UNCLASSIFIED

0 P e NN
—
W

w403 933

Reproduced
by the
DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA, VIRGINIA

.

UNCLASSIFIED




NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



TSP S

403 233

B N 0 PPN

AFCRL - 63-2 59 ¢ (303 =

MONITORING AGENCY DOCUMENT N8 , /) '
ASTIA DOCUMENT Ne /
- o |
¢ UNDARPEp WAVES IN A COLLISION FREE ELECTRON PLASMA

c:> Donald Mc Lean, Observatoire de Meudon (France)

TECHNICAL NOTE Ne3

oy CONTRACT N2 AF 61 (052) - 432
-

R 1
3

i

July, 10th, 1962,

ral
.
-

"The research reported in this document has been sponsored in part by the
AIR FORCE CAMBRIDGE CENTER
of the AIR RESEARCH AND DEVELOPMENT COMMAND, UNITED STATES AIR FORCE,

through its European Office".

pDC,

Attachment A&/ 2

-
-

MAY 141909




UNDAMPED WAVES IN A COLLISION FREE ELECTRON

PLASMA

By Domald Mc LEAN




INTRODUCTION

Recently Bernstein, Green and Kruskal[j1:] have shown by a non~linear
theory that there can exist undamped longitudinal waves in a "collisi,n free"
plasms, and further, they claim that these waves do not satisfy a dispersion
relation.

This is in complete contradiction to the results of Landau {é] and of
Van Kampen [3] y both based on the same linear approximation to the Boltzmann
equation, and apparently equivalent, which predict that all syfficiently smooth
initial distribution functions give rise to damped potential waves, the minimum
demping rate being given by Landau. It is true that, if the distr bution functions
giving rise to the B.G.K., undamped waves .re replaced by singular distritutions,
one can demonstrate undamped waves/igughgiiégegﬁet3§g£¥ibution functions corres-
ponding to the B.G.K. equilibriz are not in general singular, the linear and
non-linear theories must be considered to be in contradiction.

Landau and Van Kampen did find a dispersion relation in the sense that
the most slowly damped waves are those which satisfy the relation, previously given
by Vlasov [}tl

This dispersion relation is basically the same as that found by Bohm
and Gross Eﬂ, by assuming that there are no particles near the wave velocity.

In the same paper Bohm and Gross showed that the presence of trapped electrons
would modify their results, but argued, intuitively, that only those waves satis-
fying their dispersion relation would be strongly excited.

Recently Denisse [ﬁ] » in a paper largely aimed at criticizing Landau's
results, has derived an expression for k, the wave number, which must be satisfied
by small amplitude, stable waves and which is in form identical with the dispersion
relation of Vlasov, but which is to be interpreted slightly differently, due to its
different derivation. Denisse's approach is basically similar to that of Bernstein,
Greene and Kruskal and his linear approximation is more satisfactory than that of
the linearised Boltzmann equation in that he only neglects small quantities.

Most of this report is concerned with an examination of the properties
of such small smplitude, stable waves based on Denisse's results, which are quoted
in Section III,

Before this in Section II, a short discussion is given of the bearing

of the paper of Bernstein, Greene and Kraskal on the theory of Landau. In partie



cular an example of a wave, for which the calculations can be completed exactly,
and which is undamped, is presented.

In Section III, after the presentation of Denisse's results the intew=
pretation and significance is ¢ scussed.

In Section IV this discussion is continued to demonstrate the absence
of a true dispersion relation, although for s different reason from that given
by Bernstein, Greene end Kruskal.

In Section V the results of section IV are used to criticize the results
of Landau.

Finally in Section VI an attempt is maede to consider the effect of colli-
sions within the framework of the theory of stable solutions. Such an approach is
of course, imposesible to follow up rigorously, but the somewhat intuitive results
seem sufficiently interesting to be worth presenting, as thay lead to a new inter-

pretation of the dispersion relation.



SECTION 11

Very briefly, Bernstein, Greene and Kruskal's method consisted of assu-
ming a stationary wave and finding a differsntial equation which the potential,qo ’

{

must satisfy this assumption (collisions are being neglected). This equation can
equally well be interpreted as an integral equation for the distribution function
of the trapped electrons as a function of energy - if 77 (x) and the distribution
functions for protons and untrapped electrons are specified, Bernstein, Greene and
Kruskal have presented the solution of the equation in this form,
It is not however completely clear that theee solutions, the existence of which
is the essential point of their argument, can be physically meaningful. Montgomery
and Gorman [7] for example, question the analyticity of these solutions. It is
therefore interesting to demonstrate a particular case of a stationary wave for
which fhe distribution function is sn analytic function of the position x and the
velocity v (for x and v real). In the Appendix A, it is demonstrated that at least

one such solution exists. The electron distribution function considered is @

Noe v

fix,v)s=
w V2+v2+55(F(x)
m

where noe is the electron density at the potential maximum, at which point the po-
tential Q) (x) is zero, V is an arbitrary positive constant, 9 and m are respecti=-
vely the electronic charge and mass and the potentiel %9 (x) is an analytic func-
tion of x, the inverse of which is derived analytically in the sppendix.

As will be seen in the Appendie A this is not a particularly interesting
example physically s not only is the temperature of the plasma infinite, but the
potential ?3 {x) tends to = OC exponentislly when x tends to + &< . Nevertheless
it proves that not all the B.G.K. equilibria have singular distribution functions
(as a function of x and v).

It has been shown by Bernstein, Greene and Kruskal that their non-linear
solutions correspond to singular approximate distribution functions in the linear
approximation but this does not "salvage the conventional theory" since this
implies that before performing the linear calculations we must replace the true
initial distribution function by another modified distribution, but we only know
how to do this (or even that it is possible) for the case of the B.G.K. equilibria.



The paper of Bernstein, Greene and Kruskal does not attempt to treat the
geperal problem, treated by Landau, of describing the evolution in time of a plasma
which is perturbed at the uime t = 0, More exactly Landau/a::u?:ftial distribution
f (x, v, 0) known and sought to derive the distribution .f (x, v, t) subject
to the condition that f{(x, v, 0) represents a small perturbation from the
equilibrium conditions. He found that the electric field E(x, t)=—> 0 when t-5>09.
Effectively Bernstein gt_al. have produced a counter example. If we take the special
case in which f(x, v, B} is the distribution corresponding to an undamped wave we
must have f(x, v, t) = f {x - ut, v, 0). Whence E(x, t) = E(x =-ut, 0) -7£é> 0.

(u is the velocity of the wave relative to the frame of reference).

Hence, subject to the assumption that the equations used have a unique
solution (which has apparently been proven by lordanskii E@I). Landau's results
are disproven by those of Bernstein et al.

The rest of this report is concerned with the properties of stable plasma
waves - the existence of which is not further questioned, except for a short demons-

tration in Section V that Landau's results depend critically on his assumptions.



SECTJION 111
Those of Denisse's results which interest us especially here can be

collected into the following three equations

n, q, +n_q .
2 s
dq; SR S | oe € . kz? . 0 ?3/4) (1)
dx kg
o0
q 2 of v
where kz = --E-_- o] ..1.- ----9_1-2-1-- dv (2)
k m v v o
o o B o
oo - OO
and n = £ (v) dv (3)
oc 1%/ o o
—00Q

Here, x is thea distance coordinate in the frame of reference in which
the wave is stationary, parallel to the direction of propagation, {x) is the
electric potential, n the ion density (assumed constant) a; and 9 the ionic and
electronic charge respectively, m the mass of an electron, The potential is assumed
to have a maximum which can be taken as zero; v, is then the velocity of an electron
along the x-axis at this maximum and f (v ) the electron distribution function
at this point (which is the only/gﬁgggbg wgich all electrons pass).
(ko is the permittivity of free space).

These equations have been derived on the assumption that all quantities
are independent of time in some frame of ref ren~e¢, and have no sense otherwise.

2

Further, it must be assumed that --:”- is continuous for Vo = o,
otherwise the Cauchy principal value of the integ:al indicated in equation (2) does
not exist. This does not appear to be an unreasonable assumption physically.

We can at once write the solution of equation (1), valid for l?( < mex.
where max is some arbitrary level above which the higher order terms in/?:annot
be neglected.

We have for kz >0
yo (x) = 7?‘-"_ [cos k(x = xg ) = lj (8)

and for Ko - x2<o

9)()() = - 4?—9— E:os})l( (x =xg) = 1] (5)



h - +
where /4:% ne %t qi (6)

The assumption that ;Dgﬂ requires that @ 2 0

ie n, } Moe

Clearly, in equation (4), n, can be chosen sufficiently close to Noe
that —-22- <: j;gmax {the limit of validity for the linearized form of squation (1),
and in “this case equation (4) will be a good approximation to the potential which
could be predicted by Bernstein, Greeme and Kruskal's non-linear theory, if it were
calculable. Hence if kz, derived from equation (2) is positive, it yields the wave
number, for small (potential) amplitude waves. On the othar hand, since cosh x ig
unbounded above, equation (5) can only ever be a good approximation for a small
range of x. In fact, in this case, the potential is not even neceasarily periodic
and so knowlcdge of the value of K is of very little value.,

When the right hand sidc of equation (2) is negative there are no waves
of arbitrary small amplitude -~ but beyond this equation (2) cannot be considered
as giving any useful information. In particular it ;hould not be interpreted as
indicating cvanescent waves, such waves being explicitely excluded from Denisse's
calculations.

On the other hand, when the right hand side of equation (2) is positive,
equation (2) has the sense of ~ dispersion relation, except that we have not yet
specified fo. Such & specification requires a detailed description the memngz in
which the wave is excited . Such = description is of course beyond the scope of
any theory so far developed. The only logical procedure is to consider fo as an
arbitrary function, the different functions fo corresponding to different mecha-
nisms of excitation. This question is taken up in detail in the next section.

It should be noted however, that physically we must exclude distribution
functions, fo » which are not symmetric about zero for all velocities less than that
nec®esery for an electron to "escape" from the potential trough. In the limit of
small amplitudes, in which we are interested here, this interval of velocities
vanishes, and it is not unreasonable to ignore the restriction, provided we retain
the symbol for the principal value of the integral in equation (2), Even if we were
to extend the theory to waves of non-zero amplitude, we can formally evoid this
restriction because the contribution of an electron to the charge density (through

the time it spends in each part of the wave) depends only on its speed relative to the



wave, and not on the direction of its velocity, we find that there is no change to
the wave if we reverse thec velocity of a group of particles. This is true, both in
the non-linear theory of Bernstein gt al. and in Denisse's linear approximation.
Consequently (as can be casily verified by substitution in equation (2) , the results
obteined for a given fo (vo) are identical with those obtained for any distribution
which can be constructed by adding an odd function to fo (Vo) =~ including of course
a set of functions which are symmetric in any required range. Hende, when, in what
follows, we calculate results for functions fo(vo) which do 253-satisfy the sym=-
metry conditions in any range, we are really calculating, fopr those functions,
symmetric in the required range, which could be constructed by the addition of an

odd function. In the limit of small amplitudes, in which we are intercsted here the

difference is very small.



SECTION IV

In this section we discuss what significance can be given to equation (2)
in thc light of the point, made in the last section, that fo (vo) must be considered
as an arbitrary function, unless the excitation mechanism can be described.

Bernstein, Greene and Kruskal argue that no dispersion relation can exist,
due to the fact that the velowity {relative to the wave) of groups of untrapped
electrons can be reversed without modifying the potential. This has already been
pointed out in the last section and is represented in their calculations by the fact
that it is only necessary to know the distribution of the particle gnergies (measured
in the wave frams) to calculate the potential. Using this fact the velocity of the
plasma relative to the wave or the wave velocity relative to the plasma, can be
modified by reversinmg the velocity relative to the wave of some of the electrons
without in any way modifying the potential wave, and so there is no relation between
wave velocity and wavelength, or between frequency and wave number.

However, in seeking a dispersion relation, one expects such a relation
to reflect the nature of the unperturbed plasma -~ for instance Bohm and Gross derived
on spproximate dispersion relation involving the density and temperature of the
plasma. If however the disturbance of the plasma is very great, the temperature,
for instance, may be greatly modified, in which case the dispersion relation calcu-
lated using the "equilibrium™ temperature is no longer obeyed. Hence we can only
expect a dispersion relation to have a sense if the deviation from equilibrium is
small, and it is not surprising that Bernstein gt al, did not find a dispersion
relation without imposing such a restriction.

In this section we consider the existence of a dispersion relation for
stable waves subject to the additional condition (which clearly limits the argument
used by Bernstein gt _al. thet:

f (x, v) ~ feq (v - vp) (7)

is satisfied for all x and v 3 vp is effectively the phase velocity of the wave, and

is considered as a parameter, feq is the Maxwell distribution for the velocity

component parallel to the direction of propagation of the wave defined by equation (8) :

- el v (8)
f (v) = n e 2kT
€9 e x 2 TF kT

{ k 3+ Boltzmann's constant; T: electron temperature; Me ¢ equilibrium electron density).
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From equation (7) we deduce that the amplitude of the potential must be
small, since otherwise the density varies greatly from its equilibrium velue and (7)
is certainly not satisfied. Hence we may apply equation (2). In addition we shall

make use of 2 special case of equation (7) :
) s f - '
fo(vo [ eq(vo vp) (1)

which we rewrite f (v)
o a.

O(feq(vo - v, )+ gf(vo) (™

It should be noted that f‘eq(v) is the equilibrium.distribution in the
rest frame of the plasma but f‘o(vo) is the distribution at a point in a particular
wave, the velocities being measured in the frame in which the wave is stationary.

Here{{is approximately unity and 6f(v°) is small compared with
feq (Vo - vp).

It is possible to examine a number of special cases analytically, in order
to study the behaviour of equation (2) subject to the conditions of equation (7').

The first is the obvious case 61’ = 0.

folv) = X f, (v, - vp) (9)

Combining equations (2), (B) and (9), we obtain s

2 w2 1 v
kK" = - - g ( : ) {10)
2T v Al
where Oé’neqe Nede
D2 = A the square of the plasma frequency cf
. P Km K m
o , o
the equilibrium distribution,
VZ - kT
m
o0
X e-xz
)

In Appendix B it is shown that the function 9 {y), defined by equation
(11), is given by 13

v 2
9 (y)-'--\/:ff{Zye“y2 j e du-‘l} (L2)
o .
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This function is %abulated is various places (see reference 68 ). A
rough sketch of k2 given by equation (10), deduced from various approximations which
can readily be obtained from equation (12) is shown in Fig. 1.
In Appendix C it is shown that g'(y) can be expanded in an asymptotic

‘serics, of which the first two texms are

1 3 i

2 2 2 2 w2
Hence U =k v A~ 2 P 2
p +3V k

I —e

Wp?
In the region for which this expansion is useful Fp- ~/1 and so we find for
~S

the case of small k
O (131)

which is the Bohm and Gross dispersion relation.
The approximation to kz, obtained by substituting (13) in (10) is
presented as a broken curve of figure l.

We now consider the second special case

1 Vo - ;2
Grv) = mBn o V2 L -
° 270 W

The resulting distribution function f (v ) is shown in figure 2.
2 .
The correction S(kz), which must be made to ¥  which we have already

deduced from equation (10) is simply :

U2 5 1
2 (._—‘ﬁf...
S(k ) s_ p . ﬁ’:w . T . g1 w ) (15)

n
e

This correction is plotted in figure 3 as a function of w for several values of W
It is of course the same curve as figure 2 on a different scale, with different
coordinates.

An examination of this curve brings out the following points. If W is
large s(kz) is small for all.w. If w is large, S(RZ) is small, that is to say
small modifications to fo(vo) do not affect k in the region where vg >> 0.

More precisely @



1

S(RZ) << k2

2c02
i Lo -1‘--:;-2 — & (16)
e

Since this . inequality does not involve the form of ESf} it is not
un reasonable to suppose that it holds for localized modifications to f, other
than gaussian ones.

On thc other hand we see that for way O, ES(kz) may differ greatly

from zero. Using the propertivs of 9, (x) (gq(0) = ‘yﬁﬁ“ g1(x) ‘5; /-rT ,wC see
from equation (15) that

2
5<=<2>/mnx W& 6n \/ﬁ] (17
Moo W W

The concditicn (7')  (i.e.fy Qs feq ) requires that -:;;Lﬂ- be
small but this condition cin be satisfied for any W by closaing ESn. HencekS(kz)} nax
can be made as large as dosired by reducing W in equation (17) at the same time
reducing ESn so that -JELE- rem#ins constant.

We see at once that the condition of equation (7) (f (x, v);§§fgq(v-vp))
is not sufficient to give to equation (2) the meaning of a true dispersion relation.

We also see another important point. That is that a crude knowledge of
the distribution of those electrons which move very rapidly relative to the wave is
sufficient to estimate their contribution to the wave - but that the wavelength
(and in fact the form) of the wave is very sensitive to the precise details of the
distribution of those electrons (trapped or almost trapped) which move slowly rela-
tive to the wave.

This is a very important point because all approximate calculations based
on the "linearized" Boltzmann equation, as well es the approximate celculations of
Bohm and Gross - give an accurate description of those particles moving rapidly
relative to the wave (for which we find thet a crude description suffices) and give
a quite false description of those particles with velocities close to the wave velocity
(to which, as we have just seen, the wave is very sensitive).

It is possible to argue that the absence of a dispersion relation can be
demonstratcd from Bernstein, Greene and Kruskal's results, since given the distribution
for the untrapped electrons, it is possible to derive a cietcibution of trapped
electrons, which together with the untrapped electrons, give rise to any desired

potential wave (subject to certain symmetry conditiona when we ignore the ioqhotion).
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However it does not seem possible to be sure that the derived distribution function
will not be very great or, worse, negative, for an arbitrary potential wave. It therefore
seems best to argus from Denisse's results.

To summarize this section, if we substitute fgqlvg - vp) for f (vg) in
equation (2) we find effectively the same dispersion relation as Bohm and Gross or
(except for the damping) Landau. It does not however seem worth while discussing the
curve representing this dispersion relation in too much dqtail, because as we have
shown using the special case of the sum of several gaussian functions, we can choose
fo(vo) to differ from fgq (vD - vp) by as little as we please, and vet k% differs from
the dispersion relation by as much as we please. In other words, the conditions we
have imposed on fo(vo) are not sufficient to ensure the existence of a dispersion
relation. The question remains as to whether physieelly meaningful additional condi-
tions cannot be imposed on fo -~ which lead to a dispersion relation in some sense.

This problem is taken up in Section VI,
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SECTION V

In this section the value of a theory which is based on a linear approxi-
mation to the Boltzmann equstion is questione ' (in particuler Lendeu's theory and,
since it..is equivalent, that of Van Kampen),

We have already seen in Section II that Bernstein, Greene and Kruskal's
non-linear stationary solutions serve as counter examples to Landau's theory.

As pointed out in Section IV for the case of stable waves the linear
Boltzmann equetion describes the untrapped particles quite well but the trapped
particles very badly. In fact Landau's method smounts to treating all particles
according to an approximation which is sound for those moving very rapidly relative
to the wave. On the contrary Denisse [E] has been able to meke the distinction bet-~
ween these two groups of particles, in that a range of veloecities, corresponding to
some of the trapped particles, are always excludaq_from his integrals. He has also
shown that if one removes this distinction between trapped and untrapped particles
by (quite irccrrectly) integrating over all velocities the extra term which results
in the "dispersion" equation has exactly the same form as Landau's demping term.
Since this extra term corresponds to the lack of distinction between trapped and
untrepped electrons, inherent in Landau's approach there is a very strong suggestion
that it is from this aspect of his approximation that the erroneous demping texm
arises.

In Section IV we have seen that the Landau spproximation is crude where
it needs to be precise (trapped particles) and precises where it can afford to be
crude (untrapped particles) which in itself is a rather severe criticism.

Finally, in the rest of this section we present a new argument ageinat
Landau's theory by re-examining his assumptions. Although he did not write it all
down as explicitely, his argiment starts as follows (The notation is necessaril;
different from Lendauis),

The equations to be solved are 3

’Eﬁf(X:th) ‘v Of(xyvyt) . n; E(x,t) _giif£§£!L£) =0 (18)

) % (19)

In order to develop a perturbation theory one writes
f(x'V't) = FD(V) + f1 (x.V.t) (20)

a S
Ko-a__s..(.".i.ﬂ = q jdv f(x,v,t) +n
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subject to the assumptions that ! f‘ l<@§ Fo and f N~ feq which implies @

Fo (v) 1:§:9 feq {v) {21)

Landau straight away took Fo(v) - feq (v), which is of course the obvious
choice, but ngt  the only one valid. We shall see however that the results of his
calculations depend critically on the method in which the division between the zero
and first order distributions is carried out in equation (20). It is of course just
as valid to carry out the calculations for an arbitrary F0 subject to the condition
(21). We shall however add here the condition that

,YF (v) dv = ’J; (v) dv = n,
o eq i

which gives for equatirn (19)

(o 5]

q

@-5—- o -B’K.E. j f, (X,V’t) dv (19')
2 " Zeo

This is convenient in that the remaining calculations are identical to Landau's

and we may simply teke over his results, with feq replaced by Fo .

Landau then "approximates" to equation (18) by
f f F
a9 +v3‘+.5e. £%ml . 0 (18)

ot ox m ov
21

f

q: E %g;l being dropped on the grounds that £ and wes~~=- are both
v

first order quantities. Since neither the integrel nor the derivative of a small

the term

quantity is necessarily small this approximation is immediately questionable and
should have been justified a pogterjori. In fact Landau avoided the justification

by teking the equation (18') und (19') (with FD = feq) as his starting point. After
this sterting point his procedure appears to be valid, as is born out by Van Kampen,
We can therefore use his results to demonstrate that his implicit assumptions, stated
explicitely above, are unsound. It is only necessary to replace feq by Fo in all
his equations and note the effect of small variations of F° on (W{the wave fre-
quency) and N)/(the damping rate).

if ’/ is very small (A) is given approximately by the root or roots of
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Ft (v)
N ° u: dv (22)
and .'Yby P v - Wk
(&)
X —z— CO F": ( LP/x) -—a";- (-T-) {23)

where k is the wave number of the initial perturbatdion.(See focr example Weenimk
[}:} for a derivation of these results without assuming F- = f ). The equation
(23) cleerly depends on the assumed value of F o but it is not immed;ately clear
what the effect on 7( of small modification to F will be, However it is shown

in Appendix D, that we can choose Fo to satisfy the following condition 3

[ Fow = @ / < & (24)

for any éi :> 0, and such that Landuu's formulee predict waves for which the
demping rate is identically zero.

Further it has already been shown in Section IV that equation (22)
does not relate CwW/k (or ) and k if F0 is only subject to the condition (21).
(Compare (21) and (22) witk (2) and (7!').)

Landau's results therefore depend critically on his assumption that
Fo(V) = feq' but this assumption is quite arbitréry.

To conclude this section, we see that the following arguments can be
made against Landau's paper.

1) Bernstein, Greene and Kxuskal have produced a counter example which
contradicts Landau. This in itself is a conclusive point which continues to be
ignored, .

2) In the case of stable, or almost stable, longitudinal waves, the
linear Boltzmenn equation gives a very inaccurate description of the trapped par-
ticles, which are just the particles which are most significant in determining the
wavelength and form of the waves.

3) In Denisse's theory one can reproduce Landau's damping term by
introducing an exrror which is equivalent to the errcr inherent in a linearized

Boltzmann equation.
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4) The dispersion relation derived by Landau (within the sense he gave it)
depends vexry critically on the zero order distribution function on which the solu-
tion is based. This demonstrates that it is not a sound perturbation calculation,
since a first order change in the 2:ro order function should not have an encrmous
effect on the results.

Any one of these points is sufficient to raise serious doubts as to the

validity of the results of Landau and of all equivalent celculations.
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SECTION VI

This report hss mostly been based on Denisse's results, which in turn
are based on the assumptions, generally made, that collisions can be neglected,
and that the behaviour of a(large) set of "point" particles can be adequately
described by a distribution function.

However it is known from a very general theorem (Chapman and Cowling
EEQJ ) that in the presence of collisions all distributions tend towards a uniform
Maxwellian distribution and therefore that all waves are demped. It is generally
agsumed, as justification for neglecting the effect of collisions, that the damping
rate due to collisions will be of the oxder of one of the relaxation times for a
"test particle" in a plasma calculated by Spitzer (for example) [ﬁi] and therefore
negligible.

In this section it is planned to show that this is not necessarily so.
It is of course impossible to study rigourously, within the framework of a theory of

stationary modes, what the effect of collisions will be. Howsver the calculations
which will be presented here do give an acceptable physical picture of the signi-
ficance of collisions,

Before proceeding with this, however, it should be noted that the repre-
sentation of a plasms by 8 distribution function needs careful justification = and
the properties of = distribution function, if such can be adequately defined,
should be carefully examined.

That such an examination is necessary can be seen from Van Kampen's[}i]
classic paper on the subject of plasma oscillations in the absence of collisions,
In the section in which he demonstrates the existence of normal modes, he asserts
that a distribution function is sufficiently well defined and physically accept-
able if only it can be used toc calculate averages. He then demonstretes his set of
modes, which are singular. However, in a later section, when he decomposes an
"arbitrary" initial distribution function which is of the form go(v) eikx into
these modes, he assumes that the function

p gg_(u') du!?

u - u'

1
9., (u) =4 g (u) + 53
does not include any delta functions. In fact this excludes singuler distributions,
quite contrary to the argument that a distribution function is valid as long as it

can be used to calculate averages,
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Turning now to the effect of collisions we consider only the case in
which the time of interest is much shorter that the time between collisions,
that is the probability of a given electron suffering z close collision and we
are only interested in the effect of the large number of "distant collisions",
which any electron suffers is even a very short interval of time.
We shall further limit the argument by considering only those distribu-
tion functions, of the form considered in Section IV and defined by equations (7")

and (14)' i.e. ¢

folvgdm QP (v =v) s &Flv) (m)

-4 V0 w
6f‘(v°) - _W_%n - e ¥ W ) (14)

In this case the effect of collisions on the function feq will be ne=~
gligible at least if the wave amplilude is sufficiently small since this is just
the function which is not affected by callisions (in a uniform plasma).

We are left with the problem of the effect of collisions on ESf. For
this it is convenient to replace the velocity v of a particle by the velocity Vo
which this particle would have at Zte next passage through a potential maximum, if
there were no collisions, In the absence of collisions Vo woula be a constant for
a given particle by definition, In fact vy will vary in time due to collisions, in
a mannexr which it is impossible to determine. It is however possible to estimate
the probability that a particle which has a velocity v° at time t will have a
velocity vD + 6vo at time t +6't. In fact if 5'[: is much smaller than
"time between collisions", the change in v, will be almost entirely due to the
large number of small changes due to distant collisions, the probability of a close
collision being extremely small. The net result of a large number of smsll effects
generally has an approximately Gaussian distribution and so we shall assume further

a Gaussian distribution for ES vo. That is we assume that if
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£ flvgt) = Hlv, =v) =h (v_,0) say (25)

(v_ =V I2F (T)
Then 6f(vn,t +T) = ﬁg(?)‘ e o o =h (VD 2T ) say (26).
Vi

where the "width" Y F(T") has yet to be determined. In fact F(T') will depend also
on Vo but since we are only considering the effect of collisions on a localized
distribution ( 6f(vo) of equatinn (14) we can ignore the dependance of F on VQ.

We now nots that a physically real distribution 6f(v°.t) can be decomposed

into the set of "modes" h defined in equation (25) 1

Sflvet) = 6f(v°,t) « hlv_,0) (27)

From equation (26) we then see that

flu 6 40) = flv,,t) » v ,T ) (28)

(Provided we neglect collisions between pairs of the electrons "belonging” to

Sf—which are negligibly few composed with those between dn electron from Sf-
an electron of f@q} .

Applying this result twice we see easily that

f(vo, t+27) = f(vo,t +T ) » h(vo. T )
= flv,t) *hiv, T ) *hiv, T)
= f‘(vo,t) » h(vo,Zt)

Whence h(vo, 2T ) = h(vc y T o h(vo,t )

The right hand side is readily calculable and we obtain finally

F (2T )=2 F(T)

In the sams way we can cobtain

F (nT)anF (T)
and so F(T ) must be of the form

FIT ) =2y
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where is a constant which we shall leave undetermined. Thia form for F( )
is a direct consequence of the assumption of the Gaussian distribution for 8 v .
In fact O is just the < /)) of Spitzerfz:] , who gives formulae for :I.ts

6
calculation, Typical values in the etlar corona (nef\, 107 crné Té\/lO C v ’Vz 5v)

would be a,'\/3.1015 cmz. sec-a. Increasing V‘J by a factor of 4 reducead,by almost
2 orders of magnitude (Indiceting that the assumed Gaussian s/apead can only be %-elrue
for very nerrow peaks).

If we now substitute 6f(v°) from equation (14) for 6f(v°,t) in
equation (28) the result is @

4 o = (vg = w )

En
Ver @t i) | 0T ¥ !

flv ,t +T ) =
o}

In other words our assumptions are such that if Esf is initially gaussian
it will remain gaussian, but it will spread steadily, Intuitively we know that this
is qualitatively correct except that the mean velocity will change slowly as well.
Alsg if the amplitude of the wave is sufficiently large that the number of trapped
particles is large the rather complicated exchange process between trapped and un-
trapped particles will provide an extra source of instability which we shall avoid
by cansidering only small amplitude waves.

With the reserves in mind we can investigate what will be the conse-
quences of these collisions. The equation (2) which we have interpreted as a dis~
persion rslation can equally well be interpreted as necessary condition on f
for the stability of a wave of given k. If the wave is stable, k will not chgnge,
and if initially fo(vo,ﬂ) = CX_qu + ES f(vD,O) then at time T later we have seen

that f (v, T) =0(feq + Sf(vo."cf )

If k2 (T) calculated from equation (2) by replacing 8f‘(v ) by
6-/:(\/ 'C) is not equal to the original k s { k (D)), then the wave is unstable,

This will almost always be the case. However Montgomery 1:12] has ch-wn that, et
least in some cases, the solutions of B,G.K. are "asymptotically" stable ~ and so
we can hope that if k2( T)= k2 (0) then the waves will remain fairly stable.
On the other hand there cen be little doubt that if k2(7.) is very different from
kz(U) the wuve will be very unstable, perhaps evolving towards a more stable state
or damping out completely.

We have already seen that if the maximum of 8f‘ is very far from tha

wave velocity (more precisely if wz >> n kz CAgz ) the width of the gaussian
e
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curve does not enter the approximate expression for k2 and so the spreading
of the gaussian curve will probably not lead to instabilities; in this case the
waves approwimately satisfy the dispersion relation cbtained by setting fo - feq'
On the other hand when w and W ars both small (corresponding to a sharp peak in
the velocity distribution near the wave velocity) EE;kz (T ) ( calculated on
the assumption that the wave is stable) will chapge very rapidly, leaving little
doubt that the weve is unstable.

For example if w = O

w2
612 (T ) =-—t &n (30)
e W + XT
which clearly changes very rapidly if w2 /o is small,
T SN
2 . -l PR

These unstable waves are just those which differ greatly from the dispersion

relation obtained by setting fo =f .

eq
We can summarize, and st the same time generalize these results as follows.
; 2 2 2 .
If f°;§:3feq, this does pot dimply that k i::jkeq ( keq that given by setting

fo = feq ). However the difference in k2 is only due to very high first (or second,

or higher ?) derivatives of fo in the close neighbourhood of the wave velocity.

If we did not insist that fo be continuous, discontinuitics of fo could also
introduce large differences between K2 and keq? However it is easy to see, even
without making the above calculations, that collisions will smooth all such "roughness"
of fo very rapidly, and since k2 is so very sensitive to these details, the wave
will become unstable in a time very much shorter than the time between collisions.
Hence only those waves for which fo is very "smooth" in the region of the wave
velocity can conceivably be stable, and those waves approximately satisfy a dispersion
relation,

We shall now try to make this statement a little more precise, at least
for the case of ES? gaussian. It should be emphasized however that what follows
depends to a large extent on the additional assumptions made.

For inetance, to make more precise our condition that foq,feq we
shall write

)sf]m - B0 o<y foq (0om V) (31)

LN



22

This corresponds to the case where the initial disturbance effects all the electrxons
more or less equally, i.e. there is not selective ecceleration of a small group of
electrons (making up 61’) but just a sort of "stirring up" of the distribution
function which results in the "roughness" which we have idealized by a2 nerrow gaussian
peak. Once again, the validity of such an assumption can only be discussed in
terms of an excitation process.

For the case of small w, which is the only cass we need consider, we
shall rewrite (31) 3

-ﬁ-ﬂ- <b —l8. &~ 1 v;vz
wooN v

where b is some constant, less than 1.

As 2 condition for stability we shall arbitrarily suppose that it is

necessary that :

----( 2Ty B (32)
37 5 « &

- 6k2 (T ) 1is a complicated function of W,w, L gtc. However it

oT

can be shown that the average value of this function, over a short period (O,T ).

for small values of w, is approximately :

<“%f BT hat & fn

Hence we require that :

< B .-.e—- (321)

Bearing in mind that

!8(k2);max = Or:)g %Zn ()

oe

we can readily’,vebl;lifystudying figure 6, that (31') and (32') impose an upper limit of
fs(kz),max (The "max" refers to the maximum obtained by varying w holding Gp
and W fixed ¢ here we are interested in the effect of varying 6n and W as well,
subject to the restraints (31') and (32')). In figure 6 the regions of the ( 6 n, W)
plane which do not satisfy (31') or (32') are shaded out. The lines of constant
}S(R )} == = constant ) are drawn on the same plane and it will be seen

max

that above a critical vealue for }S(R ); the curves are contained entirely in the

méx

'
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forbidden (shaded) region. This critical value is of course our upper limit and so we have

125(k2) e <A exp (=1/3 vz /Vz)
4 L1
where A is a parameter depending on u&z and V and on the assumed values of b

(16a] <K br ) s == © «hH< .

In figure (4) the curves k2 and k2 + Sgkz

are sketched as functions

?
'max
of vy which is almost exactly equal to the wave velocity. In figure (5) these curves are

re-drawnin terms of the coordinate used by Denisse and Delcroix when discussing disper-
sion relations., We see that a dispersion relation exists for those waves which travel much
faster than the thermal velocity and, as we have already shown jn section IV this disper-

sion relation is well represented by approximste dispersion relation of Bohm and Gross

2 ) 2 IXT 2
W ~ W b + m— k (131)

It should be noted however that this dispersion relation now only describes
those waves which are relatively stable in the presence of collisions. On the other
hand there appears to be no relation between () and vp = C/k when vp is of the
order of V the thermal velocity. In this respect it should be noted that in fact
Denisse's equations only describe the potential in the region between two consecutive
potential minima, To describe a periodic wave it is necessary to assume that the trapped
electrons have the same distribution between each pair of potential minima, an assumption
which is of little consequence in the case of waves travelling faster than V, but which
needs to be reconsidered for waves travelling slower than V (the thermal velocity). In
fact it is not hard to see that in a given stable wave travelling slower than V, the
distence between potential minima may vary from one minimum to the nmext and the potential
observed at a pcint fixed in the plasma will vary more or less at random. There ie there-
fore no real resson to distinguish between such waves and thexmal fluctuations - the sta-
ble waves of low velocity being like a special case of thermal fluctustions.

All the above calculations have been made for the very special case of a dis-
tribution made up of two Gaussian functions. The calculations can be immediately extended
to distribution functions made up of a finite number of gaussian functions. I$ is possible
that the calculations can be extended to the case of a geperal distribution function. This
has not as yet been attempted as it is doubtful if the model used for the collision
effects justifies an elaborate mathematical theory. At the same time the physical picture
is clear 3 for those small perturbations of a plasma which propagate as stable waves in

the absences of collisions we can suppose that f (v ) ~f (v =~v ).
o o ~ eq o p
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o This however is not a strong enough con-
dition to determine k . Howevexr those fo (vn) which give a k greatly different
from that given by the case fn(vo) - feq (vo -vp) are characterized by large values

afo

of z;;- in the neighbourhood of v, = a.
° If we take the characteristic effect of collision to be the introduction
of a spread in the velocities we see that such critically steep slopes cannot exist
for any length of time. On the other hand, if the collisionless themry has any
meaning at ell, it is in the case where the distribution function is smooth, and
so we come back to the dispersion relation found in linear theories - at least
when the wave velocity is large - but without the damping.

The points are § 1 Collision damping, or rather collision induced
instability may occur in a time much shorter than normally assumed.

2 The most stable waves are probably those which

satisfy the linear dispersion relation.
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SECTION = CONCL AND DISCUSS

This report is lergely concerned with the nature of stable, small
amplitude, longitudinal weves in a collision free electron [lasma, However, since
the results of Landau and Van Kampen are generally tsken as meaning that no such
waves can be stable, a considerable part of the report has been taken up by argu-
ments concerning the existence of non-damped waves.

After this the approximate results, obtained by Denisse, are used to
examine the existence of 2 dispersion relation for these stable waves, gubjett
to the assumption that the distribution function in the wave is everywhere appro-
ximately aqual to the equilibrium distribytion. Such en assumption excludes tte
interesting case of a wave excited by a beam of particles injected into the plasma
but since we have as yet no description of possible excitation processes this
appears to be a necessary exclusion, Even subject to all these restrictions
(stable waves, f A feq) it turns out that there is no dispersion relation, i.e.
any wavelength can correspond to any wave veloc ity (at least for wave velocities
less than the velocity of light).

However in Section VI, by & rather intuitive consideretions, it has
been shown that the effect of collisions is probably to render highly unstable
those waves which do not satisfy approximately the normally cbtained dispersion
relation.

The work described is of course strictly limited, for example the general
problem of the evolution of a plasma after an initial time, attempted by Landau,
has not been attempted, Nor is .t clear how it can be approached. It has been
argued by Bernstein, Greene and Kruskal and by Weenink that the B G K "modes"
cen be identified with Van Kempon modes. However the Van Kampen modes are inde-
pendent in that they satisfy a linear differential equation. On the other hand
there is every reason to suppose that the stable waves which can exist in a plasma
cannot in general be considered to propegate independently.

Bohm end Gross have already pointed out that it is a good approximation
to consider two waves propagating in opposite directions {or more generally with

highly different velocities) to be independent. On the other hand the implication

is that waves with almost the same velocity will interact strongly. That this is so
is easily seen 3 the properties of the wave, such as the wavelength, depend strongly
on the distribution of electrons near the wave velocity. On the other hand it is
just these electrons which will be most strongly perturbed by another weve with
almost the same velocity. Hence the two weves certainly interact through those

electrons close to both wave velocities,



26
The identification of the B G K equilibris with the Van Kampen modes
does not thersfore autometicelly justify the spplication of Van Kampen's analysis
for which the independance of these modes is essential,
It is possible therefore that the analysis of stationary waves (including
that describes here) will not be directly applicable to a study of the more general
problem. On the other hand the concepts exposed here and elsewhere should be of

some value dn the development of the more general thaory.



O O NN D W N -

10

1

12

13
14

REFERENCES

Bernstein, I., Greene, J.M., and Kruskal, M.D., Phys. Rev. 108 , 546, (1957)
Landau, L.; J. Phys. (U.S.S.R.) 10 , 25, (1946)

Van Kampen, N.G.; Physica 21, 949, (1955)

Vlasov, A.; J. Phys. (U.S.S.R.) 9 , 25 (1945)

Bohm, D., and Gross, E.P, ; Phys. Rev. J5, 1851, (1949)

Denisse, J.F, ; C.R.A.S. 253, 1539 (1961)

Montgomery, D. and Gorman, D. ; Phys. Rev. 124, 1309, (1961)

lordanskii, S. 3 Doklady Akad. Nauk. U.S.5.R. %27, 509, (1959)

Lebedev, A.V., end Fedorova, R.M. ; " A guide to mathematical Tables",
Pergamon, London, (1960) :

Weenink, M.P.H, ; "General Theory of Longitudinal Waves in a Plasma",
RYynhuizen Report 61-05 (1961)

Chapman, S. and Cowling, T.G. ; "The Mathematical Theory of Non=Uniform
Gases", Cambridge University Press (2nd ed.) (1960)

Sritzer, L. ; Jnr, ; "Physics of Fully Ionized Gases", Interscience, London,
(1956)

Montgomery, D. ; Phys. Fluids 3, 275 (1960)

Derisse, J.F, et Deleroix, J.L. ; "Théorie des Ondes dans les Plasmas",
Dunod (Monographie nf33) Paris, (1961)



Ap A1l

APPENDIX A

Conaider the distribution function 3

n
q
Pxu) = 222 gy IR
TT vV o+ V 4 a /’
Then the electron density is ¢
e OO
MNog Vv dv
ne = f{x,v) dv = ——ie 5 3 3
oo I o0 (V- +2%) +v

o0
- Noe V 1 - dx -
7] \/le; az-.t 1+ xz

~Cx
vV
= nDe - u-m“.._{n
N\ ;V + az
Poissons equation becomes

-Ko ---' 1% %" %

. d2<p nj 9j Q. ‘

1eBs ] = 4 -—d-i--:-x—— -1 AL = nOe/ni

dx Q _
Awm o Qe . -1-_>0
m 2

\"

2 N < S N1+ SN PRapp
dx/ KZ {A 1 A? ?

When we determine C from the conditions -gx-f- = 0 for ? = 0 this becomes

CRr2 2= zniqi {rou- V1-a )-A?)}
A

dx
df,_- /-;--:35- {2«1(1- \/1-A§:))-A9:}
TN

m———— = + ---i-l-—znq. dx

— 4P —
\/2&(1-\/T'.T§)-Ag) - K, A
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2
e e N e i

2z szz--Ad?)
- e dz

\/ZQ_(1-z)-1+z

- _2 z dz
A (z - % 01 -2

Set

Now set 2z - Q= (1 -OZ) cos where we can suppose >0
B , M
(z-00% - (1 = )2 -(1-0() (cosh AL 1)

2
= {1 - a) sinh/(/{
dz = (1 ~Q¢) sinh/u, d/u

- :%..f{a + (1 =00 cosl:/(_,(_} w
.:..Z.EL/LU (1 - 00) siny,L]
A
—
-:-2[:0( cc:sh-"| SIo + (z -CX)z - (1 -a)z

1 -
Hence -..a-qa-- (x = x )= % .;. O cosh™ 222 44/ (2 -0 - (1 - 0007

where our choice of/(,(>0 imposes the condition cosh™ ...;..:.E%- > o0,

If we had chosen /(,(< 0 this would have changed the sign of both texrms in[ :}_
Here 22 =1 = A

and X, is a constant of integration,

We can readily plot (x - xo) as a function of z, or by distorting the ecale,?.
In other words we have x as a function of the inverse function of @ (x).
We can easily see that is an analytic function of x, It is true ti;at we have
ignored the motion of the ions, but there is no reason to suppose that this intro-

duces any fundamental difference.
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APPENDIX B

We wish to study the function @

o0 2
Xe-x
g1(y)up e a——— ()
X =y
- O

By definition the Hilbert transform of the function f(x) is proportional
(xé&f ) s

T - [ S

X = y

We shall therefore make use of the general rules concernipg this transform,

which (except for the first) can readily be justified from the definition

(Fe{x)) = g'(y) (B 1)
j;/ (£(x)) = g (v) )
ﬂ(xf(x)) s yg(y)+ J f(x) dx (B 2)

I o AB R O “Her, oo« Her, 0n” (B 3)
2

Consider now f‘o(x) =e X ; g (y) = ﬁ (f (x)) (B 4)
o

o

Then 2x f +f' =0
o o

ﬁ(?x fo+f;) = 2y go(y) +gé (y) +2‘f'77: =0

from (B1) (B2) and (B 3)
which is a differential equation for go(y)
It cen readily be verified that the gencral solution is

2 (Y
- = =y 2 _2
go(y) 2 7‘. e J' eu du + ey c
[~
2
=X

= dx = O

and sincs go(D) =p
x
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2 y 2
go(y) - w2 \ﬁ—l—"‘ ey j e" du (B 5):
°

If we now define f1 {x) « x &

we have 9, (y) -ﬁ(ﬁ(x)) (B 6)

But fy (x) = =% ' (x)
)
9, (y) ==-1% g; (y) (eqe B 1)

2y 2
-‘\/ﬁzye-yj o du—‘l} (r7)
o

which is the required result (equation (12)).
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AFPENDIX €

To find an asymptotic expansion for g1 (y) we first note that 3
n

x
2 -4 1 = oy n,n =1
1 4 e 4 i+ X" = - —— +x/y
2 sSes000 n-1 x
y y y { = ce- X =y X -y
y
n=-1 r n n
i.e. 1 o - 1 X + X/y
(x ~y) y v X -y
r=20
oo 2
Then g, {y) = p <2 - dx
]
X =y
-~ O
n 1 2 1 mxn'ﬁ" -xz
e fxrg-x XS = wmm= P s dx
T n
= y y X =y
-0

m

F(r-t-'})
.-Z — TRy (c1)
= y

{(2mn = n or n =1)

. N 22 e-xz
where Rom = = p dx (c 2)
yZm +9 X =y
-00
wr e
Since X e dx = 0 if r is odd
oo o

-t r~1
= e t 2 dt if r is even.
(@)

Since the nth term of the series in equation (C1 ) is greater than the (n - 1)th

texm if n>> y2 + ¥, it is clear that the series diverges, and therefore that

R
o Y) m—_?oo + OO

We intend to show that the expansion of equation (C1) ie nevertheless

useful as on asymptotic series.

RHHAHHKXKKXK KKK



If we write 2
f (x) = x e
n

and 9 (y) -jd(fn(x))

1
then LI E

Proceeding exactly as in appendix B it is easy to show that

2 y 2
Gpp(¥) = ZF(m +¥) yZm ey {[ e v auec
a

Ap.CZ

(C3)

(c 4)

(¢ s)

where a_ 7 0 (since we are interested in the case, y > 0) and in principleé C

can be determined for given a. For example it can be seen intuitively that o (y)

= 0 for some y = Yam v VT; we could write a = Yom and C = 0O,

=
y—> +00

It suffices however, to note that{}

monotonically and

is therefore always positive for some y > Y (m) which we need not evaluate.

Hence R, (y) < 0  for y >>Y(m)
But from (C 1)

r(m +%)
Rzm(y) - RZm_z(y) = + —-—-—;m-—-—> 1]
y
i.e. Rzm(y) > Rome2 (y)

Combining (C 6) and (C 7) we see that for y > Y(m)
’ RZm(y)} <[R2m-2(y) {

If we can invert the relation y >»Y(m) to read

m <M(y)

(€ 6)

c7)

(c 8)

then M (y) gives us the number of terms to take for the best approximation to

91 (Y)o

If the intuitive result mentioncd above

Y (m) rvfn-i‘
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is correct, then y > Y (m) :$ n< y2 {appxox.)

i.e. Miy) = v

{which corresponds approximately to the smallest term of the series).

(y) —> 0
y —>»00

2 -
Choose a 3>,/m so that eui uy -2m> e u, 2m
for all u, D> u, > e

2 y 2
Then yzm e-y-{/ e u-zm du + C}
a
2

2 2 (hy
- y2m ey C + yzm ey j e" u-Zm du

It can be shown that RZm

The first term tends to zero when y -3 o0 (0 < A<1)
When y > a/A the second term is &

2 rAy 2 2 Ay 2 -2m

a a

_lay-a) a1 - a2y 2

AZm
~» 0 { y=>00 )
The third term is y
2 2 2m y 2
yZm eV 0 < e - e_yz e’ u du
Ay N (ay) Ay
i e-yz l.l2 y
- e *"5 0 (y -—-)OO)
2m + 4
A y Ay

Clearly the Rzm(y) -, 0 (Rzm,\ﬂ/yzm) (y ~=00).

The functions Rzm(y) are sketched in figure (C1).
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APPENDIX D

Landau's result is that asymptotic behaviour in time of a plasma is

characterized by a potentisl wave

? A~ ? ei(kx - t) (D 1)
o

where k(real) and () (complex) satisfy

F' o (v)
2 2 o]
k- =
Cl>p f v - a¥k
C

where the path of integration, C, is that indicated in figure (D 1), which passes

dv (D 2)

below the pole (vo = (U/k) of the integrand. The function Fo is supposed to have
been continued analytically into the whole complex velogity plane. We have used Fo
in (D 2) rather than Landau's f_ » to distinguish from Denisse's fg

We shall show here that we can choose Fo to satisfy equation (24), such
that there exist real UDand k satisfying equation (D 2},

Suppose that (D) ,k (both real) and F satisfy equation (D 2). In this
case we can replace jC by IX where r ' x are the contours
shown in figure (D 2)

The assumption that Fc', can be analytically continued into the complex
plane means that on the semi-circle v = (L)/ k + eig which the contour Y

definies we have
Fé (OO /k +reig) 'Fc'a { C0/k) +reiQ F; (GYx) +0 (rz)

v:«C,U/k-ﬁ»reie dv - ireig
¢6

F (v) L _Fh (Q/k +r eig) o _Fb (k)
v = Qk OJk +raig-0~’/k r i€

+ F; ( QD /) +0 (x)

2
e v = iree «Q —ﬂ-g——— F" (CU/k)-o-O(r)}
Xv- W/ {
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' 21T
= 4F (/) L d9 +0(x)

- AJTF. (LI +0lx)

Wk - oQ
Hence ?; (v) J F' (v)

Q

dv+ i F; (&¥k) + O(r)
v = QU/k¢ v = BO/k
C —0a Wi+

Since the left hand side is independent of r, and the equation is true for any
r > 0, we may take the limit as r—>+0.

) w [ .

F_(v) Foo(v) .
dv + i(FO(v))v

o 0 (D 3)
v - COM v - WA = W/

dv = p

This equation is only exact if CUJ/k is real,
1
We now see the condition thet k° be real requires that (F_ (v))
o ve LYk
be zero.
The problem is therefore to choose dn F (v), which can be continued
analytically into the whole complex plane, which satiafies F {(v) = 0 for some
v and which satisfies relation (24), i.e,

lFo (v) - feq {v) I < 8 (24)

These conditions can clearly be satisfied by writing 3
Fo (v) = f‘ (v) + Sf(v)

whera f{v) < o

subject to the condition that } < 8
t

Then ﬁ can always be chosen small enocugh that Fo (v) will have a zexo

for some v=v.,
o

To ensure that f Fo(v) dv = f feq(v) dv we must replace 5 r{v) by

’l‘sf(v) -3 6?(2v° -v) which is an odd funtion of v - vy Clearly this does
T

not change the derivative s Fs (vo).



Ap. D3

This suffices to prove that there exist a real ({) and a real k which satie-
fy equation (D 2), subject to the relation (24), for sny £> 0.

H
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