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Let f: X4X* be a homeomorphlem of a metric sepaable space X into a compact metric space X0

such that f(X) - X. The pair (f, X*) in then called a metric comlpactification of X. If X is an &beo-

lute Go. space (FO- apace) (i.e. a G8 set (F,- set) In some compact space), then X Is said to be of

the first kind (cf. [61) If there exists a compactification (f, X) of X such that X -A Gi , where Gi

asesets open In X* and dlm(Fr(G,)]<dim X, I - 1,2,... (Fr(Gi)-beingtheboundar/ofG, and

dim X - die dimension of X). An absolute G- space, (F. -space) which Is not of the first kind is said

to be of the second kind, In the present study spaces X which are both absolute F, and absolute

G-s-paces of the second kind ate constucted for any positive finite dimension, a problem related to one

of A. Lelek in [11] Is solved and a sufficient condition on X is given, under which dim (Xe-f(X)] _ I

for any compactiflcation (f, X) of X. It is noted also, that an analogous condition assures

dim[ X*- f(X)] n.
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. 1.

I NT RODUCT ION

Let f: X X" be a homeomogphlsm of a metric separable space X into a compact metric space

Xsuch di i.(X) m ?. The par (fX") Is then called a metric compactificition of the metric space X. k Is kwml

that for each metric separable space X there existo a homeomorphism 1: X J 0 of X Into the H-.
bert cubs 0 Thus denoting * - f(Xthe €losure of f(X) In J ) we obtain a compactIfication

(1, X") of X. It can be shownt) that there always exists a compactificatlan (f, X) such that

dim X* < dim X where dim X denotes the dimension of X In the sense of Menger-Urysohn . What can

be said about the dimension dim (X*- f(X)) of the set X'- I(X) Is considered in the present study.

This question is closely related to some results obtained by B. Knaster In [6] and A. Lelek in Il111I

I. SOME COMPACTIFICATIONS OF METRIC SPACES

I.4. Let X be a given topological space. Let X. X U (z*), where x* I X is an additional point,

and let ue define the topology In X* by taking as open asea all sets open In X and all subsets U of

X, such that X*- U Is a closed compact subset of X. Then, the theorem of Aleandroff states:

1) S. (8], p. 119, Theorem 1.
2) S. (43, p. 65, Theorem V, 6. Also t9], p. 72.
3) S. (43, p. 10 and 24. Also (8], p. 162.
4) I learned recently that some problems considered In the present study have been solved by Lelek

In an entirely dillfernt way. (nat published).
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(1) The space X* is a compact topological space and X* is a Hausdorff space if and only if

X is a locally compact Hausdorff spaces)

The space X* is called the one-point compactificatioo of the space X.

A topological embedding is usually allowed rather than Insist that X actually be a subset of X.

Thus by a compactification of a space X a pair (f, X*) is understood, such that f: X4 X is 1a bomeo-

morphism of X into a compact space X* and ;(X) - X* (i.e. the image (X) of X Is dense in X).

In this sense the oe-point compactificatioe of a non compact space X is a pair (i, X*) where 1: X4X*

is the identity mapping and -) - X*. XV(x*).

Another compactiflcation of a topological space X is the Saonaech compactification (e, 0 (X)).

This compactficatlon Is defined as follows:

Let us take the set F(X) of all continuous functions f: X. mapping X into the interval

"J (0,11 and the product j TM with the Tychonoff topology. Let us define the mapping etX-,j VM

by conelating with each point xX the point e(z) whose f-th coordinate is f(z), for each fL F(X).

The mapping e(x) is a continuous mapping of X into 3M , and in the case when X is a completely

regular T, - space it turns out to be a homeomorphism. In this case we define P(X) by p(X)- e(X)

and the pair (e, A (X)) is called the Stoee.ech compactification of X.

S) S. (S], p. 15O, also (3), p. 73.
6) S. IS], p. 152. For properties of the Stone.&ch compactification, "ee also (2] and (13).

7) S. (S], p. 153.
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Let us note that:

(2) If (e, fi(X)) is the Stone- 6 ech compactification of a completely regular T,- space X and

f: X.,Y is a continuous mapping of X into a compact Hausdorff space Y, then f[e- 1 (x)] has a coa-

tinuous extension on 0(X) into Y. l)

Numerous other compactifications are constructed for various purposes. One of the, used In the

dimension theory, is the Wallman compactification (0, w(X)). It turns out to be topologically equiva.

a)
lent to the Stone-Cech compactification, if w(X) is a Hausdorff space

1.2. Considering the one-point compactificatlon (I, X*) of a metric space, we note that the space X*

Is generally not a metric space. For instance, if X is a metric space which is not locally compact,

then by (1) X* cannot be a metric space (since every metric space is a Hausdorff space). Thus If we

seek for a given metric space X, a compactification (f, X*), where X* is also a metric space, we gene-

rally cannot achieve this, by merely adding a single point and should provide for the set X*- f(X) to

contain more than one point.

In the present study we confine ourselves to metric compactifications (f, X) of metric separable

spaces X only. This means the assumption that X is a separable metric space and X* a metric

space. As already noted, the one-point compactification is generally not a metric compactification. Let

us show that an analogous statement holds for the Sttne-(eech compactification (e, 0 (X)). This will be

7) S. (51, p. 15 .

8) Ibidem, p. 168. For properties of the Wallman compactification, (15].
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shown by the following

Theorem 1. If X is a non compact metric space and (e, O(X)) the Stone-ech compactification

of X, then 0(X) is not a metric space.

Q. Suppose, to the contrary, that 0 (X) is a metric space. Let e(X) be the image of X in 0 (X).

Since X Is not compact, there exists a sequence A - I a .. of points a* tX which does not

contain any convergent subsequence. Consider the points e(a.) - b.. Since P(X) is compact and

metric, the sequence Ib1 3 1 , contains a convergent subsequence IbVI C ib 1. Let

ba* 4 bp(X) and consider the points a' e-e (b'). By A'-.I aICA the sequence A' does not

contain say convergent subsequence. Therefore A' is a closed subset of X. Let us define the real

0 1., amgk

function f:A'.,J.JO,1] by f(a').I k0 for....
1 for an2k-I

Since A' does not contain any convergent subsequence, the function f: A'-,J is continuous;

9)
and since A' Is a closed subset of the metric space X, we can, using Tietze's extension theorem

extend this function, to a continuous function f: X-*J (the extended function Is denoted also by f).

By (2), the function fe- 1 has then a continuous extension f on the whole of ,8(X). But since

f(b'h). fe"• (b'. f(a' 0) - I a-:' and bV -b the function f cannot be continuous at the

point b. This contradiction shows that #(X) is not a metric space.

9) S. (81, p. 117.

&
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SRemak 1. Since, as noted at the end of Section 1.1, the Waltman compactification (0, w(X)) is in case

of Hauadorff space w(X) topologically equivalent to that of Stone-ech it follows by Theorem 1 that if

X Is a non-compact metric space, then the space w(X) is not a metric apace.

It. PROBLEMS ON COMPACTIPICATIONS

11. 1. The results of Section I indicate that metric compactifications of metric spaces are generally

neither the Steone..ch nor the one-point compactification. Now, since for metric compactifications the

set X*! f(X) generally contains more than one point, there arises a problem of finding the structure

of this set for some classes of metric spaces X. For example the following questions can be put:

(a) Is it always possible to find a compactification (f, X*) of X such that X*- f(X) would be countablet

(b) Is it always possible to find a compactification (f, X*) such that dim [X*- f((X)] < dim X?

Regarding questlon (a), it is known that each space which does not contain a subset dense in it-

"self, has a compactificadon (f, X') such that X* - f(X) is countable °. On the other hand, it is easily

seen that for each compactificatios of the set X of rational numbers the set X* - f(X) Is uncountable.

Indeed, since f: X4X* is a homeomorphism, each point of f(X) is a limit point and therefore X*

is perfect. Hence X* is uncountablee".

10) S. P]7, p. 194, IV.

11) S. (3], p. 98.

i
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Regarding (b), It is known, that for each space X, there exists a compactification (f, X) such

that dim X *- dim X and thus dim [X* - f(X)] _ dim X. Easy examples show that in many cases this

weak Inequality _ can be replaced the strong <. It suffices, for example to take any n-dimensional

cube J*; n . 1 2... and any point pcJ'. The set X - J - (p) can be compactifled by adding this

single point. We then have X*-. J and dim (X*- f(X)] - dim (p) - 0 < dim X, where f-i is the

Identity mapping. On the other hand, it is not always possible to achieve the strong inequality

dim (X*- f(X)) < dim X. Indeed, for a 0-dimensional space X, dim (X*- f(X)) < dim X - 0 means
*

that X - f(X) Is empty and hence X is compact. It follows that for a 0-dimensional non compact

space X this strong inequality Is impossible. The problem of finding examples of n-dimensional

spaces X,n>0 of a simple topological structure for which dim (X* - f(X)] < dim X does not hold for

any compactification (f, X*) of X is more complicated. More precisely, this problem may be formulated

as follows:

(c) Let X be a given n-dimensional space and k < n an integer. Under what conditions on X shall

we have dim (X*- f(X)] k for each compactification (f, X*) of X t

11.2. B. Knaster discovered in (6] that there exist two kinds of absolute Ga - spaces (also called

Ga8 /epaces In compact spaces or topologically complete spaces). Their definition Is:

An absolute G8. space is said to be of the first kind, if there exists a compactification (f, XO)

such that f(X)- i• G1 and dim [Fv(G,)] <dim X, where G, i -1,2,... are sets open in X and



Fr(G1 ) denotes the boundary of G1 in X*. An absolute G8 aspace Is said to be of the second kind if

it is not of the first kind.

It was shown by Lelek 13) that

(3) An absolute Ga.space of finite dimension is of the first kind, if and only if there exists a co,.

pactification (f, X)of X such that dim (X 5- f(X)] <dim X.

Now, it was shown In [61 that the Cartesian product N x J, where N is the set of irrational num.

bets in the Interval j - (0,11, Is an absolute G8 ospace of the second kind. It was further proved in

[111, that if Z is any compactspace with dim Z. n > 0, then the space X - N x Z is an absolute

0
8 -space of the second kind. These results provide a solution of problem (c) for n-k In the class

of finite dimensional absolute G(.spaces.- The sequel will I.a. include a solution of the following

problems:

(a1) Does there exist, for any positive finite dimension n - 1,2.., a finite dimensional space X,

which Is both an absolute F. and G8 -space of the second kindt

(A2 ) Is it true that each absolute Ga-space X of the second kind, having a positive finite dimension,

n, contains a topological image of a set of the form N x Z, where N is the set of irrational numbers of

the interval j - (0,11 nd dim Z - dim X ?

(as) Problem (c), for the case k - I

12) S. (II], p. 31, Theorem 1.



and finally

(a4 ) Construction of a weakly infinite dimensional absolute F. and G-space of the first kind, such

that for each compactification (f, X*) there is dim (X*- f(X)) - .. s)

Before proceeding with a solution of problems (aI) - (a4 ), we quote in the next section some facts

on coverings.

Ill. C 0 V E R I N 0 S

By covering of a space Y, a family 0 - Iol of sets G, is understood such that Y-V Gi. If

Ga re open (losed) sets the covering is called open (closed). If the diameters 8(G,) of all G, ae

< 1, C is called an #.covering and if C is finite - a finite covering.

ds(Y) denotes the infinum of all numbers i > 0 such that there exists a finite open c- covering

of Y satisfying

(4) GOijAG,1%... n Gs - 0, for any set of n+ 1 indices i <iI< ... < a (i.e., suchthat

the Intersection of any n + 1 different sets Gi is empty).

It is known that for finite coverings of a space Y the existence of an open e-c overing satis-

fying (4) Is equivalent to that of a closed #- covering satisfying (4), and that for a compact space Y,

13) A space Is called weakly Infinite-dimensional If It is a union of a sequence of finite dimensional

spaces X., with dim X. -, for k -.
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dim Y < n if and only if dU+, (Y) 0. 14) Let us now prove a property of the Lebesgue number X of

a finite covering.

(5) Let Fo, Fi. .... F. be a finite family of closed subsets of a compact space Z.

Then there exists a number X > 0 (the Lebesgue number of the family (F0 , F1, ... F.)) such

that if a point p Z is at distance < . from all the sets F0 , Fk I. F.... F these sets have a

non-empty intersection.

Pro. Suppose the contrary. Then there exists a sequence of points PotP. . .p.. p, i,

on-0, 1, 2,... and,familles S-(Fo, Fo F 0 S,..., S-(Fi, ... , Fjp, .... , of sto

0 ?+ k% of . I ( ~O
such that the point pj is at distance :5 from all the sets Fk of the family Si, but F-0 .

Since the number of different families Sit j - 0,1, ... constructed from a given finite family of sets

I FkI is finite, some family - say S. - must appear in the sequence ISjI ainfinite
k-0.1,.... M 1-0.1I....

1
number of times. Thus there exists a subsequence Ip'3 IC ip9 l such that p' I@ at distance <

from all the sets Fke, .... Fk. of S%. Since Z is compact, the sequence Ip' I contains a con-

vergent subsequence to some point p i Z. Denoting this subsequence by Ip" .1, we have p,# p j Z.

Now,by p(pF ) )<n-- for i-0,1, ... , n andevery n-0,1,... andby p -,p we have

p(p, F1,) -0. Since F, are closed sets, it follows that p i Fkh , - 0,1,.,., n, which is incom.

14) S. [91, p. 60.

15) This is a standard proof and is given here for the sake of completeness only.

Il
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patible with the fact that A Fke - 0 (by the definition of S,).

It follows by (5) that

a

(6) If Y Is a cloe subset of a compact space Z and Y C V Fk, where Fk are closed sets

such that any different n + I of them have an empty intersection; then, replacing each Fk by Its

r-neighborhood 1) Gk - S(Fk. ) (in Z) with 2 , < X we get an open (in Z) covering C - I GkI of

the set Y, such that for the family I GdI of closures of GCk, any n + I different sets Gk have also

17)
an empty intersection 1

Another consequeace of (5) is;

(7) iU the closed sets *P F I,..., FE In a compact space Z have an empty intersection:

A Fk - 0, then, there exists a number , > 0 such that no set of diameter _ r has a non empty in-
k.to

tersection with each of the sets F'# F1 ... F*.

Indeed, it suffices to take i - - and to apply (5).
2

We shall now give some properties of coverings of simplexes.

Let 08 - (po. ..... p,) be a closed s-dimensional simplex with vertices p*, pl, .", p. in the

Euclidean sA.dimensional space Es and let f: u" -, Z be a hoenmsorphism of a" into a space Z.

Let * denote the (a - 1) dimensional closed face of a opposite to the vertex p1 go , i.e.

16) An i -neighborhood of a set F is by definition the union over all pe F of the sets

S, .IZ; P(p,s)<,; I Z

17) For a proof of (6) see also [141, p. 414, Lemma 2 and [101, p. 2S7.
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s--~i"(p, ..... P8..1.P1,+ .... p, ) i-,I1,..., a, and let r'- f(O) and r'- f(e').

Then r" is a curvilinear simplex with vertices q, - f(p) and (- 1)-dimansional faces r"-lI ,

• u-l.i 1 -- l,i

i-0,1,..., a. Since f is ahomeomorphism and A a -0, we have that A r -0. Thus

applying (7) with m - s to the closed sets Fi= r , we find that there exists a number t > 0 such

a.-lA

that no set with diameter < i intersects each of the faces r

Let now i > 0 be this number and let us show that

(8) Let i > 0 be a number such that no set with diameter < i intersects each face r . Let

further r - ý Fk , where Fk are closed sets with diameters B(Fk) < , k - 0,1,... m. Then some
km.

s&+ sets Fk ..... Fk have a non empty intersection.

a . a-i.j

Since 8 (Fk )_<Eno Fk containing a vertex q, of re intersects the face r opposite to

'f g- i(* k "- ij

S. Since f is one-to-one, no aet f (F1) containing a vertex p, of 0a intersects the face a

opposite to p,. Now, the sets C (Fk) k - 0,1,.. .m cover the simplex a and are closed, since

f is continuous. Thus applying the same procedure as in the proof of (2,241 in [1], p. 194 we ob-

tain that some s+ 1sti Cl (Fk ), j .0,1,... s have a non empty intersection. Hence also the

sets FLi, j - 0,1... a have a non empty intersection.
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IV. THE SOLUTION OF PROBLEMS FORMULATED IN II

IV. 1. An n-dimnslonal absolute Fa end G8-speco X and Its properties.

Let a - (P0. p 1. p. ) be the n-dimensional closed simplex in the n-dimensional Euclldean

space Em with vertices p. - (0,0,...,O) and pi -(0,... 0, 1, 0, ... O)9i-1it2..,9 (i.e. p, is

the point In. Ea whos l-th coordinate is 1 and all other coordinates ue 0). Let A - 1a11 j - 1,2,...

be the sequence of points of theform am -- , 1,2,... on the real axes E and let a -WcE

Denote by Fr (o) - V o the boundary of the simplex am.
1-0

Define

(9) X - (A x aa)v ((a) x Fr(o )J

We have XC a end the closure X of X in E"+ I is Xm(Axo)J[(a*)xo1-[AV(a.)]xe",

Since X is a compact subset of Ea+1 (as a product of two compact spaces AV (a) and *4), Is

a compact space, and since X can be wriumt as a union [(a*)XFr(.*)Iv( (as) x ] of a count-

able number of compact sts, it follows that X Is on absolute Fa space.

On the other hand the set X - X equals the interior of the simplex (a.) x oa. Since this Interior

Is a unien of compact sets, the set X - X Is an Fa set and therefore X Is a G8 - at in X. It

follows that

(b1) The *at X defined In (9)is both an absolute F? and Ga.space. Evidently, dim X - n.
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We shall now show that

(b'j) For each compactification (f, X*) of X there is dim [X*-1(X)] > dim X -n.

Indeed, suppose to the contrary that dim (X*- f(X)] < n - 1 < dim X and take the sets

rt -f[(aj)xM], rmj f -wf(a') x 06 1  i-O,,...,n, U =0,1,... Byaj -, &a for j-,we

have that for every i -0,1,.. n, diet tf(a )xo-X 1. L a.) Xa', if -where

dist(A,B).max [sup p(x,B),sup p(A,z)] is the distance of the sets A and B in the sense of
xuA IEB

Hausdorff10). Since f: X -, X* is a homeomorphism, and [Ay (a,)] x Fr(o) is compact it follows that

(10) dist (r, , rf ) o0 fx i.. andeach i=0,1,...n.

X*

Now the space X being compact, there exists a subsequence j I of I j I such that the se.-

quence of sets lr". 4 converges to a continuum CoX* 19). Writing j instead of j', we have

dlst (ri C).. 0 for j-.... Since f is one-to-one, it follows that CA[ J r'] =0, and since the set
i-I

r is an (n-l)-dimensional compact subsets of C, we have by the assumption
0 %

dim [X*-f(X)]< n-I and Corollary 1, in (4], p. 32, that dim C _ n - 1. Thus by the definition of

d4(Y) (Cf. section 111) we obtain d,(C) - 0' Hence, by (6), there exists for every r> 0 an €c-overing

of C by sets Gk open in X* , k-0,1,...m such that

(11) ,k Aof A ... " i =0 for any setof subscripts k <ki k...k,.

18) S. (81, p. 106
19) S. [9], p. 110. Also (161, p. 11.
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* 3-l.1

Now, since r• T0  -0, we can by (7), choose for this covering an j so small that no G0

intersects each set r; . Hence by (10) no set Gk intersects all the faces r, I I - 0,1,...0

for sufficiently large j. Let G - 0 Gh. By CCU and dist (r, ,C) -- 0 for j m there exists a
k-O

j* such that rT*C G for j 2 no Fixing any j >j n., we find that the sets Fk - rr/t k - 0,1,..,m

satisfy the assumptions of (8) with a replaced by n and r by r,. Hence by (8) some n+#1 sets

Fk ..... Fka, and therefore also the sets Gko .... GkM have a non empty intersection, which is

incompatible with (11). Thus (b',) is proved.

By (bh), (b'1) and (3) we obtain

Theorem 2. The set X defined in (9) is both an absolute F. and G8 - space of the second kind

and of dimension n.

This theorem gives an answer to problem (ad).

IV. 2. On a problem of A. Lolek.

The following problem p.313 in [11], p. 34 was formulated by Lelek.

Does there exist, for each absolute Ga-space X of the second kind with finite, positive dimen-

sion, a compact space Z with positive dimension, such that X contains a topological Image of the set

N x Z (N being the set of Irrational numbers of the Interval j - (0,11)

A negative answer to this question was given in [(121. Now It is easily seen that a negative
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answer to problem (a2 ) posed in section II contains as a special case, a negative answer to that of

Lelek. (It suffices to take in (a2 ) n - dim X - 1). We now proceed to prove that the answer to (a,) is

negative.

Indeed, let X be the apace defined in (9). We shall show that there does not exist a space Z

with dim Z - dim X - n such that N x Z has a topological image in X.

Suppose, to the contrary, that such a space Z exists and let h: N x Z -, X be a homeomorphism

of N x Z into X. Fix a point f i N. Then the n-dimensional space (f) x Z has a topological image

in X. Now X being a countable union of compact disjoint sets (aj) x a and (a.) x Fr(ov), j - 1,2,...

and (f) x Z being n-dimensional, it follows that h [(Q) x Z] has an n.dimensional intersection with

some set (aj(e)) X . This intersection, as n-dimensional subset of a , contains an open sub-

set of (aj(e)) x o, 20). Since h is oneto-one, the sets h [(Q) x Z] and h[(') x Z] are disjoint

for e• A ', &,e' N and since N is uncountable, we get an uncountable family of disjoint open sets

contained in X, which is impossible.

IV. 3. A theorem on compactification.

We shall now prove a theorem with help of which it will be possible to construct for any n-l,...0,

a n-dimensional space X which is not locally compact at a single point and such that for each

19') This is a consequence of the Sum Theorem for Dimension n, Cf. (4], p. 30.

20) This follows easily from Theorem IV, 3 in [4], p. 44.
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compactificatlon (f, X*) of X that Is dim (X - f(M)) : 1.

Theorem 3. Suppose that the space X contains a sequence IC1 . of continua C, and a point

p such that

(cl) the sets C, are closed and open in the union V Ci and disjoint Ci/A Ci - 0 for i ý j

(c) there exists a number 8 > 0, such that for each i - 1,2,... the diameters 8(Ci) a 8U

and

(ca) %;"Ci,- ýJ c,. -p).
J-1 1"I

Then X is not locally compact at the point p, and for each compactification (f, X*) of X there

is dim (X*- f(X)). 1.

Proof. Let Up be an arbitrary neighborhood containing the point p. We have to show that the closure

Up is not compact. By (c. ) there exists a sequence of points pi S' C, such that p, - p for i..-

and such that the sequence 1p, I has only a finite number of points in common with each Ci.
11=,2,....

Thus we may assume, that for each i - 1,2, ... there is plr Ci. Let S - S (p, r) be a spherical neigh.

borhood of p with radius r <- contained in U . By p, - p, the sets CfAS are not empty for i
2

sufficiently large and since C, are connected, we get, by (c.), that for these i there is

CiA Fr(S) A 0, where Fr(S) a Iq; p(p,q) - r, q#X I In the boundary of S. Choose from each such

set CiAFr(S) apoint 91 and consider the sequence q104. Since SCkU,, we have Iq IC U and

since q, i Fr(S) , there Is p(q0, p) - r> 0. Now, by q4 i C, for I sufficiently large, (c1 ) and (c.),
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my convergent subsequence of 1q, I tends to p, which is impossible by P(qh, p) - r > 0. Thus U,

is not compact. It remains to show that if (f, X*) Is any compactificatlon of X, then dim[ X*-f(X)]> 1.
.e 0 CVp n (X) h lsuefX)-

For this purpose let us consider the sets X1. . C (p) and f(X1). The closure f(XI) -

is a compactification of X . Let y be any point of X* - f(X1). Then the point y/f(X). Indeed, if

there would exist a point x i X such that y - f(x) then there would be x XI, since fI I one-to-one.

Now by ytf M, ) there exists a sequence of points xz X, such that f(xm) y. Thus by the continuity

of II it should be xr-,. x#X - X . But by (c.) the set XI is closed in X, and since x.(X it

follows that xe X1. This contradiction shows that yif(X). Thus

(12) (X* - f(X, )] A f(X) . [R' - f(X1)] Af(X) 0

Let us take further r <- and construct (analogously with the first part of the proof) points pi p,
2

pi £ Ci and q, e C, , such that p(p, q) - r >0 for i sufficiently large. Since X* - f(XI ) is compact

and f(Ci) C X1 we can choose a subsequence of the sequence I f(C1) I of continua converging to some

continuum C . Denoting the subscripts of this subsequence by I we have therefore that diet [f(Cj), C]-.

-, 0 for I -.- . Now, by pi " p, p, t C1, it follows that C contains the point f(p). If C

would reduce to this point f(p) , then by q1i C, there would be f(q,) " f(p) and since F-1 is conti-

nuous there would also be q, # p, In contradiction to p(p, %) - r > 0. It follows that C contains at

least two points, and since it Is a continuum we have dim C > 1. Therefore dim [C - (f(p)] > 1.

21) S. (9], p. 110.
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Now, by (cI) we have C t(j) 0 for each I -1,2, Therefore by Xw CX* and (12) It follo

that dim fX* - f(X)] > 1. Theorem 3 is proved.

Remiark 2. In a quite analogous way one could prove that

If the space X contains topologically the set defined by (9) and

A x -A xa* - (a.) x Fr(aum), then for each compactlfication (f, X*)of X there Is

dim [X- f(X)] > n. (For n - 2, see Fig. 3).

"- I
Eample I. Lot x (a.)X V J(a )x jI where a.- O and aj - -,' j-1,2,... arerealnum.

bors on the real axes and J - (0, 1] (S. Fig. 1). This 1-dimensional space X is not locally compact

at the single point a% - 0, and by Theorem 3 dim (X[ - f(X)] > 1 for any compactification (f, X)

of X. It is also easily seen that X is an absolute Fe *'Md Ga-space and thus, by (3) and dim X-1,

we obtain that X is an absolute F. and Gr space of the second kind.

Fig. 1
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Example 2. Let n - 2,3, ... •. and let X - (J' - X )v (9), where X1 -Ix; x..(z. X2 ..... .),

zi &, 0 0 < xi < 1, for i - 2,3,... n I and D - (0,, ... o) (If n - , Ja is the Hilbert cube).
a0

It is clear that dim X - n, and that X is not locally compact at the single point 0 - (0, O...). It is
U

also easy to construct a sequence C, of continua in X, such that the assumption a of Theorem 3 be sa-

tisfied for the point p - (0,0 ....O). Hence dim [X*- f(X)] > 1 for any compactification (f, X*) of X

(for n - 3, see Fig. 2).

C-

/ !
//

/

I I
I
I
I I
I I

I /"

A1

For each compactification (f, X) of this full cube X excluding the full square OABC but including

point 0, dim [X*- f(X)] > 1.

Fig. 2.
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According t Remark 2, for each compactification (f, X*) of this full cube X excluding the inte-

rio of the square OABC ýut including OA, AB, BC and CO) dim [X* - f(X)] > 2.

Fig. 3.

IV.4. A weakly Infinite-dimensional absolute Pe and G*spaeae

As stated in (3), a finite dimensional asolute Gr space X Is of the first kind if and only If
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there exists a compactification (f, X*) of X such that dim (X* - f(X)) < dim X.

We shall now show that the above condition Is not necessary for infinite dimensional spaces. More

precisely, we shall construct an absolute F. and Ga.space of the first kind which is weakly infinite.

dimensional and such that for each compactificadon (f, X5) of X, there Is dim (X* - f(X)]..,. Let
1 1

us take, for fixed n, the set of point x. - a + 1,n+2,... ontherealaxes,and
2- 28NO

let A,- 4+ (U..). Define X. - (A.xoa)V[(-•) x Fr(oa)] where ox is an-dimensional

1
closed simplex with diameter 8(&8) -1, and Fr (o) is the boundary of a2. The set X is then

2

defined by

(13) X. V X
awl

The set X can be considered as a subset of the Hilbert cube j HO0, and the closure X equals

X "- X V i [V ) x Int (aa) IV(O) where loto 8 a oR - Fr (9) and 0 - (0,0,...) is the

point all whose coordinates are zero. It is also easily seen that X may be written in the form

v XV(O), where Xw -([Av (-!)] x om. Since X is a compact space and X is a countable
awi 2
union of compact sets, we find that X is an absolute F.- space. Further, we can write each set

(A) x Int(oa) asaunion 'Fi of compact aet& Fi , I- 1,2,... Thus X-X- V Fu(o)
2 (0)ui -

Is an F• set and thus X is an absolute Ga-space. Moreover, the set X- [ V F (0)

are open in X, dim [Fr (Ga)] a a and A Goi, X, Hance, X is an absolute Fa and Ga -space of
NMI

the first kind. By the definition of X, it follows that X is a weakly infinite-dimensional space i.e.

A
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22)2

dim X -.

We shall now show that for each compactification (f, X*) of X there is dim [X' - f(X)] - . For

this purpose, let us note that the set XM is homeomorphic with the space difined in (9), and hence by

(b',) there is dim (X: - f(.X,)] _ dim X - n for each compactification (f, X) of X.. Now it Is

easily seen that

(14) f(X.) Af (X -X.) - 0

where f(X.) is the closure of f(X.) In X*.

Indeed, suppose to the contrary that the set in (14) Is not empty and let y i f(X,) A(f(X - X.)

Wehave f(X -X,) - Vf(X ). Then y. f(0) where xcXk for some k1 0n. Since y#I(X.,
kon

4there exists a sequence 1y1l such that y, -, y ar y1 - f(zt) with st F X.. Since t is con-ilmla....

tinuous, it follows by y-f(s) that zi-#x. This is Impossible, since xi XR. x1'X. and X. is a

closed (also open) set In X.

Now X: - f(X•) is a compactification of X. and therefore, by dim [ X.f - f(X.)] dim X. . a

and (14), we have that dimX* - f(X)I ? n. Since n is arbitrary, it follows that dim (X*- f(X)] .

22) Foe weakly infinite.dimensional spaces X, dim X - a) is sometimes written Instead of dim X - -.
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