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ABSTRACT

A homogeneous differential-difference-integral equation with constant

coefficients and a convolutio*n integral has an exponential solution qP(t) w ezt

if and only if z is the zero of a certain entire function. This paper is

concerned with the asymptotic distribution of the zeros of such entire functions.
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0

This note is concerned with the distribution of the zeros of certain entire

functions which appear in the study of difference-integral and differential-

difference-integral equations (cf. [1], [2], [4]). We shall deal first with a

typical problem and generalize later. The equation

t 12 -- f I )4~)d f K(s)q(t -s) ds
t-1 0

zt
with K(s) integrables has an exponential solution V(t) = e if and only if

z is a zero of the characteristic function

1 1

N'(z) =e-z - e -z f 1 e'zsK(s) ds eZ[1 - ez - ezf e'zsK(s)ds]
0 0 9

Exponential solutions are important, for example, in a Laplace transform treatment

of the equation.

00 Since ,(z) is an entire function of exponential type and NI,(iy) is

bounded, the zeros r eien, n= I, 2, ... , of T(z) satisfy Zr"1 loos eI <0
n nn n

(cf. I e. g., [ 3] j ch. 8). This suggests that the zeros are concentrated near the

imaginary axis. In particular, by the Riemann-Lebesgue lemma and Rouche's

Sponsored by the Mathematics Research Cent6r, United States Army, Madison,
Wisconsin under Contract No.: DA-I -022-ORD-2059.



4- -#394

z
theorem, e Z(z), and hence qf(z), have zeros Zirin + o(l) as n- k m-.

It may, therefore, seem surprising that for a rather extensive class of functions

K(s) there are zL -os of I(z) of arbitrarily large real part.

We shall prove the following theorem.

Theorem. Let K( s) be absolutely continuous, K( 0) = y 0, and I(s)

essentially bounded. Let

*(z)= eZ[1+ h(z) - ez f eZSK(s) ds]
0 0

where

h(z)- 0 uniformlyin y as x- 0 .

Then *(z) has zeros z n, n=*N, *(N+l),..., suchthat

n

0@

z -=log InI + Zwin+O( .l)n

(After proving the theorem we shall indicate how the condition K( )0 0

can be relaxed.)

We cannot apply the usual Abelian theorems for Laplace transforms since

we require an estimate valid near the imaginary axis. Instead, the proof is based

on the
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Az
Lemma. If A* 0, then z As has zeros ,n & n 1, i2, ... ,suchthat

S=log Inl + 2irin +0(l)
n

If z-AeZ =0 and z=-w, then we w +A=0. Theasymptotic
w

distribution of the zeros of we + A (in a form more precise than we require) Is

given by Wright [5, p. 199]. The lemma follows.

We now establish the theorem. Integrate by parts to obtain

I -zs -1 -Z
fee K(s)ds = z [y -e K(l) + B(z)]
0

where y=K(O) and

1
B(z)= f e ZSl1( s) ds = O(1/x), x > 0 .

0

Therefore,

zeZ *(z) = z - yez + zh(z) + KX) - ezB(z)

Let -, uye as in Lemma 1 with A=y. Let z=n + 6 where 6 is
n n

a fixed small complex number. Then

S®
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z•en +-e +6 + 6-ne 6  1 •~l6 )+6z - ye =4,n + 6 _Ye n n"e rn (1- e + 6

zh(z) = n( + 6)o(l) =( o11 n ) = o0(1 eZl),

eZB(z} a e n B()n+ 6) = -1e6 nB(4nO(l+=o(In I)=O(lz-•yezl)

Therefore,

ze Z T(z) =z - yez + o( I z -YeZI)

Consequently, by Rouch6's theorem, ze zI,(z) and z -. yez have the same

number of zeros with I z - 4nI < 161 , namely one, for each sufficiently large I d.

This establishes the theorem.

We can relax the requirement that K(0) O 0 to some extent. For a fixed

positive integer m. let K(re') (s) be absolutely continuous, K(O) = ... = K (m02) 0,

K(ml)( 0) w y 0, and K(m)(s) essentially bounded. Then m integrations by

parts yield

1

f ezsK(s)ds =yz -e Z[z1 K(l) -... + z'iK(re'I(l) + z'mB(z)
0

where B(z) 0O(1/x), x > 0 as above. Therefore

i0
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mz ( m - ez + zmh(z) + [zm'IK(l) +... +K( m-1)(1)) -eZB(z)

ondezm z mAmm

Consider z -e *z If t=As and z=mt then m=Amem" and
m m z -1 I/m thz =(mA) e . Let A=m Y withtheprincipal m root to obtain
m ez m z

z =Ye . Therefore, z -ye has zeros mtnj n I * , where the

•, are as in the Lemma.

Essentially the same argument as in the proof of the theorem shows that

'P(z) hasezeros z , n=:*Np *(N+1), ... , such that
mn

z =m log InI + 2rimn+0(1) .

Again *(z) has zeros of arbitrarily large real part.

We now consider briefly a general differential-difference-integral equation

of the form 0

qj
p aj t c

Z a (t-t )= f K(t-s)q,(s)ds= fK(s)q(t-s)ds,
J=Ok=O t t-c 0

where K( s) Is integrable, t1 < ... < tq and, without loss of generality, a jqi 0

for j = 0 1, ... * p. An exponential function p(t) = ezt satisfies the equation

if and only if z Is a zero of the characteristic function

0
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1I()i a kzke-tjz fce
q((z) =aj - f e'zK(s) ds.

J=O k=O 0

Note that

6 C

"-q t~z "qo toZ f
z eO0 'J'(z) = aoq + h(z) - z e e z SK(s) ds

Oq00

where aoq0 0 0 and

h(z)-'O uniformly in y as x-0 0.

If t0 a 0, then z -Je '0'(z)- aoq0 uniformly in y as x-P 00j so that the

zeros of &(z) are bounded above in real part. If to 0 0 then, under the

conditions on K(s) assumed above, T(z) has zeros of arbitrarily large real part.

The proof is essentially the same as before.

Similarly, if t - c j then the zeros of *( z) are bounded below in real

part. If t < c and K(s) satisfies the above conditions with s = 0 replaced

by s = c. then f( z) has zeros of arbitrarily small (negative, of large absolute

value) real part.

With the foregoing results we are able to give a complete description of

the asymptotic distribution of the zeros of i'(z) for a large class of kernels

K(s) .
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