established between Boron, California, and Carlsbad, New Mexico, for measurement of transmission amplitude and phase. Additional equipment required for these studies was designed and fabricated.

1.3 Scope of Report

This report describes the equipment used, the data collection procedures; presents the data collected, and compares the test results with previous analytical studies. Field strength, transmission path phase information, and atmospheric noise data collected under both daytime and nighttime conditions in July and October 1962 are presented.
2.0 EXPERIMENTAL SETUP

2.1 Transmitter Facility

The previously used transmitter facility, located near Boron, California, was reactivated in the current series of experiments. The transmitter is a 400 cps, alternator with a rated output of 175 kw for continuous duty and 300 kw for intermittent duty, driven by a 350 horsepower synchronous motor. Figure 1 is a block diagram of the transmitter facility.

The 400-cycle antenna employed at Boron consists of a long straight cable, laid out in the east-west direction, and supported a few inches above the ground. The ends of the cable terminate in grounding electrodes. The antenna is driven near one end. Ideally, a horizontal antenna should be several hundred miles in length to radiate efficiently at 400 cps. However, when the radiator is of necessity very short compared to a wavelength, acceptable results can be achieved by grounding the ends and making the ohmic loss component of the input power as small as possible. The radiation efficiency of a horizontal wire antenna is increased by locating over low conductivity soil.

The 10,000-foot antenna consists of 5000 feet of 72 conductor, No. 14 AWG cable in a PVC (polyvinylchloride) jacket, and a bundle of six No. 6 AWG street lighting cables, 5000 feet in length. The conductors in each section are paralleled to provide a total d-c resistance of .433 ohms. The antenna is driven through a transformer and capacitive matching network.

A network of grounding electrodes is employed at each end to make the ground resistance low and distribute the ground current over a larger area. Each ground network consists of 15-4" diameter pipes, 20 feet long, sunk vertically into the ground in 6-1/2 inch diameter holes with cokebreeze surrounding the pipe to provide electrical contact with the soil.
Figure 1. Transmitter Facility Functional Block Diagram
Figure 1. Transmitter Facility Functional Block Diagram
The soil in the Boron area is alluvium of recent origin which extends to a depth of several thousand feet. Two layers of saddleback basalt exist at the 500 and 1000-foot levels. The water table is 900-1000 feet.

For this series of experiments, a dual phase detector and 100 kc frequency standard, divided to 400 cps, were added to record the relative transmitter phase as shown in Figure 2. Refer to section 2.2 for further discussion of signal phase detection techniques.

2.2 Receiver Facility

The present receiver, shown in Figures 3 and 4, is basically the same equipment used in the previous series of experiments with the addition of a phase-lock loop detector and associated equipment. See Figure 5.

The antenna is a 6 1/2-foot diameter shielded loop with an effective height of 2 cm, resonated at 400 cycles with a Q of 10. The 40-cycle bandwidth of the antenna and preamplifier is narrowed independently to 7 cps and 1 cps in two predetection filters, detected and recorded on a chart recorder.

A phase-lock loop detector was added with a .25 cps noise bandwidth loop filter. Figure 6 shows the interconnection of the units in the system. Figure 7 is a block diagram of the limiter amplifier used with the dual phase detector. The limiting level is set approximately 10 db above the expected signal level for the signal amplitude phase detector and approximately 10 db below the expected signal level for the feedback loop phase detector. The circuit configuration for the loop filter is similar to that employed in telemetry phase-lock receivers.

Relative received signal phase is compared with a 400-cycle crystal oscillator and recorded by reconnecting the dual phase detector as shown in Figure 8. Addition of a 7 cps bandpass filter between the limiter and the dual phase detector reduced some of the atmospheric noise.
Figure 3. Receiver Facility Functional Block Diagram
Figure 3. Receiver Facility Functional Block Diagram
Figure 4. Receiver Trailer Interior

Figure 5. Phase-Lock Loop Detector System
Figure 2. Transmitter Phase Measurement Functional Block Diagram
The output of the phase detector which is the product of a reference and signal input has maximum voltage output for sine wave reference and signal inputs in phase, and zero output for signals 90° out of phase. A phase difference between the reference and signal produces an output proportional to the cosine of the angle between the two signals.

A single phase detector output can show the phase difference between zero and 360 degrees, but cannot show the direction of rotation with respect to a reference signal. By simultaneously recording the outputs of two phase detectors, with a 90-degree phase shift between inputs of one signal to each phase detector (see Figure 8), the two output signals will be 90 degrees apart, namely, one will be recorded as a cosine function, and the second as a sine function. By arbitrarily calling the cosine function "x" and the sine function "y", the two outputs make up the horizontal and vertical components of the relative phase angle. From this information, the phase angle and the direction of rotation can be determined by data reduction.

Attempts were made to record the phase angle on an x-y plotter, to obtain the phase angle directly. Due to atmospheric noise, transmitter phase instability, and the difficulty of recording time, it was decided to abandon this system in favor of using two channels of a Sanborn chart recorder. Using the chart recorder, the resulting data is averaged to reduce the effects of atmospheric noise. Figure 15 is an example of signal phase data received in the presence of atmospheric noise.

The noise analyzer used at 400 cps is an adaption of the NBS circuit which measures the cumulative amplitude probability distribution of the noise envelope.

The atmospheric noise analyzer measures the percentage of time the noise level exceeds a preset threshold. A Schmitt trigger circuit is
adjusted to trip within 1 db of this threshold level. During the intervals that the threshold level is exceeded, the Schmitt trigger functions to open a gate that permits 10 kc clock pulses to be totalized over 10 or 100 second periods. By varying the gain of the amplifier with a calibrated attenuator, the threshold atmospheric noise level of the trigger circuit can be varied.

Additional circuitry was added to the Schmitt trigger to count the number of times the trigger cycles in a 10 or 100 second period. This corresponds to the total number of atmospheric noise impulses that exceed a predetermined atmospheric noise threshold level.
3.0 MEASUREMENT SCHEDULE AND PROCEDURE

Figure 9 shows the location of the transmitter near Boron, California, and the receiver 20 miles south of Carlsbad, New Mexico, a distance of 1300 km from the transmitter. This receiver location, on a 24,000 acre private cattle ranch, was at least five miles from all power lines, telephone lines, pipe lines, and public roads. At this location, man-made interference was not detectable in the receiver.

Transmission tests were conducted during the months of July and October, 1962. These tests were initiated in July with four test periods as shown in the Data Collection Schedule - July 1962 (Figure 10). The first two of these tests took place in July 17 and 18, and consisted of eight-minute transmissions on the half-hour from 0300 to 0600 hrs. MST. Two additional tests were conducted on July 24, from 0030 to 0600 hrs. MST, and on July 26, from 0030 to 0300 hrs. MST. These latter tests were an attempt to measure the propagation anomalies generated by a high altitude nuclear detonation. Failure of the launch vehicle at Johnston Island prevented the completion of this task.

Additional transmission tests were conducted for five days from October 24, to 28, 1962 inclusive from 0500 to 0810 hrs. MST, as shown in the data collection schedule October 1962 (Figure 11). These tests were for ten minutes every half-hour, except for two one-hour tests on October 27 and 28. These one-hour tests were conducted to determine the diurnal change in phase between the transmitter and receiver.
Figure 9. Relative Location of Transmitter and Receiver Sites
Figure 10. Data Collection Schedule - July 1962
Figure 11. Data Collection Schedule - October 1962
Antenna current at the transmitter was maintained at 325 amperes, with a resulting effective dipole moment of 10^6 ampere-meters, as in previous tests\(^1\). To prevent overheating the transmitter, antenna current was reduced to 250 amperes (-2.4 dB relative to 325 amperes), for the first-half of each one-hour test, then increased to 325 amperes for the remaining 30 minutes.

Vertical electric field strength (E'_z) was detected in 7 cycle, 1 cycle, and .25 cycle (phase-lock loop) bandwidths and recorded on a chart recorder at the receiver as discussed in section 2.2, and shown in Figures 12 and 13. The tabulation of received field strengths is shown in Table 1 and 2.

The signal phase at both the transmitter and receiver was measured relative to 400 cycle reference oscillators using dual phase detectors as discussed in section 2.2. The resulting data was recorded in "x" and "y" components of the relative phase angle, (Figures 14 and 15).

A number of atmospheric noise amplitude probability distributions were recorded during both test periods. Simultaneously, atmospheric noise impulse data was recorded.
Figure 12. Sample Received Signal Strength

Chart speed: .25 mm/sec.
Increasing signal: downward
Output filter: ≈ 2 sec.
Reference: 0 dB = 100 µV/m
Signal level: ≈ -38 dB
Noise level: ≈ -40 dB
Time: MST
CHART SPEED: .25 MM/SEC.

INCREASING SIGNAL: DOWNWARD

OUTPUT FILTER: ≈ 2 SEC.

REFERENCE: 0 DB = 100 μV/M

SIGNAL LEVEL: ≈ -38 DB

NOISE LEVEL: ≈ -40 DB

TIME: MST

Figure 12. Sample Received Signal Strength R
Example Received Signal Strength Record - July 18, 1962
PHASE LOCK RCVR TO
NOISE BANDWIDTH:
RECORD CENTERLINE.

PHASE LOCK RCVR SIGNAL OUTPUT
OUTPUT FILTER: \(T = 0.5 \) SEC.
INCREASING SIGNAL: UPWARD

-37DB | -38DB | -40DB
NOISE ONLY

CALIBRATION SIGNALS
0511 HRS. CHART SPEED: 1 MM/SEC;
REFERENCE: 0 DB = 100 \(\mu \)V/m
TIME: 0509 HRS.

PRE-DETECTION BANDI
OUTPUT FILTER: \(T = 7 \) CI
INCREASING SIGNAL

PREDETECTION BANDWIDTH = 7 CI
OUTPUT FILTER: \(T = 1 \) SEC.
INCREASING SIGNAL: UPWARD

Figure 13. Sample Received Signal Strength Record
PHASE LOCK RCVR LOOP FILTER OUTPUT
NOISE BANDWIDTH: .25 CPS
RECORD CENTERLINE FOR ZERO OUTPUT

PHASE LOCK RCVR SIGNAL OUTPUT
OUTPUT FILTER: T = .5 SEC.
INCREASING SIGNAL: UPWARD

SE ONLY

PRE-DETECTION BANDWIDTH = 1 CPS
OUTPUT FILTER: T = 1.3 SEC
INCREASING SIGNAL: DOWNWARD

PREDETECTION BANDWIDTH = 7 CPS
OUTPUT FILTER: T = 1 SEC.
INCREASING SIGNAL: UPWARD

Received Signal Strength Record - October 25, 1962
TABLE 1. TRANSMISSION TESTS - JULY 1962
BORON, CALIFORNIA TO CARLSBAD, N.M.
\(\rho = 1300 \) km

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>EQUIVALENT VERTICAL ELECT.</th>
<th>ESTIMATED SIGNAL LEVEL</th>
<th>CARLSBAD, N.M. SUNRISE (HRS. - MST)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HOURS</td>
<td>F.S. DB REL. 100µV/m</td>
<td>DB REL. 100µV/m</td>
<td></td>
</tr>
<tr>
<td>7/17/62</td>
<td>0300</td>
<td>Not Detectable</td>
<td>-30</td>
<td>0502</td>
</tr>
<tr>
<td></td>
<td>0330</td>
<td>Not Detectable</td>
<td>-35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0400</td>
<td>-37 to -40</td>
<td>-42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0430</td>
<td>-38 to -42</td>
<td>-42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0500</td>
<td>-40</td>
<td>-44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0530</td>
<td>-41</td>
<td>-42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0600</td>
<td>-41</td>
<td>-45</td>
<td></td>
</tr>
<tr>
<td>7/18/62</td>
<td>0300</td>
<td>Not Detectable</td>
<td>-30</td>
<td>0503</td>
</tr>
<tr>
<td></td>
<td>0330</td>
<td>-40</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0400</td>
<td>Not Detectable</td>
<td>-35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0430</td>
<td>-40</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0500</td>
<td>-38 to -40</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0530</td>
<td>-40 to -42</td>
<td>-42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0600</td>
<td>-38</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>7/24/62</td>
<td>Attempted detection of nuclear blast. Local thunderstorm activity; did not detect Boron transmissions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/26/62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2. TRANSMISSION TESTS - OCTOBER 1962
BORON, CALIFORNIA TO CARLSBAD, N. M.
$\rho = 1300$ km

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME HOURS(MTS)</th>
<th>EQUIVALENT VERTICAL ELECT. F.S. DB REL. 10µV/m</th>
<th>ESTIMATED THRESHOLD SIGNAL LEVEL DB REL. 100µV/m</th>
<th>CARLSBAD, N.M. GROUND SUNRISE (hrs. - MST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/24/62</td>
<td>0530</td>
<td>-40 ± 1db</td>
<td>-44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0600</td>
<td>-43 ± 1db</td>
<td>-46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0630</td>
<td>-43 ± 1db</td>
<td>-45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0700</td>
<td>-45 ± 2db</td>
<td>-48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0730</td>
<td>Not detectable</td>
<td>-47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0800</td>
<td>Not detectable</td>
<td>-47</td>
<td></td>
</tr>
<tr>
<td>10/25/62</td>
<td>0530</td>
<td>-38 ± 1db</td>
<td>-45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0600</td>
<td>-41 ± 1db</td>
<td>-48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0630</td>
<td>-45 ± 1db</td>
<td>-48 to 50</td>
<td>0608</td>
</tr>
<tr>
<td></td>
<td>0700</td>
<td>-45 ± 1db</td>
<td>-49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0730</td>
<td>-46 ± 1db</td>
<td>-49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0800</td>
<td>Not detectable</td>
<td>-46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0830</td>
<td>Not detectable</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0900</td>
<td>Not detectable</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>10/26/62</td>
<td>0500</td>
<td>-40 ± 2db</td>
<td>-46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0530</td>
<td>-42 ± 1</td>
<td>-44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0600</td>
<td>-40 to -43</td>
<td>-44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0630</td>
<td>Not detectable</td>
<td>-43</td>
<td>0609</td>
</tr>
<tr>
<td></td>
<td>0700</td>
<td>Not detectable</td>
<td>-43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0730</td>
<td>Not detectable</td>
<td>-43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0800</td>
<td>Not detectable</td>
<td>-43</td>
<td></td>
</tr>
<tr>
<td>10/27/62</td>
<td>0530</td>
<td>-38 ± 2</td>
<td>-50</td>
<td></td>
</tr>
<tr>
<td>to</td>
<td>0630</td>
<td>-46 ± .5db</td>
<td>-50</td>
<td>0609</td>
</tr>
<tr>
<td></td>
<td>0700</td>
<td>-45 ± 2db</td>
<td>-50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0800</td>
<td>Not detectable</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>10/28/62</td>
<td>0530</td>
<td>-38 ± 1db</td>
<td>-46</td>
<td></td>
</tr>
<tr>
<td>to</td>
<td>0630</td>
<td>-38 ± 2db*</td>
<td>-44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0700</td>
<td>Not detectable</td>
<td>-43</td>
<td>0610</td>
</tr>
<tr>
<td></td>
<td>0800</td>
<td>Not detectable</td>
<td>-42</td>
<td></td>
</tr>
</tbody>
</table>

* Field Strengths have been corrected to the equivalent field strength of the transmitter when operated at full power.
Figure 14. Sample Transmitted Phase Record - October 27, 1962
Figure 14. Sample Transmitted Phase Record - October 27, 1962
Figure 15. Sample Received Phase Record - October 27, 1962
TIME: 0545 HRS. - 0549 HRS. MST
RECORD SPEED: 2.5 MM/SEC.
LOCATION: CARLSBAD, N.M.

15. Sample Received Phase Record - October 27, 1962
4.0 ANALYSIS OF EXPERIMENTAL RESULTS

4.1 Signal Strength

The receiver was located at a distance of 1300 km from the transmitter at the site described in Section 3.0. Examination of Figure 17 shows that this is the minimum range for observation of diurnal propagation effects.

Except during the phase measurement tests of October 27 and 28, 1962, described in Section 3.0, the antenna current was maintained at 325 amperes. Field strengths tabulated in Tables 1 and 2 have been normalized to the equivalent field strength for an antenna current of 325 amperes (300 kw transmitter power output).

Figure 16 shows signal strength versus time relative to ground sunrise at the receiver. All detectable transmissions are shown for the month of July and October. Transmissions more than 1-1/2 hours before sunrise and 1 to 1-1/2 hours after sunrise were not detectable due to the low signal to atmospheric noise ratio.

Measurements of the diurnal variation taken in July were inconclusive. On July 17 (Figure 16), the signal attenuation increased approximately 3 db in 2 hours. On July 18 the signal strength was 2 db greater one hour after sunrise than the value recorded one hour before sunrise. Figure 12 shows the relative signal, noise and calibration levels recorded at that time. Atmospheric noise levels were high, as shown in Figure 20, and
Figure 16. Signal Strength vs. Ground Sunrise - Carlsbad, New Mexico
discussed in Section 4.3, making signal detection difficult. Since the

data points did not fall in a pattern they were not connected.

Data recorded in October for five succeeding days show consistent
results as shown in Figure 16. All values of field strength fall within
1 to 2 db of the curve drawn as the estimated average value.

Transmissions received one hour before sunrise have signal
strengths of approximately -38 to -40 db* while those received 1/2 hour or
more after sunrise have signal strengths of -45 to -46 db.*

Referring to Figure 16, signal attenuation should increase rapidly
as the ionosphere changes from a nighttime to daytime state. At the
receiver, ionosphere sunrise will occur before ground sunrise causing
signal level attenuation to increase before ground sunrise.

Figure 17 is the comparison of theoretical and experimental values
of signal strength at various distances from the transmitter, based on a
transmitter power output of 300 kw. The theoretical curves were computed\(^1\)
from theories developed by Wait\(^3\) and Galejs\(^4\).

Comparison of nighttime theoretical and October experimental
results, at 1300 km, show that the experimental values are approximately
2 db less than predicted, while daytime levels are 4 db less. The 6 to 7 db
change in level from night to day agrees within 1 to 2 db of the theoretical
changes, but with an offset of several db. The results show that the
signal may be attenuated more sharply than originally anticipated. Confirmation

\(^*\) 0 db = 100\(\mu\)V/M.

26
of this must await collection of additional data at greater distances from the transmitter and over longer periods of time.

4.2 Transmission Path Phase Measurements

Relative phase of the signal was recorded at both the transmitter and receiver with dual phase detectors and associated equipment as shown in Figures 2 and 8. One hour tests were conducted from 0530 to 0630 hours MST on October 27 and 28, 1962. The data from the first test has been reduced and analyzed. The phase data recorded on October 28 was not reduced as local storm activity caused high atmospheric noise as shown in Table 2, and Figure 27. The initial reduction of the data showed an offset between the two reference oscillators of 1.22 cps. Figure 18 is a graph of this reduced phase record with the 1.22 cps offset removed.

The results, shown in Figure 18, indicate a phase shift greater than \(\pi \) radians and seemingly indicate unstable transmission path characteristics prior to illumination of the ionosphere. Since the results are inconsistent, stability of the measurement equipment was suspected and the reference oscillators were checked for frequency drift. The 400 cps crystal oscillator used in the receiver was found to be temperature sensitive. Therefore, in light of temperature variations present in the receiver trailers, the results must be judged inconclusive. The record most likely represents a comparison of the relatively unstable receiver reference oscillator with the reference at the transmitter. The fact that such a record
Figure 18. Transmission Path Phase Record - October 27, 1962
can be secured over a 1300 km path using a signal which is only slightly above the noise in a 1 cps band shows that a useful technique has been evolved.

4.3 Atmospheric Noise

During the two data collection periods, July and October, a number of atmospheric noise amplitude probability distributions were recorded as shown in Figures 19-21.

The second test period in October was chosen for a period of minimum storm activity. For 4 of the 5 days of testing, only 1 day of local thunderstorm activity was present; (October 28) as shown in Figures 22-26.

The highest noise in October was approximately the same level as the lowest in July for the same time in relation to sunrise. In October, the best receiving conditions were on mornings when the atmospheric noise had the least number of high level impulses, with the lower levels approximately equal to the receiver thermal noise in a 40 cps bandwidth. October 25 is an example of this with the recorded thermal noise distribution of the dummy loop as shown in Figure 22.

The majority of the noise data was recorded during the early morning hours. The low signal level limited data recording to times near sunrise when the received atmospheric noise was at a minimum. The high level atmospheric noise impulses are believed to originate, primarily, in
Figure 19. Atmospheric Noise Amplitude Probability Distribution - July 17, 1962

Location: Carlsbad, N.M.

$ f_0 = 400 \text{ CPS}$

$ BW = 40 \text{ CPS}$

Legend:
- A 0235 HRS., MST
- B 0515 HRS., MST
- C 1830 HRS., MST

Equivalency Vertical Electric Field - DB Relative to 100 μV/M
Figure 20. Atmospheric Noise Amplitude Probability Distribution - July 18, 1962
Figure 21. Atmospheric Noise Amplitude Probability Distribution - July 24 and 26, 1962
Figure 23. Atmospheric Noise Amplitude Probability Distribution - Oct. 25, 1962
Figure 25. Atmospheric Noise Amplitude Probability Distribution - Oct. 27, 1962
Figure 26. Atmospheric Noise Amplitude Probability Distribution - Oct. 28, 1962
the Caribbean area east of the receiver. With the sun lighting the ionosphere east of the receiver first, the noise from the Caribbean area is attenuated for a considerable period before the signal arriving from the west begins the morning diurnal decrease. Figure 26 is an example of the noise decreasing during the sunrise period and increasing after sunrise. This example is over a 5-1/2 hour period.

4.4 Atmospheric Noise Impulses

The method for totalizing the number of atmospheric noise impulses was described in Section 2.2 and 3.0. Basically, this unit counts the number of noise impulses that exceed the predetermined threshold level, for the ten or 100-second periods.

The APD determines the percent of time the noise exceeds a predetermined threshold, but yields no information as to the number or average width of the impulses. The atmospheric noise impulse count is a measure of the number of impulses that exceed the predetermined threshold. Information as to the average impulse width can be determined from the combination of the two curves.

Figure 27 shows a number of atmospheric noise impulse count distributions. The curves shown reach a maximum value and are arbitrarily discontinued.

Signal reception was best on days with the least number of high level impulses; curves C and D of Figure 27. On October 28 (Figure 27,
Figure 27. Atmospheric Noise Impulse Count Distribution
curves E, F, G, H), there was visible thunderstorm activity northeast of the Carlsbad area two hours before sunrise. This thunderstorm was traveling in a northeast direction and was not visible by dawn.

Comparing curves E, F, G, and H of Figure 27, note that the impulse count decreases during the sunrise period, but increases after sunrise. Curves E, F, G and H, taken on a stormy day, show that the total number of impulses is greater and the distribution is above the levels shown in curves C and D, which are typical for periods when signal reception was good (Table 2). Additional data must be collected and analyzed before additional conclusions can be drawn.
5.0 CONCLUSIONS

The 400 cps transmission link established between Boron, California, and Carlsbad, New Mexico, has made possible experimental studies of the diurnal night-to-day signal decrease, evolution of a transmission phase measurement technique, and evaluation of phase-lock loop receiver techniques for use in ELF propagation studies. Atmospheric noise data collected during transmission tests has provided a reference level for comparative evaluation of receiver performance.

Signal strength measurements taken during the sunrise period have established the magnitude of the diurnal decrease for a 1300 km transmission path. Although this variation which is approximately 6 db agrees well with analytical predictions the absolute level of the received signal both before and after sunrise is approximately 2 db below the analytical prediction. In the region where ionosphere characteristics determine signal attenuation, reduction of the measured data yields only a single point on the analytically predicted nighttime and daytime signal attenuation curves. For this reason, the rate of attenuation values given as 2.3 db/1000 km for nighttime and 6.0 db/1000 km for daytime conditions in Ref. 1 cannot be revised.

A transmission path phase measurement technique was evolved during the measurements program. Although the data collected to date cannot be used to estimate path phase characteristics equipment requirements and data reduction techniques have been established.
During the program, a phase-lock loop receiver was designed and evaluated. Although only a limited amount of experience was obtained with this unit the data recorded indicates that signal-to-noise improvements proportional to the bandwidth reduction from 1 cps to .25 cps have been realized. It is to be noted that the phase-lock technique in conjunction with a hard-limiter does not provide a significant signal to noise improvement when atmospheric noise conditions are severe. There are indications that some improvement can be made in this area by using more sophisticated signal processing such as a feedback limiter before or after phase detection.

Atmospheric noise data collected during the program provides an increasing store of information that can be used to establish the signal environment that must be used in the design of experiments and equipment.
6.0 RECOMMENDATIONS

It is recommended that the experimental and theoretical investigation of ELF propagation using a 400 cps transmitter be increased in scope to permit an investigation of long range overland propagation phenomena.

The objectives of this program would be:

1. Precise determination of attenuation rate
2. Definition of the ionosphere model
3. Observation of propagation path variations, both normal and those associated with SID
4. Path phase stability determination

It is recommended that these investigations be carried out by establishing a path the full width of the continental United States. An increase in radiated power of at least 20 db must be obtained if longer range experiments are to be successful. This power increase can only be obtained by increasing the antenna radiation efficiency. To obtain the increased radiation efficiency, it is recommended that an agreement for use of a power transmission line 40-60 miles in length over a low conductivity region be negotiated.
LIST OF SCIENTISTS AND ENGINEERS

Personnel assigned to the project were:

Project Manager: G. R. Dunn
Project Engineer: R. D. Smith
Engineer: P. F. Kuhnle
Engineer: T. M. Georges
Technician: W. R. Howalt
REFERENCES

<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF 5</td>
<td>AFMTC (AFMTC Tech Library-MU-135) Patrick AFB, Fla.</td>
<td>1</td>
</tr>
<tr>
<td>AF 18</td>
<td>AUL Maxwell AFB, Ala.</td>
<td>1</td>
</tr>
<tr>
<td>AF 32</td>
<td>OAR (RROS, Col. John R. Fowler) Tempo D 4th and Independence Ave, Wash 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>AF 33</td>
<td>AFOSR, OAR (SRYP) Tempo D 4th and Independence Ave, Wash 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>AF 43</td>
<td>ASD (ASAPRD - Dist) Wright-Patterson AFB, Ohio</td>
<td>1</td>
</tr>
<tr>
<td>AF 124</td>
<td>RADC (RAALD) Griffiss AFB, New York Attn: Documents Library</td>
<td>1</td>
</tr>
<tr>
<td>AF 139</td>
<td>AF Missile Development Center (MDGRT) Holloman AFB, New Mexico</td>
<td>1</td>
</tr>
<tr>
<td>AF 314</td>
<td>Hq. OAR (RROSP, Maj. Richard W. Nelson) Washington 25, D.C.</td>
<td>1</td>
</tr>
<tr>
<td>AF 318</td>
<td>ARL (ARA-2) Library AFL 2292, Building 450 Wright-Patterson AFB, Ohio</td>
<td>1</td>
</tr>
<tr>
<td>Ar 9</td>
<td>Department of the Army Office of the Chief Signal Officer Washington 25, D.C. Attn: SIGRD-4a-2</td>
<td>1</td>
</tr>
<tr>
<td>Code</td>
<td>Organization</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| Ar 50 | Commanding Officer
Attn: ORDTL-012
Diamond Ordnance Fuze Laboratories
Washington 25, D. C. | 1 |
| Ar 67 | Redstone Scientific Information Center
U.S. Army Missile Command
Redstone Arsenal, Alabama | 1 |
| G 31 | Office of Scientific Intelligence
Central Intelligence Agency
2430 E Street, N.W.
Washington 25, D. C. | 1 |
| G 2 | ASTIA (TIPAA)
Arlington Hall Station
Arlington 12, Virginia | 20 |
| G 68 | Scientific and Technical Information Facility
Attn: NASA Representative (S-AK/DL)
P. O. Box 5700
Bethesda, Maryland | |
| G 109 | Director
Langley Research Center
National Aeronautics and Space Administration
Langley Field, Virginia | 1 |
| N 9 | Chief, Bureau of Naval Weapons
Department of the Navy
Washington 25, D. C.
Attn: DLI-31 | 2 |
| N 22 | Director (Code 2027)
U.S. Naval Research Laboratory
Washington 25, D. C. | 2 |
| I 292 | Director, USAF Project RAND
The Rand Corporation
1700 Main Street
Santa Monica, California
THRU: AF Liaison Office | 1 |
<table>
<thead>
<tr>
<th>Code</th>
<th>Organization</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 6</td>
<td>AFCRL, OAR (CRKRA - Stop 39)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>L. G. Hanscom Field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bedford, Mass. (Please mail separately from any other reports going to this HQs. as they must be sent to our Documents Section)</td>
<td></td>
</tr>
<tr>
<td>AF 253</td>
<td>Technical Information Office</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>European Office, Aerospace Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shell Building, 47 Cantersteen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brussels, Belgium</td>
<td></td>
</tr>
<tr>
<td>Ar 107</td>
<td>U.S. Army Aviation Human Research Unit</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>U.S. Continental Army Command</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. O. Box 428, Fort Rucker, Alabama</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Maj. Arne H. Eliasson</td>
<td></td>
</tr>
<tr>
<td>G 8</td>
<td>Library</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Boulder Laboratories</td>
<td></td>
</tr>
<tr>
<td></td>
<td>National Bureau of Standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boulder, Colorado</td>
<td></td>
</tr>
<tr>
<td>M 63</td>
<td>Institute of the Aerospace Sciences, Inc.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 East 64th Street</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New York 21, New York</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>M 84</td>
<td>AFCRL, OAR (CRK, J. R. Marple)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>L.G. Hanscom Field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bedford, Mass.</td>
<td></td>
</tr>
<tr>
<td>N 73</td>
<td>Office of Naval Research</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Branch Office, London</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Navy 100, Box 39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.P.O., New York, N.Y.</td>
<td></td>
</tr>
<tr>
<td>U 32</td>
<td>Massachusetts Institute of Technology</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Research Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Building 26, Room 327</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cambridge 39, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>U 431</td>
<td>Alderman Library</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>University of Virginia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charlottesville, Virginia</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Organization</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>G 9</td>
<td>Defence Research Member</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Canadian Joint Staff</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2450 Massachusetts Avenue, N.W.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington 8, D. C.</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>No. of Copies</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>NEL, San Diego, California</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NOL, Corona, California</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hq. USAF Security Center USAFSS (CIR) San Antonio, Texas</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RADC (RCUED, Capt. F. Debnam) Griffiss AFB, New York</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Smyth Research Associates 3555 Aero Court Research Park San Diego 11, California</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Radioscience Laboratory Stanford Electronics Laboratories Stanford University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>University of New Mexico Engineering Experiment Station</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ARPA Pentagon, Washington, D. C.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NSF, Engineering Section</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Buships, Code 687A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>USN, USL, Ft. Trumble New London, Connecticut Attn: Mr. James Tennyson</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>University of Rhode Island Kingston, Rhode Island Attn: Dr. Charles Polk</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ionosphere Research Laboratory Department of Electrical Engineering Penn. State University University Park, Pa. Attn: Dr. S. A. Bowhill</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>No. of Copies</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Radio Corporation of America</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Defense Electronic Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burlington, Massachusetts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. R. C. Gunter, Jr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Corporation of America</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Defense Electronic Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Communications Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 Varick Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York 13, New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. Carl Sontz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page Communications Engineers, Inc.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2001 Wisconsin Avenue, N. W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington 7, D. C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. Leang P. Yeh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECO Electronics, Inc.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8401 Baseline Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boulder, Colorado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. A. D. Watt, Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFCRL (CREKM)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Attn: John A. Sullivan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rpt. No. AFFDL-63-46. EXPERIMENTAL RESEARCH INVESTIGATION OF EXTREMELY LOW FREQUENCY PROPAGATION. Scientific rpt. no. 1, 15 Feb 63, 57p. incl., illus., tables, charts, figures, diagrams, photographs, 5 refs.

Unclassified Report

Characteristics of ELF electromagnetic wave propagation were investigated by measuring the characteristics of cw signals transmitted over a 400 cps link established between Boron, California, and Carlsbad, New Mexico, a distance of 1300 km. The work described is a continuation of the investigations carried out under AF 19(604)-7448.

1. Wave transmission, extremely low frequency
2. Electromagnetic waves, propagation
3. Ionospheric propagation

I. AFCRL-63-46, Project 4603, Task 46037
II. Contract AF19(699)-1603
III. Space-General Corporation, El Monte, Calif.
IV. Smith, R. D.; Path, P. F.; Georges, T. M.
V. Secondary Rpt. No. SDC 2128-4

Rpt. No. AFFDL-63-46. EXPERIMENTAL RESEARCH INVESTIGATION OF EXTREMELY LOW FREQUENCY PROPAGATION. Scientific rpt. no. 1, 15 Feb 63, 57p. incl., illus., tables, charts, figures, diagrams, photographs, 5 refs.

Unclassified Report

Characteristics of ELF electromagnetic wave propagation were investigated by measuring the characteristics of cw signals transmitted over a 400 cps link established between Boron, California, and Carlsbad, New Mexico, a distance of 1300 km. The work described is a continuation of the investigations carried out under AF 19(604)-7448.

1. Wave transmission, extremely low frequency
2. Electromagnetic waves, propagation
3. Ionospheric propagation

I. AFCRL-63-46, Project 4603, Task 46037
II. Contract AF19(699)-1603
III. Space-General Corporation, El Monte, Calif.
IV. Smith, R. D.; Path, P. F.; Georges, T. M.
V. Secondary Rpt. No. SDC 2128-4

Propagation measurements were carried out during July and October 1962. Signal strength, received and transmitted signal phase, and atmospheric noise were recorded. Data reduction and analysis showed that received values of signal strength were 2 db less during nighttime and 4 db less during daytime than the values predicted by analytical studies carried out during the previous contract. Data reduction and analysis of the recorded phase data showed that more stable reference signal sources are required at transmitter and receiver. The form of the record obtained over a link which had approximately a 6 db signal to noise ratio is a 1 cps band indicates that a useful technique has been evolved.

Atmospheric noise data was recorded for all transmission periods. This data is presented in the form of amplitude probability distributions and impulses per unit time distributions.

1. Wave transmission, extremely low frequency
2. Electromagnetic waves, propagation
3. Ionospheric propagation

I. AFCRL-63-46, Project 4603, Task 46037
II. Contract AF19(699)-1603
III. Space-General Corporation, El Monte, Calif.
IV. Smith, R. D.; Path, P. F.; Georges, T. M.
V. Secondary Rpt. No. SDC 2128-4

Propagation measurements were carried out during July and October 1962. Signal strength, received and transmitted signal phase, and atmospheric noise were recorded. Data reduction and analysis showed that received values of signal strength were 2 db less during nighttime and 4 db less during daytime than the values predicted by analytical studies carried out during the previous contract. Data reduction and analysis of the recorded phase data showed that more stable reference signal sources are required at transmitter and receiver. The form of the record obtained over a link which had approximately a 6 db signal to noise ratio is a 1 cps band indicates that a useful technique has been evolved.

Atmospheric noise data was recorded for all transmission periods. This data is presented in the form of amplitude probability distributions and impulses per unit time distributions.