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UNDAMPED WAVES IN A COLLISION FREE ELECTRON

PLASMA

By Donald Mc .EAN



INTRODUCTION

Recently Bernstein, Green and Kruskal 1] have shown by a non-linear

theory that there can exist undamped longitudinal waves in a "collision free"

plasma, and further, they claim that these waves do not satisfy a dispersion

relation.

This is in complete contradiction to the results of Landau [_2] and of

Van Kampen [3J , both based on the same linear approximation to the Boltzmann

equation, and apparently equivalent, which predict that all svfficiently smooth

initial distribution functions give rise to damped potential waves, the miniai

damping rate being given by Landau. It is true that, if the distr bution functions

giving rise to the B.G.K., undamped waves .re replaced by singular distritutions,
in the linear theory

one can demonstrate undamped waves( but since the distribution functions corres-

ponding to the B.G.K. equilibria are not in general singular, the linear and

non-linear theories must be considered to be in contradiction.

Landau and Van Kampen did find a dispersion relation in the sense that

the most slowly damped waves are those which satisfy the relation, previously given

by Vlssov [4].
This dispersion relation is basically the same as that found by Bohm

and Gross E51, by assuming that there are no partiches near the wave velocity.

In the same paper Bohm and Gross showed that the presence of trapped electrons

would modify their results, but argued, intuitively, that only those waves satis-

fying their dispersion relation would be strongly excited.

Recently Denisse [6] , in a paper largely aimed at criticizing Landau's

results, has derived an expression for k, the wave number, which must be satisfied

by small amplitude, stable waves and which is in form identical with the dispersion

relation of Vlasov, but which is to be interpreted slightly differently, due to its

different derivation. Denisse's approach is basically similar to that of Bernstein,

Greene and Kruskal and his linear approximation is more satisfactory than that of

the linearised Boltzmann equation in that he only neglects small quantities.

Most of this report is concerned with an examination of the properties

of such small amplitude, stable waves based on Denisse's results, which are quoted

in Section III.

Before this in Section II, a short discussion is given of the bearing

of the paper of Bernstein, Greene and Kreskal on the theory of Landau. In parti-
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cular an example of a wave, for which the calculations can be completed exactly,

and which is undamped, is presented.

In Section III, after the presentation of Denisse's results the intel-

pretation and significance is cscussed.

In Section IV this discussion is continued to demonstrate the absence

of a true dispersion relation, although for a different reason from that given

by Bernstein, Greene and Kruskal.

In Section V the results of section IV are used to criticize the results

of Landau.

Finally in Section VI an attempt is made to consider the effect of colli-

sions within the framework of the theory of stable solutions. Such an approach is

of course, impossible to follow up rigorously, but the somewhat intuitive results

seem sufficiently interesting to be worth presenting, as thay lead to a new inter-

pretation of the dispersion relation.
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SECTION II

Very briefly, Bernstein, Greene and Kruskalfs method consisted of assu-

ming a stationary wave and finding a differential equation which the potential, P

must satisfy this assumption (collisions are being neglected). This equation can

equally well be interpreted as an integral equation for the distribution function

of the trapped electrons as a function of energy - if (x) and the distribution

functions for protons and untrapped electrons are specified. Bernstein, Greene and

Kruskal have presented the solution of the equation in this form.

It is not however completely clear that thes solutions, the existence of which

is the essential point of their argument, can be physically meaningful. Montgomery

and Gorman E7] for example, question the analyticity of these solutions. It is

therefore interesting to demonstrate a particular case of a stationary wave for

which the distribution function is an analytic function of the position x and the

velocity v (for x and v real). In the Appendix A, it is demonstrated that at least

one such solution exists. The electron distribution function considered is

f (x , v) . n a V

1- V2 + v 2 +q (x)

where n is the electron density at the potential maximum, at which point the po-

tential ? (x) is zero, V is an arbitrary positive constant, qe and m are respecti-

vely the electronic charge and mass end the potential T (x) is an analytic func-

tion of x, the inverse of which is derived analytically in the appendix.

As will be seen in the Appendix A this is not a particularly interesting

example physically : not only is the temperature of the plasma infinite, but the

potential f (x) tends to - 00 exponentially when x tends to 1 00 . Nevertheless

it proves that not all the B.G.K. equilibria have singular distribution functions

(as a function of x and v).

It has been shown by Bernstein, Greene and Kruskal that their non-linear

solutions correspond to singular approximate distribution functions in the linear

approximation but this does not "salvage the conventional theory" since this

implies that before performing the linear calculations we must replace the true

initial distribution function by another modified distribution, but we only know

how to do this (or even that it is possible) for the case of the B.G.K. equilibria.
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The paper of Bernstein, Greene and Kruskel does not attempt to treat the

geperal problem, treated by Landau, of describing the evolution in time of a plasma
assumed

which is perturbed at the iime t - 0. More exactly Landau/the initial distribution

f (x, v, 0) known and sought to derive the distribution .f (x, v, t) subject

to the condition that f(x, v, 0) represents a small perturbation from the

equilibrium conditions. He found that the electric field E(x, t)--Y 0 when t--200.

Effectively Bernstein et al. have produced a counter example. If we take the special

case in which f(x, v, 0) is the distribution corresponding to an undamped wave we

must have f(x, v, t) = f (x - ut, v, 0). Whence E(x, t) = E(x -ut, 0) 7- 0.

(u is the s,elocity of the wave relative to the frame of reference).

Hence, subject to the assumption that the equations used have a unique

solution (which has apparently been proven by Iordanskii r8l). Landau's results

are disproven by those of Bernstein et al.

The rest of this report is concorned with the properties of stable plasma

waves - the existence of which is not further questioned, except for a short demons-

tration in Section V that Landau's results depend critically on his assumptions.
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SECTION III

Those of Denisse's results which interest us especially here can be

collected into the following three equations t

n 1 o 0 ++ (n q (e)

dx ko I

where k2 qe 2 p -3f, (Vo dv (2)
km P " v o0 0 • 0

00a

and n (v) dv (3)
0 0

Here, x is the distance coordinate in the frame of reference in which

the wave is stationary, parallel to the direction of propagation, (x) is the

electric potential, n. the ion density (assumed constant) qi and qe the ionic and
1

electronic charge respectively, m the mass of an electron. The potential is assumed
to have a maximum which can be taken as zero; v is then the velocity of an electron

0

along the x-axis at this maximum and f (v ) the electron distribution function
point 0 o

at this point (which is the only/through which all electrons pass).

(k is the permittivity of free space).
0

These equations have been derived on the assumption that all quantities

are independent of time in some frame of ref ren-c, and have no sense otherwise.

Further, it must be assumed that -af'- is continuous for v = 0,

otherwise the Cauchy principal value of the integral indicated in equation (2) does

not exist. This does not appear to be an unreasonable assumption physically.

We can at once write the solution of equation (1), valid for lT1<J'max

where C is some arbitrary level above which the higher order terms in~clannotJ max

be neglected.

We have for k2 >0

(x)- Lo- L[cos k(x X ) _ (4)

k"

And for k2  - K 2<0

W ,) -/0o (cosK (x -xo) 1) (5))(x) = - K•-
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where n q + n q (6)

The assumption that /V <O requires that 0,9

ie ni L ne

Clearly, in equation (4), n. can be chosen sufficiently close to n

that -02'- 95max (the limit of validity for the linearized form of equation (1),

and in kthis case equation (4) will be a good approximation to the potential which

could be predicted by Bernstein, Greene and Kruskel's non-linear theory, if it were

calculable. Hence if k 2, derived from equation (2) is positive, it yields the wave

navbez, for small (potential) amplitude waves. On the other hand, since cosh x i6

unbounded above, equation (5) can only ever be a good approximation for a small

range of x. In fact, in this case, the potential is not even necessarily periodic

and so knowledge of the value of K is of very little value.

When the right hand side of equation (2) is negative there are no waves

of arbitrary small amplitude - but beyond this equation (2) cannot be considered

as giving any useful information. In particular it should not be interpreted as

indicating evanescent waves, such waves being explicitely excluded from Denissels

calculations.

On the other hand, when the right hand side of equation (2) is positive,

equation (2) has the sense of - dispersion relation, except that we have not yet

specified f . Such a specification requires a detailed description the menner in0

which the wave is excited . Such a description is of course beyond the scope of

any theory so far developed. The only logical procedure is to consider f as an
0

arbitrary function, the different functions f corresponding to different mecha-o

nisms of excitation. This question is taken up in detail in thu next section.

It should be noted however, that physically we must exclude distribution

functions, f0 , which are not symmetric about zero for all velocities less than that

nectesery for an electron to "escape" from the potential trough. In the limit of

small amplitudes, in which we are interested here, this interval of velocities

vanishes, and it is not unreasonable to ignore the restriction, provided we retain

the symbol for the pr.ncipal value of the integral in equation (2). Even if we were

to extend the theory to waves of nora-zero amplitude, we can formally avoid this

restriction because the contribution of an electron to the charge denuity (through

the time it spends in each part of the wave) depends only on its speed relative to the
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wave, and not on the direction of its velocity, we find that there is no change to

the wave if we reverse the velocity of a group of particles. This is true, both in

the non-linear theory of Bernstein et al. and in Deniase's linear approximation.

Consequently (as can be easily verified by substitution in equation (2) , the results

obtained for a given f (v ) are identical with those obtained for any distribution0 0

which can be constructed by adding an odd function to f (v ) - including of course
0 0

a set of functions which are symmetric in any required range. Hende, when, in what

follows, we calculate results for functions f (v ) which do not satisfy the sym-
0 D all

metry conditions in any range, we are really calculating, for those functions,

symmetric in the required range, which could be constructed by the addition of an

odd function. In the limit of small amplitudes, in which we are intercsted here the

difference is very small.



SECTION IV

In this section we discuss what significance can be given to equation (2)

in the light of the point, made in the last section, that f (v ) must be considered0 0

as an arbitrary function, unless the excitation mechanism can be described.

Bernstein, Greene and Kruskal argue that no dispersion relation can exist,

due to the fact that the valovity (relative to the wave) of groups of untrapped

electrons can be reversed without modifying the potential. This has already been

pointed out in the last section and is represented in their calculations by the fact

that it is only necessary to know the distribution of the particle energies (measured

in the wave frame) to calculate the potential. Using this fact the velocity of the

plasma relative to the wave or the wave velocity relative to the plasma, can be

modified by reversing the velocity relative to the wave of some of the electrons

without in any way modifying the potential wave, and so there is no relation between

wave velocity and wavelength, or between frequency and wave number.

However, in seeking a dispersion relation, one expects such a relation

to reflect the nature of the unperturbed plasma - for instance Bohm and Gross derived

on approximate dispersion relation involving the density and temperature of the

plasma. If however the disturbance of the plasma is very great, the temperature,

for instance, may be greatly modified, in which case the dispersion relation calcu-

lated using the "equilibrium" temperature is no longer obeyed. Hence we can only

expect a dispersion relation to have a sense if the deviation from equilibrium is

small, and it is not surprising that Bernstein et al. did not find a dispersion

relation without imposing such a restriction.

In this section we consider the existence of a dispersion relation for

stable waves subject to the additional condition (which clearly limits the argument

used by Bernstein et al. thet:

eq p

is satisfied for all x and v s v is effectively the phase velocity of the wave, and
P

is considered as a parameter, f is the Maxwell distribution for the velocityeq
component parallel to the direction of propagation of the wave defined by equation (a) 1

- m v2 (e)
fe(v) a n e 2kT
eq a J 7TkT

( k s Boltzmann's constant; Ti electron temperature; ne a equilibrium electron density).
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From equation (7) we deduce that the amplitude of the potential must be

small, since otherwise the density varies greatly from its equilibrium value and (7)

is certainly not satisfied. Hence we may apply equation (2). In addition we shall

make use of a special case of equation (7) s

0 o eq o p

which we rewrite f (v) = -C eq(Vo -v)+ 6fvo) (7")

It should be noted that f (v) is the equilibrium distribution in the
eq

rest frame of the plasma but f (v ) is the distribution at a point in a particular

wave, the velocities being measured in the frame in which the wave is stationary.

Here~is approximately unity and 6f(v0) is small compared with

f (v - v).eq o p
It is possible to examine a number of special cases analyticallp, in order

to study the behaviour of equation (2) subject to the conditions of equation (7').

The first i? the obvious case Sf a 0.

f (v) = CC (v -v) (9)o o eq o p

Combining equations (2), (8) and (9), we obtain

k2  W p 1 Vp
k 2=1 91  2

where 2
Cp 2  , n the square of the plasma frequency of

Km Km
0 0

the squi3ibrium distribution,

V kT
m

and (y) p dx (11)
-_yAppedixl it) is shw •- e(2

In Appendix B it is shown that the function g, (y), defined by equation

(11), is given by i

( (y)2 y a-2ye2 -eu du-1 (2
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This function is tabulated is various places (see reference 8 ). A

rough sketch of k2 given by equation (10), deduced from various approxiLmations which

can readily be obtained from equation (12) is shown in Fig. 1.

In Appendix C it is shown that gt(y) can be expanded in an asymptotic

'series, of which the first two terms are i

1 3 1
g9 (y) / ¶:( 7 +T 4-. ) (13)

2y y

Hence (-42 k2  2 v 3V 2  P k2

In the region for which this expansion is useful WF 2  and so we find for

the case of small k

S2 3kT 2 (13')

which is the Bohm and Gross dispersion relation.

The approximation to k , obtained by substituting (13) in (10) is

presented as a broken curve of figure 1.

We now consider the second special case

oo -7 w
6f(v __).E -Sn - 1/2 W 3 (14)

The resulting distribution function f (v ) is shown in figure 2.

The correction E(k2)v which must be made to k 2 which we have already

deduced from equation (10) is simply

(k g:e_ . 9 ~ (15)-n V 9W W

This correction is plotted in figure 3 as a function of w for several values of W

It is of course the same curve as figure 2 on a different scale, with different

coordinates.

An examination of this curve brings out the following points. If W is

large 5(k 2 ) is small for all.w. If w is large, 6 (k2 ) is small, that is to say

small modifications to f (v) do not affect k in the region where v. 0.

More precisely
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S(k2) « k2

k2 W2

ne W

Since this inequality does not involve the form of 6f, it is not

un reasonable to suppose that it holds for localized modifications to fo other

than gaussian ones.

On the other -and we see that for w; 0, (kk2 ) may differ greatly

from zero. Using the proportius of g W (g 1 (O) - \ g,(x) < •/T ,wc see

from equation (15) that

j!2 ) I ~~ ~(7
rn6n ,oJ V v5,0/

The conditiorl (7') (i.e.fo 0 ,:, feq ) requires that - be

small but this conditio7 cci be satisfied for any W by c!,oesing &n. Hence/6(k)4 mak

can be made as large as desired by reducing W in equation (1T) at the same time

reducing 6 n so that n remAins constant.W

We see at once that the condition of equation (7) (f (x, v),f q(V-v p))

is not sufficient to give to equation (2) the meaning of a true dispersion relation.

We also see another important point. That is that a crude knowledge of

the distribution of those electrons which move very rapidly relative to the wave is

sufficient to estimate their contribution to the wave - but that the wavelength

(and in fact the form) of the wave is vary sensitive to the precise details of the

distribution of those electrons (trapped or almost trapped) which move slowly rela-

tive to the wave.

This is a very important point because all approximate calculations based

on thp "linearized" Boltzmann equation, as well as the approximate calculations of

Bohm and Gross - give an accurate description of those particles moving rapidly

relative to the wave (for which we find that a crude description suffices) and give

a quite false description of those particles with velocities close to the wave velocity

(to which, as we have just seen, the wave is very sensitive).

It is possible to argue that the absence of a dispersion relation can be

demonstrItLd from Bernstein, Greene and Kruskal's results, since given the distribution

fur the untrapped electrons, it is possible to derive a oistribution of trapped

electrons, which together with the untrapped electrons, give rise to any desired

potential wave (subject to certain symmetry conditions when we ignore the iofotion).
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However it does not seem possible to be sure that the derived distribution function

will not be very great or# worse# negative, for an arbitrary potential wave. It therefore

seems best to argue from Denisse's results,

To summarize this section, if we substitute feq(vo - vp) for fo(vo) in

equation (2) we find effectively the same dispersion relation as Bohm and Gross or

(except for the damping) Landau. It does not however seem worth while discussing the

curve representing this dispersion relation in too much detail, because as we have

shown using the special case of the sum of several gaussian functions, we can choose

f (v ) to differ from faq (v - v ) by as little as we please, and yet k2 differs from00o o p

the dispersion relation by as much as we please. In other words, the conditions we

have imposed on f (v ) are not sufficient to ensure the existence of a dispersion0 0

relation. The question remains as to whether physitally meaningful additional condi-
tions cannot be imposed on f - which lead to a dispersion relation in some sense.

0
This problem is taken up in Section VI.
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In this section the value of a theory which is based on a linear approxi-
mation to the Boltzmann equation is question&' (Un particular Landau's theory and#

since it..is equivalent, that of Van Kampen).

We have already seen in Section II that Bernstein, Greene and Kruskal's
non-linear stationary solutions serve as counter examples to Landau's theory.

As pointed out in Section IV for the case of stable waves the linear
Boltzmann equation describes the untrapped particles quite well but 1he trapped

particles very badly. In fact Landau's method amounts to treating all particles
according to an approximation which is sound for those moving very rapidly relative

to the wave. On the contrary Denisse r6ý has been able to make the distinction bet-
wean these two groups of particles, in that a range of velocities, corresponding to
some of the trapped particles, are always excluded from his integrals. He has also
shown that if one removes this distinction between trapped and untrapped particles
by (quite irc:rrectly) integrating over all velocities the extra term which results
in the "dispersion" equation has exactly the same form as Landau's damping term.

Since this extra term corresponds to the lack of distinction between trapped and
untraepped electrons, inherent in Landau's approach there is a very strong suggestion

that it is from this aspect of his approximation that the erroneous damping term

arises.

In Section IV we have seen that the Landau approximation is crude where
it needs to be precise (trapped particles) and precises where it can afford to be
crude (untrapped particles) which in itself is a rather severe criticism.

Finally, in the rest of this section we present a new argument against
Landau's theory by re-examining his assumptions. Although he did not write it all
down as oxplicitely, his areitent starts as follows (The notation is necessarilý

different from Landau's).

The equations to be solved are t

"f (x, vt) v ""f(xvt) E(X) ) f(xv, t) 0 (18)t + 3 x + m v

K ZE(xt) q dv f(x,v,t) + niq, (19)0 xe

In order to develop a perturbation theory one writes i

f(x,vt) - F (v) + f (xovt) (20)
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subject to the assumptions that I f, << F, and f f f which implies t
o sq

F (v) ' f (v) (21)
o ~ - eq

Landau straight away took F (v) - f (v), which is of course the obviouso eq

choice, but no• the only one valid. We shall see however that the results of his

calculations depend critically on the method in which the division between the zero

and first order distributions is carried out in equation (20). It is of course just

as valid to carry out the calculations for an arbitrary F subject to the condition0

(21). We shall however add here the condition that

S F (v) dv =feq (v) dv = ni

e

which gives for equatirn (19)

E " f (xvt) dv (19')

This is convenient in that the remaining calculations are identical to Landau's

and we may simply take over his results, with feq replaced by F

Landau then "approximates" to equation (18) by

""fl + - 0 (18')

ax m v

the term q-e E2 being dropped on the grounds that E and fl are bothm 3v
first order quantities. Since neither the integral nor the derivative of a small

quantity is necessarily small this approximation is immediately questionable and

should have been justified a posteriori. In fact Landau avoided the justification

by taking the equation (18') and (19') (with F = f ) as his starting point. Aftero eq

this starting point his procedure appears to be valid, as is born out by Van Kampen.

We can therefore use his results to demonstrate that his implicit assumptions, stated

explicitely above, are unsound. It is only necessary to replace feq by F in all

his equations and note the effect of small variations of F on (A)(the wave fre-

quency) and Y(the damping rate).

If Y is very smell CO is given approximately by the root or roots of i
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2 p (v) dv (22)

and .Yby P v Wk

y~ ~ ~ I.T w2 F W(A)k) -- (-2)(23)
0 dk k

where k is the wave number of the initial perturbation.(See for example Weenilk

9 for a derivation of these results without assuming F. a f). The equation

(23) clearly depends on the assumed value of Fo, but it is not immediately clear

what the effect on Y of small modification to F will be. However it is shown
0

in Appendix D, that we can choose F to satisfy the following condition i
0

F F(v) -feq(v) / K (24)

for any > O, and such that Landau's formulae predict waves for which the

damping rate is identically zero.

Further it has already been shown in Section IV that equation (22)

does not relate CO/k (or CW)) and k if F is only subject to the condition (21).o

(Compare (21) and (22) witl' (2) and (7').)

Landau's results therefore depend critically on his assumption that

F (v) - feq, but this assumption is quite arbitrary.

To conclude this section, we see that the following arguments can be

made against Landau's paper.

1) Bernstein, Greene and Kruskal have produced a counter example which

contradicts Landau. This in itself is a conclusive point which continues to be

ignored.

2) In the case of stable, or almost stable, longitudinal waves, the

linear Boltzmann equation gives a very inaccurate description of the trapped par-

ticles, which are just the particles which are most significant in determining the

wavelength and form of the waves.

3) In Denisse's theory one can reproduce Landau's damping term by

introducing an error which is equivalent to the errc.r inherent in a linearized

Boltzmann equation.
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4) The dispersion relation derived by Landau (within the sense he gave it)

depends very critically on the zero order distribution function on which the solu-

tion is based. This demonstrates that it is not a sound perturbation calculation,

since a first order change in the xbro order function should not have an enc:m.ous

effect on the results.

Any one of these points is sufficient to raise serious doubts as to the

validity of the results of Landau and of all equivalent calculations.



17

SECTION VI

This report has mostly been based on Denisse'e resultst which in turn

are based on the assumptions, generally made, that collisions can be neglected,

and that the behaviour of a(large) set of "point" particles can be adequately

described by a distribution function.

However it is known from a very general theorem (Chapman and Cowling

CO] ) that in the presence of collisions all distributions tend towards a uniform

Maxwellian distribution and therefore that all waves are damped. It is generally

assumed, as justification for neglecting the effect of collisions, that the damping

rate due to collisions will be of the order of one of the relaxation times for a

"test particle" in a plasma calculated by Spitzer (for example) D],I and therefore

negligible.

In this section it is planned to show that this is not necessarily so.

It is of course impossible to study rigourously, within the framework of a theory of

stationary modes, what the effect of collisions will be. However the calculations

which will be presented here do give an acceptable physical picture of the signi-

ficance of collisions.

Before proceeding with this, however, it should be noted that the repre-

sentation of a plasma by a distribution function needs careful justification - and

the properties of a distribution function, if such can be adequately defined,

should be carefully examined.

That such an examination is necessary can be seen from Van Kampen's U3j

classic paper on the subject of plasma oscillations in the absence of collisions.

In the section in which he demonstrates the existence of normal modes, he asserts

that a distribution function is sufficiently well defined and physically accept-

able if only it can be used to calculate averages. He then demonstretes his set of

modes, which are singular. However, in a later section, when he decomposes an

"arbitrary" initial distribution function which is of the form g90 V) eikx into

these modes, he assumes that the function

+ (u) = + go(u) + p du'
0+ a 2 1U - U!

does not include any delta functions. In fact this excludes singular distributionst

quite contrary to the argument that a distribution function is valid as long as it

can be used to calculate averages.
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Turning now to the effect of collisions we consider only the case in

which the time of interest is much shorter that the time between collisions,

that is the probability of a given electron suffering a close collision and we

are only interested in the effect of the large number of "distant collisions",

which any electron suffers is even a very short interval of time.

We shall further limit the argument by considering only those distribu-

tion functions, of the form considered in Section IV and defined by equations (7")

and (14), i.e. :

fa (v) m C~ feq (v -v p) + Rf vo) (7")

£0v n _ e vo -w )2  (14)6_f (vo 0 W W

In this case the effect of collisions on the function f will be ne-
eq

gligible at least if the wave amplitude is sufficiently small since this is just

the function which is not affected by collisions (in a uniform plasma).

We are left with the problem of the effect of collisions on Sf. For

this it is convenient to replace the velocity v of a particle by the velocity v.

which this particle would have at itp next passage through a potential maximum, if

there were no collisions. In the absence of collisions v woula be a constant for
0

a given particle by definition. In fact v0 will vary in time due to collisions, in

a manner which it is impossible to determine. It is however possible to estimate

the probability that a particlp which has a velocity v at time t will have a0

velocity v + E v at time t +6t. In fact if 6t is much smaller than

"time between collisions", the change in v will be almost entirely due to the

large number of small changes due to distant collisions, the probability of a close

collision being extremely small. The net result of a large number of small effects

generally has an approximately Gaussian distribution and so we shall assume further

a Gaussian distribution for 6 v• That is we assume that if s
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f •(vo,t) - (vo Vo) - h (VO,0) say (25)

-(v vo)2/F (o)-h (V. - ) say (26).Thn ,(vot+ ) �'/77FC 
0

where the "width" F 7 has yet to be determined. In fact F(r) will depend also

on V but since we are only considering the effect of collisions on a localized0

distribution ( 6f?(va) of equatinn (14) we can ignore the dependence of F on V
00We now note that a physically real distribution Sf(Vo0t%) can be decomposed

into the set of "modes" h defined in equation (25) t

E f(vo, t) - 5f(v , t) * h(vo, 0) (27)

From equation (26) we then see that

f(v.*t +Z) - f(vOt) * hv 0 , ) (28)

(Provided we neglect collisions between pairs of the electrons "belonging" to

E) +which are negligibly few composed with those between dn electron fromz

an electron of fe0 .

Applying this result twice we see easily that

f(vo, t +2Z) - f(Vo,t +T, ) 0 h(V, / )

= f(vot) * h(v, - ) * h(vo, 2)

a f(Vo0t) * h(vo02r )

Whence h(v, 2 ) - h(v Z• ) * h(v ,oL )

The right hand side is readily calculable and we obtain finally

F (2 i)=2 F( Z
In the same way we can obtain

F (nZ) -nF (F )

and so F(t) must be of the form

F ( -O ). 2 '•,-
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where is a constant which we shall leave undetermined. This form for r( )

is a direct consequence of the assumption of the Gaussian distribution for 6 v

In fact Oct is just the of Spitzert2] , who gives formulae for its17 -3 • 61 V•V'v
calculation. Typical values in the eclar corona (n -%,10 cm , Tevo 10 Co %V Z SO

15 2 -3 a 0
would be Ofv3.10 cm sec . Increasing V by a factor of 4 reduces by almost

2 orders of magnitude (indicating that the assumed Gaussian sppead can only be t'etrue
for very nerrow peaks).

If we now substitute 5f(v ) from equation (14) for 6 f(v 0t) in

equation (2a) the result is t

f(v ,t +Z ) = n e W2 - (29)

In other words our assumptions are such that if f is initially gaussian

it will remain gaussian, but it will spread steadily. Intuitively we know that this

is qualitatively correct except that the mean velocity will change slowly as well.

Also if tha amplitude uf the wave is sufficiently large that the number of trapped

particles is large the rather complicated exchange process between trapped and un-

trapped particles will pro~ide an extra source of instability which we shall avoid

by considering only small amplitude waves.

With the reserves in mind we can investigate what will be the conse-

quences of these collisions. The equation (2) which we have interpreted as a dis-

persion relation can equally well be interpreted as necessary condition on f
0

for the stabilitS, cf a wave of given k. If the wave is stable, k will not change,

and if initially fo(vOro) - 0 feq + E f(vo00) then at time r later we have seen

that f0(V0  feq + f(V )

If k2 (t) calculated from equation (2) by replacing $f(vo) by

6v---v., )-t)is not equal to the original k 2 (k 2(0)), then the wave is unstable.

This will almost always be the case. However Montgomery [12] has cii-wn that, at

least in some cases, the solutions of B.G.K. are "asymptotically" stable - and so

we can hope that if k2 JL ) : k2 (0) then the waves will remain fairly stable.

On the other hand there can be little doubt that if k2 (Z( ) is very different from

k2 (U) tim wuve will be very unstable, perhaps evolving towards a more stable state

or damping out completely.

We have already seen that if the maximum of Ff is very far from the

wave velocity (more precisely if w2  6 n k2  )th width of the gaussian
ne 

P
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curve does not enter the approximate expression for k2 and so the spreading

of the gaussian curve will probably not lead to instabilities; in this case the
waves approwimately satisfy the dispersion relation obtained by setting f = f .

0 eq"

On the other hand when w and W are both small (corresponding to a sharp peak in

the velocity distribution near the wave velocity) S k2 (Z ) ( calculated on

the assumption that the wave is stable) will chaoge very rapidly, leaving little

doubt that the wave is unstable.

For example if w - 0

8k 2 ('r) -n (30)ne

which clearly changes very rapidly if W2 / 0( is small.
- 4

These unstable waves are just those whiich differ greatly from the dispersion
relation obtained by setting f = f

o eq

We can summarize, and at the same time generalize these results as follows.

If f o feq' this does not imply that k2-k2q ( k 2 that given by setting
q2 0 eq

fo = feq ). However the difference in k is only duo to very high first (or second,

or higher ?) derivatives of f in the close neighbourhood of the wave velocity.0

If we did not insist that f be continuous, discontinuities of f could also0 20
introduce large differences between k2  and k 2 However it is easy to see, even

eq
without making the above calculations, that collisions will smooth all such "roughness"

of f very rapidly, and since k2 is so very sensitive to these details, the wave
will become unstable in a time very much shorter than the time between collisions.

Hance only those waves for which f is very "smooth" in the region of the wave
0

velocity can conceivably be stable, and those waves approximately satisfy a dispersion

relation.

We shall now try to make this statement a little more precise, at least

for the case of $f gaussian. It shoula be emphasized however that what follows

depends to a large extent on the additional assumptions wade.

For instance, to make more precise our condition that fod!eq we

shall write t

E b f (w.- v) (31)Stmax " W bfeq
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This corresponds to the case where the initial disturbance effects all the electrons

more or less equally, i.e. there is not selective acceleration of a small group of

electrons (making up 6f) but just a sort of "stirring up" of the distribution

function which results in the "roughness" which we have idealized by a nerrow gaussian

peak. Once again, the validity of such an assumption can only be discussed in

terms of an excitation process.

For the case of small w, which is the only case we need consider, we

shall rewrite (31) :

W 'Z V

where b is some constant, less than 1.

As a condition for stability we shall arbitrarily suppose that it is

necessary that

lb ( 6k 2  (Z2) ]B (32)

- - k (2 ) is a complicated function of W,w, • etc. However it

can be shown that the average value of this function, over a short period (OT),

for small values of w, is approximately :

< -k2 ne

Hence we require that s

B ---A-~...... (32')

Bearing in mind that ':,P2

(0k)!Ia (17)
1 ~ oe W

we can zeadil •y% studying figure 6, that (31') and (32') impose an upper limit of

I (k2)1 max (The "max" refers to the maximum obtained by varying w holding S

and W fixed : here we are interested in the effect of varying Gn and W as well,

subject to the restraints (31') and (321)). In figure 6 the regions of the ( Gn, W)

plane which do not satisfy (31') or (321) are shaded out. The lines of constant

S (k2 )Jmax (Jn - constant ) are drawn on the same plane and it will be seen

that above a critical value for )S&k2! 1 the curves ore contained entirely in the
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forbidden (shaded) region. This critical value is of course our upper limit and so we have

wher Ak is 1"m 4_A exp (-1/3 v,2 /V2)where A is a parameter depending on W 2 and V and on the assumed values of bIs- , << b f eq )and B at k'

In figure (4) the curves k nd are sketched as functionsSImax
of v which is almost exactly equal to the wave velocity. In figure (5) these curves are

re-drawnin terms of the coordinate used by Denisse and Delcroix when discussing disper-

sion relations. We see that a dispersion relation exists for those waves which travel much

faster than the thermal velocity and, as we have already shown In section IV this disper-

sion relation is well represented by approximate dispersion relation of Bohm and Gross

2 2 + 3YT k2 (131)
p m

It should be noted however that this dispersion relation now only describes

those waves which are relatively stable in the presence of collisions. On the other

hand there appears to be no relation between CC) and v = W/k when v is of the
P P

order of V the thermal velocity. In this respect it should be noted that in fact

Denisse's equations only describe the potential in the region between two consecutive

potential minima. To describe a periodic wave it is necessary to assume that the trapped

electrons have the same distribution between each pair of potential minima, an assumption

which is of little consequence in the case of waves travelling faster than V, but which

needs to be reconsidered for waves travelling slower than V (the thermal velocity). In

fact it is not hard to see that in a given stable wave travelling slower than V, the

distance between potential minima may vary from one minimum to the next and the potential

observed at a pcint fixed in the plasma will vary more or less at random. There is there-

fore no real reason to distinguish between such waves and thermal fluctuations - the sta-

ble waves of low velocity being like a special case of thermal fluctuations.

All the above calculations have been made for the very special case of a dis-

tribution made up of two Gaussian functions. The calculations can be immediately extended

to distribution functions made up of a finite number of gaussian functions. I* is possible

that the calculations can be extended to the case of a geperal distribution function. This

has not as yet been attempted as it is doubtful if the model used for the collision

effects justifies an elaborate mathematical theory. At the same time the physical picture

is clear : for those small perturbations of a plasma which propagate as stable waves in

the absences of collisions we can suppose that f (v ) /\-,f (v - v
a o ~'eq a p
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This however is not a strong enough con-

dition to determine k . However those f (v ) which give a k greatly different0 0

from that given by the case f (v ) - f (v -v ) are characterized by large valueso0o eq p

of -•f° in the neighbourhood of v0 - 0.
UT If we take the characteristic effect of collision to be the introduction

of a spread in the velocities we see that such critically steep slopes cannot exist

for any length of time. On the other hand, if the collisionless themry has any

meaning at all, it is in the case where the distribution function is smooth, and

so we come back to the dispersion relation found in linear theories - at least

when the wave velocity is large - but without the damping.

The points are i I Collision damping, or rather collision induced

instability may occur in a time much shorter then normally assumed.

2 The most stable waves are probably those which

satisfy the linear dispersion relation.
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SECTION VII - CONCLUSION AND DISCUSSION

This report is largely concerned with the nature of stable, small

amplitude, longitudinal waves in a collision free electron plasma. However, since

the results of Landau and Van Kampen are generally taken as meaning that no such

waves can be stable, a considerable part of the report has been taken up by argu-

ments concerning the existence of non-damped waves.

After this the approximate results, obtained by Denisse, are used to

examine the existence of a dispersion relation for these stable waves, subje~t

to the assumption that the distribution function in the wave is everywhere appro-

ximately equal to the equilibrium distribution. Such an assumption excludes tIe

interesting case of a wave excited by a beam of particles injected into the plasma

but since we have as yet no description of possible excitation processes this

appears to be a necessary exclusion. Even subject to nll these restrictions

(stable waves, f r:' f eq) it turns out that there is no dispersion relation, i.e.

any wavelength can correspond to any wave velocity (at least for wave velocities

less than the velocity of light).

However in Section VI, by a rather intuitive considerations, it has

been shown that the effect of collisions is probably to render highly unstable

those waves which do not satisfy approximately the normally obtained dispersion

relation.

The work described is of course strictly limited, for example the general

problem of the evolution of a plasma after an initial time, attempted by Landau,

has not been attempted, Nor is :t clear how it can be approached. It has been

argued by Bernstein, Greene and Kruskal and by Weenink that the B G K "modes"

can be identified with Van Kampon modes. However the Van Kampen modes are inde-

pendent in that they satisfy a linear differential equation. On the otier hand

there is every reason to suppose that the stable waves which can exist in a, plasma

cannot in general be considered to propagate independently.

Bohm and Gross have already pointed out that it is a good approximation

to consider two waves propagating in opposite directions (or more generally with

highly different velocities) to be independent. On the other hand the implication

is that waves with almost the same velocity will interact strongly. That this is so

is easily seen i the properties of the wave, such as the wavelength, depend strongly

on the distribution of electrons near the wave velocity. On the other hand it is

just these electrons which will be most strongly perturbed by another wave with

almost the same velocity. Hence the two waves certainly interact through those

electrons close to both wave velocities.
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The identification of the B G K equilibria with the Van Kapen modes

does not therefore automatically justify the application of Van Kampen's analysis

for which the independence of these modes is essential.

It is possible therefore that the analysis of stationary waves (including

that describes here) will not be directly applicable to a study of the more general

problem. On the other hand the concepts exposed here and elsewhere should be of

some value in the development of the more general theory.
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APPENDIX A

Consider the distribution function i

f(x,v) - V0 v 2 q • (x)
"7T v +v +a m

Then the electron density is
00 k

ne n f(x,v) dv = n V dv

II (V + a) + v-•oo
-00)noe V 1 dx

7 1 +x2

v2
-00

n ne

Poissons equation becomes

d 2t. n nq + n q
0 2 12. e e

dx

i.e. - ?- K- A dx= n oe /n

A -0 b -. • >
2 o A m V2

When we determine C from the conditions d0- for ( 0 this becomes
dx

ox K A

-0>

dx K AJ A

d K+ dx

2 (1 ~ - VI1 - AT) - A A
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Set I . J -.. .--.-- and z2 w I - A l(z + -T )

dz 2 z dz - A d

f - -=• - d z

- (z- )2 -1-.• )2 -

Now set z -Q•_ (I -O) coshi.. where we can suppose
2 2 2 2

(z C 2 (1 - (1 - c) ) (cosh;/ k -1)

0( - DO2 sinh/2

dz = (0 -00) sinh d

I =-f{ + 0 -O CýCoshj>

- 2 4+ (1 .- 0/ sin)ýL]
A

Hence / n 2 rr - 1, c h 1 z & 2 vV
HencK --- q- (x A x[a _ 2•cs-l -

where our choice of __ __

'/A > 0 imposes the condition cash- I

If we had chosen,,L< 0 this would have changed the sign of both tesms in l
Here z2  0 1 - A c

and x is a constant of integration.

We can readily plot (x - x ) as a function of z, or by distorting the scalel.

In other words we have x as a function of3 the inverse function of • (x)T

We can easily see that ) is an analytic function of x. It is true that we have

ignored the motion of the ions, but there is no reason to suppose that this intro-

duces any fundamental difference.
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APPENDIX B

We wish to study the function i

2.xx e
g1 (y) - p - du

x -y

By definition the Hilbert transform of the function f(x) is proportional

(rdft

J4 (f(x)) p f J ( dx
X - y

We shall therefore make use of the general rules concerniog this transform,

which (except for the first) can readily be justified from the definition

(f~x)) gWyWf1 : ( ' x ) - g '(y) (B 1)

(xf x)) - y g (y) + J f(x) dx (B 2)

and J4 (fI(x) + f (x))f3(f 1 (x)) + (f 2 (x)) (B 3)

2
Consider now f Wx) x e ; g (y) ( () (B 4)o 0o

Then 2x f + ?f 0

o 0

(2x f + fo) = 2y go(Y) + g; (y) + 2 0

from (BI) (B2) and (B 3)

which is a differential equation for go(y)

It can readily be verified that the gencral solution is

90o(y) - 2 2 e-y u2 2
g~~n2 v1  - 'eu du + e-y C

--X

and since g(0) mp e,, dx - 0
x
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-Y2 f Y u
g9(y) -2 F e- Gu du (B 5),

2

If we now define f (x) a -x

we have 91 (y) as-j4(fl(x)) (B 6)

But fl (x) -- I+f' (x)
0

g1 (y) - "+ go, (y) (eq. B 1)

2 2
= - y eJye Y 8eu du -0l1 7)

which is the required result (equation (12)).
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ArPWMLX C

To find an asymptotic expansion for g (y) we first note that I
1

2 n-Ixn I
S+ + +'2 + ...... n = +

y y y 1 --- x - x -y

y

n-I

i.e. I 
xr x n/Y n

( _y) Y y r x - y

r 0

Oe -X2
O x 2

Then g%(y) -p xd

x -y

, -x 1 . n+x e - 2 dx

rxx--yTx -y

-F"r + R (y) (C i)

2r 2m

(2m - n or n-I)
f' 2m+2 -x2

where R = - - p e dx (C 2)m2m+ Xw¥

-00
00 2Sinc xr-x 2

Since r e dx 0 if r is odd

•.fet 2 dt if r is even.

0

Since the n h term of the series in equation (CI ) is greater than the (n - 1 )th

term if n> y2 + 4, it is clear that the series diverges, and therefore that

Rm (Y) k-- + 00

We intend to show that the expansion of equation (CO) is nevertheless

useful an on asymptotic series.

xxxxxxxxxxxxxx
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If we write 2
f(X) -- x e
n

and gn(Y) .- 4(f(X)) (C 3)

then R2 (- 1 ) Y"--- - g- 1 (y) (C 4)

y

Proceeding exactly as in appendix B it is easy to show that

g2m(Y) - 2 (m ++) y { U2 u _2 du + C (r 5)

where a ' 0 (since we are interested in the case, y 0) and in principlA C

can be determined for given a. For example it can be seen intuitively that g2m (y)
=0 for some y - Ygm /% Vr•; we could write a = Y2m and C w 0.

It suffices however, to note that f[ 3 - - + C) monotonically and

is therefore always positive for some y > Y (m) which we need not evaluate.

Hence R2m(y) < 0 for y > Y(m) (C 6)

But from (C 1)

R2m(y) - R2 m-2 (y) - + F(m >0

2m
y

i.e. Rg2m (y) > R 2m-2 (y) (C T)

Combining (C 6) and (C 7) we see that for y >Y(m)

I R2m(Y)) < [R 2m2(Y) I

If we can invert the relation y >Y(m) to read

m <M(y) (C 8)

then M (y) gives us the number of terms to take for the best approximation to

91 W.)

If the intuitive result mentiorv'd above

Y (M) '-V
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is correct, then y > Y (W) m< y2 (approx.)

i.e. M (y) y 2

(which corresponds approximately to the smallest term of the series).

It can be shown that R2m (y) -- > 0
y --- )6o

Chose so that a ~ 1  > e
for all u1 >u 2  > a

Then21 y - 2

Then yn 2 e . 2L e u2 u_ du + C

2m - 2m yJA u2  -2' d

y C +y e e u dua

+y2m 0-y2 u 2 U-2m d

Ay•

The first tern tends to zero when y.4-o0(O < A<I)

When y > a/A the second term is :

2rj 2 2 Ay e(y2 -2n

y2m eyJ2 Ay 0u u-2m du < y2m e-y 1  (Ay) (Ay) du

(Ay - a) -(0 - A2 y2

A2m

-• 0 (y-*0)

The third term is

2m -y u -2m y 2y2 y uy se u du < 2 +i- se d

Ay (Ay) & Ay

1m 0  (y --- )] 00

A y Ay

Clearly the R n(y) 0-• 0 (R2 W...Il/y)2m (y 00

The functions R2M(y) are sketched in figure (Cl).
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APPENDIX 0

Landau's result is that asymptotic behaviour in time of a plasma is

characterized by a potentiol wave

i(kx -.Wt) (D 1)

where k(real) and W)(complex) satisfy

k 2 2Fr (v)
2 0

k2 - dv (D 2)

pv - C1k

where the path of integration, C, is that indicated in figure (D 1), which passes

below the pole (vo = W/k) of the integrand. The function F is supposed to have0 0

been continued analytically into the whole complex velocity plane. We have used F0

in (D 2) rather than Landau's f , to distinguish from Denisse's fo

We shall show here that we can choose F to satisfy equation (24), such
0

that there exist real C•and k satisfying equation (D 2).

Suppose that W k (both real) and F satisfy equation (D 2). In this

case we can replace by + f where r , are the contours

shown in figure (D 2)

The assumption that F' can be analytically continued into the complex0

plane means that on the semi-circle v W10/ k + r eiO which the contour

definies we have

F' ( A/k +re ) F' ( W./k) + r r" (CAYk) + 0 (r2)
0 0 0

v =CO/k+reai dv = ira O

de

F, (v) F1 (CUA/k+r ) - f• (CJA'k) F" (C /k) ++0 (r)
v O k + r a(eiG- J/k reiG 0

J F (V) v e + F" (CA/k) +0 e (

v- /k r
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0 1F: CA. A jý d 9 + 0 (r)0

= i7TF. (CU/k) + 0(r)

Hence F I (v) F (v)
a dvv-- - -"dv+ i F (IC4k) + O(r)

/ v - CkV/k ,- v - CQ/k
00 '-4k+.r

Since the left hand side is independent of r, and the equation is true for any

r > 0, we may take the limit as r-*+0.

F (v) 00 (v) ,(v)
a -CO -/ dv = p d + o(F (v))

v• - O1 Y v - WA 0 v I LO/k

-00

This equation is only exact if WO/k is real.

We now see the condition that k2 be real requires that (F Mv))0 v= CAYk

be zero.

The problem is therefore to choose d n F (v), which can be continued

analytically into the whole complex plane, which satisfies F (v) - 0 for some0

v and which satisfies relation (24), i.e.

/ F 0 (v)- feq (v) / < F, (24)

These conditions can clearly be satisfied by writing t

F (v) - f (v) + Sf(v)
o eq

subject to the condition that j • i <
Then /t can always be chosen small enough that F (v) will have a zero

for ome v a v"o f f .
To ensure that f F0 (v) dv f f eq (v) dv we must replace b f(v) by

+6 f(v) - 1 6 f(2vo - v) which in an odd funtion of v - v 0. Clearly this does

not change the derivative i F (v ).0 0
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This suffices to prove that there exist a real C and a real k which satis-

fy equation (D 2), subject to the relation (24), for env 0.

(k 2 = O2 p Fo (v) dv v k).

0p 0V - V
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