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ABSTRACT

A homogeneous differential-difference~-integral equation with constant
coefficients and a convolutioﬁ integral has an exponential solution ¢(t) = ezt
if and only if z is the 2zero of a certain entire function. This paper is .
concerned with the asymptotic distribution of the zeros of such entire functions.
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THE ATYPICAL ZEROS OF A CLASS OF ENTIRE FUNCTIONS

P, M. Anselons and R, P. Boas, Jr.

This note is concerned with the distribution of the zeros of certain entire
functions which appear in the study of difference-integral and differential-
difference-integral equations (cf. [1],[2], [4]). We shall deal first with a
typical problem and generalize later. The equation

t

1
olt=-1) -p(t-2) = [ K(t-s)o(s)ds= [K(s)e(t-s)ds,
t-1 0

with K(s) integrable, has an exponential solution ¢(t) = eZt if and only if

z 1is a zero of the characteristic function

1 1
¥(z) =e 2. e 22 . f e %%K(s)ds = e”¥[1 - "% - ez.f e 2°K(s)ds] .
[

0 0
°
Exponential solutions are important, for example, in a Laplace transform treatment
of the equation.,
e Since ¥(z) is an entire function of exponential type and ¥(iy) is
bounded, the zeros rneien s n=1,2, .., of ¥(z) satisfy Z";l lcos 9n| <%

(cf., e.g., [ 3], ch.8). This suggests that the zeros are concentrated near the

imaginary axis. In part’icular, by the Riemann-Lebesgue lemma and Rouché's
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theorem, ezW( z) , and hence ¥(z), have zeros 2rin +0(l) as n-— £ o,
It may, therefore, seem surprising that for a rather extensive class of functions
K(s) there are zc 0os of W(z) of arbitrarily large real part.

We shall prove the following theorem.

Theorem. Let K(s) be absolutely continuous, K(0) =y # 0, and K*(s)

essentially bounded. Let

1
¥(z)=e [l +h(z) -~ [ e *°k(s) ds] ,
° 0

where
h(z) - 0 uniformly in y as x—+ »,

Then W(z) has zeros L n=%z2N, £(N+1), .., suchthat

°
z = log Inl + 2min + O(1) .

)
( After proving the theorem we shall indicate how the condition K(0) # 0
®
can be relaxed. )

L]
‘We cannot apply the usual Abelian theorems for Laplace transforms since
we require an estimate valid near the imaginary axis. Instead, the proof is based

on the
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Lemma. If A# 0, then 2z -Aez has zeros ;n’ n=#%], 22, ,..,suchthat

¢ =log Inl + 27in + O(1) .
.
If z-Aaz=0 and z= -w, then wew+A= 0. The asymptotic

distribution of the zeros of wew + A (in a form more precise than we require) is

given by Wright [5, p. 199] . The lemma follows.

We now establish the theorem. Integrate by parts to obtain

1

[ e™®%k(s)ds = 2 [y - e"ZK(1) + B(2)]

0
where y = K(0) and

1 -Z8
B(z) = [ e “°Kk}(s)ds = O(1/x) , x>0,
5 |

Therefore,

ze*W(z) = z - yo© + zh(z) + K(1) - eZB(z2) .

4 .
Let { = ve " asinlLemmalwith A=y. Let z={ +5, where & is

a fixed small complex number. Then
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z 6 6
z-ve =% +6-ye =L +b6-T e =f (l-e)+5,

zh(z) = (L +8)o(l) =o(lL_|) =oflz -ye’l),

t +6
n

B(z) =e © B(L_+8) = y"ef’gns( ¢ +8)=t o(h=ofle_lh=oflz-ye®]) .

Therefore,
zezW(z) =z -yez+ oflz -yezl) .

Consequently, by Rouchéts theorem, zez‘l'( z) and 2 -'yez have the same
number of zeros with |z - §n| <|sl , namely one, for each sufficiently large |nl .
This establishes the theorem.

We can relax the requirement that K(0)#0 to some extent. For a fixed
positive integer m, let g{m=1) (s) be absolutely continuous, K(0) =... =K(m-2)(°)= o,
K(m'l)(O) wy#0, and K(m)( s) essentially bounded. Then m integrations by

parts yield

1
fe'zsl(( s)ds = yz -e'z[z'lx(l) $ oo+ 270l m"1)(1)] +z2""8(2) ,
0

where B(z) =O(1/x), x>0, as above. Therefore
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27" ¥(z) = 2" -ye® + 2"h(z2) + [2"7K(D +... +K ™)) 0%B(2) |

Consider z™ - ye2. If { =Ae® and z =mi, then t™=A"™® and
2" = (mA) "e®. Let A= m'lyl/m with the principal m root to obtain
zm‘-- yez . Therefore, z" - yez has zeros mgn, n=%1,%2,,.,, where the

gn are as in the Lemma.,

Essentially the same argument as in the proof of the theorem shows that

¥(z) has®zeros z sn=%N, 2(N+1), .., such that
zmn=m log Inl + 27 imn +0(1) .

Again ¥(z) has zeros of arbitrarily large real part. °

We now consider briefly a general differential -difference-integral equation

of the form o

P
||M\.A.'Q [ ]

n Do

(k) t c
a ¢ (t-t)= [ K(t-s)p(s)ds= [K(s)e(t-s)ds,
o k¥ ¥t 0

where K(s) is integrable, r.l Seee < tq and, without loss of generality, a 0

¢
lqj
for j= 0,1, ..., p. An exponential function ¢(t) = eZt satisfies the equation

if and only if z is a zero of the characteristic function



-6 - '394

c
¥(z) = f; i 3, ze -fe'zsx(s) ds .

j=0 k=0 0
Note that
t * q. tz (°
-q z - z -
z oeo\v(z)aa +h(z) -2 oeo fezsx(s)ds,
Oqo 0

where ano # 0 and

h(z)—= 0 uniformlyin y as x-» %,

-

I toé 0, then z 0e0 ¥(z)—+a uniformly in y as x - %, so that the

0q
zeros of ¥(z) are bounded above m‘:‘eal part. If to> 0 then, under the
conditions on K(s) assumed above, W¥(z) has zeros of arbitrarily large real part.
The proof is essentially the same as before.

Similarly, if tp 2 ¢, then the zeros of ¥(z) are bounded below in real
part, If tp <c and K(s) satisfies the above conditions with s = 0 replaced
by s =c, then ¥(2) has zeros of arbitrarily small ( negative, of large absolute
value) real part, o

With the foregoing results we are able to give a complete description of
the asymptotic distribution of the zeros of ¥(z) for a large class of kernels

K(s) .
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