NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TO: Distribution List

SUBJECT: Contract AF 33(657)-8926, Compilation of Unpublished Materials Information on Company Sponsored Programs

1. The attached compilation report on materials properties is forwarded for your use and retention. It is one of several which will be distributed to you in the coming months as the result of a program to collect and disseminate unpublished materials information available from selected organizations. The information contained in this series of reports has not been subjected to any particular evaluation with regard to correctness but is being supplied for your use and evaluation.

2. Comments and suggestions on the report or its contents will be appreciated and shall be addressed to:

ASD(ASREC-M-1)
Wright-Patterson AFB, Ohio

Respectfully,

GENERAL DYNAMICS/CONVAIR
San Diego 12, California

C. W. Alesch
Design Specialist
Report No. 8926-154

Material - Welding electrodes - F&H B/91
(Harnischfeger Corporation)

Weld strength after heat treatment

A. Guintoli, H. C. Turner, W. M. Sutherland

12 May 1958

Published and distributed under
Contract AF33(657)-8926
Report No. 8926-154

Material - Welding Electrodes - P&H BA91 (Harnischfeger Corporation)

Weld Strength After Heat Treatment

Abstract:

Single groove, vee-joint butt welds with a 1/8 inch root spacing were made in 1/8 inch thick, annealed 4340 steel using P&H BA91 (Harnischfeger Corporation) welding electrodes for two pass, reverse polarity, DC welding. After welding the weldments were normalized (1600°F, 1-1/2 hours, air cool), austenitized (1550°F, 1-1/2 hours, oil quench) and double tempered (800°F, 2 hours, air cool, 800°F, 2 hours, air cool). The ultimate strength of the heat treated parent material was 182.0 KSI, and of the welds 170.9 KSI (10 specimens). The weld efficiency thus was 94%.

MECHANICAL PROPERTIES OF SAE 4340 STEEL WELDED WITH P&H - BA91 WELDING ROD

REPORT NO. 57-931
MODEL: REA 8211

PREPARED BY
A. Giuntoli

CHECKED BY
H. C. Turner
W. M. Sutherland, Grp. Engr.

GROUP MATERIALS & PROCESSES LAB. REFERENCE

APPROVED BY
E. F. Strong,
Chief of Test Laboratories

NO. OF PAGES 4
NO. OF DIAGRAMS 2

REVISIONS
ACCESS NO.
Title: MATERIAL - WELDING ELECTRODES - P&H BA91 (HARNISCHFEGGER CORPORATION). WELD STRENGTH AFTER HEAT TREATMENT.

Authors: Quintoli, A., Turner, H. C., Sutherland, W. M.
Report No: 6926-154 Date: 12 May 1958
Contract: R.E.A. 0211
Contractor: General Dynamics/Convair

ABSTRACT: Single Groove, vee-joint butt welds with a 1/8 inch root spacing were made in 1/8 inch thick, annealed 4340 steel using P&H BA91 (Harnischfeger Corporation) welding electrodes for two pass, reverse polarity, DC welding. After welding the weldments were normalized (1600°F, 1-1/2 hours, air cool), austenitized (1550°F, 1-1/2 hours, oil quench) and double tempered (800°F, 2 hours, air cool, 800°F, 2 hours, air cool). The ultimate strength of the heat treated parent material was 182.0 KSI, and of the welds 170.9 KSI (10 specimens). The weld efficiency thus was 94%.

4 pages, 1 table, 2 figures.
Mechanical Properties of SAE 4340 Steel Welded with P&H - BA91 Welding Rod

OBJECT:

To determine joint efficiency of heat treated SAE 4340 steel welded with P&H - BA91 welding rod.

CONCLUSIONS:

Weld joint made with P&H - BA91 welding rod in SAE 4340 steel attained strengths equal to or greater than the parent material after heat treatment to the 165,000 to 180,000 psi strength level.

MATERIALS:

The weld plates were made from a 1/8-inch thick sheet of annealed SAE 4340 steel. The welds were made using P&H - BA91 welding rod 3/32 inches in diameter.

PROCEDURE:

The SAE 4340 plate was machined and assembled for welding as shown in Figure 1. Welds were made in two passes with a D.C. welding machine employing reverse polarity with 110 amp. setting.

Prior to welding the specimens were pre-heated to 550°F - 600°F with an Ox-Acetylene torch and Tempil sticks were used as the temperature indicators. After welding a post heating cycle was done similar to the pre-heating cycle.

The welded specimens along with three un-welded control specimens were subjected to the following heat treatment in the Material and Processes Laboratory:

a) Normalized at 1600°F for 1½ hours and air cooled
b) Austenitized at 1550°F for 1½ hours and oil quenched
c) Tempered at 800°F for 2 hours, air cooled, and re-tempered at 800°F for 2 hours

Following heat treatment, the welded plates were cut to 1 inch wide strips as shown in Figure 1. The specimens were then straightened to remove heat treat distortion prior to machining. All strips were machined into flat tensile specimens as indicated in Figure 2.
Testing was done in a 60,000 lb. Tinius Olsen Electo-Matic testing machine. A strain rate of 0.001 in/min. was employed to determine the .2% yield strength. After yield specimens were stressed to failure employing a 0.2 in/min. crosshead speed.

RESULTS AND DISCUSSION:

Table 1 lists the mechanical properties of both the welded and un-welded material.

The heat treatment given the material should normally produce ultimate strengths of the order of 180,000 psi. The control specimens did reach this value. On the other hand, the two welded plates fell somewhat short of this, one more so than the other.

In attempting to hot straighten the plates after heat treatment a laboratory furnace was used. Unfortunately the furnace overshot the intended temperature so that the welded plates reached a temperature in excess of 800°F for an unknown period of time. This may account for the differences in the values obtained.

In all cases the specimens failed in areas removed from the weld zone for distances of \(\frac{1}{2} \) inches or better. This seems to indicate that the welded joints responded to heat treatment as well or better than the parent material.

The data from which this report is written are recorded in Engineering Test Laboratories Notebook #965.
FIG 1 - WELD SPECIMENS 2 MADE

FIG 2 - TENSILE SPECIMEN

STRIPE INTO FIVE TEST SPECIMENS
TABLE: RESULTS OF TENSILE TEST FOR 36-7440 WELDED WITH P.N. 8401 WELDING ROB

<table>
<thead>
<tr>
<th>SPECIMEN NO.</th>
<th>THICKNESS IN.</th>
<th>WIDTH IN.</th>
<th>AREA IN.²</th>
<th>YIELD LOAD LB</th>
<th>YIELD STRENGTH 18,000</th>
<th>ULTIMATE LOAD LB</th>
<th>ULTIMATE STRENGTH 18,000</th>
<th>LOCATION</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0902</td>
<td>0.7154</td>
<td>0.0672</td>
<td>18,000</td>
<td>175,600</td>
<td>18,000</td>
<td>163,800</td>
<td>WELDED</td>
<td>DUCTILE</td>
</tr>
<tr>
<td>2</td>
<td>0.0902</td>
<td>0.7160</td>
<td>0.0673</td>
<td>18,000</td>
<td>173,100</td>
<td>18,000</td>
<td>161,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0930</td>
<td>0.7167</td>
<td>0.0690</td>
<td>10,000</td>
<td>171,100</td>
<td>11,500</td>
<td>161,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (WELDED PLATE 3)</td>
<td>0.0941</td>
<td>0.7167</td>
<td>0.0549</td>
<td>9,100</td>
<td>167,400</td>
<td>9,670</td>
<td>174,100</td>
<td>WELD</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0685</td>
<td>0.7167</td>
<td>0.0511</td>
<td>9,100</td>
<td>167,100</td>
<td>9,400</td>
<td>174,100</td>
<td>WELD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0715</td>
<td>0.7167</td>
<td>0.0537</td>
<td>9,100</td>
<td>170,300</td>
<td>9,880</td>
<td>178,100</td>
<td>WELD</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0783</td>
<td>0.7167</td>
<td>0.0570</td>
<td>9,100</td>
<td>167,500</td>
<td>10,480</td>
<td>178,300</td>
<td>WELD</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0932</td>
<td>0.7167</td>
<td>0.0552</td>
<td>9,100</td>
<td>165,100</td>
<td>9,750</td>
<td>176,000</td>
<td>WELD</td>
<td></td>
</tr>
<tr>
<td>9 (WELDED PLATE 3)</td>
<td>0.0722</td>
<td>0.7167</td>
<td>0.0539</td>
<td>9,100</td>
<td>166,100</td>
<td>9,030</td>
<td>167,500</td>
<td>WELD</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0767</td>
<td>0.7167</td>
<td>0.0571</td>
<td>9,100</td>
<td>166,100</td>
<td>8,930</td>
<td>166,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.0820</td>
<td>0.7167</td>
<td>0.0614</td>
<td>9,100</td>
<td>152,100</td>
<td>10,000</td>
<td>166,100</td>
<td>WELD</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.0797</td>
<td>0.7167</td>
<td>0.0595</td>
<td>9,100</td>
<td>166,000</td>
<td>9,500</td>
<td>167,200</td>
<td>WELD</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.0758</td>
<td>0.7167</td>
<td>0.0566</td>
<td>9,100</td>
<td>155,600</td>
<td>9,060</td>
<td>167,400</td>
<td>WELD</td>
<td></td>
</tr>
</tbody>
</table>