TEXTILE RESEARCH INSTITUTE
Princeton, New Jersey

Technical Report No. 34
to
The Office of Naval Research
on
Contract No. Nonr-09000 and Nonr-09001

THE MODULUS OF POLYETHYLENE

by
A. V. Tobolsky and V. D. Gupta

Reproduction in whole or in part is permitted for any purpose of the United States Government.

May 1963
The Modulus of Polyethylene

In a previous article in this journal, we simultaneously measured shear modulus, density, and crystallinity for linear polyethylenes as a function of temperature in samples subjected to various annealing procedures.

At sufficiently high temperatures, the degree of amorphicity becomes appreciable and the modulus becomes lower than 7×10^8 dynes/cm2. Under these conditions one can interpret the modulus as a rubber elasticity modulus. In the sample, under these conditions, the crystallites have a dual role: they act as crosslinks and also as filler particles. An equation has been proposed for the shear modulus:

$$G = \frac{(1-Q)d_kT}{1+2.5Q+14Q^2} \frac{2}{T_m}$$

In equation (1) Q is the fractional crystallinity, d is the density, m is the molecular mass of the repeating link in the chain (CH_2 in this case,) k is Boltzmann's constant, T is the absolute temperature, and \bar{r} is the average number of CH_2 units in an amorphous sequence of the polymer chain connecting two crystallites. The term in parenthesis on the right hand side is a correction for the "filler effect."
Data obtained in reference (1) on Q, d and G at various temperatures enable us to compute F, a quantity which should be of use in characterizing crystalline polymers.

We believe that it is permissible to apply equation (1) based on rubber elasticity theory for values of G less than 7×10^8 dynes/cm2 and for values of r equal to or greater than ten. This is suggested by our systematic studies of highly crosslinked polymers

Table I shows the data for T, d, Q, and G for sample (No. 491 $M_w = 2.8 \times 10^5$) of reference (1) together with the values of r computed by equation (1).

It would, of course, be of great interest if other physical methods for measuring F could be developed.
Table I

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Density</th>
<th>Crystallinity</th>
<th>Modulus (dynes/cm²)</th>
<th>\bar{r}</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>0.918</td>
<td>0.76</td>
<td>6.53×10^8</td>
<td>10.0</td>
</tr>
<tr>
<td>120</td>
<td>0.912</td>
<td>0.70</td>
<td>4.95×10^8</td>
<td>14.9</td>
</tr>
<tr>
<td>125</td>
<td>0.903</td>
<td>0.67</td>
<td>3.37×10^8</td>
<td>22.6</td>
</tr>
<tr>
<td>130</td>
<td>0.892</td>
<td>0.51</td>
<td>7.8×10^7</td>
<td>70.6</td>
</tr>
<tr>
<td>133</td>
<td>0.795</td>
<td>0.30</td>
<td>6.9×10^7</td>
<td>95.8</td>
</tr>
</tbody>
</table>
References

DISTRIBUTION LIST

Chief of Naval Research
Department of the Navy
Washington 25, D. C.
Attn: Code 424 (2)

Dr. S. J. Kennedy, Chief
Clothing & Organic Materials Division
Quartermaster Research & Engineering
Center
Natick, Massachusetts (1)

Director
Naval Research Laboratory
Washington 25, D. C.
Attn: Technical Information Officer (6)

Development Department
Naval Clothing Depot
29th Street & 3rd Avenue
Brooklyn 32, New York (1)

Armed Services Technical Information
Arlington Hall Station
Arlington 12, Virginia (10)

Fabric Research Laboratories, Inc.
1000 Providence Highway
Dedham, Massachusetts
Attn: Dr. W. J. Hamburger (1)

Director
Office of Naval Research
Branch Office-Tenth Floor
The John Crerar Library Bldg.
86 East Randolph Street
Chicago 1, Illinois (1)

U. S. Department of Agriculture Library
Southern Regional Research Laboratory
2100 Robert E. Lee Boulevard
New Orleans 19, Louisiana (1)

Director
Office of Naval Research
1031 East Green Street
Branch Office
Pasadena, California (1)

Dr. Fred O'Flaherty
Director, Department of Basic Science in Tanning Research
Tanners' Council Laboratory
University of Cincinnati
Cincinnati 21, Ohio (1)

Officer-in-Charge
Office of Naval Research
Navy #100-Fleet Post Office
New York, New York (2)

Office of Naval Research
Resident Representative
Mr. Julian H. Levy
Chemical Science Bldg., Room 115
c/o Princeton University
James Forrestal Research Center
Princeton, New Jersey (1)

Director
National Bureau of Standards
Washington 25, D. C.
Attn: Chief, Organic & Fibrous Materials Division (1)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C. (1)

Director
Office of Naval Research
Branch Office-1000 Geary Street
San Francisco 9, California (1)

Chief, Acquisition Section
U. S. Department of Agriculture Library
Washington 25, D. C. (1)
Distribution List (continued)

Aeronautical Systems Division
Air Force Systems Command
U. S. Air Force
Wright-Patterson Air Force Base
Ohio
Attn: Textiles Branch (1)

Dr. A. N. J. Heyn
Department of Physics
Auburn University
Auburn, Alabama (1)

Mr. D. A. Mills
Chemstrand Research Center, Inc.
P. O. Box 731
Durham, N. C. (1)

Textile Research Journal
P. O. Box 625
Princeton, New Jersey
Attn: Dr. Richard Toner (1)