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FREE-MOLECULE FLOW IN THE AXIAL-FLOW TURBO-VACUUM PUMP

by

John S. Maulbetsch and Ascher H. Shapiro

ABSTRACT

The rarefied gas flow through a moving cascade of flat plates
was investigated analytically and experimentally, with the application
in mind of high-vacuum pumping.

The theory is based on the assumption of free-molecule flow, i.e.,
no collisions between molecules. The essential quantities determining
the performance of & blade row are the net transmission probabilities
from one side to the other. These transmission probabilities depend
mainly on the blade angle and spacing-chord ratio and on the ratio of
mechanical speed to mean molecular speed. In this report the transmission
coefficients are calculated by numerical solution of the governing
integral equations, and are compared with the results of earlier Monte
Carlo calculations.

Experiments with a rotating test machine having either a single
rotor or a rotor followed by a stator gave results in good agreement with
the theory.

A special means was developed for testing stationary cascades
under conditions simulating the operation of a moving rotor. This
apparatus was tested with several blade geometries. The results con-
firmed both the theory and the feasibility of the new rarefied gas

wind-tunnel concept.
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NOMENCLATURE
AR Aspect ratio (blade span to width of passage between blades).
b Blade chord.
c Average molecular speed for Maxwellian distribution,m
n Molecular number density.
!.I Effusion flux, number of incident molecules per unit area per unit time.
P Pressure.
R Universal gas constant divided by the molecular weight of the gas.
8 Blade spacing in the tangential direction.
S Ratio of the mean mass speed of the gas, relative to the blades,
to the most probable molecular speed. S = VN'Q_R_'I‘-.
T Temperature.

u, v, v Components of the thermal velocities of molecules.

v Magnitude of the mean mass velocity of the gas relative to the
blades.

Vg Blade speed, in tangential direction.

Vo Axial component of mean mass throughflow velocity of the gas.

W Ho Coefficient (the net flux of molecules through the cascade,

expressed as a fraction of the flux N; incident on the upstream side).
Blade angle with the tangential direction.

ol
/3 Angle which the mean mass throughflow velocity of the gas makes with
the axial direction.

212 Transmission coefficient (the fraction of molecules incident on
side 1 of the blade row which ultimately emerge to side 2).

The subscripts 1l and 2 refer to the upstream and downstream sides of
the blade row, respectively.



INTRODUCTION

Background of Research

Until recently, it had always been assumed that methods used for
pumping or compressing gases at the very low pressures dealt with in
vacuum technology would necessarily be quite different from those normally
employed at aerodynamic pressures. The expected pressure ratios per
stage associated with axial-flow or centrifugal compressors operating
at aerodynamic pressures are so low (1.05 to 1.2 for the axial-flow;

1.5 to 2.0 for the centrifugal) that far too many stages would apparently
be required to obtain the overall pressure ratios required in high-
vacuum applications. However, at very low density levels the molecular
structure of the gas may no longer be ignored in considering the flow
mechanism. The entire operation of fluid machinery must then be looked
at fram a molecular view point. The normal limitations on pressure
ratio --- adverse pressure gradients, separation, shock waves, surging,
and stalling --- are no longer meaningful. That large pressure ratios
per stage can be achieved by axial-flow machines in the free-molecule
range of pressures was demonstrated by the experiments of Becker @)
and of Hablanian(®),

The present project was initiated under sponsorship of the Office
of Raval Research after approximate calculations for the case of very
high blade speeds indicated the possibility of extremely high pressure
ratios per stage and gave some idea of the influence of the blade row
geametry. Our object has been to provide a theoretical and experimental
foundation on which axial-flow bladed vacuum pumps may be designed and
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their performance predicted. Initial results were presented in our first
report(B) to the Office of Naval Research under this contract. These,
together with sume additional material, have been summarized in two
published articles (*) (5.,

We present herewith our final report on the subject, constituting
a definitive account of the performance of moving cascades of flat plates

in the free-molecule regime.

Sumary of Present Investigation

The work described in this report may be divided into three sections.

First, the theoretical problem has been solved by mumerical solution
of the governing integral equation. For single blade rows, this made
it possible to extend the theory over a wider range of operating parameters,
and also to eliminate the not inconsiderable statistical errors inherent
in the Monte Carlo method used previously in reference 3.

The second aspect of the program was the extension and refinement
of the previous experimental studies, using the existing apparatus.

The third and most novel phase of the research was the testing of
free-molecule cascades in an adaptation of the device which in effect
made it into a new type of low-density wind tunnel. This allowed us
to test a variety of blading configurations more conveniently and
rapidly than would be possible in a rotating machine. The scheme used has

application to a wide variety of low-density wind-tunnel experiments.



ANALYTICAL PROGRAM

Analysis for a Single-Blade Row

The Monte Carlo method for calculating the molecular flows through
the machine has been described fully by Kruger(3). This method, essentially
statistical, was chosen because at that time it was thought to require
less machine time than the solution of the integral equations in terms
of which the problem may also be formulated. This was undoubtedly the
case for the multi-row calculations, for which the molecular velocity
distributions are non-Maxwellian. Furthermore, the direct analogy
between the individual samples of the Monte Carlo method and the individual
molecules in the flow made the method look particularly attractive. In
fact, for problems involving a complicated geometry, or for the precise
calculation of stages in series, the statistical approach may well be
the only feasible one.

However, in some cases it is preferable to solve the integral
equations. For single rows of flat plates, such as are considered here,
the computer time involved in the integral solution is much less than that
needed for the Monte Carlo solution. Therefore, in order to cover a wide
range of variables, and also to get more accurate results with the amount
of machine time available, the integral equations were programmed on the
IBM 7090 computer. This had the added advantage of providing certain
intermediate results which might be helpful in designing better blade
shapes for such varying requirements as high pressure ratio or high

incident-molecule capture.

Fundamental Mode of q;ira.bion

The operating characteristics of the machine may be understood by



‘considering two regions of gas, separated by a row of flat-plate blades
(Fig. 1) moving with the speed Vg We shall make the following assumptions:

1. The upstream and downstream regions are each Maxwellian.

2. The flow is free-molecular with respect to the blade dimensions.
This requires that the mean-free path of the molecules be much
greater than the blade dimensions, and allows one to ignore
inter-molecular collisions within the blade row.

3. The temperatures in the two regions are equal. This is justified
by the consideration that the rate at which energy is carried to
the blades and the casing by the molecules is small compared to
the rate at vhich it can be conducted or radiated away.

4. A stationary state prevails.

It can be shown from molecular flow theory(6) that the number of

molecules incident upon the blade row per unit area per unit time from

a Maxwellian region of number density 7. 1is given by

2
N=n\f22_ﬁ“ éez*"‘(“""ﬁ") (Ea. 1a)

{1}

where X

S cos /5 _ (Eq. 1b)

xtgg
and %15%(3 dE
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Now let ZIZ represent the probability that a molecule incident
upon the blade row from region 1 will ultimately reach region 2
(perhaps after many reflections from the blades), and X, the same
probability of transmission from region 2 to region l. Then, for zero
net throughflow, the number of molecules passing through the row in

opposite directions must be equal:

len = sza (B2. 2)

Wwhen & net throughflow exists, we may characterize the volume
flow by means of the Ho Coefficient, W, defined as the ratio of the
actual molecular throughflow to the maximum possible throughflow.#*
This maximum is ﬁ,_, and therefore the requirement of conservatlon of

molecules within the blade row leads to

N Z, - N2, =NW (®. 3)

The effusion flux N depends on Sers A according to Eq. 1, and
hence depends on the blade speed Vg, on the mean mass throughflow velocity
Vp, and on the most probable thermal speed, V2RT . However, as we shall
nov show, Ocos IA 1s in fact extremely small. From the gecmetry of
Fig. 1,

s po= Vo /V (ka. ¥)

#The Ho Cosfficient is related to the net volume throughflow by the
equation '

—
Net Volume Throughflow = \]RT/zir W
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and, by definition,

S!V {sz? (Eq. 5)

Furthermore, since the mean mass throughflow velocity is equal to the

volume flow per unit area, we may write

\; = ——K (£q. 6)

vhere KA is the ratio of the throughflow area at the cascade to the
throughflow area a mean-free-path length away from the cascade, in the
region from which the molecules are incident on the cascade. Combining

Eqs. 4, 5 and 6, wve form

s Scws WK (Ea. 7)
/A n (2RT A
Thus, Eq. la may now be written as
KaW | -x? )]
A
A= —_e x( |+ b (Eq. 8)
Nl e a (s o

Expanding the functions on the right-hand side in ascending powers

of X , and simplifying, we get

KW oo
zr{H-rerx 35-4--3-;---1 (Eq. 9)



This may be inverted to give

— 2
x.__sws/s: K KAW+ l|+‘(“W)+.“ (Eq. 10)

AW |+
2\ 2 T 2

Now W can never exceed unity, and, in any practical situation, it
is likely to be not mors than 1/2. In our experiments with the one-row
campressor (single rotor) and with the two-row compressor (single rotor
followed by single stator), K, was equal to 0.274. Hence S oS /3 was
at most equal to about 0.04, and was generally far less. In our experiments
with the stationary cascade apparatus, S ws /$ was always less than
.035.

The foregoing analysis shows that for most purposes it is sufficient
to assume that S ws {5 €0 . With this assumption it follows from

Eq. 1 that

‘e Y\,UZRT nC

N £ = (2q. 11)

o w4

Then, since the temperatures are the same in regions 1 and 2, Eq. 3
may be put in the following form which expresses the operating per-
formanance of the row insofar as it relates the pressure ratio 'nz/»n'
across the row to the volume throughflow parameter W:

7_‘3-_-_?.1"’___\2{_ (Eq. 12)
"

] ZZ! Z2l
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Since, as shown above, the net throughflow imparts only a very
small mean mass velocity to the gas in the axial direction, the Tl
are only weak functions of W. Neglecting this dependence, the analytical
problem reduces to that of determining the values of Z\Z and ZZI as
functions of the dimensionless blade speed $= VB / W and the
blading parsmeters o and s/b. Note that in the free-molecule range,
the absolute density level and the Knudsen number are not significant

variables.

Analytical Formulation

The problem may be divided into two parts: (1) the determination
of the initial incidence distribution of molecules from the Maxwellian
regions as they arrive at the blade surfaces; and (2) the evaluation of
the ultimate transmission probabilities for molecules within the blade
row af'ter they have been emitted from one of the blade surfaces. The
analysis is illustrated by Fig. 2.

The fraction 0?2 of molecules incident upon the blade row from
region 1 which pass directly to region 2 without colliding with a
blade surface can be computed explicitly in terms of the variables
o, s/b, p omd S,

Next, the fraction of incident molecules which impinge direectly
upon the blade area dx at position x (or dy at y ) along the
surfaces of the blades may be calculated, in terms of the so-called
initial incidence distribution. These are characterized by the density
distribution functions ¥, and 1{’ , such that ¥ dx 1s the fraction
of all molecules entering the passage from region 1 which impinge

directly on the area 4X , and similarly for 1/5 dy .
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Now let cr,‘a be the ultimate probability of & molecule's reaching
region 2 after having been emitted from area dx at x (after, perhaps,
a number of collisions with the blade surfaces), and let ng
similarly defined. Then the overall transmission coefficient, z'z )

be

may be expressed as

Zyp = T +J’4°izd" ALY (Eq. 13)

where it is to be understood that the integrations are over the entire
length of each blade.

In this expression all quantities may be calculated directly from
the knon quantities except for the functions Uyp (%) and e (y).
For this calculation, consider molecules being emitted from a dx at
2 on the left-hand blade surface. Let us define sz as the
fraction which passes directly from alz to region 2 without collision,
and F(ay)dy s the fraction which passes directly from dx to
some dy at Yy . Then, since the rate of molecular incidence on any

area equals the rate of molecular emission, we may write
- . lba
Ge = Gy + q:,z'F<")5)°(ﬂ (Bq. 1ha)
and, similarly,

6:52 = ng + [ 0;2 F(tj, 'x) dx (2q. 14b)
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In this pair of similtanecus integral equations, the functions
sz(z) 3 ng(ﬂ, F(x., g) , and F(t‘,z) may be computed from
the geometry of the blading and the cosine law for diffuse reflection.
They are independent of the speed of the blade row. When the cosine

law is valid, it may be further shown that F(g, 'x) = F(:l, g),
For the special case of flat plate blades, with which we are dealing,

certain couditions of symmetry prevail, greatly simplifying the problem.

These are that, at equal values of X and y ,

(Eq. 15)

a
|
q
ﬂ
|
C)
™

o +C, =0 + 06, =] (Eq. 16)

Using Eqs. 15 and 16, Eqs. llka and 14b may be combined and reduced to
Yye = (- Cw) _—J‘G'U"’ F (%) 4y (Ea. 17)

To solve this equation, the integral on the right-hand side was
first expressed as a sum of twenty terms, based on the trape-
zoidal rule for numerical quadrature. Then the function qga ( 5)
was solved for by iteration. This in turn gave 0;2 (x) >a.nd then
Eq. 13 could be solved for ZlZ .

The analytical expressions fo;- all the functions defined above
are to be found in Appendix A. The functions were camputed, and Eqgs.
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17 and 13 solved, on the IBM 7090 computer at the M.I.T. Computation

Center, using numerical quadrature with twenty intervals for each integral.

Results of Analytical Program

The results of the calculation program for flat-plate arrays have

been collected and exhibited in several ways:

1. In Table 1 are displayed the values of 2 for systematic var-
jations of the geometric parameters o and s/b and of the blade-
speed paraneter S . Note that .these are all based on the
assumption O cos /S;\ 0 . Note further that positive values of S
correspond to 2‘2, while negative values of S correspond to 22, .

2. Figures 3, 4, 5, 6, and 7 show the same information graphically.

3. Figures 8, 9, 10, 11, and 12 show the two combinations of the T's
which are indicative of the performance of the machine. Note,
from Eq. 12, that Z|2/22' gives the pressure ratio for zero

throughflow, while le -3 gives the value of W for no

21
pressure rise,

4, Figures 13, 14, and 15 are cross-plots of Figures 8 through
12, showing the effect of spacing-chord ratio on 2, / 2'2,
and z(a - Zm .

5. Figures 16, 17, and 18 are similar cross-plots, showing the
effects of blade angle ol .

6. Figures 19 and 20 show certain intermediate information regarding
the incident flux distributions, 7 and 7% and the ultinate
transmission probability, 0;2, , of molecules reflected from the
blade surfaces.
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In examining the results of the analysis, one must do so in
the light of the characteristics of operation that would be required
of the individual blade rows in an actual compressor. Equation 12
shows that, for high pressure ratio per stage, the ratio 2',2 / Zz'
should be large, while for large pumping capacity, the difference
EIZ - 22| should be large. These goals are generally not compatible.
For instance, the highest pressure ratios are attained with ol =10°
or 20 and with s/b=i/4 e 1/2. However, these configurations have
low values of the throughflow parameter 2|2- Ty .

However, practical consideration of a working design for such a
compressor indicates that the situation is not necessarily an unfortunate
one. In considering the requirements for high-vacuum technology, one
no.mally thinks in terms of absolute pressure levels of ].0-8 to 10-3mm Hg.
or lower. If a compressor, such as the one under discussion, were to be
used to attain such a pressure level, it would probably be operated in
conjunction with a mechanical forepump with a blank-off pressure of,
at best, lO,a. (10‘2m Hg.). This would require a pressure ratio across
the machine of approximately 106 or more. Such a pressure ratio
clearly cannot be obtained with & single blede row. Operating in air,
(with a most probable molecular speed at 68°F of approximately 1350 ft,/sec.),
the best blade-speed ratioc one could hope to attain is about unity. Even
at zero flow this would require at least six or seven stages. At a
zero-flow condition, the most efficient design would clearly be one
vhich incorporated identical stages all providing the highest possible
pressure ratio. However, since even at "blank-off" there is always a
net throughflow, and since one rust pass through a "pump-down" period,
high volume flow is actually as important for the machine as a whole as

high pressure xatio.
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Now the mass throughflow is the same for all stages of a mlti-stage
machine, and thus the volume throughfiow is inversely proportional to the
pressure level upstream of each row., Hence, for a multi-stage machine,
all the stages need not perform the same function. The stages near the
outlet, where the pressure level is relatively high, should provide
high pressure ratios per stage. for in this region the Ho coefficient
is nearly zero. Near the low-pressure end, on the other hand, where
the volume throughflow 1s likely to be quite large, blade configurations
should be chosen to accomodate high flow and still provide some reasonable
pressure ratio. Thus, closely-spaced blades with small blade angles
are desirable near the high-pressure end of the machine, while more
widely spaced blades with larger angles are desirable for the low-

pressure end of the machine.

Comparison with Results of Monte Carlo Calculations

It is of interest to compare the computed results presented here
with the corresponding statistical results obtained by the Monte Carlo
methodG). There are 81 cases exactly comparable with respect to the
values of oL, S/b) omd S.

The two sets of results for these él cases can only be compared
on a statistical basis. Accordingly, the percent error for the Monte
Carlo calculation was calculated for each of the 81 cases, om the
assumption that the present results are, in fact, correct. These
cases were then arranged in ascending order of error, from the largest
negative error to the largest positive error. The errors were then
plotted (Figure 2la) in the form of the integral of an error distribution



function: 1i.e., the fraction of the total cases with an error less
than a given error was plotted against the given error. The smoothed
integral curve of Fig. 21a was then differentiated to give the error
distrimution function of Fig. 2lb.

On the assumption that the result of a Monte Carlo calculation would
be normally distributed around the correct answer, the number of samples
used was approximately chosen such that there would be only a 10.96%
probability that any particular result would be in error by more than
10%. This is sufficient information to construct the theoretical error
distribution function from standard probability tables. The normal dis-
tribution function for the "expected" standard deviation of (§ = 0.0625 is
shown in Fig. 21lb.

The actual error distribution and the "expected" distribution, as
exhibited in Fig. 21b, are in general agreement, to the extent of giving
credence to both the Monte Carlo results and to the present results. That
value of the fractional error, with respect to which half the errors are
greater and half less, is about -1/2%, vhich seems quite reasonable for
a sample of 81 cases. This comparison of the means may be associated
with the small truncation error of the integral calculations, as described
below, but this is somewhat speculative,

The important conclusion to be drawn from Figure 21 is that both the
Monte Carlo results and the present results, reached by completely different
calculation routes, are in substantial agreement. The implication is that
both are substantially correct. We believe, however, that the present

results are the more reliable in individual cases.

Truncation Errors in Numerical Solution

In order to investigate vhether a division of each blade surface

into twenty zones for purposes of numerical quadrature of the integrals
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in Eqs. 13 and 17 was sufficient, trial calculations were also made for
ten, forty, and eighty zomes. From these trials it appears that the

truncation error is less than 1/24 .
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EXTENSION OF COMPRESSOR RESEARCH

The second phase of the investigation involved the refinement of
the experimental program on the single-row compressor with oc¢= 20°,
s/b = 0.46, and an extension to a two-row machine comprising a rotor and

stator having mirror-image geometries.

Single-Row Compressor

The experimental work was performed on the existing apparatus.
A cross-sectional layout of -the machine is shown in Fig. 22. Figure 23
is a schematic of the associated equipment and instrumentation.
Although a description of the apparatus and the experimental technique
3)

appears in our first report , 1t is repeated here for the convenience
of the reader.

The test sectlon consisted of a cylindrical steel housing in which
the aluminum compressor rotor was driven by a high-frequency induction
motor. To maintain densities sufficiently low for free-molecule flow
in the test section, the housing was mounted directly on a six-inch
oil diffusion pump with its axis, and the axis of the compressor rotor,
in a vertical direction. The shaft connection between the rotor and
the induction motor was made through an anmilar clearance seal 0.T50
inches in diameter, 0.540 inches in length, and with a radial clearance
of .002 inches. Using the formula for a thin slitlike tube, the molecular
conductance of the clearance seal is found to be 1.13 x 10-3 liters per
second for air at 20°C. Thus, if the pressure on the motor side of

the seal is maintained at a micron or less, the flow from the region
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of the motor 1s of the order of 107> micron-liters per second, a
negligible leak at the conditions of the tests. To ensure this
condition, the motor housing was connected to a two-inch oil diffusion pump.
As a further precaution, a low vapor-pressure silicone grease was used as
a lubricant for the motor ball bearings. Provision was made to admit
gas to the system both above and below the rotor. Seals between the
system and the atmosphere were maintained by means of welded and
soldered joints, O-rings, special gasket seals for the ionization
gauges, and, in the case of the thermocouple gauges and the gas inlet
tubes, by red glyptal lacquer.

The densities upstream and downstream of the compressor rotor
vere measured by hot filament ionization gauges. One thermocouple
gauge was used to insure that the pressure in the motor housing was
below one micron, and another was connected to the test section upstream
of the disk. The flow rate of gas admitted into the system was measured
on the high-pressure side of the leak valve by the displacement of
a column of mercury in essentially the same manner as that described by
mshm.n.(7) It was assumed that the mass flow rate of gas through the leak
valve was proportional to the square of the pressure on the high pressure
side of the valve, as for compressible flow at low Reynolds pumbers,
and the flow measurement was used to determine this comstant of proportion-
ality. 'The speed of the rotor was measured by a permanent magnet-and-coil
tachometer and an electronic counter. The temperature of the outer race
of the bearing at the rotor end of the shaft was monitored with & thermo-
couple and potentiometer.
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Experimental Technique

The apparatus was prepared for testing by thoroughly cleaning
all surfaces to be exposed to the vacuum with acetone and by heating
the entire apparatus with infrared lamps to a temperature of the order
of 100°C for several hours with the vacuum pumps operating. At zero
blade speed, with both leak valves closed, a pressure of about 2 x 10'6m Hg
was obtained at the downstream ionization gauge. A comparison of this
value with the reading of the upstream ionization gauge gave an app-
roximate value for the flow rate from leaks and virtual leaks in the
system, using the single-blade-row calculations for a stationary rotor
t0o determine its impedance to gas flow. Since the density ratio across
a rotating blade row is a function of the upstream volume flow rate, the
effect of these small leaks in the system was made negligible by admitting
gas through the downstream leak valve and raising the density level in
the system. Tests were conducted at density levels for which no deusity
drop wvas measurable across the stationary rotor.

The dimensions of the compressor rotor used are given in Fig. 22.
Angular velocities in the range from 20,000 to 30,000 r.p.m. gave tip
speeds from 620 to 955 feet per second. Ordinary air was used as the
test gas for the compressor tests. In the cascade experiments, described
later, xenon was also used because its lower molecular speed allowed
higher dimensionless blade speeds to be reached. The pressure down-
stream of the rotor was maintained at about lo'hm Hg by means of the
lower leak valve. The flow of gas through the rotor was controlled dy the
upper leak valve and the flow rate was measured by the displacement of a

mercury column, as previously described, and by the density drop across



the compressor rotor at zero blade speed.

Two-Row_Compressor

The two-row compressor was built as a combination of the rotor
previously described and of a following stator having a geometry that
vas a mirror image of that of the rotor. Figure 24 shows details of the
arrangement and gives pertinent dimensions.

The spacing between two rows was made as small as possible in
order to minimize the effects of the end walls, and also to reduce the size
of the anmular passage designated by L. in Fig. 24. This annulus represents
a leakage path through which molecules from the high density side may by-
pass the stator with a transmission probability of nearly unity. However,
this throughflow area was negligibly small in comparison to the through-
flow area of the stator, and thus its effect on the performance of the

machine was also neglibible.

Experimental Results with Single-Row Compressor

On Figures 25, 26, and 27 are displayed the experimental data and
calculated results for the single-row rotating machine, with air as
the test gas.

The pressure ratio across the rotor, for zero net throughflow,
is shown in Fig. 25. Also shown are the experimental data of Kruger
and Shqpiro(l’) & (5), as well as the theoretical pressure ratio for
zero throughflow, as computed from Eq. 12 and the transmission
coefficients of Table 1. It is to be noted. that the blade speed S in the

abscigsa of Fig. 25 is reckoned at the arithmetic mean radius between the
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tip radius of the blades and hud radius; correspondingly, the value of
s/b = .16 13 also reckoned at the same mean radius. The present
results and the earlier data of Kruger and Shapiro are in agree-

ment to within the accuracy of measuring the pressures.

While the theoretical predictions are in general agreement with
the experimental results, and while they certainly follow the same sort
of curve, there is a substantial discrepancy, with the experimental rotor
showing distinctly better performance than would be anticipated from
the theoretical calculations. For instance, at a blade-speed ratio of
0.50, the theoretical expectation of zero-throughflow pressure ratio
is about 2.85, whereas the measured pressure ratio for zero throughflow
is about 3.75.

Fig. 26 shows, for several different values of the dimensionless
speed ratio S , the measured curves of pressure ratio across the row
against volume throughflow. The latter 1s expressed in terms of the
volume throughflow parameter W, namely, the ratio of the actual volume
throughflow to the volume throughflow incident on the blade row from
the upstream end. The ordinates of Fig. 26 have been normalized with
respect to the pressure ratio for zero throughflow. In other words,
they represent the pressure ratio for a given volume throughflow
to the pressure ratio corresponding to zero throughflow for the same S ’
as displayed on Fig. 25. According to Eq. 12, the curves of density
ratio vs. volume throughflow should be straight lines, at least for
the limiting case Su:s(h-o . It may be noted from Fig. 26
that the experimental data do indeed follow straight lines within
the experimental accuracy.

Referring again to Eq. 12, the experimental values of the
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transmission coefficlents 2, amd Z, may be calculated
from the intercepts of the straight line of pressure ratio vs.
volume flow. Thus, using the experimental data of Fig. 25 and

the "best" straight lines of Fig. 26, the transmission coefficients
were calculated as a function of the dimensionless speed ratio S.
The results are shown in Fig. 27. Also shown on Fig. 27 is the
theoretical curve of transmission coefficient vs. dimensionless
speed ratio, as interpolated from Table 1.

The experimental data in Fig. 27 are in general agreement with
the theoretical predictions. For positive values of S , the measured
transmission coefficients lie higher than the theoreticel; for negative
values of S , they lie slightly lower.

All the experimental results for the single-row rotating machine
are essentially summarized in Fig. 27, and it remains now to inquire
as to the possidble sources of discrepancy between the measured values
of transmission coefficient and the theoretical. To the degree that the
actual conditions of the experiment duplicated the postulates of the
theoretical model, we should expect substantially perfect agreement.
However, there were several deviations, and these will now be dis-
cussed and their significance appraised:

1. The molecular fluxes incident on the rotor from the upstream
and downstream sides were not necessarily exactly Maxwellian.
However, the mode of operation of the moving cascade is such
that slight departures from Maxwellian conditions should
not have much effect on the transmission coefficients.
Accordingly, this is not felt to be a significant source

of deviation between theory and experiment.
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2. Earlier, in connection with Eq. 1, and in the calculations of
Z'n and Z,, the theoretical calculations were simplified by
assuning that sa‘fi is approximately zero. This is not exactly
correct. Estimates of the amount of error this might involve, however,
indicate that this approximation could scarcely be the source of
the difference between theory and experiment observed in Fig. 27.

3. In making the theoretical calculations, it was assumed that
molecules incident on the blades would be reflected in a diffuse
manner. That is, the molecules emitted from the surface were
calculated as though they came from a Maxwellian region behind the
surface. Examination of the geometry of the blade rows shows that
even & very small proportion of specular rather than diffuse reflec-
tion would make an enormous difference in the transmission coefficients.
In particular, it would greatly increase the transmission coefficient
=z g, » and 1t would greatly decrease the transmission coefficient
Zz\ . We have nothing firm on which to Judge whether this
wvas a significant factor, but a comparison of these results with
those of the two-row rotating machine and with those for the
stationary cascade suggests that this was not the essential source
of discrepancy.

4, The most likely source of discrepancy between theory and experiment
in Fig. 27, especially when we take into account the experimental
and theoretical comparisons for the two-row rotating machine and
the stationary cascades, is the fact that the cascade is not strictly
two-dimensional. Entirely apart from the variation of radius and
of blade speed along the span of the blades, the most important

factor seems to be that in the actual machine there are end walls
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to the cascade. One of these end walls, at the hub, is
stationary with respect to the blades. The other end wall, at
the casing, is moving with respect to the blades. The stationary
end wall tends to reduce the values of both transmission coefficients,
Z,, end Zzl , through what may be thought of as a frictional
resistance. If one examines the relationship between the moving
end wall and the blades, it will be seen that any molecules
incident upon this moving end wall will be reflected back into
the blade row in such a way as to improve their chances of being
emitted toward the downstream side. This tends to increase the
value of ZIZ and to decrease the value of Z, , & trend in
agreement with the camparison of Fig. 27. Moreover, as further
indication that this may well be the principal explanation, note
that at a value of the dimensionless blade speed ratio S =0,
where the effect of the moving end wall would be minimized, the
agreement between theory and experiment is within the accuracy of
the experimental data. As further evidence on this point, the
effect of the stationary end walls at S = 0, according to the
investigations described later with stationary cascades having

various aspect ratios, is quite small.

Qerinenul Results with Two-Row Campressor

Figs. 28, 29, and 30 show the experimental data and the computed
experimental results for the two-row rotating machine. These three
figures are comparable in their comstruction to Figs. 25, 26, and 27
respectively, and may be interpreted in the same way. The one point
requiring clarification has to do with the theoretical calculation of



-26-

the transmission coefficients shown in Fig. 30. These were calculated
from the single-rov transmission coefficients of Table 1 using the calcula-
tion procedure described in ref. 5. Note further that the solid curve of
Fig. 28 is the overall zero-flow density ratio, vhile the dashed curve

is the zero-flow density ratio for the stator alone, found by combining
the results of Fig. 25 with the solid curve of Fig. 28.

In assessing the comparison between the experimental and theoretical
results for the two-row rotating machine, wve may restate the first three
comments made above with respect to the similar comparison for the single-
row rotating machine. The last comment made above, however, requires
modification, inasmuch as the stator of the two-row machine had two
stationary end valls. This would have the result of reducing the trans-
mission coefficients z'za.nd zz. for the stator row. This interpretation,
vhen applied to the one-rov machine (Figs. 25, 26, and 27) and to the
two-row machine (Figs. 28, 29 and 30), seems to make for a comsistent
picture, especially vhen it is realized that there is a leakage backflow

around the stator.



FRER-MOLECULE CASCADE TESTS

The third stage of the program represented the most novel
contribution of the present research. Its purpose was two-fold. The
first was to enlarge the scope of existing experimental results app-
licable to the free-molecule compressor by testing a variety of different
blade geametries. The second was to test a new concept in low-density
"wind tunnels”. To obtain the required data through the use of rotating
blade rows would have necessitated the building and balancing of a new
rotor for each geometry tested. The alternative scheme was based on a
free-molecule cascade in wvhich a mean mass velocity was imparted to the

gas on one side of a stationary blade row by means of an unbladed rotor.

Apparatus

An assembly drawing of the apparatus,modified for use as a cascade
wind-tunnel, is shown in Fig. 3la.

The blades were mounted in one quadrant of the cylindrical shell
separating zones | and 4 , as shown in Fig. 31b. Since the blades
in this arrangement are stationary, there is no problem of strength
or balancing. They were simply cut out of thin sheet-stock brass
with tin snips, and were held in place in the blade racks with small
dabs of epoxy resin at each corner. A mean mass velocity was imparted
to the 1ocident molecules on one side of the cascade by the high-speed
votor. The design of the outer edge of the rotor, with two small ridges
on the top and bottom, insured that all molecules incident on the blade

rov from region 1 were epitted from the outer edge of the rotor. Therefore,



under the agssumption of diffuse reflection, the gas in region 3 had a
mean mass velocity with respect to the blade row equal to the peripheral
speed of the rotor. Thus the stream of molecules emitted from the rotor
played the same role as the high speed gas stream in a rarefied-gas wind
tunnel.

Procedure

In order to determine the transmission coefficients, three sets
of measurements were required. The first was a calibration of the
blade row as a flow-meter with the rotor locked, and with the positive
displacement flowmeter used for determining 2, , the transmission
coefficient of the blade row at a blade-speed ratio of zero. The second
was a gseries of measurements of the pressure ratio across the blade row
at finite blade speeds and zero net throughflow, for the determination
of Z|2/2° vs. 3 And the third was another set of runs similar
to the second, with the blades facing in the opposite direction, to
determine Ezl / Z, vs8. S . In the case of flat-plate blades with
their accompanying symmetry, it was possible to make the third set of
measurements simply by reversing the direction of rotation of the
rotor.

In the original design of the apparatus, it had been intended that
the resistance to flow between regions 3 and 4 and also between 4 and
5 would be negligible in comparison to the resistance of the blade
rov itself. This was indeed the situation in the latter case, as
indicated by the fact that the pre‘ssurea in regions 4 and 5 were equal.
Accordingly, one could speak meaningfully of a single downstream
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pressure during the determination of Z, . However, the resistance
between 3 and U was larger than had been anticipated. This difficulty
was overcome by measuring two resistances; first, that without the
blades present; and, second, that with the blades in place. From these
two pieces of information it was possible to evaluate the resistance
of the blade row alone. The method is described in Appendix B.

The experimental technique was essentially the same as that des-
cribed for the single-stage compressor, with one addition. As mentioned
earlier, it was necessary that the pressurcss in reglons 4 and 5 be identical
in order that the downstream pressure be a unique quantity. To this end
a large passage was provided around the rotor between the regions, but
an additional ionization gauge was installed for region 4 and monitored
during the tests to insure that such equality existed. This problem of
flow resistance between the various regions was, of course, a matter
of concern only in the calibration test for determining Z, o The tests
at finite blade speed to determine the plot of zero-flow density ratio
vs. blade speed ratio were conducted with no throughflow. At this con-
dition the resistance to net throughflow between the three regions is

of no concern.

gperimental Results with Free-Molecule Cascade

The experiments performed had three main goals:

1. To check out the theory for a variety of flat-plate blade
geometries without the necessity of machining new rotors for
each case.

2., To investigate the influence of end-wall effects, in terms of

the aspect ratio as an experimental parameter.
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3. To test non-flat-plate blade shapes for which an analysis

could not readily be performed.

All the experimental data, and the associated results, are shown
in Figures 32 through Figure Ll.

Fig. 32 shows the curve of pressure ratio vs. throughflow for the
apparetus with no cascade installed. These data were employed as
indicated in Appendix B.

With the exception of Figure 36, all the other Figures are arranged
in three parts, and each Figure relates to an individual blading geometry,
that 1s, to a particular angle ©f , solidity s/b, and aspect ratio AR.
Referring to Fig. 33 as an example, (o¢ =20°, s/b = 1/2, AR = 3/2),

Fig. 33a shows the curve of pressure ratio vs. throughflow with the

rotor locked, i.e., for S = 0. In conjunction with the dats of Fig. 32,
this led to the value of 7:, eccording to the method of Appendix B. Fig. 33b
shows, for zero throughflow, the curve of density ratio vs. blade-speed
ratio; it was found by multiplying together the measured values of

2-12 / 2, and fo/ 22, . The latter, which were of course measured
individually, may be combined with the values of Z, obtained previously

to give the final values of le and Z-ZI displayed in Fig. 33c.

Effect of Aspect Ratilo

Figures 33, 34 and 35 all refer to the blading parameters ol= 20°,
s/b = 1/2, which is very close to the corresponding parameters for the
tests with the one-row and two-row rotating machines. They differ in
that they pertain respectively to aspect ratios of 1.5, 2.8, and L.O.
Note, by way of comparison, that for the rotating-machine tests the aspect



ratio was about 2.L.

The most interesting feature of this series of three figures is the
question of how the stationary end walls of the cascade affect the trans-
mission coefficient. For convenience, the mean experimental curves are
collected in Fig. 36, where the theoretical curve is also shown. It is
evident that the transmission coefficients for an aspect ratio of 4 lie
nearly at the asymptotic value for an aspect ratio of infinity, and that
even for an aspect ratio of 2.5 the effect of the end walls is not very
large. The theoretical results for infinite aspect ratio are, within
experimental error, coincident with the experimental results for aspect
ratio 4. All this tends to confirm our earlier appraisal that the main
reason for the discrepancy between theory and experiment in the rotating-
machine tests was the pumping effect of the moving end wall.

The effect of aspect ratio observed here is much the same as that
reported in reference 8, where the results for chevron baffles with an
aspect ratio of 5 were nearly coincident with those for an aspect ratio

of infinity.

Effect of Spacing-Chord Ratio

Figures 35, 37, 38, and 39 are all for a blading angle ol= 20°
and with an aspect ratio large enough ( >4) to be considered nearly
infinite. They differ in that each is for a different spacing-chord
ratio, s/b, covering the range from 1/4 to 3/2. 1In every case the
measured transmission coefficients are in close agreement with the
theoretical values.
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Effect of Blade Curvature

Figures 4 and 41 show experimental data for cambered blading, for
which no theoretical results are available. Each of the two cambered
design is based on a straight-chord line with ol= 20°, s/b = 1/2,
and the results are therefore to be compared with those in Fig. 35.

With the camber of Fig. 4O, both the zero-flow pressure ratio
and the volume-flow capacity are less than with straight blades having
the same O and s/b. Therefore this direction of camber is undesirable,
at least in the range of o, s8/b, and camber of the tests.

With the opposite camber, Fig. 4l, the zero-flow pressure ratio
is slightly larger than that for flat plates, but the through-flow
capacity is only about half as large. Therefore this direction and amount

of camber also seems to offer no substantial advantage.



APPENDIX A

DERIVATION OF FUNCTIONS USED IN ANALYTICAL SOLUTION

Initial Incidence Distributions

As explained earlier, the analytical solution may be broken up
into two major steps, the first of which is the calculation of the
go-called initial incidence distribution. By reference to Fig. A-1, it
is seen that molecules impinging upon the blade row from region 1 may
suffer one of three fates. They will either pass directly through the
blade row without a collision with the surfaces and thus be of no further
interest, or else they will collide with one of the two surfaces. The
items of importance in this stage of the calculation are: first, the
fraction which pass through the row directly, which we call 6,' ;
and second, the fractions which collide with areas dx and d,y on the blade
surfaces at varying X and Y along the blades. These distribution

functions will be called 1;. and 'l/y , &8 shown.

Fig. A-l
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This problem will be approached, in the notation of Fig. A-2,

i ‘ Z. gllr_dz | @
>

Fig. A-2

by first calculating the number of molecules incident upon area dx at x
which enter the blade row by crossing the area dz at 2 , and then integrating
across the opening between the blades from 2=0 to Z=5S . Since the
incoming molecules are uniformly distributed in space, every d2 has the

same molecular flux. Therefore the problem is to determine for a given

blade speed, what fraction of molecules crossing dz are contained in the
plane angle d9 inclined at the angle & to the normal. A knowledge of

the blade geometry will then relate the X, 2 and, 6 , thus enabling

one, at least in principle, to perform the necessary integrations.

Fiﬁm the point of view of an observer on the blade row, the molecules
incideéx upon the row from region 1 will have a Maxwellian velocity dis-
tribution superposed on a mean mass velocity vector, specified by V’ and

/Q in Fig. A-3. Let U represent the molecular velocity component
along § , V' along ‘? , and W along 5 (normal to paper).



Fiao A-3
Hence the mumber of molecules per unit volume having velocity camponents

lying between ©. and WU +dy , v and v+dv and wand W+dw is

glven by )

n( ‘ )3/2 e--?'lﬁ-[(u-vmp)z“(v-vs;m/&)2+ wz] du dv dur

(Eq. A-1)

ZWRY,

Transforming from cartesian velocity coordinates M,V,'W’ to cylindrical

coordinates U, 8 , sod Waccording to the relations

u=U ws B (Eq. A-2a)
LV Usim @ (Eq. A-2b)
w= 1w (Eq. A-QC)

the volume in velocity space dM.dArdw becomes UdUdew' and

Eq. A-l becames

3/2 \

( ‘ ) e- T cose-Vusls)zi»(UsLuO-Vsbu,s)zwz]

Udldodwr (- -3
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Now, all the molecules which cross a surface per unit area per unit time
with velocities betwveen U and U+dU in the angle d6 at angle 6 to the
normal must have come from an imaginary cylinder behind the surface with
slant height YU#W?  and altitude Ucos © . Thus the number of

these molecules crossing unit surface per unit time is given by

& 2
‘—18' Ueas0-Veoso+ (Db Vsin ) 4o
(‘:Lﬂs e” ’ P Zouse dUdodw (Ea- A-b)
=

If this is now integrated with respect to W from - to 400 )and with

respect to U from 0 to oo  we obtain the total number of molecules crossing

)

the surface per unit time and per unit area with velocity vectors lying
in d6 at O :

VT[4 o 3)F(pes)e

where

2 2

% +8 o los0de (B a5)
S = \//‘{2—??

S\ = 8 ws (e'/ﬂ) (Eq. A-6)
3, = 3 sim (9-/3)

Dividing now by the total flux of molecules crossing the plane to get the

fraction of the total with velocities lying in df at O , one cbtains

-a2 -2
(S,/VI’F)B d + (H«nf 3‘)("1*' 3|a>e e
e- Stasip N ﬁ;» Surs(&[“"’"‘ ($ursl$)]

s 8 48 (Eq. A-T)




If now, both the blade surfaces and the opening between the blades
are broken up into a finite number of sections as shown in Fig. A-4, the
angle subtended by the jth small area dX from a point Z in the center
of the ith interval dz is denoted by

AO‘-”. = 9")1‘ - 95)1'41
Where, in general

Fig . A‘h

-1 (S/b)(Z/S) + (x/b)oosa(
6= fon (x/b) sim ot

(Eq. A-8)

Using Eqs. A-8, Eq. A-7 may be integrated between 94;' § oo 66 g+
forarixedposit:lon(:onthescalc of Z. One may then sum over all
the { sections of the opening between the blades in order to obtain the
total fraction of molecules from the region considered which are directly
incident upon dxj Having done this for all éxsand dyS, one has a
stepwise approximation to 1/,‘ and 1/y . The fraction transmitted

directly from region 1 to region 2 is calculated in a similar wvay.
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Ultimate Transmission Probability of Reflected Molecules

In performing the second stage of analysis, that of determining the
ultimate probability of a molecule's getting through to region 2 after
being emitted for a known position along the blades, it will be remembered
that, in general, it was necessary to solve two simultaneous integral

equations for G;Lz along with 0;2 which were of the form,

O = Cxp # f Tye F<x'9)_°°3 (Eq. A-e)
and
O = qu +f T2 F(f’:") 2 (B, A-)

vhere F éy)dj vag defined as the fraction of molecules emitted from
dx at x which impinge directly upon the area dy at y , and Cuthe
fraction of molecules emitted from dy at X which reach region 2 directly
without any further collision with the blade surfaces. [ ('{, 2-) and
Cyz are defined similarly.

For the case under consideration, certain simplifications are possible.
First, if the cosine law of reflection is valid, F(xy)= F(y,x) jama
second, for the case of flat plate blading, symgtry enables one to say,
for equal values of x and y , T, = 03, , and, similarly, @ = Oy,
Furthermore, since

= (Eq. A-10)
0'; ]

it is possible to reduce the two simultaueous equations to a single one

in the form,

q, == Cy | WPl (q A-11)
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Since 0;1 (_X) and Ty, (g) are the same function, this equation may be
solved by iterative methods once the functions for F(Z,g) and C,“
are known.

For the calculation of Cz| , refer to Fig. A-5.

Fig. A-S

Assuming the cosine law of diffuse reflection, the fraction of molecules

emitted in an angle d@ inclined at an angle € to the normal is

'Zc,os g 49
Therefore the fraction emitted in the angle 7/ is
/2
=t _ ] ( ,
an 7 cos 8 d8 = 7 {-cot ’/) (Eq. A-12)
57

From the geometry of Fig. A-5,

s S
y Z oS &L+ L
s (Eq. A-13)
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C.= g4I~ "
L @@l g ot

For the calculation of F (1,3) , refer to Fig. A-6.

(Eq. A-1b4)

40
v
>}
|
Fig. A-6
Again, by the assumption of diffuse reflection, F(%,y)dy 15 given by

Flay)dy = §cos 0 do
Referring to Fig. A-6 for the geametrical configuration,

1

2 sm
b
ws 8 = 2172 (Eq. A-15)
{(égson.,«)‘+[%+ T+ ‘;wd-l] g

Also,

de = d‘ﬁ s ©

r



Hence

F(’-) ‘J\ =

Njp=—-

®)

-hl.

ste 4(3)

(-1

vl

2
+-"F'+ %wsd-l] i

3/2

(Bq. A-16)
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APPENDIX B
DETERMINATION OF Z, IN CASCADE TESTS

As described earlier, the free-molecule cascade with zero throughflow
enables one to measure directly ¥, / Z, smd Z, /Z, s a function of
blade-speed ratio S . Therefore, in order to obtain the magnitude of
the transmission coefficients Z|, and Zm , one must measure 2, for the
stationary cascade. This is done by measuring pressure ratio vs. volume
throughflow, and using the relationship m,/n, = |-~ (W/Zo) .

In the case of the rotating-row machine, this was a straightforward
task since the only appreciable resistance to flow between the upstream
and downstream pressure gauges was the blade row itself. In the case of the
stationary cascade, such was not the case. However, the determination of
2, was arrived at through the following considerations. Fig. B-1 is a
diagram of the stationary cascade, showing the several resistances to flow

between the two pressure gauges.

PRESSURE l
GAUGE — /CASCADE' |
T_';_C \ ROTOR n
213 b
e |
¢

PRESSURE —

5
GQAUGE
T

Fig. B-1
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In general, if one has several flow resistances in series between two
points, it is possible, from a measurement of the flow at a given pressure
ratio between the two points, to determine the value of any individual
resistance if all the others are known. What is desired, in this instance,
is the value of the resistance from 2 to 3 when the blades are in place.
This requires a knowledge of the resistances fram 1 to 2, 3 to 4, and
k to 5. Of these, only the resistance from 3 to 4 was not known and not
readily calculable. Therefore it was determined by means of a preliminary
experiment.

The general equation for the flow fram a region 1 to a region J may
be written as

.

NA T - NLA, 2

v LY 11 j'.'.:W':N('A‘:

(-1)

vhere N signifies molecular flux; Zij
i to J ; and WC the net throughflux ratio based on the incident flux

the transmission coefficient from

N( A('_ for region {.

In the absence of moving parts, it is further required that

AZig = Aj2i

Applying these equations to the successive stations of Fig. B-1, we get

T, /n = \- W, /3,

(B-2)

(B-3a)
“’3/'“?. = |- Wz /Ez3 (B-3v)
Ty /%3 = |- W3 /f;q, (B-3¢c)

ne/my = 1= Wy /Z.,s (8-30)



Since the mass flow is constant along the flow path’
Wn Ap = K (B-4)

where K is a constant. Now, since the positive displacement flow meter,
together with the pressure gauge at 1, yields the value W| » 1t is convenient
to eliminate K by writing
"
W= W, = -

n, A (8-5)

Since Aq /A| 771 e may approximately set Wq 20 , Also,
etnce E, =1 1t follovs that ng/ny B4

By approximating the flow between stations 1 & 2 and between 2 & 3
as flow between parallel plates, the values i‘zg 0.33 and '2252 9.80
are obtainable from the 11terature(7). Since these passages represent
relatively small resistances to the flow as compared to the passage from
3 to 4, small inaccuracies in these transmission coefficients have a very
slight effect on the determination of the resistance from 3 to h,

with these quantities known, a measurement of \M at any given value
of "'ls/‘n, is sufficient to solve for fz*using the following combination of

Equations B-3 and B-5:

ﬂ_s,(‘_rf_.[‘-.v_v;ﬁj_n_ -_Vﬁ.&(ﬁ_)(-*i‘_ﬁ i..)
Wl 273 0y AL ToW, Ty As 2y 7-'23 Az E|{W\

Mumerically, A,/A;A,/A;-lh‘l'], From Fig. 32, at N, /'nl =0.5, W, =0.029.
Thue one may finally calculate Zgy = 0.3S).

With this value of Z‘W tests may be run vith the blades in place, and
application of the equation above to the data furnishes values of zo

(1.e., Zn) for each blade gecmetry.
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THEORETICAL VALUES OF TRANSMISSION COEFFICIENT, X

TABLE I

Note: Positive values of S correspond to X 12+ nhegative values
correspond to Z ;.
(a) s/b=1/4
a
S 10° 20° 30° 45° 60°
000 00619 20855 01516 02494 +3298
0.10 e 0681 00962 01682 e2701 03477
=010 00562 «0758 01362 02293 03110
0425 «0784 01142 «1953 03014 03715
=0e25 e 0486 «0633 01158 22010 +2821
0450 ¢ 0979 01493 02446 «3505 03996
=050 00383 00473 « 0888 01606 02361
0e75 1203 «1893 02953 3896 04094
-0 715 e 0306 00364 00697 «1300 01973
1,00 01448 02323 03427 4134 04018
=100 00249 00293 « 0569 +1085 «1678
2,00 02549 03842 e 6307 03640 02932
~200 «0136 «0185 0375 o748 «1188
3.00 03643 e 6348 e3663 e2705 02373
-3.00 ¢ 0095 00156 ¢ 0325 00667 «1077
400 «4560Q e3946 «2824 02323 02217
-4000 «0074 00143 00302 00631 21030
500 e5210 03252 e2344 «2185 e2153
-5400 +0062 00134 «0289 «0611 «1006
(b) s /b=1/2
a
S 10° 20° 30° 45° 60°
000 00544 01432 92370 23642 204617
0.10 «0615 e1599 02609 «3919 04842
-0¢10 00481 01281 021648 03374 o 4378
025 «0735 +1876 22993 04327 05143
~0e25 0400 - 01082 01848 02991 24010
0450 «0975 02403 e367% 06962 ¢5502
~0e50 00298 0822 0l441 02434 e3413
0.75 1263 «2988 4360 5466 5646
-0e75 00227 «0640 01146 22000 22898
1.00 e1591 ¢3599 o 4987 «5283 5579
=100 «0181 « 0517 00943 «1685 02495
. «3120 5637 6172 5354 4376
=2400 +0109 °u325 20619 01164 21780
3.00 oh572 06321 «5578 04283 ¢ 3629
-3.,00 « 0087 00272 00532 21029 016
%4.00 . o 4673 317138 *33
-44.00 00077 20245 «0490 00967 01521 |
$.00 06206 05299 0 &047 3500 ¢ 3261
=500 «0070 «0230 « 0466 «0931 01476




THEORETICAL VALUES OF TRANSMISSION COEFFICIENT, 2

TABLE I (continued)

(c) s/b=1
a
S 10° 20° 30° 45° 60°
000 01383 02638 37464 5097 6069
0010 1542 *2903 4064 «5420 e6318 |
=010 01236 02389 +3435 «4773 * 5802
0¢25 1799 e3324 e 4560 5891 ° 6848 |
~0e25 01039 02048 «3003 «4297 05382
0450 02274 * 4066 *5389 «6596 | <7045 |
-0e50 _ 00773 01574 02382 ¢3569 « 4676
0e75 «2785 <4820 «6167 e 1143 1227 |
-0e75 00579 01219 +1900 02962 04031
1.00 e3311 «5542 ° 6841 e T498 e 1208
<1,00 00446 20968 01550 02497 3498
2400 5258 ° 7654 *8166 7313 6172
-2000 00234 00562 00962 01972 o 2455
3,00 6736 ° 8491 «8012 6536 5356
-3,00 00178 0455 +0814 01462 02188
4,00 * 7766 8580 e 7499 « 5980 e 4994
-4400 «0151 0405 00744 01367 02074
5400 8433 *8365 . 7048 5665 4816
-5.00 *0135 ¢0376 «0703 1312 «2008
(d) s/b=3/2
a
S 10° 20° 30° 45° 60°
0400 3615 04236 4927 5913 .

0.10 3785 «4501 5234 6218 6989
-0e10 03647 3973 0 862] PY-) ¢6%13 |
0025 04042 4900 05693 06655 « 7285
«0e25 3199 3589 oh170 05137 26113
050 e 0468 5555 064626 * 7301 ¢ 7631

-0650 «2802 02985 03465 04388
075 + 4887 6179 «7089 « 7809 ° 7783
~0e75 024631 0 2445 02842 03715 o 4734
1.00 5292 6752 ¢ 7656 8158 7758
-1400 «2092 +1979 02320 0315} o#132
2400 6710 o8411 +8870 8278 6825
-2.00 01079 « 0860 01177 01946 22770
«00 o T784 9174 ¢8961 07699 06054
-3,00 0536 0508 20875 01623 02396
4400 . 09400 «8719 ¢ 7256 5703
~4400 0285 00617 00789 21509 02261
«00 *9080 9387 8472 6983 ° 5845
~5+00 «0184 +0385 00748 01449 02188




THEORETICAL VALUES OF TRANSMISSION COEFFICIENT, Z

(e) s/b=2
a
S 10° 20° 30° 45° s
000 ¢5147 5536 «6052 6849 ¢ 7498
0el0 «5282 e5761 e6322 7117 e 7703
<0el10 «5012 ¢5310 «5778 06569 eT7273
025 e 5484 «6094 N3 %2 e 1494 « 1970
-0e25 24810 24972 ¢5366 e6137 + 6907
0e50 «5815 06630 «T7331 «8033 «8286
=050 04478 24420 « 4691 05412 06251
Oe7% «6137 eT129 «7869 « 8439 08437
«0e75 04155 3895 « 4055 4717 25588 |
100 06645 e7581 «8318 « 8704 e 8439
-1400 03843 03408 03478 «4087 .‘L?67
200 ¢7520 e 8864 09245 08749 «7712
-2¢00 02752 «1918 «1879 22443 3307
3.00 «8334 09447 «9319 « 8273 «7001
=-3.,00 «1912 01084 01121_ :&§38 2699
400 «8920 9629 «9153 e 7894 «6600
-4400 01294 « 0678 00927 1643 02697
500 09322 09636 «8980 v 7647 «6386
-5.00 «0858 «0502 «0837 «1563 02408
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