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Abstract

The uso of continuous bases of representation other than a

plas-mave basis is considered in the theory developed originally by

Thomas and Fermi. The buas considered here are the sets of eogen-

unctions of Hinltoeaa.s corresponding to a particle subjected to a

fielt. of force vhich varies inversely as the cube of the distance to

some fixed point. Variation of the strength of the interaction varies

the basis continuously. Calculations of tho enoery of the 4ydrogon

atam is carried cut, with results that are appreciably closer to the

quantum nechanical result than is obtAined with the original Thoas-

Fermi theory. Nnmericalresults suggest the possible exstaene of a

statistical analogue of the Raysigbh4its variation prnciple.
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10 Introduction

The statistical theory originally introduced by Thomas(l) and

Fermi(2) for describing the behavior of m y-electron systems, had its

origin in a quasi-claasioal statistical mechanical viewpoint which incor-

pcrated the Pauli exclusion principle. Subsequent investigations dealing

with this theory have provided it with a better relation to quantum mechani-

cal theory than it had originally. As a result, several modifications of the

original Thomas-Fermi theory exist which incorporate features of a dis-

tinctly quantum mechanical characters(3 ) Of all of these, the inhamogeneity

correction" of von Weissacker(4) has the most significant corrective influ-

ence upon the results obtained with the use of the statistical theory.

Although this addition to the Thomas-Fermi theory was introduced originally

in an ad hoc manner,(5) its presence, with slight modification from the

original, seems assured from generalized treatments of the statistical

methods(6)

However, in spite of any improvements which have been made on

the original Thomas-Fermi theory, there remains one glaring deficiency in

the theory: the density of electrons is either singular in the vicinity

af a nucleus(7) or, on the basis of somewhat arbitrary auxiliary conditions,

is set equal to sero(8). It is to this aspect of the theory that the pre-

sent paper is dfreoted. The use of the momentum basis, traditionally

associated with Thoma-Fermi theoryp is a consequence of particular parti-

tioning of the Hamiltonian operator. Here we address ourselves to the

problem of alternative partitioning., preserving the spirit of the original

theory by limiting ourselves to those partitionings that lead to continuous

bases.
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2. Formal Theory

In ters of a general formulation of the statistical theory based

upon the use of the density matrix of man-eleetren sVste ,p( the original

Thomam-Fermi density may be derived entirely from the assumption that the

kinetic energy and potential energy of a particle are ocumutable observables.

This aessmption, in fact, is basically the one made by both Thomas and Ferni.

Such an assumption is illustrative of a certain type which generates a set

of 3  __-olasical approxmations.(lO) For these approxmations the Eamil-

tonian operator of the systen is divided into two parts, the choice of the

parts being a matter of convenience. The assumption that the two parts

commute immediately produces an approximation to the density matrix which

is the generalised analogue of the Thomas-Fermi theory.

In the interest of brevity, the formalism of (I) wili be employed

here. The density matrix (representative) of a many-particle Mytem then

may be expressed as(O0)

where H is the Hailtonian operator of the system, t+ 4',(x) Ij is any properly

sy etrised (i.e., with respect to exhange of identical particles) complete

orthonormal set of funtions of the aorrect boundary conditions* x stands

for the entire set of configurational and spin coordinates of the particles,

and X4 Nis a parameter determined by

Mua Tr F X d14 f(zsx) - I <1'~ O(Ae-) In> (2.2)

The spectral operator 0 ( M c!_ can be expressed most simply in terms of its

matrix elements which are evaluated in a basis of eigenfunctions of Be Then,

we have for such a set [ Qz(x) I which satisfies



<'eII Q,> - Soo (2.3)

the matrix elements

<Q,.I e(ak)_)n,> - o(>-d) m,, (2.S )

with
9(y) - lo y' > 0 (2.5)

0(y) a 0, y < 0.

In these terms the "density" of the many-particle system in its configuration

and spin space is given by f'(xz), but corresponds to the density asso-

ciated with the X lowest energy eigenstateu of the system.o 1)

The procedure to be exploited here involveu making approximations

to the Laplace transform of the density matrix defined in Eq. (2.1). For

convenience, we may deal formally with the spectral operator and obtain(12)

t e(Ig -_H)• Iu dk e Ao(-H)), Re(N) P0 (2.6)

0ý

-Eie * (2.7)

As a consequenoe, a representation for the spectral operator in obtainable

in terms of the inverse Laplace transform, vis.,

0 & • •ý e , Re())> 0 . (2.8)

Approximations which may be made for ep (-EH) give rise to approximations

to X -_H).

In particular, the quasi-classical approximeMon to Sbieh etwence

has been made arises as follows. Let.



HaH. +, K() (2.9)

and set

sp (-ilx) ; -p (-uH.) (-m ). (2.10)

If we work directly in term of a complete orthonormal basis of properly

symmetrized .ig.nfunotions of H , say J q(x)}, which satisfy

<•:I!.1 qo> - Sn (2.1)

we obtain the quasi-classical approximation to the density matrix

[21 (2.12)

The preceding analysis is general and can be taken over in a single-

particle approximation for a many-electron system. In such an approximation,

Ho is an appropriate single-electron Hamiltonian and R, is a suitable inter-

action potential. The quantity M is taken equal to the number of single-

electron eigenstates which, on account of spin degeneracy, is usually equated

to half the naber of electrons of the system.(13) In the Thomas-Fearmi

theory Ho is identified with the kinetic energy operator, {JA (x) I is a

free particle basis and Hi(x) is a self-consistent potential which in deter-

mined from Poisson'se'squation and certain pbysically plausible boundary

conditionh upon the potential. Regarding the latter, the condition that the

potential has singularities corresponding to an attractive Coulomb field at

any point immediately leads to a singularity there in the density. By con-

trast, it will be noted, quantum mechanical solutions yield no such behavior

for the density. As a resultj, the choice of a basis will be examined with

the object of alleviating this difficulty in a quasi-classical appnroximation.
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3. The Basis Functions

Because the object of the present paper is maily constructive

rather than analytical, no extensive analysis will be made of the seat of

the aforementioned disparity in the density behavior* However, we may take

note of the fact that for the systems generally of interest the binding

energy is a finite quantity. This may be stated in more quantum mechanical

terms as corresponding to a lowest finite eigenvalue of the Hamiltonian of

the system. Woen measured relative to its lowest value, the eigenvalues of

the Hamiltonian are non-negative as is, thus, the (modified) Hamiltonian

itself. However, in the quasi-classical approximation which leads to the

Thomas-Fermi theory, the Hamiltonian of a single particle is represented as

the sum of two operators: the first is the kinetic energy and is non-

negative while the second is the potential energy of the electron and is

non-positive and can become unbounded for systems of interest. As a conse-

quence, while the Laplace transform of the spectral distribution operator,

Eq. (2.7), is a bounded operator in general, the approximation employed in

Eq. (2.10) does not conform to this behavior.

Now, regardless of the choice of a non-negative H in Eq. (2.9),

it is apparent from Eq. (2.12) that any negative singularity in H, at, say,

yields a divergent value for the density. To avoid this behavior, H,

must be chosen also to be bounded from below (i.e., > -e ). For systems

which involve only electrons and nuclei, the interaction between the par-

ticles involves only Coulomb terms which exhibit singularities that are

simple poles. In any approximation of a self-consistent sort, we may sup-

pose that no singularity of greater order need be introduced. Hence,

specialising to a single-particle approximation, we wish to examine the

possibility of finding Ho and H, in Eq. (2.9) such that both are bounded

from below. That ii, letting



-7-

H - T + V (3.1)

where T is the kinetic energy operator for an electron and V its potential

energy function depending only upon its configurational coordinates, we seek

a potential function such that

(3.2)

are both bounded from below. Since V has no singularities other than simple

poles, it is apparent that if, in the vicinity of the singularity 7

V 0 A# a -V )11 (3-3)o r.
with c a positive quantity,9 H1 will be bounded from below. Similarly, if Ye
has the behavior exhibited in Eq. (3.3) with a < 2, Ho will also be bounded

from below.(15) It is evident that a range of choices is possible for both

c and s for the purpose at hand. Hence, considerations of convenience may

be included in any final choice of !b.

In order to maintain some similarity to the original Thomas-Fermi

theory, it is appropriate to deal with an H which admits only a continuum--o

of positive eigenvalues. Such eigenvalues correspond to states for which the

particle in unbound and is reminiscent of the free-particle basis of the

Thomas-Fermi theory. At the sawe time it is desirable to hawe a Vo for which

the minima value of H1 has as small a magnitude as possible. Because the

potential energy function V is to be kept general and unspecified, except

for its singularities, a condition leading to fulfillment of this desire is

impossible to formulate explicitly. Nevertheleos, a certain choice of o and

s in Eq. (3.3) will adequately fulfill the requirements which have been men-

tioned.
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Consider the central field Hamiltonian

0 !V2 1 .(3-4)

The value of a in Eq. (3.4) may range from zero to unity. The latter value

in the maximu which an attractive inverse square potential may have if the

ground utate of the system is to be unbound, Any slight inorease in the value

of the parameters yields a ground state energy value which corresponds to a

Ofall" of the particle to the origin,9(15) i.e., a negative infinite value of

the energy. Thus, the system corresponding to a - 1 in the Hamiltonian of

Eq. (3.4) is the limit of 4nbounded systems having an attractive center

varying inversely aa some power of the distance from that conter.(16) With

c - 0, the free-particle basis results.

Each Schroodinger equation corresponding to Eq. (3.4) generates a

completep orthogonal and continuous set of functions which normalise accord-

ingly. Because of spherical symmetry of e the Schroedinger equation is

separable in term of spherical poelr coordinates. Hence, if

H +][#,a - Bits +'* ,m (3-5)

and

+E•, "•f (r) tm(QO,4), f I .t" 0ol,,2,..., (3.6)

where 148(9,#) is a normalised spherical harmonic of the Dulerian angles

o and 4e(17)" ,e obtain the radial equation

2  r2l (r) 0 .(3))

with

12. JM (3.6)
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and

is - +1+ 3) - 0/4 (3.9)

WIth the tranmformation

I a Er (3.10)

w e O Wa & . . d2 [ R f & ( R) 
( 3R1

which is Dessel's equations. Its solutions yield

- (i) R-1/2 J R) , (3.12)

and Ju(z) is a Bessel function(l6) of the first kind of order no

For each I i 0 there is one value of us which is positive and

one which is negative, The latter correspond to solutions whioh diverge at

the origin, while the former do not. NOreOovrp they diverge so strongly that

the integral of the square of the eigenfunetion over any finite volume enclos-

ing the origin also diverges. Boano they eooprise uiaoceptablo ogenfuno-

tions. Thus, we shall take the poeitive sign in F4, (3.43). For o p 0 the

oigenfunction corresponding to A - 0 also diverges at the origin. Howoverj

the integral of its square over amy finite volume enclosing it does not,

so we retain it.(19)

Since the Bessel functions in Uq, (3.12) are not quadratically,.,

int•egrables wmý i the intepral(m)

•K 2 a

A2+ 2

"Vmm hatoS
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.where IU(x) is a Besrel function of the first kind of purely imaginary

argument. From the asymptotic properties of the latter,q 21) the dominant

term is given by

211 412

so that

K2 .(K.,() .r U2 . - (3.14.)
a 42 .+0 211K2 a 2 -_ 0 (xEa2)1)

The term in brackets in a well-known representation of a delta function. As

a consequence,

La.*
o• i l2 li N(Xlz2) -L 'J 2 . 3-5

end the origin4 functions

1(J t o , ( K r) Y i o e ~ ( 0, 4 9) ( 3.16 )

(Kr)' '

are properly normalised eigenfunctions of Eq. (3.5) in the sense of the

integration of Eq. (3.16) which, together with Eq. (3.7), preserves the

similarity with an integration over momenta as in the Thomas-Fermi basis.

4* The Quasi-Classical Density Matrix

The quasi-classical single-partiole approximation to the density

matrix now may be expressed in terms of the basis which has been describedo

Making use of Eqs. (2.12), (3.4), (3•.8), (3.15) and (3.16), we obtain
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JP9 (Ki) (tm C i)]

(Kri• (.i)

X e( -2_ Fa- " - -'V(r2)) ( ) I a(e 20 2) •1

With the aid of the Addition Theorem of Legendre polynomials,(22) the previous

equation reduces to
)•1 -r -- /u J••Kri "K

1 .o 7r2 0 (7ir2)*

(4.2)

where
Oj. 9(X "M " -- 2 -= " )r

ri

The ezpression in Eq. (4.2) can be reduced further. However, we

snafll only do so for the diagonal elements of the denhita matrix, which

correspond to the density. Making use of the properties of the 0-function,

we obtain

do I2M1 ~ K J 2 (Kr)
_M X- (2e 4 + 1) d K K J%(• (6.3)

,.0 0

where

2 2m
'K "-"' U Qx =V(r)) -c/I2 ).o . (h.•)

Apart from the difference in the order of the Bessel functions, the presence

of the inverse square potential and a neglect of spin multiplicity, Eq.

(4.3) is formally identical with the corresponding expression obtained in a
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free-particle basis.(23) Thus the terms corresponding to ach value of

represent the contribution to the density made by particles having a square

angular momentum of + ( ÷ 1) 4 •

The approximation to the density given in Eq. (63) can be seen to

exhibit no divergence at the origin providing V(r) exhibits no divergence as

strong as 1/r2. In cases of atomic systems, in which Coulomb forces apply,

this condition is satisfied. Because K vanishes then at some non-zero value

4 r the density vanishes for all smaller values. While this behavior is

clearly unsatisfactory, it possibly represents a better approximation to a

finite density than is afforded by the original Thomas-Fermi theory. For

atomic systems we may anticipate that Xx is negative. Thereupon, an asymp-

totic vanishing of V(r) as r -* o0 indicates the existence of a finite

distance beyond which the density vanishes identically. Thus, the density

given by Eq. (4.3) may be anticipated to have non-sero values in a linited

region of space.(2)

59 The Energy

The approximation which has been given for the quasi-classical

density matrix enables one to obtain an approximation for the energy. The

simplest way to do so is with the aid of the relation(25)

NA
W . 5 X .dM u>NNM- f K d)ý (5.1)

0 A

where l>M is the sum of the first M eigeovalues. Since the quasi-

classical approximation, Eq. (4.2), involves through the spectral

operator, we need to examine



10 -s -- i;. r1 . ~ Af ~ 9 2  (

~ *r , *2

!Wen combined with lqut (Ih.2), (4.3) and (5.1), there results the approxima-

tion

(E>Ki fdr ~(26+1)j' 1 ~+;Vr)f dK~(

÷f dr r (21+ 1) h X X3 j 2  J (5.2)
o0

The last integral is the approximate expectation value of He given by Sq.

(3.4) for the first X eigenvalues of H. Both integrals can be reduced con-

siderably with the aid of the Schafheitlin reduction formula for Bessel

functions.(26)

The present approximation gives no indication of the reliability

of the energy values, there being no extrenum principle available to serve

in this connection. However, since the eigenvalues satisfy the relation

(z2Ž <~;) [<'1C>2' - <(>11

uoma estimate of the precision of the approximate energy values can be made.

For thin pwrpose, we must have an expression for the sum of the squares of the

first X eigenvalues. We have

< fN XX dX A2 { dx (5-3)
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Making use of Eq9. (O.2) and carrying out the requisite operations, we obtain

t%+ r j22(1

oo

0 0

*S dr r (21+ 1) f. a. 4

0

With Eqs. (5.1) and (5.4) we are able to estimate the precision of

the approximate energy values. Thus, for the lowest eigenvalue, M - 1 and

S(ýI" - I2 is a non-negative quality which vanishes for an eigen-A1

value. In the present approximation, Ad is a function of c, the strength

of the inverse square potential. Hence, we may anticipate that some value

of c may possibly render A a minima. For such a value, the most precise

value of i9)1 is obtained within the framework of the present theory.

6. Computational Techniques

The integration indicated in (4.3) may be performed explicitly,

giving
do

12~ 2: (2,9+ l[ 1 2(X) _ j Vz. 1() j V (xJ8%cr 3  4-0 A'r.

x-1 , r (6.1)

where KM is given by (I4.4) and uA by (3.l14). This expression is convenient

for computational purposes. Obvious alterations give density expressions for

the vaious energy terms considered in the last section.



The definition of density thus derived was applied to the problem

of the hydrogen atom, for which V(r) - - 92%. An IBM 7090 Data Proocssing

System was programmed to evaluate (6.1), together with (4.4) and (3-19), for

various values of XM and c. In all cases, summations over A were extended

until further contribution was less than 1 part in 108 (U - 7). From the

densities thus tabulated, normalization and energy integrals were evaluated,

using Simpson's Rule. In each case, the expression under consideration was

tabulated at a sufficient number of points so that further increase caused no

significant change in the result of the integration. A typical mesh density

was 50 points/Bohr radius. The energy expressions were evaluated and inte-

grated in such a way as to allow the use of some of them as expectation values

of inverse powers of r.

Several sets of calculations were performed. The equation

M(X Mc) - No was solved for XM at various values of c for 10 - 1 and

Mo - 5, corresponding respectively to a filled ls level, and filled ls, 2s,

and 2p levels, and energies and expectation values of powers of Ir were

found for these values of X and a. In addition, points on the curve

M( Asc) vs. X. for c O.5 were found, so as to allow evaluation of

f 0  ?M d (6.2)
0 -40

for MO -i , where A is given by M( ) 0 t, the integration again being

by Simpson's Rule. This constitutes a check on the numerical procedures, as

the energy found in this way must agree with that found from the integration

of the energy density at X and c * The number of points on this curve, 40,O

was not sufficient to give a result comparable in precision to the integration

of the energy density, these calculAtions being used mainly to demonstrate the

internal consistency of the results.
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7. Numerical Results and Discussion

Table IA presents the results of calculations of the energy for

M - 1. The most interesting feature of theme results is the variation of

(•> with o. As can be seen, <Z> has a definite, though broad, maximum

rather close to the quantum-mechanical value, suggesting the possible exis-

tence of a statistical analogue of the Rayleigh-Rita variational principle.

Similar behavior can be seen in Table IB, vhich gives results for M - 50

These quantities are shown graphically in Fig. la and lb. Table IA also

gives E- ,, while a plot of A vs. o is shown in Fig. 2.

There exists a value for o for which A is a minimum, though this does not

(27)coincide with the "best" value. Also noteworthy is the great improvement

in the energy over the value from the Fermi-Amaldi theory, with which these

results are directly comparable, since the theories become identical for

c - 0. Table IB also presents expectation values of various powers of r

together with the Quantum Mechanical results and Fermi-Amaldi results. At

o - 0.6638, corresponding to the "best" value of <Z) there is a distinct

improvement in all quantities. At a - 0.95, approximately the value corres-

ponding to minimum 4, the expectation values of the positive powers of r

are estimated much less well. Presumably this is caused by the somewhat

earlier cutoff in density attendant upon the use of c > 0. The removal of

the infinity in the density at r - 0 is undoubtedly responsible for the

improvement in the other quantities.

8. Future Applcations

So far, vs have constructed a generalized Thomas-Fermi single

particle theory. Application to multiparticle systems may be achieved by

invoking the idea of the self-consistent field. We may thus anticipate

that the improvement in energies found here would be carried over into a
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self-conuistent field oaloulation. Such a series of caloulation is in

proroeso Alsoo, a molecular system of high symmetry. is suitable for treatment

in this way. This work in also in pro.r.ss* Both viii be reported on in due

course*
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Table IA

Summary of Reaults for M - 1 (in Atomic Urits)

01>1 01 > 1rl1-/l l <

0.00 -. 24038 -0.7211 C- 1.142 .0 1.541 3.205
0.50 -. 24760 -0.5333 0.4458 .1614 1.067 2.4U1 1.543 3.117

0.60 -. 25065 -0.5289 0.1170 .1373 1.058 2.239 1.528 3.0o8

0.6638 -. 25310 -0.5280 0.046 .1258 1.056 2.162 1.515 2.992

0.70 -. 25470 -0.5263 0.3993 .1202 1.057 2.128 1.506 2.956

0.80 -.26040 -0.5325 0.3918 .1082 1.065 2.07+ 1.474 2.830
0.90 -. 26904 -0.5455 0.3981 .1005 1.091 2.095 1.424 2.642

0.95 -. 27705 -0.5596 0.4123 .0991 1.119 2.164 1.382 2.494
0.99 -. 28920 -0.5857 0.4448 .1018 1.172 2.330 1.319 2.281

1.00 -. 30105 -0.6139 0.48L5 .1076 1.228 2.537 1.262 2.096
Quantum -0.5000 0.2500 0 1.000 2.000 1.500 3.000

<01 at - 0.50 from integration of (6.2) - -0.537.



Table IB

Summar7 of Results for - 5 (in Atomic Units)

0.0 -0.08221 -1.2331 00

0.3 -0.08248 -1.07U 0*634

0.4 -0.08260 -1.0606 0.5647

0.5 -0.08273 -. o0559 o.5242

0.6 -0.08287 -1.0541 0.4933

0.7 -0.08303 -1.0578 0o,4770

Quantum -1.0000 0.315
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The quantity, defined above, is a measure of significance.
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