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ABSTRACT

Let f: X+X* be a homeomorphism of & metric separable space X into a compact metric space X':

such that {(—;(-) = X" The pair (f, X") is then called a metric compactification of X. If X is an abso-

lute Gy-space (F,- space)(i.e. a Gy set (F,-set) in some compact space), then X is said to be of

the firet kind (cf.[6]) if there exists a compactification (f, X*) of X suchthat X = ‘f\l G,, where G,

are sets open In X* and dim [Fr(G)] <dim X, i=1,2,... (Fr(G‘)-beingthebomdaryofG. and

dim X - the dimension of X). An absolute Gy-space, (F, -space) which is not of the first kind is said

e AR 3 5 Y

to be of the second kind. ln the preseat study spaces X which are both absolute F, and absolute

Gy-spaces of the second kiad ase constructed for any positive finite dimension, a problem related to one

5 A S g g A4

! of A. Lelek in [11] is solved and a sufficient condition on X is given, under which dim (X*-£X)1> 1

3 for any compactification (f, X") of X. It is noted also, that an analogous condition assures

dim[X* - X)] > n,
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INTRODUCTION

Let f: X+X" be a homeomorphism of a metric separable space X into a compact metric space
X*such that {(X)=X", The pair (1,X) is then called a metric compactification of the metric space X, kt is inown?)
that for each metric separable space X there exiats a homeomorphism f: X-.Jn 0 of X into the Hil.
bert cube J'"" . Thus denoting X* = f(-;)(the cloaure of £(X) in ] "’) we obtain a compactification
(, XY of X. It can be shown » that there always exists a compactification (f, X‘) such that
dim X* < dim X where dim X denoctes the dimension of X in the sense of Menger-Uryschn ". What can
be said about the dimension dim (X* - £(X)) of the set X"~ [(X) is considered in the present study.

This question is closely related to some results obtained by B, Knasterin [6] and A, Lelek in [ll]‘).

l. SOME COMPACTIFICATIONS OF METRIC SPACES

LA, Let X be a given topological space. Let X' Xv(x'). where x' / X is an additional point,
and let us define the topology in X' by taking as open sets all sets open in X and all subsets U of

X‘, such that X*- U is a closed compact subset of X. Then, the theorem of Alexndroff states:

1) 8. (8], p. 119, Theorem 1.

2) 8, 4], p. 65, Theorem V, 6. Also [9], p. 72.

3) 8. (4], p. 10 and 24. Also [8), p. 162,

4) 1learned recently that some problema considered in the present study have been solved by Lelek
in an entirely different way. (not published).



(1) The space X* is a compact topological space and X* is a Hausdorff space if and only if
X ie a locally compact Hausdocff space s

The space X' is called the one-point compactification of the space X.

A topological embedding is usually allowed rather than insist that X actually be a subset of X°
Thus by a compactification of a space X a pair (f, X") is understood, such that f: X+X" is a homeo-
morphism of X into a compact space X* and f.(;) « X* (i.e. the image £(X) of X is dense in x%.
In this sense the cae-point compactification of a non compact space X is a pair (i, X*) where i: Xox*
is the identity mappiog and i(X) = X* = Xy(x®).

Another compactification of a topological space X is the &uofod compactification (e,p(X))..)
This compactification is defined as follows:

Let us take the set F(X) of all continuous functions f: X+] mapping X into the interval
J00,1] and the product ] with the Tychonoff topology. Let us define the mapping e:X+J" '
by correlating with each point x¢X the point e(x) whose f-th coordinate is f(x), for each f e F(X).

P ond in the case when X lo a completely

The mapping &(x) is a continuous mapping of X into ]
regular T, — space it turns out to be a homeomorpbism. In this case we define B(X) by A(X)= o-()?)

and the pair (¢, 8(X)) is called the Stone-Cech compactification of X,

5) 8. (51, p. 150, also (3], p. 73.
6) S. {51, p. 152. For properties of the Stone. écch compactification, see also (2] aad {13).
7 8. (8], p. 153.
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Let us note that:
(2) If (e, B(X)) is the Stone-Cech compactification of a completely regular T,—space X and
f: X+Y is a continuous mapping of X into a compact Hausdorff space Y, then f{e~1(x)] has a con-

tinuous extension on 8(X) into Y.”

Numerous other compactifications are constructed for various purposes. One of the, used in the
dimension theory, is the Wallman compactification (®, w(X)). It turns out to be topologically equiva-
lent to the Stone-Cech compactification, if w(X) is a Hausdorff space ®
I.2, Considering the one-point compactification (i, X‘) of a metric space, we note that the space x*
is generally not a metric space. For instance, if X is a metric space which is not locally compact,
then by (1) X* cannot be a metric space (since every metric space is a Hauadorff apace). Thus if we
seek for a given metric space X, a compactification (f, X‘), where X" is also a metric space, we gene-
rally cannot achieve this, by merely adding a single point and should provide for the set X*- f(X) to
contain more than one point,

In the present study we confine ourselves to metric compactifications (f, X‘) of metric separable
spaces X only. This means the assumption that X is a separable metric space and X" a metric
space. As already noted, the one-point compactification is generaily not a metric compactification. Let

us show that an analogous statement holds for the Swaoe-Cech compactification (e, 8(X)). This will be

7) 8. [5],p. 153,
8) Ibidem, p. 168. For properties of the Wallman compactification, [15],
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shown by the following

Theorem 1. If X is a non compact metric space and (e, (X)) the Stone-Cech compactification
of X, then 8(X) is not a metric space,
Proof. Suppose, to the contrary, that 8(X) is a metric space. Let ¢(X) be the image of X in B(X).

Since X is not compact, there exists a sequence A={a } of points a_¢X which does not
am

contain any convergent subsequence. Consider the points e(a )= b,. Since B(X) is compact and

metric, the sequence (b} contains a convergent subsequence {b%} C b }. Let

a=],3,...

b’ +beB(X) and consider the points a’, e=1(b’). By A’={a’l@A the sequence A’ does not

contain amy convergent subsequence. Therefore A’ is a closed subset of X. Let us define the real

functon f: A% J=(0,1] by f(a5) =1 *™ yurg,..
1 for a=m2k-1

Since A’ doss not contain any convergent subsequence, the function f: A’+] is continuous;

and since A’ 1s a closed subset of the metric space X, we can, using Tietze’s extension theorem ”.

extend this function, to a continuous function f: X+ ] (the extended function is denoted also by f).

By (2), the function fe—! has then a continuous extension T o0 the whole of B(X). But since

0 for amik

~
and b/ + b the function f cannot be continuous at the
1 for am3k-1l

Ty ate’ ©7) = 1)) =1

point b, This contradiction shows that 8(X) is not a metric space.

9) S. (8], p. 117,
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Remark 1. Since, as noted at the end of Section 1.1, the Wallman compactification (®, w(X)) is in case
of Hausdorff space w(X) topologically equivalent to that of Stone-Cech it follows by Theorem 1 that if

X is a non-compact metric space, then the space w(X) is not a metric space.

Il. PROBLEMS ON COMPACTIFICATIONS

1.1, The results of Section I indicate that metric compactifications of metric spaces are generally
neither the Stone-Cech nor the oae-point compactification. Now, since for metric compactifications the
oot X' f(X) generally containe more than one point, there arises a problem of finding the structure
of this set for some classes of metric spaces X, For example the following questions can be put:

(a) Is it always possible to find a compactification (f, X“) of X such that X*— KX) would be countable?
(b) Is it always possible to find a compactification (f, X‘) such that dim (X"~ f(X)] <dim X?

Regarding question (a), it is known that each space which does not contain a subset dense in it-
self, has a compactification (f, X') such that X* - £(X) is oonntableu,. On the other hand, it is easl]y
seen that for each compactification of the set X of rational numbers the set X* - f(X) is uncountable,

Indeed, since f: X+ X' isa homeomorphism, each point of £X) is a limit point and therefore X*

1t
is perfect. Hence X* is uncountable ).

10) S. [7],p. 194, IV.
ll) s. [3]0 P- 98.
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Regarding (b), it is known, that for each space X, there exists & compactification (f, X") such
that dim X*w dim X and thus dim [X*- ¢ (X)] < dim X, Easy examples show that in many cases this
weak inequality < can be replaced the strong <. It suffices, for example to take any n-dimensional
cube J'; 8 ={; 2,.. and any point p(j.. The set X = J' - (p) can be compactified by adding this
single point. We then have X" a]" asddim [X*- f(X)] = dim (p) = 0 < dim X, where fai is the
Identity mapping. On the other hand, it is not always possible to achieve the strong inequality
dim (X'- £(X)) < dim X. Indeed, for a O-dimensional space X, dim (X‘- f(X)) < dim X =0 means
that X"- £(X) s empty and hence X is compact. It follows that for a O-dimensional non compact

space X this strong inequality is impossible, The problem of finding examples of n-dimensional

spaces X,0>0 of a simple topological structure for which dim [X* — ¢ (X)] <dim X does not hold for
any compactification (f, x*) of X is more complicated, More precisely, this problem may be formulated

as follows:

(c) Let X be a given n-dimensional space and k < n aninteger. Under what conditions on X shall
we have dim [X°-{ (X)) ¥ k for each compactification (f, X" of X?

IL2, B. Knaster discovered in [6) that there exist two kinds of absolute Gy - spaces (also called -
Gy vhpaces in compact spaces or topologically complete spaces). Their definition is:

An absolute Gy - space is said to be of the first kind, if there exists a compactification (f, X")

such that {(X) = |t.\; G, and dim (Fx(G,)] <dim X, where G, i = 1,2,... are sets open in X" and
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Fr(G,) denotes the boundary of G, in X". An absolute Gy-space is said to be of the second kind if
it is not of the first kind.

It was shown by Lelek **’ that
(3)  An absolute Gy-space of finite dimension is of the first kind, if and oaly if there exists a com-
pactification (f, X*)of X such that dim [X*~ f(X)] <dim X.

Now, it was shown in [6] that the Cartesian product N x ], where N is the set of irrational num.

.

bers in the interval ] = [0,1], is an absolute Gy-space of the second kind. It was further proved in
[11], that if Z is any compact space with dim Z = n > 0, then the space X = N x Z is an absolute
Gy - space of the second kind, These results provide a solution of problem (c) for n=k in the class
of finite dimensional absolute Gy-spaces, The sequel will i.a, include a solution of the following
problems:
(a,) Does there exist, for any positive finite dimension n = 1,2,..., a finite dimensional space X,
which is both an abeolute F, and Gy - space of the second kind ?
(a4) 1Is it true that each absolute Gy-space X of the second kind, having a positive finits dimension,
n, contains s topological image of a set of the form Nx Z, where N is the set of irrational numbers of

the interval J = [0,1] and dim Z = dim X?

(a;) Problem (c), for the case k= |

12) S.{11], p. 31, Theorem 1,



and finally
(a,) Construction of a weakly infinite dimensional absolute F, and Gg-space of the first kind, such
that for each compactification (f, X*) there ia dim (X" - (X)) = « !3)

Before proceeding with a solution of problems (a,) - (a,), we quote in the next section some facts

on coverings.

. COVERINGS

By covering of a space Y, a family G ={G,] of sets G, is understood such that Y-\{ G. It
G, are open (tlosed) sete the covering is called open (closed). If the diameters 3(G,) of all G, are
<¢, G iscalled an ¢-covering and if G is finite - a finite covering.

d (Y) denotes the infinum of all numbers ¢> 0 such that there exists a finite open ¢- covering
of Y satiafying
4 6 n G‘ln... NG, = 0, for any setof n +1 indices i, <i <...<i, (i.e,, such that

[ ] [ ]

the intersection of any n + 1 different sets G, is empty).

It is known that for finite coverings of a space Y the existence of an open ¢- covering satis-

fying (4) is equivalent to that of a closed ¢- covering satisfying (4), and that for a compact space Y,

13) A space is called weakly infinite-dimensional if it is & union of a sequence of finite dimensional
spaces X, withdim X, + ewjfork+ e,
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dimY < nif andonlyif d _,(Y)= 0."*" Let us now prove a property of the Lebesgue number A of
a finite covering.
(5) LetF,, F, ..., F_ bea finite family of closed subsets of a compact space Z.

Then there exists a number A >0 (the Lebesgue number of the family (F,, F,....F_)) such

that if a point peZ is at distance < A from all the sets F, 'F"x' .o F . thesc sets have a
L]

noa-empty intersection.

M_") Suppose the contrary, Then there exists a sequence of points p, p;. ... p, ¢Z, ,
m=0,1,2 .. aadfamilies 'So-(Fkg, Fk?,... , Fk:(’ Ypeoos S’ -(Fk%, .‘.., F“i‘)' «osy Of sets
such that the point p; is at distance < ,-l:l from all the sets Fk{ of the family §,, but Bo F,‘{.o.
Siace the number of different familics S,. j=0,1, ... constructed from a given finite family of sets
iF"'k-o.l....-i. finite, some family — say S, — must appear in the sequence (S} ol an infinite
number of times. Thus there exists a subsequence 1p’,IC (p,} such that p7 is at distance < -;%
from all the sets Fk: veres Fk: of S,. Siace Z is compact, the sequence lp'. } contains a con-

°
vergent subsequence to some point p ¢ Z, Denoting this subsequence by {p.}, we have p_~+ p e Z.

1
Now, by P(P;'Fk:)sm for i=0,1,...,n, andevery n=0,1,... andby p +p we have

e(p, F“f )=0. Since F, are closed sets, it follows that p ¢ F*T , i=0,1,..., n  which is incom-

14) 8. [9], p. 60.
15) This is a standard proof and is given here for the sake of completeness only,
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patible with the fact that ‘I:\: F*i‘ = 0 (by the definition of §,).

It follows by (5) that
(6) If Y isaclosed subset of a compact space Z and YCS{. F_, where F, are closed sets
such that any different n+1 of them have an empty intersection ; then, replacing each F, by its

)

t-ncighborhood" G, = S(F,. ¢)(in Z) with 2¢<\ we get an open (in Z) coveng G={G,| of

the set Y, such that for the family (G kl of closures of G,, any n +1 different sets c';,‘ have also
an empty intersection ”).

Another consequeace of (5) is;
(7) the closed sets F ,F,,..., F_ Inacompact space Z have an empty intersection:
k{‘:\. F, =0, then, there exists a number ¢>0 such that no set of diameter < ¢ has a non empty in-
tersection with each of the sets F , F,, ..., F_.

Indeed, it suffices to take « --;- and to apply (5).

We shall now give some properties of coverings of simplexes.

Let o*=(p,,.... p,) be aclosed s-dimensional simplex with vertices p_,p,, ..., P, in the
Euclidean s-dimensional space E° and let f: o +Z be a homeomorphism of o into & space Z,

.—l.

Let o ! denote the (s - 1) dimensional closed face of o opposite to the vertex Py e o, le.

16) An ¢ -neighborhood of a set F is by definition the union over all p ¢ F of the sets
S, =1z plpy ) <0 z¢Z}
17) For a proof of (6) see aleo [14), p, 414, Lemma 2 and (10}, p. 257.
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0._1" -(plol LN p‘—l’ pl#l' se 0y p.) i = o'll ooy .' .'nd let '. - ‘(0‘) .'nd '.-l.' - f(ﬂ'-l").

Then r* is a curvilinear simplex with vertices q, = f(p,) and (s-1)-dimensional faces -l

] [ ]
i=0,1,...,8 Since f is a homeomorphism and ‘/\ o . 0, we have that {\ "' 2 0. Thus

-1,

applying (7) with m = s to the closed sets F, = r , we find that there exists a number ¢ > 0 such

that no set with diameter < ¢ intersects each of the faces r'"l' i. .

Let now ¢> 0 be this number and let us show that
(8) Let ¢>0 be a number such that no set with diameter < ¢ intersects each face r'_l' ‘. Let
further r = k\l F,, where F, are closed sets with diameters 8(F)< ¢, k=0,1,... m. Then some
s+l sets F". veres Fk. have a non empty intersection.

Since 8(F )< ¢ n0 F, containing a vertex q of r intersects the face r'_l" opposite to
q;. Since f is one-toone, no et f l(Fk) containing a vertex p, of o intersects the face a--l.l
opposite to Py Now, the sets f—l(F‘) k=0,1,...m cover the simplex o and are closed, since
f is continuous. Thus applying the same procedure as in the proof of (2,24] in (1], p. 194 we ob-

tain that some s+1 sets f—l (Fk‘), j=0,1,...s have a non empty intersection. Hence also the

sets FL‘ , i=0,1...8 bave a non empty intersection.
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IV. THE SOLUTION OF PROBLEMS FORMULATED IN 1l

IV.1. An n-dimensional absolute F, and Gy-space X and its properties.

Let o = (Py» Pys -+ +p, ) be the n-dimensional closed simplex in the n-dimensional Euclidean
space E" with vertices P, ™ (0,0:....0) snd p, =(0,...0, }, 0,...0),i=1,2,..yn (i.c. p, is
the point in. E" whose i-th coordinate is 1 and all other coordinates are 0). Let A= |l‘| j=12..
be the sequence of points of the form 8 --lj-, j=12,... oun the real axes E' andlet a, =0 (El.

a=1,1

Denote by Fr (o) = ‘\_/o P the boundary of the simplex o .
Define
® X=(Axo)IV[@)xFr(o)]
Webave XCE™" and the closwe X of X in E™' is X «(Axo"WIG,) xc"] = [AV( )xe'.
Since X is a compact subset of E™*' (s a product of two compact spaces AV (1)) aad o') X is

a compact space, and since X can be writtea as a union [(A.)xl“r(a“)]\l[‘Vl (a)) x o1 of a count-
able mumber of compact sets, it follows that X ls an absolwe F, space.
On the other hand the set X — X equals the interior of the simplox (a,) x o . Since this interior

1s a union of compact sets, the set X — X is an F, set and therefore X isa Gy~ setin X &k

follows that

(b ) The set X defined ia (9) is both an absolute F, and Gy-space. Evidently, dim X =,
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We shall now show that
(b5) For each compactification (£, X*) of X there is dim [X*-{(X)] 2 dim X =n.

Indeed, suppose to the contrary that dim [X'— f(X)1 < n-1<dim X and take the sets

I—l.‘ .-l"

rafla)xods r " wfl@)xo"" "] i=0,1,...,n, j=0,1,... Bya +a for j+e,we
1 ] i ] i o

have that for every i«0,1,...n, dist l‘[(n‘)xo.-l"], t(ao)xa'-"‘]l-.o if j . es, where

dist(A,B)=max [sup p(x,B),sup p(A,x)] is the distance of the sets A and B in the sense of

xeA xeB
Hlundaffl". Since f: XX isa homeomorphism, and [Av (a,)] x Fr(c®) is compact it follows that
a=1,i a=1,§

(10) dist (r' ., f Y+0 for j+= andeach i=0,1,...n.

Now the space x* being compact, there cxiats a subsequence {j9 of |jl such that the se-

quence of sets lr" 4 converges to a continvum C& X*19), Writing j instead of j’, we have

dist (r,',C)‘o for j+e, Since f is one-to-one, it follows that CI\[‘\Il r;'] =0, and since the set

»
a=1,i
Ve
o

i=o

is an (n—1)-dimensional compact subsets of C, we have by the assumption

dim [X*- f(X))< n—1 and Corollary 1, in [4], p. 32, that dim C < n—1i. Thus by the definition of
d_(Y) (Cf. section IlI) we obtain d_(C) =0, Hence, by (6), there exists for every ¢>0 an «-covering
of C by sets G, open in X“, k=0,1,...m such that

(11) -G‘kof\ (—Skll\ /\c';k_ =0 for any set of subscripts k, <k, <...<k..

18) S. (8], p. 106
19) . [9], p. 110. Also [16), p. 11,
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a=1

A - 0, we can by (7), choose for this covering an ¢ so small that no (-;k

]
Now, since N r
1=0

intersects each set rl|

.-M . Hence by (10) no set éh intersects all the faces r;-l" A=0,1,...0

n
for sufficiently large j. Let G = é}o G,. By CC(} anddist (r;l ,C)+0 for j-+ e there exists a
j, such that r:c G for j2j,. Fixingany j>j, , we find that the sets F, = rl'f\‘ﬁ* k=01, .m
satisfy the assumptions of (8) with s replaced by n and r by r,. Hence by (8) some n+] sets

F, ..., F , andtherefore also the sets (_'5& veee (_;k have a non empty intersection, which is
» [}

incompatible with (11). Thus (b',) is proved.
By (b,), (b)) and (3) we obtain

Theorem 2. The set X defined in (9) is both an absolute F, and Gg-space of the second kind

and of dimeasion n.

This theorem gives an answer to problem (a,).

IV.2. On aproblem of A, Lelek.

The following problem p,313 in [11], p. 34 was formulated by Lelek.

Does there exiat, for each absolute Gg-space X of the second kind with finite, positive dimen-
sion, a compact space Z with positive dimension, such that X contains a topological image of the set
N x Z (N being the set of irrational numbers of the interval J = (0,1]) ?

A negative answer to this question was given in [(12], Now it is easily seen that a negative
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anawer to problem (a,) posed in section II contains as a special case, a negative answer to that of
Lelek. (It suffices to take in (a,) n = dim X = 1). We now proceed to prove that the answer to (a,) is
negative,

Indeed, let X be the space defined in (9). We shall show that there doesnot exist a space Z
with dim Z = dim X =n such that N x Z has a topological image in X,

Suppose, to the contrary, that such a space Z exists and let h: N x Z + X be a homeomorphism
of NxZ into X, Fix apoint ¢¢N, Then the n-dimensional space (£) x Z has a topological image
in X, Now X being a countable union of compact disjoint sets (a,) x o and (a,) x Fr (a-), j=1,2,..
and (¢)x Z being n-dimensional, it follows that h {(£) x Z] has an n -dimensional intersection with
some set (a, f)) x o® “.). This intersection, as n-dimensional subset of a', contains an open sub-
setof (a,¢)) % 0" 0 Since h is one-toone, the sets b [(£) x Z] and h{(¢) x Z] are disjoint

for £4 €%, £ €E°¢N and since N is uncountable, we get an uncountable family of disjoint open sets

contained in X, which is impossible,

V. 3. A theorem on compactification,

We shall now prove a theorem with help of which it will be possible to construct for any n=l,...%,,

a ndimensional space X which is not locally compact at a single point and such that for each

19’) This is a consequence of the Sum Theorem for Dimension n, Cf. (4], p. 30.
20) This follows easily from Theorem IV, 3 in (4], p. 44,
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compactification (f, X*) of X there is dim (X*~ (X)) > 1.

Theorem 3, Suppose that the space X contains a sequence {C ‘l‘ of continua C, and a point

=1,3,.0

p such that
(c,) the sets C, are closed and open in the union }/l C, and disjoint C,A Cl =0 for i £j

(c’) there exists a number 3> 0, such that for each i« 1,2,.., the diameters 3(C,)> 3

and
() V C,- v C= (p)
j=) im]

Then X is not locally compact at the point p, and for each compactification (f, X‘) of X there
iedim (X*-£0) > 1

Proof, Let U’ be an arbitrary neighborhood containing the point p. We have to show that the closure

U’ is not compact. By (c,) there exists a sequence of points p, ¢ H C, such that p, +p for i e

and such that the sequence {p, } has oaly a finite number of pointsin common with each C;.

Thus we may assume, that for each i = 1,2,... there is P ¢C,. Let S=5 (p, r) be a spherical neigh-
borhood of p with radiue r <—:— contained in U . By p, +p, the sets C,N\S are not empty for i
sufficiently large and since C, are connected, we get, by .(c‘), that for these i there is

CAFr(S) £ 0, where Fr(8) =iq; plp,q) =r, qeX| is the boundary of S, Choose from each such
set C,AFr(S) apoint q, and consider the sequence {q,). Since 8¢ ﬁ. » We have Iq‘lc l-j. and

since q ¢« Fr(S), thereis p(q,,p) = r>0. Now,by q ¢C, for | sufficiently large, (c,) and (c,),
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my convergent subsequence of {q | tends to p, which is impossible by p(q,, p)=r>0. Thus ﬁ’

is not compact, It remains to show that if (f, X‘) is any compactification of X, then dim{ X'-f(X)] 21,
For this purpose let us consider the sets X, = E{ C,\U(p) and f(X,). The closure _fa(.:) - X:CX‘
is a compactification of X,, Let y be any point of X: - {(X,). Then the point y/f(X), Indeed, if
there would exist a point x ¢ X such that y = f(x) then there would be x¢ X, since [ is one-to-one,
Now by ygf-(?l-)- there exists a sequence of points x_¢X, such that f(x ) +y. Thus by the continuity
of 7' itshouldbe xg+xeX = X,. Butby (c,)the set X, is closed in X, and since xyeX, it
follows that x¢ X,. This contradiction shows that y/f(X). Thus

(12) [X] - (X A EX) = (X, - (X)INIX)= 0

Let us take further r <% and construct (analogously with the first part of the proof) points p, - p,
p,¢C, and q ¢C,, such that p(p,q)= r>0 for i sufficientdy large. Since X: - f(X-—;i is compact
and {(C))Q X: we can choose a subsequence of the sequence {(C,)] of continua converging to some
continyum C"). Denoting the subscripts of this subsequence by i we have therefore that dist [f(C,), C]-
+ 0 for i+ 0, Now, by p,+p,p, ¢C,, it follows that C contains the point f(p). If C
would reduce to this point f(p) , then by q, ¢ C, there would be f(q,) + f(p) and since £ s conti-
nuous there would also be q, + p, in contradiction to p(p, q;) = r >0, It follows that C contains at

least two points, and since it is a continuum we have dim C > 1. Therefore dim[C - (f(p)] > 1.

21) 8. 9], p. 110,
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Now, by (c,) we have CA(C,) = O for each i = 1,2, ... Therefore by XICX' and (12) it follows
that dim [X* - £(X)] > 1. Theorem 3 is proved.
_R_ogugr_LL In a quite analogous way one could prove that
If the space X coatains topologically the set defined by (9) and
m-A xo* = (a ) x Fr(o*), then for each compactification (f, X") of X thereis

dim [X* - §(X)] 2 n. (For n = 2, see Fig. 3).

Example 1, Let X = (a.)v[’gll(n’) x J1 where a, =0 and 8 -?I:-i. j=12,.. arereal num-
bers on the real axes and ] = [0, 1] (S. Fig. 1). This l-.dimenioul‘ space X is not locally compact
at the single point a, = 0, and by Theorem § dim [X* - £(X)]1 21 for any compactification (f, X*)
of X, It is aleo easily scen that X is an absolute F, ‘and Gg-space and thus, by (3) and dim X =1,

we obtain that X is an absolute F, and Gy-space of the second kind.
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Example 2. Let n=2,3,... ¥ andlet X= (JII =~ X, )V (9), where X, =ix; x=lx, x,,....x,),

10 0< xS L, for i=23,.0) ad 0= (0,0,...0) (f 2~ ¥, ]" is the Hilbert cube).

It is clear that dim X = n, and that X is not locally compact at the single point 0 = (0,0,...0). It is
L e

also easy to construct a sequence C, of continua in X, such that the assumption s of Theorem 3 be sa-

tisfied for the point p = (0,0,...0). Heace dim (X*~ §X)121 for any compactification (f, X.) of X
| ]

(for n =3, see Fig. 2).

Pt en e e an e e s em

For each compactification (f, X‘) of this full cube X excluding the full square OABC but including

point 0, dim [X*-£(X)] > 1.

Fig. 2.
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According to Remark 2, for each compactification (f, X‘) of this full cube X excluding the inte-
rior of the square OABC but including OA, AB, BC and CO) dim x*- £(X)] 2 2.

Fig. 3.

IV.4. A weakly infinite-dimensional absolute F, ond Gy-space

As stated in (3), a finite dimensional absolute Gp-space X is of the firet kind if and oaly i



g .

g

IR o1

«21.

there exists a compactification (f, X‘) of X such that dim (X‘- (X)) < dim X.
We shall now show that the above condition is not necessary for infinite dimensional spaces. Moce
precisely, we shall construct an absolute F, and Gg-space of the first kind which is weakly infinite-

dimensional and such that for each compactification (f, X") of X, there is dim (X"~ f(X)] = e, Let

us take, for fixed n, the set of point x _ = -l- + l' y m=0+1,0+2, ., onthereal axes, and
T2 2
lt Am U (x, ). Define X = (A, xc*)V (=) x Fr(c*)] where o* is a n-dimensionsl
amm +] ’ 2

1
closed simplex with diameter 3(o*) =—=, and Fr (¢*) ia the boundary of o®. The set X is then
2
defined by
(1) X = VX
um]

The set X can be considered as a subset of the Hilbert cube JHo, and the closure X equals

)

- Vl X, v I( \/l [(-l_)xlnt (™) 1V(0) where Int 0® = 0* - Fr (0®) and 0 =(0,0,...) is the
am am 9

point all whose coordinates are zero, It is aleo easily seen that X may be written in the form

\7 S".V(O), where ?(I_ =[A vV ("'l'.)] xo®. Since X is a compact space and X is a countable
2

am]

unicn of compact sets, we find that X is an absolute F,-space. Further, we can write each set

l » - L [ _J
(=) x Int (6*) as a union ‘V!F: of compact sets F: , i=1,2,... Thus X=X= \Il ‘Vl F:V 0)
2 - am )

— [ ] L]
is an F, set and thus X is an absolute Gg-space. Moreover, the sets X - [ \/l ‘Vl F;V (0)1=G,
n= -
are open in X, dim [Fr (G,)1< s and f\l G,= X, Hence, X is an absolute F, and Gy -space of
1)

the first kind, By the definition of X, it follows that X is a weakly infinite-dimensional space i.e.
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dim X = ~,’2)

We shall now show that for each compactification (f, X‘) of X there is dim [X‘ - §(X)] = =, For
this purpose, let us note that the set X_ is homeomorphic with the space difined in (9), and heace by
() there is dim (X! - (X,)]2 dim X_=n for each compactification (f, X.) of X,. Now it s
easily seen that

(M) T0C) AL(X=X) = 0

a—

where f(X)) is the closure of £(X.) in X"

Indeed, suppose to the contrary that the set in (14) is not empty and let y ¢ fm NEX - X.),

We bave (X - X)) = x‘(x*)' Then y = f(x) where x¢X, for some k4 n. Since y ¢ {(X)),

there exists a sequence Iy‘l‘ - such that y +y ari y =f(x) with x ¢X . Since f“u con-

tinuous, it follows by y = f(x) that x, + x. This is impossible, since x, ¢X_, x¢/ X and X is a
closed (also open) set in X,

Now X: - E)?:). is a compactification of X, and therefore, by dim [X: -f(X)]12dimX =n

and (14), we have that dim [X* ~ £(X)] > n. Since n is arbitrary, it follows that dim (X"~ {(X)] = s,

22) For weakly infinite-dimensional spaces X, dim X = o is sometimes written instead of dim X « o,

o e« 0T
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