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Abstract

The use of contimous bases of representation other than a
plans-wave basis is considered in the theory deveioped originally by
Thomes and Fermi. The bases considered here are the sets of eigen-
functions of Hamiltonians corresponding to a particle subjected to a
field of force which varies inversely as the cube of the distance to
some fixed point. Variation of the strength of the interaction varies
the basis contimuously. Calculations of the energy of the hydrogen
stom is carried out, with results that are appreciably closer to the
quantum mechanical result than is obtained with the original Thomas-
Fermi theory. Numerical results suggest the possible existence of a
statistical analogus of the Rayleigh-Rits variation principle.
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le Introduction

The statistical theory originally introduced by Thomas')) and
Fmi(a) for describing the behavior of msny-electron systems, had its
origin in a quasi-classical statistical mechanical viewpcint which incore
porated the Pauli exclusion principle. Subsequent investigations dealing
with this theory have provided it with a better relation to quantum mechani-
cal tl-uory than it had originally. As a result, several modifications of the
original Thomas-Perwmi theory exist which incorporate features of a dis-
tinotly quantum wechanical charscter.(?) Of a1l of thess, the “inhomogeneity
correction® of wvon Hoisuckor(h) has the wost significant corrective influ-
snos upon the results obtained with the use of the statistical theory.
Although this sddition to the Thomas-Fermi theory was introduced originally
in an ad hoo nuuox',(5 ) its presencs, with slight modification from the
original, seems assured from generaliszed treatments of the statistical
mthod.(6)

However, in spite of any improvements which have been made on
the original Thomas-Fermi theory, there remains one glaring deficiency in
the theory: the density of electrons is either singular in the vicinity
o a nnclem(n or, on the basis of sowewhat arbitrary suxiliary conditions,
is set equal to su-o.(a) It is to this aspect of the theory that the pre-~
sent paper is directed. The use of the momentum basis, traditionally
associated with Thomas-Fermi theory, is a consequence of particular parti-
tioning of the Hamiltonian operator. Here we address ourselves to the
problem of alternative partitionings, preserving the spirit of the original

theory by limiting ourselves to those partitionings that lead to contimmous
bases.



2+ Formal Theory
In terms of a gensral formulation of the statistical theory based

upon the use of the density matrix of many-electron mtou,(” the original
Thoms-Fermi density way be derived entirely from the assumption that the
kinetic energy and potential ensrgy of a particle are commutabls cbservables.
This assumption, in fact, is basically the one made by both Thomas and Fermi.
Such an assumption is lllustrative of a certain type which generates a set
of quasi-classical upqroxiutionl.(lo) For these approxiwmations the Hamil-
tonian operator of the system is divided into two parts, the choice of the
parts being a matter of convenience. The assumption that the two parts
computes immediately produses an approximation to the density matrix which
is the generalised analogus of the Thowmas-Fermi theory.

In the interest of brevity, the formalism of (I) will be employed
here. The density matrix (representative) of a many-particle system then

may be expreased u(lo)

Pulxpx,) = 2 {oonm Ve o0 ¥} (2.2)

n=l
vhere H is the Hamiltonian operator of the system, {“P n(x)} is any properly
symetrised (i.e., with respect to exchange of identical particles) complete
orthonormal set of functions of the correct boundary conditions. x stands
for the entire set of configurational and spin coordinates of the particles,
and )x is a parsmeter determined by

Metr Py fax Pulxix) = §1 <¥,\ e(xn-g)lwrn) . (2+2)

The spectral operator @ (A ,~H) can be expressed most simply in terws of its
matrix elewents which are evaluated in a basis of eigenfunctions of He Then,
we have for such & set {Q.(x)} which satisfies



gleley -z 8 . (2.3)
the matrix elements
e, |erBlP ) = eE) & (2.1)

with
oy) =1, y?20, }

(245)
8(y) = 0, y<o. ‘

In these terms the "density" of the nny"-particlo syatem in its configuration
and spin space is given by fn(x,x) » but corresponds to the density asso-
ciated with the M lowest energy eigenstates of the syatem.(1l)

The procedure to be exploited here involves making approximations
to the Laplace transform of the density matrix defined in Bq. (2.1)s For
convenience, we may deal formally with the spectral operator and obtain(lz)

Lier w)= { o o™ or-B), Re(2)>0 (246)
0-‘2
- '2 . (2.7)

As a consequence, a representation for the spectral operator is obtainable
in terms of the inverse Laplace transform, vis.,

Fixe \ -aH
O(A-H) = -,‘,-i-{‘Pf 9; o! e , Re(¥Y)D>O , (2.8)
p B

Approximations which may be made for exp (-2 H) give rise to approximations
to 8(A-H)e

In particular, the quasi-~classical approximagion to which refigence
has been made arises as follows. Let.



HeH ¢+ gl(x) ' (2.9)

and set

exp (-3H) = exp (~2H,) exp (-aH) . (2.10)

If we work directly in terms of a complete orthonormal basis 61‘ properly
symmetrized eigenfunctions of H , say { Q:(x)} , which satisfy

egplglez) - §,, (2.12)
we obtain the quasi~classical approximation to the density matrix
= *
[entmm] - Z {o0ng- 1 - B €}
x {600y - B - E(x) @ Sz -

The preceding analysis is general and can be taken over in a single-

(2.12)

particle approximation for a many-slectron system. In such an approximation,
Eo is an sppropriate single-electron Hamlltonian and -?-1 is a suitable inter-
action potential. The quantity M is taken equal to the nmumber of single-
electron eigenstates which, on account of spin degeneracy, is usually equated
to half the musber of electrons of the systeme™) In the Thomas-Fermi
theory H_ is identified with the kinetic ensrgy operator, {@2(x) | is a
free particle basis and E_Il(x) is a self-consistent potential which is deter-
mined from Poisson's equation and certain physically plausible boundary
conditions upon the potential. Regarding the latter, the condition that the
potential has singularities corresponding to an attractive Coulomdb field at
any point immediately leads to a singularity there in the density. By con-
trast, it will be noted, quantum mechanical solutions yield no such behavior
for the density. As a result, the choice of a basis will be examined with
the object of alleviating this difficulty in a quasi-classical approximation.



3. The Basis Functions

Because the object of the present paper is mainly constructive
rather than analytical, no extensive analysis will be made of the seat of
the aforementioned disparity in the density behavior. However, we may take
note of the fact that for the systems generally of interest the binding
energy is a finite quantity. This may be stated in more quantum wechanical
terms as corresponding to a lowest finite eigenvalue of the Hamiltonian of
the system. When measured relative to its lowest value, the eigenvalues of
the Hamiltonian are non-negative as is, thus, the (modified) Hamiltonian
itself. However, in the quasi-classical approximation which leads to the
Thomas-Fermi theory, the Hamiltonian of a single particle is represented as
the sum of two operators:t the first is the kinetic energy and is non-
negative while the second is the potential energy of the electron and is
non-positive and can becoms unbounded for systems of interest. As a conse-
quence, while the Laplace transform of the spectral distribution operator,
Eq. (2.7), is a bounded operator in general, the approximation employed in
Eq. (2.10) does not conform to this behavior.

Now, regardless of the choice of a non-negative H in Eq. (2+9),
it is apparent from Eqe (2.12) that any negative singularity in H) at, aqy,(n‘)
?‘, yields a divergent value for the density. To avoid this behavior, §1
must be chosen also to be bounded from below (i.e., > ~90), For systems
which involve only electrons and nuclei, the interaction between the par-
ticles involves only Coulowb terms which exhibit singularities that are
simple poles. In any spproximation of a self-consistent sort, we may sup-
pose that no singularity of greater order need be introduced. Hence,
specialiszing to a single-particle approximation, we wish to examine the
possibility of finding go and §1 in Bq. (2.9) such that both are bounded
from below. That is, letting



E-S+!’ (301)

where T is the kinetic energy operator for an electron and V its potential
energy function depending only upon its configurational coordinates, we seek
a potential function such that

Eo » 2 +

LS

(3.2)
jI-5,
are both bounded from below. Since V has no singularities other than simple
poles, it is apparent that if, in the vicinity of the singularity ?K’

vowl-}-ﬁ’_-iF , 8721 (3.3)
with ¢ a positive quantity, §1 will be bounded from below. Similarly, if Vo
has the behavior exhibited in Eq. (3.3) with s ¢ 2, §° will also be bourded
from below.(ls ) It is evident that a range of choices is possible for both
¢ and s for the purpose at hand. Hence, considerations of convenience may
be included in any final choice of Ve.

In order to maintain some similarity to the original Thomas-Fermi
theory, it is appropriate to deal with an l!o which admits only a continuum .
of positive eigenvalues. Such eigenvalues correspond to states for which the
particle is unbound and is reminiscent of the free-particle basis of the
Thomas-Ferwi theory. At the same time it is desirable to have a Vo for which
the minimum value of 51 has as small a wagnitude as possible. Because the
potential energy fumction V is to be kept general and unspecified, except
for its singularities, a condition leading to fulfillment of this desire is
impossible to formulate explicitly. Nevertheless, a certain choice of ¢ and
8 in Eq. (3.3) will adequately fulfill the requirements which have been men-
tioned.
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Consider the central field Hamiltonian

a8 2
% 2
n ---——v -% :1 (30“)

The value of ¢ in Eq. (3.4) may range from sero to unity. The latter valus

is the maximm which an attractive inverse square potential may have if the
ground state of the system is to be unbound. Any slight increase in the value
of the parameters ylelds a ground state energy value which corresponds to a
“fall® of the particle to the origin, ) i.e., a negative infinite value of
the energy. Thus, the system corresponding to ¢ = 1 in the Hamiltonian of
Eq. (3.4) is the limit of'wnbounded systems having an attractive center

varying inversely as some power of the distance from that conter.(m)

With
¢ = 0, the free-particle basis results.

Bach Schroedinger equation corresponding to Eq. (3.i) generates a
complete, orthogonal and contimuous set of functions which normalize accord-
ingly. Because of spherical symmetry of go’ the Schroedinger equation is

separable in terms of spherical polwr coordinates. Hence, if

B Veew = %gn Vrew (3.5)

and
’Vn- - $ro (0 Ton(® @), Imi¢L=0,1,2, ", (346)

vhere !‘.(O,Q) is a normalised spherical harmonic of the Eulerian angles
@ and Q(17), we obtain the radial equation
4
a §_.(r) d (r)
dr“ .+ & j.%_ + (x? --_:,'Q_-) -fn(r) =0 (3.7
with

xa- % ‘Kll (3.8)



and

h= £(2+1) -l (3+9)
With the transformation

R = Kr (3010)
we *ﬁiw

e[z {,m

—‘-:-;g!'—— ¢ (1 --3—) [n -ft(n)] =0 (3.11)
which is Bessel's equations. Its solutions ylield

«1l/2

{-‘(n) - Y Yo, ®) , (3.12)

with ;!‘ -+ l( L+b2-ol (3.13)

and J (x) is a Bessel fmtton(la) of the first kind of order u.

For each L ¢ O there is one value of ug which is positive and
one which is negative. The latter correspond to solutions which diverge at
the origin, while the former do not. Moreover, they diverge so stromgly that
the integral of the square of the eigenfunstion over any finite voluwe enclos-
ing the origin also diverges. Hence, they comprise uriacceptable eigenfunc-
tions. Thus, we shall take the positive sign in Ed. (3.13)s For o / O the
eigenfunction corresponding to £ = O also diverges at the origin. However,
the integral of its square over any finite volume enclosing it does not,
80 we retain 1t.(19)

Since the Bessel funotions in Bq. (3.12) are not quadratically
integrable, hw the mmum) ‘

adp? I(Kyr) I (Kor)
¥,(K,K) = {drrz % -%—L-‘f-

+K2

-e;—"'r‘ L3



.where In(x) is a Bessel function of the first kind of purely imaginary

argument. From the asymptotic properties of the latter,(a) the dominant
term is given by
Lt
. (‘1‘2 ( a2 Y , %
ut 2a x K1K2
so that 2
(K, K,)
Ln N (K,K,) [ ——-T-' LD ] (3.14)
o0 ot 2->0 (x a?)

The term in brackets is a well-known representation of a delta function. As

a consequence,

del 0% e N(KE) =1, K K0, (3.35)
o al <0

and the originsl functions
1’!2! - } “!. (kr) I "(O, @) (3.16)

are properly normalised eigenfunctions of Eq. (3.5) in the sense of the
integration of Bq. (3.16) which, together with Bq. (3.7), preserves the

similarity with an integration over momenta as in the Thomis-Fermi basis.

ke The Quasi-Classical Density Matrix

The quasi-classical single-particle approximation to the density
matrix now way be expressed in terws of the basis which has been described.
lhkilg use of h!o (2012)’ (30)4), (308)) (3015) and (3.16). we obtain



-11-

[? M(?p?e)]lc. -!.-0 -t f o ¢t [{90\! —7 - V(ry)

Jo, (Kr.)
x -4 __ 1 T, (&49"1)}
(Krl) (hol)

2 2 Ju. (Kr.) }]
xE 2 X up 7T
X {e()n..__h K - —51-: - V(r,)) g T, (8 €] ],
2

With the aid of the Addition Theorem of Legendre polynomials,(ze) the previous

equation reduces to

KFeAA ], - L Z (28+ 1) Pz(

Iy (Kr,) Ju,(Kr
)fdl(l(e (1)‘1(2),
1')g

(v,
(Le2)

where
2

22
A A c
ej 9(XH"T ’8‘ r_'z"'v(rj))o
J
The expression in Eq. (4.2) can be reduced further. However, we
shall only do so for the diagonal elements of the density matrix, which

correspond to the density. Making use of the properties of the 8-function,

we obtain
o K
._. Z (28 +1) f d Kk J, 2(xr) (e3)
xr =0 ) %
vwhere
K2 'f‘z()n““")) -c/r® Yo . (k)

Apart from the difference in the ordergof the Bessel functions, the presence
of the inverse square potential and a neglect of spin multiplicity, Bq.
(4o3) is formally identical with the corresponding expression obtained in a
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free-particle buia.(zs)

Thus the terms corresponding to each value of
represent the contribution to the density made by particles having a square
angular momentum of £ ( £ + 1) £2.

The approximation to the density given in Eq. (L3) can be seen to
exhibit no divergence at the origin providing V(r) exhibits no divergence as
strong as 1/r2. In cases of atomic systems, in which Coulowb forces apply,
this condition is satisfied. Because Kx vanishes then at some non-sero value
c‘ r the density vanishes for all smaller values. While this behavior is
clearly unsatisfactory, it possidbly represents a better spproximation to a
finite density than is afforded by the original Thowas-Fermi theory. For
atomic systems we may anticipate that >\H is negative. Thereupon, an asymp-
totic vanishing of V(r) as r —» @0 indicates the existence of a finite
distance beyond which the density vanishes identically. Thus, the density
given by Eq. (43) may be anticipated to have non-zero values in a limited
(2)

region of space.

Se The Bnergy
The approximation which has been given for the quasi-classical
density matrix enables one to obtain an approximation for the energy. The

simplest way to do so is with the aid of the relauon(zs)
Ay

<z7, - fknm-)nn- f

Kal , (5.1)

where <l>M is the sum of the first M eigenvalues. Since the quasi-
classical approximation, Eq. (4.2), involves >~H through the spectral

operator, we need to examine
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M 52 2 PR
A A A
L o(x-é__-ﬁfz-v(,)) a\ .{AH-_E_-_ .9.-7(,)}

SO ““2-— -E-V(r))

When combined with Eqs. (ke2), (Le3) and (5.1), there results the approxima-
tion

(2D, ¢ j.dr .Li.'?o (2@« 1){’-%; = \:(r)} ‘!‘n dK X J“:(xr;J

oo
fdrr[z (28« 1) J & 3 ‘)]0 (5.2)

A=0

~

The last integral is the approximate expectation value of !_!o given by Eq.
(3.4) for the first M eigenvalues of H. Both integrals can be reduced con-
siderably with the aid of the Schafheitlin reduction forwmula for Bessel
mnctions.(%)
The present approximation gives no indication of the reliability
of the energy values, there being no extremum principle available to serve

in this connection. However, since the eigenvalues satisfy the relation
(xZ) 1 - <!712
2
(1:27z - {52 {(3)2' - (1:71‘}

some estimate of the precision of the approximate energy values can be made.

For this purpose, we must have an expression for the sum of the squares of the
first M eigenvaluesa. We have

Ay
(), - j')"" a - A2 ,{Axd)\ (5:3)
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Making use of Eq. (4e2) and carrying ouf the requisite operations, we obtain
* [ 2 2 M ]
. A [ 2
{#), ofdrr[zo 22+ 1) { & g*V(r)} j: a x 3, 2(xe)

bd ” on

Xy
- fdrr.zo (28+ 1)"1:-{3‘; -r% +V(r)} { d!anuz(lr)-]

w [ Xy
b
h S 2
+ Sdrr-zo (20~ 1);5 ‘g dFK Ju’ (an (Sek)

With Eqs. (5.1) and (5.4) we are able to estimate the precision of
the approximate energy values. Thus, for the lowest eiéomnlue, Me=1and
A= <2271 - <3>12 is a non-negative quality which vanishes for an eigen-
value. In the present approximation, 4 is a function of ¢, the strength
of the inverse square potential. Hence, we may anticipate that some value
of ¢ may possibly render A4 a minimum. For such a value, the most precise
value of (E)l is obtained within the framework of the present theory.

6. Computational Techniques

The integration indicated in (L.3) may be performed explicitly,
giving

L)
r 2
Ol T - -8_;1'3— g (28+ 1)[ J% (x) - Ju‘+1(l) J‘h_l(xa ’

I= Kf , (601)
where K, is given by (Lek) and L by (3.14). This expression is convenient '

for computational purposes. Obvious alterations give density expressions for
the various energy terms considered in the last section. '
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The definition of density thus derived was applied to the problem
of the hydrogen atom, for which V(r) = = oz/r. An IBM 7090 Data Processing
System was programmed to evaluate (6.1), together with (L.i) and (3.14), for
various values of XH and c. In all cases, surmations over ) ) were extended
until further contribution was less than 1 part in 108 (8~ 7). From the
densities thms tabulated, normalization and energy integrals were svaluated,
using Simpson's Rule. In each case, the expression under consideration was
tabulated at a sufficient number of points so that further increase caused no
significant change in the result of the integration. A typical wesh density
was 50 points/Bohr radius. The energy expressions were evaluated and inte-
grated in such a way as to allow the use of some of them as expectation values
of inverse powers of r.

Several sets of calculations were performed. The equation
M(A 2¢) = M_ was solved for )‘M at various values of ¢ for M = 1 and
Ho = 5, corresponding reapectivelj to a filled 1ls level, and filled 1s, 2s,
and 2p levels, and energies and expectation values of powers of T were
found for these values of >‘H and ¢ In addition, points on the curve

M( Au,c) vs. >‘H for ¢ = 0.5 were found, so as to allow evaluation of

Ho °
Ayat= A M - f\ M dA (6.2)
o - 00

for M_ = 1, where )o is given by M()‘o,c ) =1, the integration again being
by Simpson's Rule. This constitutes a check on the numerical procedures, as
the energy found in this way must agree with that found from the integration
of the energy density at )‘o and ¢ o The mumber of points on this curve, L0,
was not sufficient to give a result comparable in precision to the integration
of the energy density, these calculations being used mainly to demonstrate the
internal consistency of the results.
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7. Numerical Results and Discussion

Table IA presents the results of calculations of the energy for
M= 1. The most interesting feature of these results is the variation of
{EY with c. As can be seen, {E) has a definite, though broad, maximm
rather close to the quantum-mechanical value, suggesting the possible exis-
tence of a statistical analogue of the Rayleigh-Ritz variational principle.
Similar behavior can be seen in Table IB, which gives results for M= 5.
These quantities are shown graphically in Fig. la and lb’. Table IA also
gives A = <Ez% - <E7:, while a plot of A vs. ¢ is shown in Fig. 2.
There exists a value for ¢ for which A is a minimum, though this does not
" Golncide with the "best® value.{Z') Also noteworthy is the great improvement
in the energy over the value from the Fermi-Amaldi t!:eory, with which these
results are directly comparable, since the theories become identical for
¢ = O, Table 1B also presents expectation values of various powers of r
together with the Quantum Mechanical results and Fermi-imaldi results. At
¢ = 0.6638, corresponding to the "best" value of {EV there is a distinct
1npronisnt in all quantities. At ¢ = 0.95, approximately the value corres-
ponding to minimum A, the expectation values of the positive powers of r
are estimated much less well. Presumbly this is caused by the somewhat
earlier cutoff in density attendant upon the use of ¢ » O. The removal of
the infinity in the density at r = 0 is undoubtedly responsible for the
improvemsnt in the other quantities.

8. PMuture Applications

S0 far, we have constructed a generalized Thomas-Fermi single
particle theory. Application to multiparticle systems may be achieved by
invoking the idea of the self-consistent field. We may thus anticipate
that the improvement in energies found here would be carried over into a
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self-consistent field calculation. Such a series of caloulatioms is in
progress. Also, a molecular system of high symmetry. is suitabls for treatment
in this way. This work is also in progress. Both will be reported om in due

course.
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Table IA

Summary of Results for M = 1 (in Atomic Units)

c A <.

0.00 -.2038 -0.7211 oo - ldii2 oo
0.50 -.2Ui760  ~0.5333 O0.LL4SB .16l 1.067 2.414
0.60 ~e25065 ~0.5289 0.4170 L1373 1.058 2.239

046638 =¢25310 -0.5280 0.LOLS 1258 1.056 2.162
0.70 -+25470 -0.5283 0.3993 .1202 1.057 2.128
0.80 =+2040  -0.5325 0.3918 .1082 1.065 2.074
0.90 -e269k0  <0.5455 ©.3981 .1005 1.091 2,095
0.95 =e27705 =0.5596 0.4123 .0991 1.119 2.164
0.99 ~+28920 -0.5857 O.LLL L1018 1.172 2.330
1.00 -.30105 -0.6139 0.48LS .1076 1.228 2.537

Quantum ~0,5000  0.2500 0 1.000  2.000

(E)l at ¢ = 0,50 from integration of (6.2) = -0.537.

N - NR <VO VL S Y

1.501
1.543
1.528
1.515
1.506
1.b7h
1.42k
1.382
1.319
1.262
1.500

&
3.205
3.117
3.0L48
2.992
2.956
2.830
2.642
2,494
2.2681
2.096
3.000



Table IB

Summary of Results for M = 5 (in Atomic Units)

¢

0.0

0.3

Ouly

0.5

0.6

0.7
Quantum

A

-0.08221
-0.0828
-0.08260
-0.08273
-0.08287
-0.08303

(s}

.23
-1.0711
-1.0606
~1.0559
-1.0541
-1.0578
~1.0000

<2

0.63L9
045647
0.52l42
0.4933
0.4770
0.31%5



(1)
(2)
(3

(k)
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(6)

(N
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(20)
(11)
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Ses, for example, G. N. Watson, A Treatise on the Theory of Bessel
Functions (Cambridge University Press, Cambridge, EEB;, ps 95

When ¢ > 1 the order of the Bessel function for l = 0 iz imsginary
and diverges at the origin.

Reference (18), p. 395.



(21)
(22)
(3)
(2L)
(25)
(26)
(an

Reference (18), p. 203.

Reference (iS)o pe 87

See, for enlélo, S. Golden, Phys. Rev. 110, 13L9 (1958).

The same sort of behavior is imposed in an ad hoc wamner in Ref. (6).
Indicated in (I) and in S. Golden, Rev. Mod. Phys. 32, 322 (1960) .
Reference (i8), p. 137.

One iust be hesitant about use of such a term as "best," since in the
absences of Both prior information as to the correct answer amd a varia-

tional principle, no particular confidence can be placed in this value.
The quantity, defined above, is 3 measure of significance.
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